Junos® OS

Class of Service User Guide (Security Devices)

Published
2020-06-16
Table of Contents

About the Documentation | xi

Documentation and Release Notes | xi

Using the Examples in This Manual | xi

Merging a Full Example | xii

Merging a Snippet | xiii

Documentation Conventions | xiii

Documentation Feedback | xvi

Requesting Technical Support | xvi

Self-Help Online Tools and Resources | xvii

Creating a Service Request with JTAC | xvii

Overview

Introduction to Class of Service | 2

Understanding Class of Service | 2

Benefits of CoS | 4

CoS Across the Network | 4

Junos OS CoS Components | 5

CoS Components Packet Flow | 7

CoS Process on Incoming Packets | 8

CoS Process on Outgoing Packets | 9

CoS Device Configuration Overview | 9

Understanding CoS Default Settings | 10

Configuring Class of Service Components

Assigning Service Levels with Classifiers | 13

Classification Overview | 13

Behavior Aggregate Classifiers | 14

Multifield Classifiers | 15
Understanding IOC Hardware Properties | 260
Understanding IOC Map Queues | 262
WRED on the IOC Overview | 263
 Shapers at the Logical Interface Level (Level 3) | 264
 Shapers at the Interface Set Level (Level 2) | 266
 Shapers at the Port Level (Level 1) | 266
MDRR on the IOC Overview | 267
CoS Support on the SRX5000 Module Port Concentrator Overview | 270
Example: Configuring CoS on SRX5000 Devices with an MPC | 271

Configuration Statements and Operational Commands

Configuration Statements | 284

adaptive-shaper | 286
adaptive-shapers | 287
application-traffic-control | 288
buffer-size (Schedulers) | 290
classifiers (CoS) | 292
code-points (CoS) | 293
default (CoS) | 294
drop-profile-map (Schedulers) | 295
dscp-code-point (CoS Host Outbound Traffic) | 296
egress-shaping-overhead | 298
forwarding-class (CoS Host Outbound Traffic) | 300
forwarding-classes (CoS) | 301
frame-relay-de (CoS Interfaces) | 304
frame-relay-de (CoS Loss Priority) | 305
frame-relay-de (CoS Rewrite Rule) | 306
host-outbound-traffic (Class-of-Service) | 307
ingress-policer-overhead | 309
interfaces (CoS) | 312
logical-interface-policer | 314
loss-priority (CoS Loss Priority) | 315
loss-priority (CoS Rewrite Rules) | 316
loss-priority-maps (CoS Interfaces) | 317
loss-priority-maps (CoS) | 318
non-strict-priority-scheduling | 319
policer-overhead | 320
priority (Schedulers) | 322
rate-limiters | 324
rewrite-rules (CoS) | 326
rewrite-rules (CoS Interfaces) | 327
rule-sets (CoS AppQoS) | 328
scheduler-map (CoS Virtual Channels) | 330
schedulers (CoS) | 331
shaping-rate (CoS Adaptive Shapers) | 332
shaping-rate (CoS Interfaces) | 333
shaping-rate (CoS Virtual Channels) | 335
shaping-rate (Schedulers) | 336
transmit-rate (Schedulers) | 338
trigger (CoS) | 340
tunnel-queuing | 341
virtual-channels | 342
virtual-channel-group (CoS Interfaces) | 343
virtual-channel-groups | 344

Operational Commands | 346

show class-of-service application-traffic-control counter | 348
show class-of-service application-traffic-control statistics rate-limiter | 354
show class-of-service application-traffic-control statistics rule | 358
show class-of-service forwarding-class | 361
show class-of-service drop-profile | 363
show class-of-service forwarding-table | 367
show class-of-service rewrite-rule | 372
show class-of-service scheduler-map | 375
show class-of-service classifier | 379
show class-of-service code-point-aliases | 382
show class-of-service fabric scheduler-map | 384
show class-of-service fabric statistics | 386
show class-of-service forwarding-table classifier | 390
show class-of-service forwarding-table classifier mapping | 392
show class-of-service forwarding-table drop-profile | 394
show class-of-service forwarding-table fabric scheduler-map | 396
show class-of-service forwarding-table rewrite-rule | 398
show class-of-service forwarding-table rewrite-rule mapping | 400
show class-of-service forwarding-table scheduler-map | 402
show class-of-service forwarding-table traffic-class-map | 405
show class-of-service fragmentation-map | 408
show class-of-service interface | 410
show class-of-service loss-priority-rewrite | 450
show class-of-service l2tp-session | 452
show class-of-service policy-map | 454
show class-of-service routing-instance | 456
show class-of-service scheduler-hierarchy interface | 458
show class-of-service traffic-class-map | 461
show class-of-service translation-table | 463
show interfaces forwarding-class-counters | 469
show interfaces voq | 475
Use this guide to understand and configure class of service (CoS) features in Junos OS to define service levels that provide different delay, jitter, and packet loss characteristics to particular applications served by specific traffic flows. Applying CoS features to each device in your network ensures quality of service (QoS) for traffic throughout your entire network. This guide applies to all security devices.

Documentation and Release Notes

To obtain the most current version of all Juniper Networks® technical documentation, see the product documentation page on the Juniper Networks website at https://www.juniper.net/documentation/.

If the information in the latest release notes differs from the information in the documentation, follow the product Release Notes.

Juniper Networks Books publishes books by Juniper Networks engineers and subject matter experts. These books go beyond the technical documentation to explore the nuances of network architecture, deployment, and administration. The current list can be viewed at https://www.juniper.net/books.

Using the Examples in This Manual

If you want to use the examples in this manual, you can use the `load merge` or the `load merge relative` command. These commands cause the software to merge the incoming configuration into the current candidate configuration. The example does not become active until you commit the candidate configuration.
If the example configuration contains the top level of the hierarchy (or multiple hierarchies), the example is a *full example*. In this case, use the `load merge` command.

If the example configuration does not start at the top level of the hierarchy, the example is a *snippet*. In this case, use the `load merge relative` command. These procedures are described in the following sections.

Merging a Full Example

To merge a full example, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration example into a text file, save the file with a name, and copy the file to a directory on your routing platform.

 For example, copy the following configuration to a file and name the file `ex-script.conf`. Copy the `ex-script.conf` file to the `/var/tmp` directory on your routing platform.

   ```conf
   system {
     scripts {
       commit {
         file ex-script.xsl;
       } 
     } 
     interfaces {
       fxp0 {
         disable;
         unit 0 {
           family inet {
             address 10.0.0.1/24;
           } 
         } 
       } 
     } 
   }
   ```

2. Merge the contents of the file into your routing platform configuration by issuing the `load merge` configuration mode command:

   ```conf
   [edit]
   user@host# load merge /var/tmp/ex-script.conf
   load complete
   ```
Merging a Snippet

To merge a snippet, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration snippet into a text file, save the file with a name, and copy the file to a directory on your routing platform.

 For example, copy the following snippet to a file and name the file `ex-script-snippet.conf`. Copy the `ex-script-snippet.conf` file to the `/var/tmp` directory on your routing platform.

   ```
   commit {
     file ex-script-snippet.xsl; }
   ```

2. Move to the hierarchy level that is relevant for this snippet by issuing the following configuration mode command:

   ```
   [edit]
   user@host# edit system scripts
   [edit system scripts]
   ```

3. Merge the contents of the file into your routing platform configuration by issuing the `load merge relative` configuration mode command:

   ```
   [edit system scripts]
   user@host# load merge relative /var/tmp/ex-script-snippet.conf
   load complete
   ```

 For more information about the `load` command, see CLI Explorer.

Documentation Conventions

Table 1 on page xiv defines notice icons used in this guide.
Table 1: Notice Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Meaning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>🔄</td>
<td>Informational note</td>
<td>Indicates important features or instructions.</td>
</tr>
<tr>
<td>⚠️</td>
<td>Caution</td>
<td>Indicates a situation that might result in loss of data or hardware damage.</td>
</tr>
<tr>
<td>⚠️</td>
<td>Warning</td>
<td>Alerts you to the risk of personal injury or death.</td>
</tr>
<tr>
<td>⚠️</td>
<td>Laser warning</td>
<td>Alerts you to the risk of personal injury from a laser.</td>
</tr>
<tr>
<td>💡</td>
<td>Tip</td>
<td>Indicates helpful information.</td>
</tr>
<tr>
<td>💡</td>
<td>Best practice</td>
<td>Alerts you to a recommended use or implementation.</td>
</tr>
</tbody>
</table>

Table 2 on page xiv defines the text and syntax conventions used in this guide.

Table 2: Text and Syntax Conventions

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold text like this</td>
<td>Represents text that you type.</td>
<td>To enter configuration mode, type the <code>configure</code> command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>user@host> configure</td>
</tr>
<tr>
<td>Fixed-width text like this</td>
<td>Represents output that appears on the terminal screen.</td>
<td>user@host> show chassis alarms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No alarms currently active</td>
</tr>
<tr>
<td>Italic text like this</td>
<td>• Introduces or emphasizes important new terms.</td>
<td>• A policy term is a named structure that defines match conditions and actions.</td>
</tr>
<tr>
<td></td>
<td>• Identifies guide names.</td>
<td>• Junos OS CLI User Guide</td>
</tr>
<tr>
<td></td>
<td>• Identifies RFC and Internet draft titles.</td>
<td>• RFC 1997, BGP Communities Attribute</td>
</tr>
</tbody>
</table>
Table 2: Text and Syntax Conventions (continued)

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italic text like this</td>
<td>Represents variables (options for which you substitute a value) in commands or configuration statements.</td>
<td>Configure the machine’s domain name:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[edit] root@# set system domain-name domain-name</td>
</tr>
<tr>
<td>Text like this</td>
<td>Represents names of configuration statements, commands, files, and directories; configuration hierarchy levels; or labels on routing platform components.</td>
<td>• To configure a stub area, include the stub statement at the [edit protocols ospf area area-id] hierarchy level.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The console port is labeled CONSOLE.</td>
</tr>
<tr>
<td>< > (angle brackets)</td>
<td>Encloses optional keywords or variables.</td>
<td>stub <default-metric metric>;</td>
</tr>
<tr>
<td></td>
<td>(pipe symbol)</td>
<td>Indicates a choice between the mutually exclusive keywords or variables on either side of the symbol. The set of choices is often enclosed in parentheses for clarity.</td>
</tr>
<tr>
<td></td>
<td>(pound sign)</td>
<td>Indicates a comment specified on the same line as the configuration statement to which it applies.</td>
</tr>
<tr>
<td>[] (square brackets)</td>
<td>Encloses a variable for which you can substitute one or more values.</td>
<td>community name members [community-ids]</td>
</tr>
<tr>
<td>Indentation and braces { { } }</td>
<td>Identifies a level in the configuration hierarchy.</td>
<td>[edit] routing-options { static { route default { nexthop address; retain; } } }</td>
</tr>
<tr>
<td>: (semicolon)</td>
<td>Identifies a leaf statement at a configuration hierarchy level.</td>
<td></td>
</tr>
</tbody>
</table>

GUI Conventions
Table 2: Text and Syntax Conventions (continued)

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
</table>
| Bold text like this | Represents graphical user interface (GUI) items you click or select. | • In the Logical Interfaces box, select All Interfaces.
• To cancel the configuration, click Cancel. |
| > (bold right angle bracket) | Separates levels in a hierarchy of menu selections. | In the configuration editor hierarchy, select Protocols>Ospf. |

Documentation Feedback

We encourage you to provide feedback so that we can improve our documentation. You can use either of the following methods:

• Online feedback system—Click TechLibrary Feedback, on the lower right of any page on the Juniper Networks TechLibrary site, and do one of the following:

 • Click the thumbs-up icon if the information on the page was helpful to you.
 • Click the thumbs-down icon if the information on the page was not helpful to you or if you have suggestions for improvement, and use the pop-up form to provide feedback.

• E-mail—Send your comments to techpubs-comments@juniper.net. Include the document or topic name, URL or page number, and software version (if applicable).

Requesting Technical Support

Technical product support is available through the Juniper Networks Technical Assistance Center (JTAC). If you are a customer with an active Juniper Care or Partner Support Services support contract, or are
covered under warranty, and need post-sales technical support, you can access our tools and resources online or open a case with JTAC.

- Product warranties—For product warranty information, visit https://www.juniper.net/support/warranty/.
- JTAC hours of operation—The JTAC centers have resources available 24 hours a day, 7 days a week, 365 days a year.

Self-Help Online Tools and Resources

For quick and easy problem resolution, Juniper Networks has designed an online self-service portal called the Customer Support Center (CSC) that provides you with the following features:

- Find CSC offerings: https://www.juniper.net/customers/support/
- Search for known bugs: https://prsearch.juniper.net/
- Find product documentation: https://www.juniper.net/documentation/
- Find solutions and answer questions using our Knowledge Base: https://kb.juniper.net/
- Download the latest versions of software and review release notes: https://www.juniper.net/customers/csc/software/
- Search technical bulletins for relevant hardware and software notifications: https://kb.juniper.net/InfoCenter/
- Join and participate in the Juniper Networks Community Forum: https://www.juniper.net/company/communities/
- Create a service request online: https://myjuniper.juniper.net

To verify service entitlement by product serial number, use our Serial Number Entitlement (SNE) Tool: https://entitlementsearch.juniper.net/entitlementsearch/

Creating a Service Request with JTAC

You can create a service request with JTAC on the Web or by telephone.

- Visit https://myjuniper.juniper.net.
- Call 1-888-314-JTAC (1-888-314-5822 toll-free in the USA, Canada, and Mexico).

For international or direct-dial options in countries without toll-free numbers, see https://support.juniper.net/support/requesting-support/.
Overview
Introdution to Class of Service

Understanding Class of Service

When a network experiences congestion and delay, some packets must be dropped. Junos OS class of service (CoS) allows you to divide traffic into classes and offer various levels of throughput and packet loss when congestion occurs. This allows packet loss to happen according to the rules you configure.

For interfaces that carry IPv4, IPv6, or MPLS traffic, you can configure the Junos OS CoS features to provide multiple classes of service for different applications. On the device, you can configure multiple forwarding classes for transmitting packets, define which packets are placed into each output queue, schedule the transmission service level for each queue, and manage congestion using a random early detection (RED) algorithm.

Traffic shaping is the allocation of the appropriate amount of network bandwidth to every user and application on an interface. The appropriate amount of bandwidth is defined as cost-effective carrying capacity at a guaranteed CoS. You can use a Juniper Networks device to control traffic rate by applying classifiers and shapers.

The CoS features provide a set of mechanisms that you can use to provide differentiated services when best-effort delivery is insufficient.

Using Junos OS CoS features, you can assign service levels with different delay, jitter (delay variation), and packet loss characteristics to particular applications served by specific traffic flows. CoS is especially useful for networks supporting time-sensitive video and audio applications.
CoS features include traffic classifying, policing, queuing, scheduling, shaping and marker rewriting. You can configure all these features on the physical interfaces. So, the speeds of physical interfaces are of very much importance for CoS. Previously, vSRX instances supported only 1-Gbps interface speed even if the physical interface speed was more. As a result, CoS could be enabled only at 1G bandwidth even when the interfaces can actually support 1-Gbps, 10-Gbps, 40-Gbps, and 100-Gbps rates.

Currently on vSRX and vSRX 3.0 instances, different physical interface speed rates of 1-Gbps, 10-Gbps, 40-Gbps, and 100-Gbps are supported to configure CoS features. VMXNET3 or VIRTIO interface speed is 10Gbps, SR-IOV interface speed depends on the ethernet card.

If an interface speed configured is none of these speeds then the speed considered for CoS features is 1-Gbps.

Overall performance of network traffic is usually measured by aspects such as the bandwidth, delay, and error rate. If there is congestion in the network then packets are dropped. CoS helps divide the traffic during the time of congestion. So, with the different physical interface speed rates supported to configure CoS the CoS performance is improved.

NOTE: Policing, scheduling, and shaping CoS services are not supported for pre-encryption and post-encryption packets going into and coming out of an IPsec VPN tunnel.

Junos OS supports the following RFCs for traffic classification and policing:

- RFC 2474, *Definition of the Differentiated Services Field in the IPv4 and IPv6*
- RFC 2475, *An Architecture for Differentiated Services*
- RFC 2597, *Assured Forwarding PHB Group*
- RFC 2598, *An Expedited Forwarding PHB*
- RFC 2697, *A Single Rate Three Color Marker*
- RFC 2698, *A Two Rate Three Color Marker*

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Junos OS CoS Components</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoS Components Packet Flow</td>
<td>7</td>
</tr>
<tr>
<td>Understanding CoS Default Settings</td>
<td>10</td>
</tr>
<tr>
<td>CoS Device Configuration Overview</td>
<td>9</td>
</tr>
</tbody>
</table>
Benefits of CoS

IP routers normally forward packets independently, without controlling throughput or delay. This type of packet forwarding, known as best-effort service, is as good as your network equipment and links allow. Best-effort service is sufficient for many traditional IP data delivery applications, such as e-mail or Web browsing. However, newer IP applications such as real-time video and audio (or voice) require lower delay, jitter, and packet loss than simple best-effort networks can provide.

CoS features allow a Juniper Networks device to improve its processing of critical packets while maintaining best-effort traffic flows, even during periods of congestion. Network throughput is determined by a combination of available bandwidth and delay. CoS dedicates a guaranteed minimum bandwidth to a particular service class by reducing forwarding queue delays. (The other two elements of overall network delay, serial transmission delays determined by link speeds and propagation delays determined by media type, are not affected by CoS settings.)

Normally, packets are queued for output in their order of arrival, regardless of service class. Queuing delays increase with network congestion and often result in lost packets when queue buffers overflow. CoS packet classification assigns packets to forwarding queues by service class.

Because CoS must be implemented consistently end-to-end through the network, the CoS features on the Juniper Networks device are based on IETF Differentiated Services (DiffServ) standards to interoperate with other vendors’ CoS implementations.

RELATED DOCUMENTATION

| Understanding Class of Service | 2 |

CoS Across the Network

CoS works by examining traffic entering at the edge of your network. The edge devices classify traffic into defined service groups, which allow for the special treatment of traffic across the network. For example, voice traffic can be sent across certain links, and data traffic can use other links. In addition, the data traffic streams can be serviced differently along the network path to ensure that higher-paying customers receive better service. As the traffic leaves the network at the far edge, you can reclassify the traffic.

To support CoS, you must configure each device in the network. Generally, each device examines the packets that enter it to determine their CoS settings. These settings then dictate which packets are first transmitted to the next downstream device. In addition, the devices at the edges of your network might be required to alter the CoS settings of the packets transmitting to the neighboring network.

Figure 1 on page 5 shows an example of CoS operating across an Internet Service Provider (ISP) network.
In the ISP network shown in Figure 1 on page 5, Device A is receiving traffic from your network. As each packet enters, Device A examines the packet’s current CoS settings and classifies the traffic into one of the groupings defined by the ISP. This definition allows Device A to prioritize its resources for servicing the traffic streams it is receiving. In addition, Device A might alter the CoS settings (forwarding class and loss priority) of the packets to better match the ISP’s traffic groups. When Device B receives the packets, it examines the CoS settings, determines the appropriate traffic group, and processes the packet according to those settings. Device B then transmits the packets to Device C, which performs the same actions. Device D also examines the packets and determines the appropriate group. Because it sits at the far end of the network, the ISP might decide once again to alter the CoS settings of the packets before Device D transmits them to the neighboring network.

RELATED DOCUMENTATION

- Understanding Class of Service | 2

Junos OS CoS Components

Junos OS supports CoS components on Juniper Networks devices as indicated in Table 3 on page 5.

Table 3: Supported Junos OS CoS Components

<table>
<thead>
<tr>
<th>Junos OS CoS Component</th>
<th>Description</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code-point aliases</td>
<td>A code-point alias assigns a name to a pattern of code-point bits. You can use this name, instead of the bit pattern, when you configure other CoS components such as classifiers, drop-profile maps, and rewrite rules.</td>
<td>“Code-Point Aliases Overview” on page 201</td>
</tr>
</tbody>
</table>
Table 3: Supported Junos OS CoS Components (continued)

<table>
<thead>
<tr>
<th>Junos OS CoS Component</th>
<th>Description</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classifiers</td>
<td>Packet classification refers to the examination of an incoming packet. This function associates the packet with a particular CoS servicing level. Two general types of classifiers are supported—behavior aggregate (BA) classifiers and multifield (MF) classifiers. When both BA and MF classifications are performed on a packet, the MF classification has higher precedence.</td>
<td>“Classification Overview” on page 13</td>
</tr>
<tr>
<td>Forwarding classes</td>
<td>Forwarding classes allow you to group packets for transmission. Based on forwarding classes, you assign packets to output queues. The forwarding class plus the loss priority define the per-hop behavior (PHB in DiffServ) of a packet. Juniper Networks routers and services gateways support eight queues (0 through 7).</td>
<td>“Forwarding Classes Overview” on page 67</td>
</tr>
<tr>
<td>Loss priorities</td>
<td>Loss priorities allow you to set the priority of dropping a packet. You can use the loss priority setting to identify packets that have experienced congestion.</td>
<td>“Understanding Packet Loss Priorities” on page 17</td>
</tr>
<tr>
<td>Forwarding policy options</td>
<td>CoS-based forwarding (CBF) enables you to control next-hop selection based on a packet’s class of service and, in particular, the value of the IP packet’s precedence bits. For example, you can specify a particular interface or next hop to carry high-priority traffic while all best-effort traffic takes some other path.</td>
<td>“Example: Assigning a Forwarding Class to an Interface” on page 79</td>
</tr>
<tr>
<td>Transmission queues</td>
<td>After a packet is sent to the outgoing interface on a device, it is queued for transmission on the physical media. The amount of time a packet is queued on the device is determined by the availability of the outgoing physical media as well as the amount of traffic using the interface. Juniper Networks routers and services gateways support queues 0 through 7.</td>
<td>“Transmission Scheduling Overview” on page 104</td>
</tr>
<tr>
<td>Schedulers</td>
<td>An individual device interface has multiple queues assigned to store packets temporarily before transmission. To determine the order to service the queues, the device uses a round-robin scheduling method based on priority and the queue’s weighted round-robin (WRR) credits. Junos OS schedulers allow you to define the priority, bandwidth, delay buffer size, rate control status, and RED drop profiles to be applied to a particular queue for packet transmission.</td>
<td>“Schedulers Overview” on page 97</td>
</tr>
</tbody>
</table>
Table 3: Supported Junos OS CoS Components (continued)

<table>
<thead>
<tr>
<th>Junos OS CoS Component</th>
<th>Description</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual channels</td>
<td>On Juniper Networks routers and services gateways, you can configure virtual channels to limit traffic sent from a corporate headquarters to branch offices. Virtual channels might be required when the headquarters site has an expected aggregate bandwidth higher than that of the individual branch offices. The router at the headquarters site must limit the traffic sent to each branch office router to avoid oversubscribing their links.</td>
<td>“Virtual Channels Overview” on page 175</td>
</tr>
<tr>
<td>Policers for traffic classes</td>
<td>Policers allow you to limit traffic of a certain class to a specified bandwidth and burst size. Packets exceeding the policer limits can be discarded, or can be assigned to a different forwarding class, a different loss priority, or both. You define policers with firewall filters that can be associated with input or output interfaces.</td>
<td>“Simple Filters and Policers Overview” on page 33</td>
</tr>
<tr>
<td>Rewrite rules</td>
<td>A rewrite rule modifies the appropriate CoS bits in an outgoing packet. Modification of CoS bits allows the next downstream device to classify the packet into the appropriate service group. Rewriting or marking outbound packets is useful when the device is at the border of a network and must alter the CoS values to meet the policies of the targeted peer.</td>
<td>“Rewrite Rules Overview” on page 89</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Understanding Class of Service | 2
- CoS Components Packet Flow | 7
- Understanding CoS Default Settings | 10
- CoS Device Configuration Overview | 9

CoS Components Packet Flow

IN THIS SECTION

- CoS Process on Incoming Packets | 8
- CoS Process on Outgoing Packets | 9
On Juniper Networks devices, you configure CoS functions using different components. These components are configured individually or in a combination to define particular CoS services. Figure 2 on page 8 displays the relationship of different CoS components to each other and illustrates the sequence in which they interact.

Figure 2: Packet Flow Through Juniper Networks Device

Each box in Figure 2 on page 8 represents a CoS component. The solid lines show the direction of packet flow in a device. The upper row indicates an incoming packet, and the lower row an outgoing packet. The dotted lines show the inputs and outputs of particular CoS components. For example, the forwarding class and loss priority are outputs of behavior aggregate classifiers and multifield classifiers and inputs for rewrite markers and schedulers.

Typically, only a combination of some components shown in Figure 2 on page 8 (not all) is used to define a CoS service offering. For example, if a packet's class is determined by a behavior aggregate classifier, it is associated with a forwarding class and loss priority and does not need further classification by the multifield classifier.

This section contains the following topics:

CoS Process on Incoming Packets

Classifiers and policers perform the following operations on incoming packets:

1. A classifier examines an incoming packet and assigns a forwarding class and loss priority to it.
2. Based on the forwarding class, the packet is assigned to an outbound transmission queue.
3. Input policers meter traffic to see if traffic flow exceeds its service level. Policers might discard, change the forwarding class and loss priority, or set the PLP bit of a packet. A packet for which the PLP bit is set has an increased probability of being dropped during congestion.
CoS Process on Outgoing Packets

The scheduler map and rewrite rules perform the following operations on outgoing packets:

1. Scheduler maps are applied to interfaces and associate the outgoing packets with a scheduler and a forwarding class.

2. The scheduler defines how the packet is treated in the output transmission queue based on the configured transmit rate, buffer size, priority, and drop profile.
 - The buffer size defines the period for which the packet is stored during congestion.
 - The scheduling priority and transmit rate determine the order in which the packet is transmitted.
 - The drop profile defines how aggressively to drop packets that are using a particular scheduler.

3. Output policers meter traffic and might change the forwarding class and loss priority of a packet if a traffic flow exceeds its service level.

4. The rewrite rule writes information to the packet (for example, EXP or DSCP bits) according to the forwarding class and loss priority of the packet.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Understanding Class of Service</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junos OS CoS Components</td>
<td>5</td>
</tr>
<tr>
<td>Understanding CoS Default Settings</td>
<td>10</td>
</tr>
<tr>
<td>CoS Device Configuration Overview</td>
<td>9</td>
</tr>
</tbody>
</table>

CoS Device Configuration Overview

Before you begin configuring a Juniper Networks device for CoS, complete the following tasks:

- Determine whether the device needs to support different traffic streams, such as voice or video. If so, CoS helps to make sure this traffic receives more than basic best-effort packet delivery service.

- Determine whether the device is directly attached to any applications that send CoS-classified packets. If no sources are enabled for CoS, you must configure and apply rewrite rules on the interfaces facing the sources.
• Determine whether the device must support assured forwarding (AF) classes. Assured forwarding usually requires random early detection (RED) drop profiles to be configured and applied.

• Determine whether the device must support expedited forwarding (EF) classes with a policer. Policers require you to apply a burst size and bandwidth limit to the traffic flow, and set a consequence for packets that exceed these limits—usually a high loss priority, so that packets exceeding the policer limits are discarded first.

NOTE: When the T1/E1 mPIM is oversubscribed, we recommend that you configure its shaping rate for consistent CoS functionality. The shaping rate should be less than the total link speed.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>CLI Explorer</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding Class of Service</td>
<td>2</td>
</tr>
<tr>
<td>CoS Components Packet Flow</td>
<td>7</td>
</tr>
<tr>
<td>Understanding CoS Default Settings</td>
<td>10</td>
</tr>
</tbody>
</table>

Understanding CoS Default Settings

The Class of Service menu in J-Web allows you to configure most of the Junos OS CoS components for the IPv4 and MPLS traffic on a Juniper Networks device. You can configure forwarding classes for transmitting packets, define which packets are placed into each output queue, schedule the transmission service level for each queue, and manage congestion using a random early detection (RED) algorithm. After defining the CoS components, you must assign classifiers to the required physical and logical interfaces.

Even when you do not configure any CoS settings on your routing platform, the software performs some CoS functions to ensure that user traffic and protocol packets are forwarded with minimum delay when the network is experiencing congestion. Some default mappings are automatically applied to each logical interface that you configure. Other default mappings, such as explicit default classifiers and rewrite rules, are in operation only if you explicitly associate them with an interface.

You can display default CoS settings by running the `show class-of-service` operational mode command.

You configure CoS when you need to override the default packet forwarding behavior of a Juniper Networks device—especially in the three areas identified in Table 4 on page 11.
Table 4: Reasons to Configure Class of Service (CoS)

<table>
<thead>
<tr>
<th>Default Behavior to Override with CoS</th>
<th>CoS Configuration Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet classification—By default, the Juniper Networks device does not use behavior aggregate (BA) classifiers to classify packets. Packet classification applies to incoming traffic.</td>
<td>Classifiers</td>
</tr>
<tr>
<td>Scheduling queues—By default, the Juniper Networks device has only two queues enabled. Scheduling queues apply to outgoing traffic.</td>
<td>Schedulers</td>
</tr>
<tr>
<td>Packet headers—By default, the Juniper Networks device does not rewrite CoS bits in packet headers. Rewriting packet headers applies to outgoing traffic.</td>
<td>Rewrite rules</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Understanding Class of Service | 2
- CoS Components Packet Flow | 7
- CoS Device Configuration Overview | 9
Configuring Class of Service Components

Assigning Service Levels with Classifiers | 13
Controlling Network Access with Traffic Policing | 33
Controlling Output Queues with Forwarding Classes | 67
Altering Outgoing Packets Headers with Rewrite Rules | 89
Defining Output Queue Properties with Schedulers | 97
Removing Delays with Strict-Priority Queues | 135
Controlling Congestion with Drop Profiles | 156
Controlling Congestion with Adaptive Shapers | 170
Limiting Traffic Using Virtual Channels | 175
Enabling Queuing for Tunnel Interfaces | 184
Naming Components with Code-Point Aliases | 201
Assigning Service Levels with Classifiers

Classification Overview

Packet classification refers to the examination of an incoming packet, which associates the packet with a particular class-of-service (CoS) servicing level. Junos operating system (OS) supports these classifiers:

- Behavior aggregate (BA) classifiers
- Multifield (MF) classifiers
- Default IP precedence classifiers
NOTE: The total number of classifiers supported on a Services Processing Unit (SPU) is 79. Three classifiers are installed on the SPU as default classifiers in the Layer 3 mode, independent of any CoS configuration, which leaves 76 classifiers that can be configured using the CoS CLI commands. The default classifiers number can vary in future releases or in different modes.

Verify the number of default classifiers installed on the SPU to determine how many classifiers can be configured using the CoS CLI commands.

When both BA and MF classifications are performed on a packet, the MF classification has higher precedence.

In Junos OS, classifiers associate incoming packets with a forwarding class (FC) and packet loss priority (PLP), and, based on the associated FC, assign packets to output queues. A packet’s FC and PLP specify the behavior of a hop, within the system, to process the packet. The per-hop behavior (PHB) comprises packet forwarding, policing, scheduling, shaping, and marking. For example, a hop can put a packet in one of the priority queues according to its FC and then manage the queues by checking the packet’s PLP. Junos OS supports up to eight FCs and four PLPs.

This topic includes the following sections:

Behavior Aggregate Classifiers

A BA classifier operates on a packet as it enters the device. Using BA classifiers, the device aggregates different types of traffic into a single FC so that all the types of traffic will receive the same forwarding treatment. The CoS value in the packet header is the single field that determines the CoS settings applied to the packet. BA classifiers allow you to set a packet’s FC and PLP based on the Differentiated Services (DiffServ) code point (DSCP) value, DSCP IPv4 value, DSCP IPv6 value, IP precedence value, MPLS EXP bits, or IEEE 802.1p value. The default classifier is based on the IP precedence value. For more information, see "Default IP Precedence Classifier" on page 16.

Junos OS performs BA classification for a packet by examining its Layer 2, Layer 3, and related CoS parameters, as shown in Table 5 on page 14.

Table 5: BA Classification

<table>
<thead>
<tr>
<th>Layer</th>
<th>CoS Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 2</td>
<td>IEEE 802.1p value: User Priority</td>
</tr>
<tr>
<td>Layer 3</td>
<td>IPv4 precedence</td>
</tr>
<tr>
<td></td>
<td>IPv4 Differentiated Services code point (DSCP) value</td>
</tr>
<tr>
<td></td>
<td>IPv6 DSCP value</td>
</tr>
</tbody>
</table>
NOTE: A BA classifier evaluates Layer 2 and Layer 3 parameters independently. The results from Layer 2 parameters override the results from the Layer 3 parameters.

Multifield Classifiers

An MF classifier is a second means of classifying traffic flows. Unlike the BA classifier, an MF classifier can examine multiple fields in the packet—for example, the source and destination address of the packet, or the source and destination port numbers of the packet. With MF classifiers, you set the FC and PLP based on firewall filter rules.

NOTE: For a specified interface, you can configure both an MF classifier and a BA classifier without conflicts. Because the classifiers are always applied in sequential order (the BA classifier followed by the MF classifier) any BA classification result is overridden by an MF classifier if they conflict.

Junos OS performs MF traffic classification by directly scrutinizing multiple fields of a packet to classify a packet. This avoids having to rely on the output of the previous BA traffic classification. Junos OS can simultaneously check a packet's data for Layers 2, 3, 4, and 7, as shown in Table 6 on page 15.

Table 6: MF Classification

<table>
<thead>
<tr>
<th>Layer</th>
<th>CoS Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 2</td>
<td>IEEE 802.1Q: VLAN ID</td>
</tr>
<tr>
<td></td>
<td>IEEE 802.1p: User priority</td>
</tr>
<tr>
<td>Layer 3</td>
<td>IP precedence value</td>
</tr>
<tr>
<td></td>
<td>DSCP or DSCP IPv6 value</td>
</tr>
<tr>
<td></td>
<td>Source IP address</td>
</tr>
<tr>
<td></td>
<td>Destination IP address</td>
</tr>
<tr>
<td></td>
<td>Protocol</td>
</tr>
<tr>
<td></td>
<td>ICMP: Code and type</td>
</tr>
</tbody>
</table>
Using Junos OS, you configure an MF classifier with a firewall filter and its associated match conditions. This enables you to use any filter match criterion to locate packets that require classification.

Default IP Precedence Classifier

With Junos OS, all logical interface are automatically assigned a default IP precedence classifier when the logical interface is configured. This default traffic classifier maps IP precedence values to an FC and a PLP as shown in Table 7 on page 16. These mapping results are in effect for an ingress packet until the packet is further processed by another classification method.

Table 6: MF Classification (continued)

<table>
<thead>
<tr>
<th>Layer</th>
<th>CoS Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 4</td>
<td>TCP/UDP: Source port</td>
</tr>
<tr>
<td></td>
<td>TCP/UDP: Destination port</td>
</tr>
<tr>
<td></td>
<td>TCP: Flags</td>
</tr>
<tr>
<td></td>
<td>AH/ESP: SPI</td>
</tr>
<tr>
<td>Layer 7</td>
<td>Not supported.</td>
</tr>
</tbody>
</table>

Table 7: Default IP Precedence Classifier

<table>
<thead>
<tr>
<th>IP Precedence CoS Values</th>
<th>Forwarding Class</th>
<th>Packet Loss Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>001</td>
<td>best-effort</td>
<td>high</td>
</tr>
<tr>
<td>010</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>011</td>
<td>best-effort</td>
<td>high</td>
</tr>
<tr>
<td>100</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>101</td>
<td>best-effort</td>
<td>high</td>
</tr>
<tr>
<td>110</td>
<td>network-control</td>
<td>low</td>
</tr>
<tr>
<td>111</td>
<td>network-control</td>
<td>high</td>
</tr>
</tbody>
</table>
Understanding Packet Loss Priorities

Packet loss priorities (PLPs) allow you to set the priority for dropping packets. You can use the PLP setting to identify packets that have experienced congestion. Typically, you mark packets exceeding some service level with a high loss priority—that is, a greater likelihood of being dropped. You set PLP by configuring a classifier or a policer. The PLP is used later in the workflow to select one of the drop profiles used by random early detection (RED).

You can configure the PLP bit as part of a congestion control strategy. The PLP bit can be configured on an interface or in a filter. A packet for which the PLP bit is set has an increased probability of being dropped during congestion.

Default Behavior Aggregate Classification

Table 8 on page 18 shows the forwarding class (FC) and packet loss priority (PLP) that are assigned by default to each well-known Differentiated Services (DiffServ) code point (DSCP). Although several DSCPs map to the expedited-forwarding (ef) and assured-forwarding (af) classes, by default no resources are assigned to these forwarding classes. All af classes other than af1x are mapped to best-effort, because RFC 2597, Assured Forwarding PHB Group, prohibits a node from aggregating classes. Assignment to the best-effort FC implies that the node does not support that class. You can modify the default settings through configuration.
Table 8: Default Behavior Aggregate Classification

<table>
<thead>
<tr>
<th>DSCP and DSCP IPv6 Alias</th>
<th>Forwarding Class</th>
<th>Packet Loss Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>ef</td>
<td>expedited-forwarding</td>
<td>low</td>
</tr>
<tr>
<td>af11</td>
<td>assured-forwarding</td>
<td>low</td>
</tr>
<tr>
<td>af12</td>
<td>assured-forwarding</td>
<td>high</td>
</tr>
<tr>
<td>af13</td>
<td>assured-forwarding</td>
<td>high</td>
</tr>
<tr>
<td>af21</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>af22</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>af23</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>af31</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>af32</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>af33</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>af41</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>af42</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>af43</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>be</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>cs1</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>cs2</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>cs3</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>cs4</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>cs5</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>nc1/cs6</td>
<td>network-control</td>
<td>low</td>
</tr>
<tr>
<td>nc2/cs7</td>
<td>network-control</td>
<td>low</td>
</tr>
</tbody>
</table>
Table 8: Default Behavior Aggregate Classification (continued)

<table>
<thead>
<tr>
<th>DSCP and DSCP IPv6 Alias</th>
<th>Forwarding Class</th>
<th>Packet Loss Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>other</td>
<td>best-effort</td>
<td>low</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Classification Overview | 13
- Sample Behavior Aggregate Classification | 19
- Example: Configuring Behavior Aggregate Classifiers | 21
- Understanding Packet Loss Priorities | 17

Sample Behavior Aggregate Classification

Table 9 on page 19 shows the device forwarding classes (FCs) associated with each well-known Differentiated Services (DiffServ) code point (DSCP) and the resources assigned to the output queues for a sample DiffServ CoS implementation. This example assigns expedited forwarding to queue 1 and a subset of the assured FCs (afx) to queue 2, and distributes resources among all four forwarding classes. Other DiffServ-based implementations are possible.

Table 9: Sample Behavior Aggregate Classification Forwarding Classes and Queues

<table>
<thead>
<tr>
<th>DSCP and DSCP IPv6 Alias</th>
<th>DSCP and DSCP IPv6 Bits</th>
<th>Forwarding Class</th>
<th>Packet Loss Priority</th>
<th>Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>ef</td>
<td>101110</td>
<td>expedited-forwarding</td>
<td>low</td>
<td>1</td>
</tr>
<tr>
<td>af11</td>
<td>001010</td>
<td>assured-forwarding</td>
<td>low</td>
<td>2</td>
</tr>
<tr>
<td>af12</td>
<td>001100</td>
<td>assured-forwarding</td>
<td>high</td>
<td>2</td>
</tr>
<tr>
<td>af13</td>
<td>001110</td>
<td>assured-forwarding</td>
<td>high</td>
<td>2</td>
</tr>
<tr>
<td>af21</td>
<td>010010</td>
<td>best-effort</td>
<td>low</td>
<td>0</td>
</tr>
<tr>
<td>af22</td>
<td>010100</td>
<td>best-effort</td>
<td>low</td>
<td>0</td>
</tr>
<tr>
<td>af23</td>
<td>010110</td>
<td>best-effort</td>
<td>low</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 9: Sample Behavior Aggregate Classification Forwarding Classes and Queues (continued)

<table>
<thead>
<tr>
<th>DSCP and DSCP IPv6 Alias</th>
<th>DSCP and DSCP IPv6 Bits</th>
<th>Forwarding Class</th>
<th>Packet Loss Priority</th>
<th>Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>af31</td>
<td>011010</td>
<td>best-effort</td>
<td>low</td>
<td>0</td>
</tr>
<tr>
<td>af32</td>
<td>011100</td>
<td>best-effort</td>
<td>low</td>
<td>0</td>
</tr>
<tr>
<td>af33</td>
<td>011110</td>
<td>best-effort</td>
<td>low</td>
<td>0</td>
</tr>
<tr>
<td>af41</td>
<td>100010</td>
<td>best-effort</td>
<td>low</td>
<td>0</td>
</tr>
<tr>
<td>af42</td>
<td>100100</td>
<td>best-effort</td>
<td>low</td>
<td>0</td>
</tr>
<tr>
<td>af43</td>
<td>100110</td>
<td>best-effort</td>
<td>low</td>
<td>0</td>
</tr>
<tr>
<td>be</td>
<td>000000</td>
<td>best-effort</td>
<td>low</td>
<td>0</td>
</tr>
<tr>
<td>cs1</td>
<td>0010000</td>
<td>best-effort</td>
<td>low</td>
<td>0</td>
</tr>
<tr>
<td>cs2</td>
<td>010000</td>
<td>best-effort</td>
<td>low</td>
<td>0</td>
</tr>
<tr>
<td>cs3</td>
<td>011000</td>
<td>best-effort</td>
<td>low</td>
<td>0</td>
</tr>
<tr>
<td>cs4</td>
<td>100000</td>
<td>best-effort</td>
<td>low</td>
<td>0</td>
</tr>
<tr>
<td>cs5</td>
<td>101000</td>
<td>best-effort</td>
<td>low</td>
<td>0</td>
</tr>
<tr>
<td>nc1/cs6</td>
<td>110000=</td>
<td>network-control</td>
<td>low</td>
<td>3</td>
</tr>
<tr>
<td>nc2/cs7</td>
<td>111000=</td>
<td>network-control</td>
<td>low</td>
<td>3</td>
</tr>
<tr>
<td>other</td>
<td>—</td>
<td>best-effort</td>
<td>low</td>
<td>0</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Classification Overview | 13
- Default Behavior Aggregate Classification | 17
- Example: Configuring Behavior Aggregate Classifiers | 21
- Understanding Packet Loss Priorities | 17
Example: Configuring Behavior Aggregate Classifiers

IN THIS SECTION
- Requirements | 21
- Overview | 21
- Configuration | 22
- Verification | 25

This example shows how to configure behavior aggregate classifiers for a device to determine forwarding treatment of packets.

Requirements

Before you begin, determine the forwarding class and PLP that are assigned by default to each well-known DSCP that you want to configure for the behavior aggregate classifier. See “Default Behavior Aggregate Classification” on page 17.

Overview

You configure behavior aggregate classifiers to classify packets that contain valid DSCPs to appropriate queues. Once configured, you must apply the behavior aggregate classifier to the correct interfaces. You can override the default IP precedence classifier by defining a classifier and applying it to a logical interface.

To define new classifiers for all code point types, include the classifiers statement at the [edit class-of-service] hierarchy level.

In this example, you set the DSCP behavior aggregate classifier to ba-classifier as the default DSCP map. You set a best-effort forwarding class as be-class, an expedited forwarding class as ef-class, an assured forwarding class as af-class, and a network control forwarding class as nc-class. Finally, you apply the behavior aggregate classifier to an interface called ge-0/0/0.

Table 10 on page 21 shows how the behavior aggregate classifier assigns loss priorities, to incoming packets in the four forwarding classes.

Table 10: Sample ba-classifier Loss Priority Assignments

<table>
<thead>
<tr>
<th>mf-classifier Forwarding Class</th>
<th>For CoS Traffic Type</th>
<th>ba-classifier Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>be-class</td>
<td>Best-effort traffic</td>
<td>High-priority code point: 00001</td>
</tr>
</tbody>
</table>
Table 10: Sample ba-classifier Loss Priority Assignments (continued)

<table>
<thead>
<tr>
<th>mf-classifier Forwarding Class</th>
<th>For CoS Traffic Type</th>
<th>ba-classifier Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ef-class</td>
<td>Expedited forwarding traffic</td>
<td>High-priority code point: 101111</td>
</tr>
<tr>
<td>af-class</td>
<td>Assured forwarding traffic</td>
<td>High-priority code point: 001100</td>
</tr>
<tr>
<td>nc-class</td>
<td>Network control traffic</td>
<td>High-priority code point: 110001</td>
</tr>
</tbody>
</table>

Topology

Figure 3 on page 22 shows the sample network.

Figure 3: Behavior Aggregate Classifier Scenario

"CLI Quick Configuration" on page 22 shows the configuration for all of the Juniper Networks devices in Figure 3 on page 22.

The section "Step-by-Step Procedure" on page 22 describes the steps on Device R2.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from the configuration mode.

```
set class-of-service classifiers dscp ba-classifier import default
set class-of-service classifiers dscp ba-classifier forwarding-class be-class loss-priority high code-points 000001
set class-of-service classifiers dscp ba-classifier forwarding-class ef-class loss-priority high code-points 101111
set class-of-service classifiers dscp ba-classifier forwarding-class af-class loss-priority high code-points 001100
set class-of-service classifiers dscp ba-classifier forwarding-class nc-class loss-priority high code-points 110001
set class-of-service interfaces ge-0/0/0 unit 0 classifiers dscp ba-classifier
```

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode* in the CLI User Guide.

To configure behavior aggregate classifiers for a device:

1. Configure the class of service.

   ```
   [edit]
   user@host# edit class-of-service
   ```

2. Configure behavior aggregate classifiers for DiffServ CoS.

   ```
   [edit class-of-service]
   user@host# edit classifiers dscp ba-classifier
   user@host# set import default
   ```

3. Configure a best-effort forwarding class classifier.

   ```
   [edit class-of-service classifiers dscp ba-classifier]
   user@host# set forwarding-class be-class loss-priority high code-points 000001
   ```

4. Configure an expedited forwarding class classifier.

   ```
   [edit class-of-service classifiers dscp ba-classifier]
   user@host# set forwarding-class ef-class loss-priority high code-points 101111
   ```

5. Configure an assured forwarding class classifier.

   ```
   [edit class-of-service classifiers dscp ba-classifier]
   user@host# set forwarding-class af-class loss-priority high code-points 001100
   ```

6. Configure a network control forwarding class classifier.

   ```
   [edit class-of-service classifiers dscp ba-classifier]
   user@host# set forwarding-class nc-class loss-priority high code-points 110001
   ```

7. Apply the behavior aggregate classifier to an interface.

   ```
   [edit]
   ```
Results
From configuration mode, confirm your configuration by entering the `show class-of-service` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show class-of-service
classifiers {
dscp ba-classifier {
  import default;
  forwarding-class be-class {
    loss-priority high code-points 000001;
  }
  forwarding-class ef-class {
    loss-priority high code-points 101111;
  }
  forwarding-class af-class {
    loss-priority high code-points 001100;
  }
  forwarding-class nc-class {
    loss-priority high code-points 110001;
  }
}
forwarding-classes {
class BE-data queue-num 0;
class Premium-data queue-num 1;
class Voice queue-num 2;
class NC queue-num 3;
}
interfaces {
ge-0/0/0 {
  unit 0 {
    classifiers {
      dscp ba-classifier;
    }
  }
}
```
If you are done configuring the device, enter `commit` from configuration mode.

Verification

IN THIS SECTION

- Verifying the Code-Point Aliases | 25
- Verifying the DSCP Classifier | 26
- Verifying the Forwarding Classes and Output Queues | 29
- Verifying That the Classifier Is Applied to the Interfaces | 29
- Verifying Behavior Aggregate Classifiers | 30

Confirm that the configuration is working properly.

Verifying the Code-Point Aliases

Purpose

Make sure that the code-point aliases are configured as expected.

Action
On Device R2, run the `show class-of-service code-point-aliases dscp` command.

```
user@R2> show class-of-service code-point-aliases dscp
```

<table>
<thead>
<tr>
<th>Code point type: dscp</th>
<th>Alias</th>
<th>Bit pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>af11</td>
<td></td>
<td>001010</td>
</tr>
<tr>
<td>af12</td>
<td></td>
<td>001100</td>
</tr>
<tr>
<td>af13</td>
<td></td>
<td>001110</td>
</tr>
<tr>
<td>af21</td>
<td></td>
<td>010010</td>
</tr>
<tr>
<td>af22</td>
<td></td>
<td>010100</td>
</tr>
<tr>
<td>af23</td>
<td></td>
<td>010110</td>
</tr>
<tr>
<td>af31</td>
<td></td>
<td>011010</td>
</tr>
<tr>
<td>af32</td>
<td></td>
<td>011100</td>
</tr>
<tr>
<td>af33</td>
<td></td>
<td>011110</td>
</tr>
<tr>
<td>af41</td>
<td></td>
<td>100010</td>
</tr>
<tr>
<td>af42</td>
<td></td>
<td>100100</td>
</tr>
<tr>
<td>af43</td>
<td></td>
<td>100110</td>
</tr>
<tr>
<td>be</td>
<td></td>
<td>000000</td>
</tr>
<tr>
<td>be1</td>
<td></td>
<td>000001</td>
</tr>
<tr>
<td>cs1</td>
<td></td>
<td>001000</td>
</tr>
<tr>
<td>cs2</td>
<td></td>
<td>010000</td>
</tr>
<tr>
<td>cs3</td>
<td></td>
<td>011000</td>
</tr>
<tr>
<td>cs4</td>
<td></td>
<td>100000</td>
</tr>
<tr>
<td>cs5</td>
<td></td>
<td>101000</td>
</tr>
<tr>
<td>cs6</td>
<td></td>
<td>110000</td>
</tr>
<tr>
<td>cs7</td>
<td></td>
<td>111000</td>
</tr>
<tr>
<td>ef</td>
<td></td>
<td>101110</td>
</tr>
<tr>
<td>ef1</td>
<td></td>
<td>101111</td>
</tr>
<tr>
<td>nc1</td>
<td></td>
<td>110000</td>
</tr>
<tr>
<td>nc2</td>
<td></td>
<td>111000</td>
</tr>
</tbody>
</table>

Meaning
The code-point aliases are configured as expected. Notice that the custom aliases that you configure are added to the default code-point aliases.

Verifying the DSCP Classifier

Purpose
Make sure that the DSCP classifier is configured as expected.
Action

On Device R2, run the **show class-of-service classifiers name v4-ba-classifier** command.

```
user@R2> show class-of-service classifiers name v4-ba-classifier
```

<table>
<thead>
<tr>
<th>Code point</th>
<th>Forwarding class</th>
<th>Loss priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000</td>
<td>BE-data</td>
<td>high</td>
</tr>
<tr>
<td>000001</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>000010</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>000011</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>000100</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>000101</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>000110</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>000111</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>001000</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>001001</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>001010</td>
<td>Voice</td>
<td>low</td>
</tr>
<tr>
<td>001011</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>001100</td>
<td>Voice</td>
<td>high</td>
</tr>
<tr>
<td>001101</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>001110</td>
<td>Voice</td>
<td>high</td>
</tr>
<tr>
<td>001111</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>010000</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>010001</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>010010</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>010011</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>010100</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>010101</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>010110</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>010111</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>011000</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>011001</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>011010</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>011011</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>011100</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>011101</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>011110</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>011111</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>100000</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>100001</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>100010</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>100011</td>
<td>BE-data</td>
<td>low</td>
</tr>
</tbody>
</table>
Meaning

Notice that the default classifier is incorporated into the customer classifier. If you were to remove the Import default statement from the custom classifier, the custom classifier would look like this:

```
user@R2> show class-of-service classifier name v4-ba-classifier
```

<table>
<thead>
<tr>
<th>Code point</th>
<th>Forwarding class</th>
<th>Loss priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000</td>
<td>BE-data</td>
<td>high</td>
</tr>
<tr>
<td>000001</td>
<td>BE-data</td>
<td>low</td>
</tr>
<tr>
<td>101110</td>
<td>Premium-data</td>
<td>high</td>
</tr>
<tr>
<td>101111</td>
<td>Premium-data</td>
<td>low</td>
</tr>
</tbody>
</table>
Verifying the Forwarding Classes and Output Queues

Purpose
Make sure that the forwarding classes are configured as expected.

Action
On Device R2, run the `show class-of-service forwarding-class` command.

user@R2> show class-of-service forwarding-class

<table>
<thead>
<tr>
<th>Forwarding class</th>
<th>ID</th>
<th>Queue</th>
<th>Restricted queue</th>
<th>Fabric priority</th>
<th>Policing priority</th>
<th>SPU priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE-data</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>low</td>
<td></td>
</tr>
<tr>
<td>normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Premium-data</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>low</td>
<td></td>
</tr>
<tr>
<td>normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voice</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td>low</td>
<td></td>
</tr>
<tr>
<td>normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td>low</td>
<td></td>
</tr>
</tbody>
</table>

The forwarding classes are configured as expected.

Verifying That the Classifier Is Applied to the Interfaces

Purpose
Make sure that the classifier is applied to the correct interfaces.

Action
On Device R2, run the `show class-of-service interface` command.

user@R2> show class-of-service interface ge-1/0/3

Physical interface: ge-1/0/3, Index: 144
Queues supported: 8, Queues in use: 4
 Scheduler map: <default>, Index: 2
 Congestion-notification: Disabled

Logical interface: ge-1/0/3.0, Index: 333
show class-of-service interface ge-1/0/9

Physical interface: ge-1/0/9, Index: 150
Queues supported: 8, Queues in use: 4
 Scheduler map: <default>, Index: 2
 Congestion-notification: Disabled

Logical interface: ge-1/0/9.0, Index: 332

Meaning
The interfaces are configured as expected.

Verifying Behavior Aggregate Classifiers

Purpose
Verify that the behavior aggregate classifiers were configured properly on the device.

Action
From configuration mode, enter the `show class-of-service` command.

When you are using `hping` to set the DSCP code points in the IPv4 packet header, the type-of-service (ToS) hex value (in this case, BC) is required in the `--tos` option of the `hping` command.

If your binary-to-hex or binary-to-decimal conversion skills are rusty, you can use an online calculator, such as http://www.mathsisfun.com/binary-decimal-hexadecimal-converter.html.

NOTE: When you convert a binary DSCP code point value, be sure to add two extra zeros at the end. So instead of 101111, use 10111100. These 0 values (the 7th and 8th bits) are reserved and ignored, but if you do not include them in the conversion, your hex and decimal values will be incorrect.

Extended Ping Sent from Device R1

`ping 172.16.70.1 tos 188 rapid count 25`
PING 172.16.70.1 (172.16.70.1): 56 data bytes
!!!!!!!!!!!!!!!!!!!!!!!!!!!!
--- 172.16.70.1 ping statistics ---
25 packets transmitted, 25 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.404/0.483/1.395/0.207 ms

hping Sent from Host 1

root@host1> hping 172.16.70.1 --tos BC -c 25

HPING 172.16.70.1 (eth1 172.16.70.1): NO FLAGS are set, 40 headers + 0 data bytes
len=46 ip=172.16.70.1 ttl=61 DF id=0 sport=0 flags=RA seq=0 win=0 rtt=0.3 ms
len=46 ip=172.16.70.1 ttl=61 DF id=0 sport=0 flags=RA seq=1 win=0 rtt=0.6 ms
len=46 ip=172.16.70.1 ttl=61 DF id=0 sport=0 flags=RA seq=2 win=0 rtt=0.4 ms
len=46 ip=172.16.70.1 ttl=61 DF id=0 sport=0 flags=RA seq=3 win=0 rtt=0.4 ms
len=46 ip=172.16.70.1 ttl=61 DF id=0 sport=0 flags=RA seq=4 win=0 rtt=0.6 ms
len=46 ip=172.16.70.1 ttl=61 DF id=0 sport=0 flags=RA seq=5 win=0 rtt=0.3 ms
len=46 ip=172.16.70.1 ttl=61 DF id=0 sport=0 flags=RA seq=6 win=0 rtt=0.4 ms
len=46 ip=172.16.70.1 ttl=61 DF id=0 sport=0 flags=RA seq=7 win=0 rtt=0.4 ms
len=46 ip=172.16.70.1 ttl=61 DF id=0 sport=0 flags=RA seq=8 win=0 rtt=0.4 ms
len=46 ip=172.16.70.1 ttl=61 DF id=0 sport=0 flags=RA seq=9 win=0 rtt=0.4 ms
len=46 ip=172.16.70.1 ttl=61 DF id=0 sport=0 flags=RA seq=10 win=0 rtt=0.5 ms
len=46 ip=172.16.70.1 ttl=61 DF id=0 sport=0 flags=RA seq=11 win=0 rtt=0.4 ms
len=46 ip=172.16.70.1 ttl=61 DF id=0 sport=0 flags=RA seq=12 win=0 rtt=0.5 ms
len=46 ip=172.16.70.1 ttl=61 DF id=0 sport=0 flags=RA seq=13 win=0 rtt=0.4 ms
len=46 ip=172.16.70.1 ttl=61 DF id=0 sport=0 flags=RA seq=14 win=0 rtt=0.4 ms
len=46 ip=172.16.70.1 ttl=61 DF id=0 sport=0 flags=RA seq=15 win=0 rtt=0.4 ms
len=46 ip=172.16.70.1 ttl=61 DF id=0 sport=0 flags=RA seq=16 win=0 rtt=0.4 ms
len=46 ip=172.16.70.1 ttl=61 DF id=0 sport=0 flags=RA seq=17 win=0 rtt=0.5 ms
len=46 ip=172.16.70.1 ttl=61 DF id=0 sport=0 flags=RA seq=18 win=0 rtt=0.5 ms
len=46 ip=172.16.70.1 ttl=61 DF id=0 sport=0 flags=RA seq=19 win=0 rtt=0.4 ms
len=46 ip=172.16.70.1 ttl=61 DF id=0 sport=0 flags=RA seq=20 win=0 rtt=0.4 ms
len=46 ip=172.16.70.1 ttl=61 DF id=0 sport=0 flags=RA seq=21 win=0 rtt=0.5 ms
len=46 ip=172.16.70.1 ttl=61 DF id=0 sport=0 flags=RA seq=22 win=0 rtt=0.4 ms
len=46 ip=172.16.70.1 ttl=61 DF id=0 sport=0 flags=RA seq=23 win=0 rtt=0.5 ms
len=46 ip=172.16.70.1 ttl=61 DF id=0 sport=0 flags=RA seq=24 win=0 rtt=0.4 ms

On Device R2, Verify that Queue 2 is Incrementing.

Code point 101111 is associated with Premium-data, which uses queue 1.

user@R2> show interfaces extensive ge-1/0/3 | find "queue counters"
Meaning
The output shows that queue 1 has incremented by 50 packets after sending 50 packets through the router.

RELATED DOCUMENTATION

- Interfaces User Guide for Security Devices
 - Classification Overview | 13
 - Sample Behavior Aggregate Classification | 19
 - Understanding Packet Loss Priorities | 17
Simple Filters and Policers Overview

You can configure simple filters and policers to handle oversubscribed traffic in SRX1400, SRX3400, SRX3600, SRX5600 and SRX5800 devices. In Junos OS, policers can be configured as part of the firewall filter hierarchy. (Platform support depends on the Junos OS release in your installation.)

NOTE: For SRX5600 and SRX5800 devices, the simple filter or policing actions can be applied only to logical interfaces residing in an SRX5000 line Flex IOC (FIOC) because only an SRX5000 line FIOC supports the simple filter and policing features on the SRX5600 and SRX5800 devices.

The simple filter functionality consists of the following:

- Classifying packets according to configured policies
- Taking appropriate actions based on the results of classification

In Junos OS, ingress traffic policers can limit the rate of incoming traffic. Two main reasons to use traffic policing are:

- To enforce traffic rates to conform to the service-level agreement (SLA)
To protect next hops, such as protecting the central point and the SPU from being overwhelmed by excess traffic like DOS attacks

Using the results of packet classification and traffic metering, a policer can take one of the following actions for a packet: forward a conforming (green) packet or drop a nonconforming (yellow) packet. Policers always discard a nonconforming red packet. Traffic metering supports the algorithm of the two-rate tricolor marker (TCM). (See RFC 2698, A Two Rate Three Color Marker.)

RELATED DOCUMENTATION

Guidelines for Configuring Simple Filters | 55
Example: Configuring a Two-Rate Three-Color Policer | 35
Example: Configuring and Applying a Firewall Filter for a Multifield Classifier | 59

Two-Rate Three-Color Policer Overview

A two-rate three-color policer defines two bandwidth limits (one for guaranteed traffic and one for peak traffic) and two burst sizes (one for each of the bandwidth limits). A two-rate three-color policer is most useful when a service is structured according to arrival rates and not necessarily packet length.

Two-rate three-color policing meters a traffic stream based on the following configured traffic criteria:

- Committed information rate (CIR)—Bandwidth limit for guaranteed traffic.
- Committed burst size (CBS)—Maximum packet size permitted for bursts of data that exceed the CIR.
- Peak information rate (PIR)—Bandwidth limit for peak traffic.
- Peak burst size (PBS)—Maximum packet size permitted for bursts of data that exceed the PIR.

Two-rate tricolor marking (two-rate TCM) classifies traffic as belonging to one of three color categories and performs congestion-control actions on the packets based on the color marking:

- Green—Traffic that conforms to the bandwidth limit and burst size for guaranteed traffic (CIR and CBS). For a green traffic flow, two-rate TCM marks the packets with an implicit loss priority of low and transmits the packets.
- Yellow—Traffic that exceeds the bandwidth limit or burst size for guaranteed traffic (CIR or CBS) but not the bandwidth limit and burst size for peak traffic (PIR and PBS). For a yellow traffic flow, two-rate TCM marks packets with an implicit loss priority of medium-high and transmits the packets.
- Red—Traffic that exceeds the bandwidth limit and burst size for peak traffic (PIR and PBS). For a red traffic flow, two-rate TCM marks packets with an implicit loss priority of high and, optionally, discards the packets.
If congestion occurs downstream, the packets with higher loss priority are more likely to be discarded.

NOTE: For both single-rate and two-rate three-color policers, the only configurable action is to discard packets in a red traffic flow.

For a tricolor marking policer referenced by a firewall filter term, the discard policing action is supported on the following routing platforms:

- EX Series switches
- M7i and M10i routers with the Enhanced CFEB (CFEB-E)
- M120 and M320 routers with Enhanced-III FPCs
- MX Series routers with Trio MPCs

To apply a tricolor marking policer on these routing platforms, it is not necessary to include the logical-interface-policer statement.

RELATED DOCUMENTATION

Example: Configuring a Two-Rate Three-Color Policer

Example: Configuring a Two-Rate Three-Color Policer

IN THIS SECTION

- Requirements | 36
- Overview | 36
- Configuration | 36
- Verification | 41

This example shows how to configure a two-rate three-color policer.
Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

A two-rate three-color policer meters a traffic flow against a bandwidth limit and burst-size limit for guaranteed traffic, plus a bandwidth limit and burst-size limit for peak traffic. Traffic that conforms to the limits for guaranteed traffic is categorized as green, and nonconforming traffic falls into one of two categories:

- Nonconforming traffic that does not exceed peak traffic limits is categorized as yellow.
- Nonconforming traffic that exceeds peak traffic limits is categorized as red.

Each category is associated with an action. For green traffic, packets are implicitly set with a loss-priority value of low and then transmitted. For yellow traffic, packets are implicitly set with a loss-priority value of medium-high and then transmitted. For red traffic, packets are implicitly set with a loss-priority value of high and then transmitted. If the policer configuration includes the optional action statement (in this example, action loss-priority high then discard), then packets in a red flow are discarded instead.

You can apply a three-color policer to Layer 3 traffic as a firewall filter policer only. You reference the policer from a stateless firewall filter term, and then you apply the filter to the input or output of a logical interface at the protocol level.

Topology

In this example, you apply a color-aware, two-rate three-color policer to the input IPv4 traffic at logical interface fe-0/1/1.0. The IPv4 firewall filter term that references the policer does not apply any packet-filtering. The filter is used only to apply the three-color policer to the interface.

You configure the policer to rate-limit traffic to a bandwidth limit of 40 Mbps and a burst-size limit of 100 KB for green traffic, and you configure the policer to also allow a peak bandwidth limit of 60 Mbps and a peak burst-size limit of 200 KB for yellow traffic. Only nonconforming traffic that exceeds the peak traffic limits is categorized as red. In this example, you configure the three-color policer action loss-priority high then discard, which overrides the implicit marking of red traffic to a high loss priority.

Configuration
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode.

To configure this example, perform the following tasks:

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and then paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```plaintext
set firewall three-color-policer trTCM1-ca two-rate color-aware
set firewall three-color-policer trTCM1-ca two-rate committed-information-rate 40m
set firewall three-color-policer trTCM1-ca two-rate committed-burst-size 100k
set firewall three-color-policer trTCM1-ca two-rate peak-information-rate 60m
set firewall three-color-policer trTCM1-ca two-rate peak-burst-size 200k
set firewall three-color-policer trTCM1-ca action loss-priority high then discard
set firewall family inet filter filter-trtcm1ca-all term 1 then three-color-policer two-rate trTCM1-ca
set interfaces ge-2/0/5 unit 0 family inet address 10.10.10.1/30
set interfaces ge-2/0/5 unit 0 family inet filter input filter-trtcm1ca-all
set class-of-service interfaces ge-2/0/5 forwarding-class af
```

Configuring a Two-Rate Three-Color Policer

Step-by-Step Procedure

To configure a two-rate three-color policer:

1. Enable configuration of a three-color policer.

   ```plaintext
   [edit]
   user@host# set firewall three-color-policer trTCM1-ca
   ```

2. Configure the color mode of the two-rate three-color policer.

   ```plaintext
   [edit firewall three-color-policer trTCM1-ca]
   user@host# set two-rate color-aware
   ```

3. Configure the two-rate guaranteed traffic limits.

   ```plaintext
   [edit firewall three-color-policer trTCM1-ca]
   user@host# set two-rate committed-information-rate 40m
   user@host# set two-rate committed-burst-size 100k
   ```
Traffic that does not exceed both of these limits is categorized as green. Packets in a green flow are implicitly set to **low** loss priority and then transmitted.

4. Configure the two-rate peak traffic limits.

```bash
[edit firewall three-color-policer trTCM1-ca]
user@host# set two-rate peak-information-rate 60m
user@host# set two-rate peak-burst-size 200k
```

Nonconforming traffic that does not exceed both of these limits is categorized as yellow. Packets in a yellow flow are implicitly set to **medium-high** loss priority and then transmitted. Nonconforming traffic that exceeds both of these limits is categorized as red. Packets in a red flow are implicitly set to **high** loss priority.

5. (Optional) Configure the policer action for red traffic.

```bash
[edit firewall three-color-policer trTCM1-ca]
user@host# set action loss-priority high then discard
```

For three-color policers, the only configurable action is to discard red packets. Red packets are packets that have been assigned high loss priority because they exceeded the peak information rate (PIR) and the peak burst size (PBS).

Results

Confirm the configuration of the policer by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```bash
[edit]
user@host# show firewall
three-color-policer trTCM1-ca {
  action {
    loss-priority high then discard;
  }
  two-rate {
    color-aware;
    committed-information-rate 40m;
    committed-burst-size 100k;
    peak-information-rate 60m;
    peak-burst-size 200k;
  }
}
```
Configuring an IPv4 Stateless Firewall Filter That References the Policer

Step-by-Step Procedure
To configure an IPv4 stateless firewall filter that references the policer:

1. Enable configuration of an IPv4 standard stateless firewall filter.

```
[edit]
user@host# set firewall family inet filter filter-trtcm1ca-all
```

2. Specify the filter term that references the policer.

```
[edit firewall family inet filter filter-trtcm1ca-all]
user@host# set term 1 then three-color-policer two-rate trTCM1-ca
```

Note that the term does not specify any match conditions. The firewall filter passes all packets to the policer.

Results
Confirm the configuration of the firewall filter by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show firewall
family inet {
 filter filter-trtcm1ca-all {
 term 1 {
 then {
 three-color-policer {
 two-rate trTCM1-ca;
 }
 }
 }
 }
}
three-color-policer trTCM1-ca {
 action {
 loss-priority high then discard;
 }
 two-rate {
 color-aware;
 }
```
commit-information-rate 40m;
committed-burst-size 100k;
peak-information-rate 60m;
peak-burst-size 200k;
}
}

Applying the Filter to a Logical Interface at the Protocol Family Level

Step-by-Step Procedure

To apply the filter to the logical interface at the protocol family level:

1. Enable configuration of an IPv4 firewall filter.

```
[edit]
user@host# edit interfaces ge-2/0/5 unit 0 family inet
```

2. Apply the policer to the logical interface at the protocol family level.

```
[edit interfaces ge-2/0/5 unit 0 family inet]
user@host# set address 10.10.10.1/30
user@host# set filter input filter-trtc1ca-all
```

3. (MX Series routers and EX Series switches only) (Optional) For input policers, you can configure a fixed classifier. A fixed classifier reclassifies all incoming packets, regardless of any preexisting classification.

```
[edit]
user@host# set class-of-service interfaces ge-2/0/5 forwarding-class af
```

The classifier name can be a configured classifier or one of the default classifiers.

Results
Confirm the configuration of the interface by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```plaintext
[edit]
user@host# show interfaces
ge-2/0/5 {
    unit 0 {
        family inet {
            address 10.10.10.1/30;
            filter {
                input filter-trtc1ca-all;
            }
        }
    }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

Verification

IN THIS SECTION
- Displaying the Firewall Filters Applied to the Logical Interface | 41

Confirm that the configuration is working properly.

Displaying the Firewall Filters Applied to the Logical Interface

Purpose
Verify that the firewall filter is applied to IPv4 input traffic at the logical interface.

Action
Use the `show interfaces` operational mode command for the logical interface `ge-2/0/5.0`, and specify `detail` mode. The `Protocol inet` section of the command output displays IPv4 information for the logical interface. Within that section, the `Input Filters` field displays the name of IPv4 firewall filters associated with the logical interface.

```
user@host> show interfaces ge-2/0/5.0 detail
```
Logical interface ge-2/0/5.0 (Index 105) (SNMP ifIndex 556) (Generation 170)

Flags: Device-Down SNMP-Traps 0x4004000 Encapsulation: ENET2

Traffic statistics:
- Input bytes: 0
- Output bytes: 0
- Input packets: 0
- Output packets: 0

Local statistics:
- Input bytes: 0
- Output bytes: 0
- Input packets: 0
- Output packets: 0

Transit statistics:
- Input bytes: 0 0 bps
- Output bytes: 0 0 bps
- Input packets: 0 0 pps
- Output packets: 0 0 pps

Protocol inet, MTU: 1500, Generation: 242, Route table: 0
- Flags: Sendbcast-pkt-to-re
- Input Filters: filter-trtcmlca-all
- Addresses, Flags: Dest-route-down Is-Preferred Is-Primary
 - Destination: 10.20.130/24, Local: 10.20.130.1, Broadcast: 10.20.130.255,
 - Generation: 171

Protocol multiservice, MTU: Unlimited, Generation: 243, Route table: 0
- Policer: Input: __default_arp_policer__

RELATED DOCUMENTATION

- Two-Rate Three-Color Policer Overview | 34

Logical Interface (Aggregate) Policer Overview

A logical interface policer—also called an aggregate policer—is a two-color or three-color policer that defines traffic rate limiting. Starting in Junos OS Release 15.1X49-D40 and Junos OS Release 17.3R1, you can apply a policer to input or output traffic for multiple protocol families on the same logical interface without needing to create multiple instances of the policer.

To configure a single-rate two-color logical interface policer, include the `logical-interface-policer` statement at the `[edit firewall policer policer-name] hierarchy level.`
You apply a logical interface policer to Layer 3 traffic directly to the interface configuration at the protocol family level (to rate-limit traffic of a specific protocol family). You cannot reference a logical interface policer from a stateless firewall filter term and then apply the filter to a logical interface.

You can apply a logical interface policer to unicast traffic only.

To display a logical interface policer on a particular interface, issue the `show interfaces policers` operational mode command.

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1X49-D40</td>
<td>Starting in Junos OS Release 15.1X49-D40 and Junos OS Release 17.3R1, you can apply a policer to input or output traffic for multiple protocol families on the same logical interface without needing to create multiple instances of the policer.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Two-Color Policer Configuration Overview | 43
- Example: Configuring a Two-Color Logical Interface (Aggregate) Policer | 47
- logical-interface-policer | 314

Two-Color Policer Configuration Overview

Starting in Junos OS Release 15.1X49-D40 and Junos OS Release 17.3R1, you can configure and apply single-rate two-color policers to Layer 3 traffic. Table 11 on page 44 describes the hierarchy levels at which you can configure and apply them.
Table 11: Two-Color Policer Configuration and Application Overview

<table>
<thead>
<tr>
<th>Policer Configuration</th>
<th>Layer 3 Application</th>
<th>Key Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Rate Two-Color Policer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defines traffic rate limiting that you can apply to Layer 3 protocol-specific traffic at a logical interface. Can be applied as an interface policer or as a firewall filter policer.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Basic policer configuration:

```plaintext
[edit firewall]
policer policer-name {
  if-exceeding {
    bandwidth-limit bps;
    burst-size-limit bytes;
  }
  then {
    discard;
    forwarding-class class-name;
    loss-priority supported-value;
  }
}
```

Method A—Apply as an interface policer at the protocol family level:

```plaintext
[edit interfaces]
interface-name {
  unit unit-number {
    family family-name {
      policer {
        input policer-name;
        output policer-name;
      }
    }
  }
}
```

Method B—Apply as a firewall filter policer at the protocol family level:

```plaintext
[edit firewall]
family family-name {
  filter filter-name {
    interface-specific; # (*)
    from {
      ... match-conditions ...
    }
    then {
      policer policer-name;
    }
  }
}
```

Policer configuration:

- Use `bandwidth-limit bps` to specify an absolute value.

Firewall filter configuration:

- If applying to multiple interfaces, include the `interface-specific` statement to create unique policers and counters for each interface.

Interface policer verification:

- Use the `show interfaces (detail | extensive)` operational mode command.
- Use the `show policer` operational mode command.

Firewall filter policer verification:

- Use the `show interfaces (detail | extensive)` operational mode command.
- Use the `show firewall filter filter-name` operational mode command.
Table 11: Two-Color Policer Configuration and Application Overview (continued)

<table>
<thead>
<tr>
<th>Policer Configuration</th>
<th>Layer 3 Application</th>
<th>Key Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>... protocol-configuration ...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>}</td>
<td></td>
</tr>
</tbody>
</table>
Table 11: Two-Color Policer Configuration and Application Overview (continued)

<table>
<thead>
<tr>
<th>Policer Configuration</th>
<th>Layer 3 Application</th>
<th>Key Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical Interface (Aggregate) Policer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defines traffic rate limiting that you can apply to multiple protocol families on the same logical interface without creating multiple instances of the policer. Can be applied directly to a logical interface configuration only.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Logical interface policer configuration:

```plaintext
[edit firewall]
policer policer-name {
    logical-interface-policer;
    if-exceeding {
        bandwidth-limit bps;
        burst-size-limit bytes;
    }
    then {
        discard;
        forwarding-class class-name;
        loss-priority supported-value;
    }
}
```

Method A—Apply as an interface policer only:

```plaintext
[edit interfaces]
interface-name {
    [edit interfaces]
    unit unit-number {
        policer [ # All protocols
            input policer-name;
            output policer-name;
        }
        family family-name {
            policer [ # One protocol
                input policer-name;
                output policer-name;
            }
        }
    }
}
```

Method B—Apply as a firewall filter policer at the protocol family level:

```plaintext
[edit firewall]
family family-name {
    filter filter-name {
        interface-specific;
        term term-name{
            from {
                ... match-conditions ...
            }
        }
    }
    then {
        policer policer-name;
    }
}
```

Policer configuration:

- Include the `logical-interface-policer` statement.

Two options for interface policer application:

- To rate-limit all traffic types, regardless of the protocol family, apply the logical interface policer at the logical unit level.
- To rate-limit traffic of a specific protocol family, apply the logical interface policer at the protocol family level.

Interface policer verification:

- Use the `show interfaces (detail | extensive)` operational mode command.
- Use the `show policer` operational mode command.
Starting in Junos OS Release 15.1X49-D40 and Junos OS Release 17.3R1, you can configure and apply single-rate two-color policers to Layer 3 traffic.

Example: Configuring a Two-Color Logical Interface (Aggregate) Policer

IN THIS SECTION

- Requirements | 47
- Overview | 47
- Configuration | 48
- Verification | 53

Starting in Junos OS Release 15.1X49-D40 and Junos OS Release 17.3R1, you can configure a single-rate two-color policer as a logical interface policer and apply it to incoming IPv4 traffic on a logical interface. This example shows how to do so.

Requirements

Before you begin, make sure that the logical interface to which you apply the two-color logical interface policer is hosted on a Gigabit Ethernet interface (ge-) or a 10-Gigabit Ethernet interface (xe-).

Overview

In this example, you configure the single-rate two-color policer **policer_IFL** as a logical interface policer and apply it to incoming IPv4 traffic at logical interface **ge-1/3/1.0**.
Topology

If the input IPv4 traffic on the physical interface `ge-1/3/1` exceeds the bandwidth limit equal to 90 percent of the media rate with a 300 KB burst-size limit, then the logical interface policer `policer_IFL` rate-limits the input IPv4 traffic on the logical interface `ge-1/3/1.0`. Configure the policer to mark nonconforming traffic by setting packet loss priority (PLP) levels to `high` and classifying packets as `best-effort`.

As the incoming IPv4 traffic rate on the physical interface slows and conforms to the configured limits, Junos OS stops marking the incoming IPv4 packets at the logical interface.

Configuration

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see *Using the CLI Editor in Configuration Mode*.

To configure this example, perform the following tasks:

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the `[edit]` hierarchy level, and then enter `commit` from configuration mode.

```
set interfaces ge-1/3/1 vlan-tagging
set interfaces ge-1/3/1 unit 0 vlan-id 100
set interfaces ge-1/3/1 unit 0 family inet address 10.10.10.1/30
set interfaces ge-1/3/1 unit 1 vlan-id 101
set interfaces ge-1/3/1 unit 1 family inet address 20.20.20.1/30 arp 20.20.20.2 mac 00:00:11:22:33:44
set firewall policer policer_IFL logical-interface-policer
set firewall policer policer_IFL if-exceeding bandwidth-percent 90
set firewall policer policer_IFL if-exceeding burst-size-limit 300k
set firewall policer policer_IFL then loss-priority high
set firewall policer policer_IFL then forwarding-class best-effort
set interfaces ge-1/3/1 unit 0 family inet policer input policer_IFL
```
Configuring the Logical Interfaces

Step-by-Step Procedure

To configure the logical interfaces:

1. Enable configuration of the interface.

   ```
   [edit]
   user@host# edit interfaces ge-1/3/1
   ```

2. Configure single tagging.

   ```
   [edit interfaces ge-1/3/1]
   user@host# set vlan-tagging
   ```

3. Configure logical interface `ge-1/3/1.0`.

   ```
   [edit interfaces ge-1/3/1]
   user@host# set unit 0 vlan-id 100
   user@host# set unit 0 family inet address 10.10.10.1/30
   ```

4. Configure logical interface `ge-1/3/1.0`.

   ```
   [edit interfaces ge-1/3/1]
   user@host# set unit 1 vlan-id 101
   user@host# set unit 1 family inet address 20.20.20.1/30 arp 20.20.20.2 mac 00:00:11:22:33:44
   ```

Results

Confirm the configuration of the logical interfaces by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show interfaces
ge-1/3/1 {
   vlan-tagging;
   unit 0 {
      vlan-id 100;
      family inet {
```
address 10.10.10.1/30;
}
}
unit 1 {
 vlan-id 101;
 family inet {
 address 20.20.20.1/30 {
 arp 20.20.20.2 mac 00:00:11:22:33:44;
 }
 }
}

Configuring the Single-Rate Two-Color Policer as a Logical Interface Policer

Step-by-Step Procedure

To configure a single-rate two-color policer as a logical interface policer:

1. Enable configuration of a single-rate two-color policer.

 [edit]
 user@host# edit firewall policer policer_IFL

2. Specify that the policer is a logical interface (aggregate) policer.

 [edit firewall policer policer_IFL]
 user@host# set logical-interface-policer

 A logical interface policer rate-limits traffic based on a percentage of the media rate of the physical interface underlying the logical interface to which the policer is applied. The policer is applied directly to the interface rather than referenced by a firewall filter.

3. Specify the policer traffic limits.

 a. Specify the bandwidth limit.

 - To specify the bandwidth limit as an absolute rate, from 8,000 bits per second through 50,000,000,000 bits per second, include the `bandwidth-limit bps` statement.

 - To specify the bandwidth limit as a percentage of the physical port speed on the interface, include the `bandwidth-percent percent` statement.
In this example, the CLI commands and output are based on a bandwidth limit specified as a percentage rather than as an absolute rate.

```
[edit firewall policer policer_IFL]
user@host# set if-exceeding bandwidth-percent 90
```

b. Specify the burst-size limit, from 1,500 bytes through 100,000,000,000 bytes, which is the maximum packet size to be permitted for bursts of data that exceed the specified bandwidth limit.

```
[edit firewall policer policer_IFL]
user@host# set if-exceeding burst-size-limit 300k
```

4. Specify the policer actions to be taken on traffic that exceeds the configured rate limits.

- To discard the packet, include the `discard` statement.
- To set the loss-priority value of the packet, include the `loss-priority (low | medium-low | medium-high | high)` statement.
- To classify the packet to a forwarding class, include the `forwarding-class (forwarding-class | assured-forwarding | best-effort | expedited-forwarding | network-control)` statement.

In this example, the CLI commands and output are based on both setting the packet loss priority level and classifying the packet.

```
[edit firewall policer policer_IFL]
user@host# set then loss-priority high
user@host# set then forwarding-class best-effort
```

Results

Confirm the configuration of the policer by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show firewall
policer policer_IFL {
    logical-interface-policer;
    if-exceeding {
        bandwidth-percent 90;
        burst-size-limit 300k;
    }
    then {
```
Applying the Logical Interface Policer to Input IPv4 Traffic at a Logical Interface

Step-by-Step Procedure
To apply the two-color logical interface policer to input IPv4 traffic a logical interface:

1. Enable configuration of the logical interface.

   ```
   [edit]
   user@host# edit interfaces ge-1/3/1 unit 0
   ```

2. Apply the policer to all traffic types or to a specific traffic type on the logical interface.

 - To apply the policer to all traffic types, regardless of the protocol family, include the
 `policer (input | output) policer-name` statement at the `[edit interfaces interface-name unit number]`
 hierarchy level.

 - To apply the policer to traffic of a specific protocol family, include the
 `policer (input | output) policer-name` statement at the `[edit interfaces interface-name unit unit-number
 family family-name]` hierarchy level.

 To apply the logical interface policer to incoming packets, use the `policer input policer-name` statement. To
 apply the logical interface policer to outgoing packets, use the `policer output policer-name` statement.

 In this example, the CLI commands and output are based on rate-limiting the IPv4 input traffic at logical
 interface `ge-1/3/1.0`.

   ```
   [edit interfaces ge-1/3/1 unit 0]
   user@host# set family inet policer input policer_IFL
   ```

Results
Confirm the configuration of the interface by entering the `show interfaces` configuration mode command. If the
command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show interfaces
ge-1/3/1 {
```
If you are done configuring the device, enter **commit** from configuration mode.

Verification

IN THIS SECTION

- Displaying Traffic Statistics and Policers for the Logical Interface | 53
- Displaying Statistics for the Policer | 54

Confirm that the configuration is working properly.

Displaying Traffic Statistics and Policers for the Logical Interface

Purpose

Verify the traffic flow through the logical interface and that the policer is evaluating packets received on the logical interface.

Action
Use the `show interfaces` operational mode command for logical interface `ge-1/3/1.0`, and include the `detail` or `extensive` option. The command output section for `Traffic statistics` lists the number of bytes and packets received and transmitted on the logical interface. The `Protocol inet` subsection contains a `Policer` field that would list the policer `policer_IFL` as an input or output logical interface policer as follows:

- **Input:** `policer_IFL-ge-1/3/1.0-log_int-i`
- **Output:** `policer_IFL-ge-1/3/1.0-log_int-o`

The `log_int-i` suffix denotes a logical interface policer applied to input traffic, while the `log_int-o` suffix denotes a logical interface policer applied to output traffic. In this example, the logical interface policer is applied to input traffic only.

Displaying Statistics for the Policier

Purpose

Verify the number of packets evaluated by the policer.

Action

Use the `show policer` operational mode command and, optionally, specify the name of the policer. The command output displays the number of packets evaluated by each configured policer (or the specified policer), in each direction. For the policer `policer_IFL`, the input and output policer names are displayed as follows:

- `policer_IFL-ge-1/3/1.0-log_int-i`
- `policer_IFL-ge-1/3/1.0-log_int-o`

The `log_int-i` suffix denotes a logical interface policer applied to input traffic, while the `log_int-o` suffix denotes a logical interface policer applied to output traffic. In this example, the logical interface policer is applied to input traffic only.

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1X49-D40</td>
<td>Starting in Junos OS Release 15.1X49-D40 and Junos OS Release 17.3R1, you can configure a single-rate two-color policer as a logical interface policer and apply it to incoming IPv4 traffic on a logical interface.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- `logical-interface-policer | 314`
- `Two-Color Policier Configuration Overview | 43`
This topic covers the following information:

Statement Hierarchy for Configuring Simple Filters

To configure a simple filter, include the `simple-filter simple-filter-name` statement at the `[edit firewall family inet]` hierarchy level.

```
[edit]
firewall {
  family inet {
    simple-filter simple-filter-name {
      term term-name {
        from {
          match-conditions;
        }
        then {
          actions;
        }
      }
    }
  }
}
```

Individual statements supported under the `simple-filter simple-filter-name` statement are described separately in this topic and are illustrated in the example of configuring and applying a simple filter.
Simple Filter Protocol Families

You can configure simple filters to filter IPv4 traffic (family inet) only. No other protocol family is supported for simple filters.

NOTE: You can apply simple filters to the family inet only, and only in the input direction. Because of hardware limitations on the SRX1400, SRX3400, SRX3600, SRX5600 and SRX5800 devices, a maximum of 400 logical input interfaces and 2000 terms (in one Broadcom packet processor) can be applied with simple filters. (Platform support depends on the Junos OS release in your installation.)

Simple Filter Names

Under the family inet statement, you can include simple-filter simple-filter-name statements to create and name simple filters. The filter name can contain letters, numbers, and hyphens (-) and be up to 64 characters long. To include spaces in the name, enclose the entire name in quotation marks (" ").

Simple Filter Terms

Under the simple-filter simple-filter-name statement, you can include term term-name statements to create and name filter terms.

• You must configure at least one term in a firewall filter.

• You must specify a unique name for each term within a firewall filter. The term name can contain letters, numbers, and hyphens (-) and can be up to 64 characters long. To include spaces in the name, enclose the entire name in quotation marks (" ").

• The order in which you specify terms within a firewall filter configuration is important. Firewall filter terms are evaluated in the order in which they are configured. By default, new terms are always added to the end of the existing filter. You can use the insert configuration mode command to reorder the terms of a firewall filter.

Simple filters do not support the next term action.

NOTE: In one Broadcom packet processor, a maximum of 2000 terms can be applied with simple filters on the SRX1400, SRX3400, SRX3600, SRX5600, SRX5600 and SRX5800 devices. (Platform support depends on the Junos OS release in your installation.)
Simple Filter Match Conditions

Simple filter terms support only a subset of the IPv4 match conditions that are supported for standard stateless firewall filters.

Unlike standard stateless firewall filters, the following restrictions apply to simple filters:

- On MX Series routers with the Enhanced Queuing DPC, simple filters do not support the forwarding-class match condition.

- Simple filters support only one source-address and one destination-address prefix for each filter term. If you configure multiple prefixes, only the last one is used.

- Simple filters do not support multiple source addresses and destination addresses in a single term. If you configure multiple addresses, only the last one is used.

- Simple filters do not support negated match conditions, such as the protocol-except match condition or the exception keyword.

- Simple filters support a range of values for source-port and destination-port match conditions only. For example, you can configure source-port 400-500 or destination-port 600-700.

- Simple filters do not support noncontiguous mask values.

Table 12 on page 57 lists the simple filter match conditions.

Table 12: Simple Filter Match Conditions

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination-address</td>
<td>Match IP destination address.</td>
</tr>
<tr>
<td>destination-port number</td>
<td>TCP or UDP destination port field.</td>
</tr>
<tr>
<td>If you configure this match condition, we recommend that you also configure the protocol match statement to determine which protocol is being used on the port.</td>
<td></td>
</tr>
</tbody>
</table>

In place of the numeric value, you can specify one of the following text aliases (the port numbers are also listed): afs (1483), bgp (179), biff (512), bootpc (68), bootps (67), cmd (514), cvspserver (2401), dhcp (67), domain (53), eklogin (2105), ekshell (2106), exec (512), finger (79), ftp (21), ftp-data (20), http (80), https (443), ident (113), imap (143), kerberos-sec (88), klogin (543), kpassword (761), krb-prop (754), krbupdate (760), kshell (544), ldap (389), login (513), mobileip-agent (434), mobilip-mdm (435), msdp (639), netbios-dgm (138), netbios-ns (137), netbios-ssn (139), nfsd (2049), nntp (119), ntalk (518), ntp (123), pop3 (110), pppd (1723), printer (515), radacct (1813), radius (1812), rip (520), rkinit (2108), smtp (25), snmp (161), snmptrap (162), snpp (444), socks (1080), ssh (22), sunrpc (111), syslog (514), tacacs-ds (65), talk (517), telnet (23), tftp (69), timed (525), who (513), or xdmcp (177).
Table 12: Simple Filter Match Conditions (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>forwarding-class class</td>
<td>Match the forwarding class of the packet. Specify assured-forwarding, best-effort, expedited-forwarding, or network-control.</td>
</tr>
<tr>
<td>protocol number</td>
<td>IP protocol field. In place of the numeric value, you can specify one of the following text aliases (the field values are also listed): ah (51), dstopts (60), esp (50), fragment (44), gre (47), hop-by-hop (0), icmp (1), icmpv6 (58), igmp (2), ipv6 (41), ospf (89), pim (103), rsvp (46), sctp (132), tcp (6), udp (17), or vrrp (112).</td>
</tr>
<tr>
<td>source-address ip-source-address</td>
<td>Match the IP source address.</td>
</tr>
<tr>
<td>source-port number</td>
<td>Match the UDP or TCP source port field. If you configure this match condition, we recommend that you also configure the protocol match statement to determine which protocol is being used on the port. In place of the numeric field, you can specify one of the text aliases listed for destination-port.</td>
</tr>
</tbody>
</table>

Simple Filter Terminating Actions

Simple filters do not support explicitly configurable terminating actions, such as accept, reject, and discard. Terms configured in a simple filter always accept packets.

Simple filters do not support the next action.

Simple Filter Nonterminating Actions

Simple filters support only the following nonterminating actions:

- forwarding-class (forwarding-class | assured-forwarding | best-effort | expedited-forwarding | network-control)

 NOTE: On the MX Series routers with the Enhanced Queuing DPC, the forwarding class is not supported as a from match condition.

- loss-priority (high | low | medium-high | medium-low)
Simple filters do not support actions that perform other functions on a packet (such as incrementing a counter, logging information about the packet header, sampling the packet data, or sending information to a remote host using the system log functionality).

RELATED DOCUMENTATION

| Simple Filters and Policers Overview | 33 |

Example: Configuring and Applying a Firewall Filter for a Multifield Classifier

IN THIS SECTION

- Requirements | 59
- Overview | 59
- Configuration | 61
- Verification | 64

This example shows how to configure a firewall filter to classify traffic using a multifield classifier. The classifier detects packets of interest to class of service (CoS) as they arrive on an interface. Multifield classifiers are used when a simple behavior aggregate (BA) classifier is insufficient to classify a packet, when peering routers do not have CoS bits marked, or the peering router’s marking is untrusted.

Requirements

To verify this procedure, this example uses a traffic generator. The traffic generator can be hardware-based or it can be software running on a server or host machine.

The functionality in this procedure is widely supported on devices that run Junos OS. The example shown here was tested and verified on MX Series routers running Junos OS Release 10.4.

Overview

A classifier is a software operation that inspects a packet as it enters the router or switch. The packet header contents are examined, and this examination determines how the packet is treated when the network becomes too busy to handle all of the packets and you want your devices to drop packets intelligently, instead of dropping packets indiscriminately. One common way to detect packets of interest
is by source port number. The TCP port numbers 80 and 12345 are used in this example, but many other matching criteria for packet detection are available to multifield classifiers, using firewall filter match conditions. The configuration in this example specifies that TCP packets with source port 80 are classified into the BE-data forwarding class and queue number 0. TCP packets with source port 12345 are classified into the Premium-data forwarding class and queue number 1.

Multifield classifiers are typically used at the network edge as packets enter an autonomous system (AS).

In this example, you configure the firewall filter mf-classifier and specify some custom forwarding classes on Device R1. In specifying the custom forwarding classes, you also associate each class with a queue.

The classifier operation is shown in Figure 4 on page 60.

Figure 4: Multifield Classifier Based on TCP Source Ports

You apply the multifield classifier’s firewall filter as an input filter on each customer-facing or host-facing interface that needs the filter. The incoming interface is ge-1/0/1 on Device R1. The classification and queue assignment is verified on the outgoing interface. The outgoing interface is Device R1’s ge-1/0/9 interface.

Topology
Figure 5 on page 60 shows the sample network.

Figure 5: Multifield Classifier Scenario

"CLI Quick Configuration" on page 61 shows the configuration for all of the Juniper Networks devices in Figure 5 on page 60.
The section "Step-by-Step Procedure" on page 61 describes the steps on Device R1.

Classifiers are described in more detail in the following Juniper Networks Learning Byte video.

Video: Class of Service Basics, Part 2: Classification Learning Byte

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from the configuration mode.

Device R1

```plaintext
set interfaces ge-1/0/1 description to-host
set interfaces ge-1/0/1 unit 0 family inet filter input mf-classifier
set interfaces ge-1/0/1 unit 0 family inet address 172.16.50.2/30
set interfaces ge-1/0/9 description to-R2
set interfaces ge-1/0/9 unit 0 family inet address 10.30.0.1/30
set class-of-service forwarding-classes class BE-data queue-num 0
set class-of-service forwarding-classes class Premium-data queue-num 1
set class-of-service forwarding-classes class Voice queue-num 2
set class-of-service forwarding-classes class NC queue-num 3
set firewall family inet filter mf-classifier term BE-data from protocol tcp
set firewall family inet filter mf-classifier term BE-data from port 80
set firewall family inet filter mf-classifier term BE-data then forwarding-class BE-data
set firewall family inet filter mf-classifier term Premium-data from protocol tcp
set firewall family inet filter mf-classifier term Premium-data from port 12345
set firewall family inet filter mf-classifier term Premium-data then forwarding-class Premium-data
set firewall family inet filter mf-classifier term accept-all-else then accept
```

Device R2

```plaintext
set interfaces ge-1/0/9 description to-R1
set interfaces ge-1/0/9 unit 0 family inet address 10.30.0.2/30
```

Step-by-Step Procedure
To configure Device R1:

1. Configure the device interfaces.

```
[edit interfaces]
user@R1# set ge-1/0/1 description to-host
user@R1# set ge-1/0/1 unit 0 family inet address 172.16.50.2/30
user@R1# set ge-1/0/9 description to-R2
user@R1# set ge-1/0/9 unit 0 family inet address 10.30.0.1/30
```

2. Configure the custom forwarding classes and associated queue numbers.

```
[edit class-of-service forwarding-classes]
user@R1# set BE-data queue-num 0
user@R1# set Premium-data queue-num 1
user@R1# set Voice queue-num 2
user@R1# set NC queue-num 3
```

3. Configure the firewall filter term that places TCP traffic with a source port of 80 (HTTP traffic) into the BE-data forwarding class, associated with queue 0.

```
[edit firewall family inet filter mf-classifier]
user@R1# set term BE-data from protocol tcp
user@R1# set term BE-data from port 80
user@R1# set term BE-data then forwarding-class BE-data
```

4. Configure the firewall filter term that places TCP traffic with a source port of 12345 into the Premium-data forwarding class, associated with queue 1.

```
[edit firewall family inet filter mf-classifier]
user@R1# set term Premium-data from protocol tcp
user@R1# set term Premium-data from port 12345
user@R1# set term Premium-data then forwarding-class Premium-data
```

5. At the end of your firewall filter, configure a default term that accepts all other traffic.

Otherwise, all traffic that arrives on the interface and is not explicitly accepted by the firewall filter is discarded.
6. Apply the firewall filter to the ge-1/0/1 interface as an input filter.

```
user@R1# set term accept-all-else then accept
```

```
[edit interfaces]
user@R1# set ge-1/0/1 unit 0 family inet filter input mf-classifier
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces`, `show class-of-service`, `show firewall` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@R1# show interfaces
ge-1/0/1 {
    description to-host;
    unit 0 {
        family inet {
            filter {
                input mf-classifier;
            }
            address 172.16.50.2/30;
        }
    }
}
ge-1/0/9 {
    description to-R2;
    unit 0 {
        family inet {
            address 10.30.1.30;
        }
    }
}

user@R1# show class-of-service
forwarding-classes {
    class BE-data queue-num 0;
    class Premium-data queue-num 1;
    class Voice queue-num 2;
    class NC queue-num 3;
}
```
user@R1# show firewall
family inet {
 filter mf-classifier {
 term BE-data {
 from {
 protocol tcp;
 port 80;
 }
 then forwarding-class BE-data;
 }
 term Premium-data {
 from {
 protocol tcp;
 port 12345;
 }
 then forwarding-class Premium-data;
 }
 term accept-all-else {
 then accept;
 }
 }
}

If you are done configuring the device, enter commit from configuration mode.

Verification

IN THIS SECTION
- Checking the CoS Settings | 64
- Sending TCP Traffic into the Network and Monitoring the Queue Placement | 65

Confirm that the configuration is working properly.

Checking the CoS Settings

Purpose
Confirm that the forwarding classes are configured correctly.

Action
From Device R1, run the `show class-of-service forwarding-classes` command.

```
user@R1> show class-of-service forwarding-class
```

<table>
<thead>
<tr>
<th>Forwarding class</th>
<th>ID</th>
<th>Queue</th>
<th>Restricted queue</th>
<th>Fabric priority</th>
<th>Policing priority</th>
<th>SPU priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE-data</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>low</td>
<td>normal</td>
<td>low</td>
</tr>
<tr>
<td>Premium-data</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>low</td>
<td>normal</td>
<td>low</td>
</tr>
<tr>
<td>Voice</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>low</td>
<td>normal</td>
<td>low</td>
</tr>
<tr>
<td>NC</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>low</td>
<td>normal</td>
<td>low</td>
</tr>
</tbody>
</table>

Meaning
The output shows the configured custom classifier settings.

Sending TCP Traffic into the Network and Monitoring the Queue Placement

Purpose
Make sure that the traffic of interest is sent out the expected queue.

Action
1. Clear the interface statistics on Device R1’s outgoing interface.
   ```
   user@R1> clear interfaces statistics ge-1/0/9
   ```
2. Use a traffic generator to send 50 TCP port 80 packets to Device R2 or to some other downstream device.
3. On Device R1, check the queue counters.
 Notice that you check the queue counters on the downstream output interface, not on the incoming interface.
   ```
   user@R1> show interfaces extensive ge-1/0/9 | find "Queue counters"
   ```

<table>
<thead>
<tr>
<th>Queue counters:</th>
<th>Queued packets</th>
<th>Transmitted packets</th>
<th>Dropped packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>57</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>57</td>
</tr>
</tbody>
</table>
4. Use a traffic generator to send 50 TCP port 12345 packets to Device R2 or to some other downstream device.

 [root@host]# hping 172.16.60.1 -c 50 -s 12345 -k

5. On Device R1, check the queue counters.

 user@R1> show interfaces extensive ge-1/0/9 | find "Queue counters"

<table>
<thead>
<tr>
<th>Queue counters:</th>
<th>Queued packets</th>
<th>Transmitted packets</th>
<th>Dropped packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Meaning

The output shows that the packets are classified correctly. When port 80 is used in the TCP packets, queue 0 is incremented. When port 12345 is used, queue 1 is incremented.

RELATED DOCUMENTATION

 Example: Configuring a Two-Rate Three-Color Policer | 35
Controlling Output Queues with Forwarding Classes

Forwarding classes (FCs) allow you to group packets for transmission and to assign packets to output queues. The forwarding class and the loss priority define the per-hop behavior (PHB in DiffServ) of a packet.

Juniper Networks devices support eight queues (0 through 7). For a classifier to assign an output queue (default queues 0 through 3) to each packet, it must associate the packet with one of the following forwarding classes:
• Expedited forwarding (EF)—Provides a low-loss, low-latency, low-jitter, assured-bandwidth, end-to-end service.

• Assured forwarding (AF)—Provides a group of values you can define and includes four subclasses—AF1, AF2, AF3, and AF4—each with three drop probabilities (low, medium, and high).

• Best effort (BE)—Provides no service profile. For the BE forwarding class, loss priority is typically not carried in a class-of-service (CoS) value, and random early detection (RED) drop profiles are more aggressive.

• Network Control (NC)—This class is typically high priority because it supports protocol control.

In addition to behavior aggregate (BA) and multifield (MF) classification, the forwarding class (FC) of a packet can be directly determined by the logical interface that receives the packet. The packet FC can be configured using CLI commands, and if configured, this FC overrides the FC from any BA classification that was previously configured on the logical interface.

The following CLI command can assign an FC directly to packets received at a logical interface:

```
[edit class-of-service interfaces interface-name unit logical-unit-number]
forwarding-class class-name;
```

This section contains the following topics:

Forwarding Class Queue Assignments

Juniper Networks devices have eight queues built into the hardware. By default, four queues are assigned to four FCs. Table 13 on page 69 shows the four default FCs and queues that Juniper Networks classifiers assign to packets, based on the class-of-service (CoS) values in the arriving packet headers.

NOTE: Queues 4 through 7 have no default assignments to FCs and are not mapped. To use queues 4 through 7, you must create custom FC names and map them to the queues.

By default, all incoming packets, except the IP control packets, are assigned to the FC associated with queue 0. All IP control packets are assigned to the FC associated with queue 3.
Table 13: Default Forwarding Class Queue Assignments

<table>
<thead>
<tr>
<th>Forwarding Queue</th>
<th>Forwarding Class</th>
<th>Forwarding Class Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue 0</td>
<td>best-effort (BE)</td>
<td>The Juniper Networks device does not apply any special CoS handling to packets with 000000 in the DiffServ field, a backward compatibility feature. These packets are usually dropped under congested network conditions.</td>
</tr>
<tr>
<td>Queue 1</td>
<td>expedited-forwarding (EF)</td>
<td>The Juniper Networks device delivers assured bandwidth, low loss, low delay, and low delay variation (jitter) end-to-end for packets in this service class. Devices accept excess traffic in this class, but in contrast to assured forwarding, out-of-profile expedited-forwarding packets can be forwarded out of sequence or dropped.</td>
</tr>
<tr>
<td>Queue 2</td>
<td>assured-forwarding (AF)</td>
<td>The Juniper Networks device offers a high level of assurance that the packets are delivered as long as the packet flow from the customer stays within a certain service profile that you define. The device accepts excess traffic, but applies a random early detection (RED) drop profile to determine whether the excess packets are dropped and not forwarded. Three drop probabilities (low, medium, and high) are defined for this service class.</td>
</tr>
<tr>
<td>Queue 3</td>
<td>network-control (NC)</td>
<td>The Juniper Networks device delivers packets in this service class with a low priority. (These packets are not delay sensitive.) Typically, these packets represent routing protocol hello or keepalive messages. Because loss of these packets jeopardizes proper network operation, delay is preferable to discard.</td>
</tr>
</tbody>
</table>

Forwarding Policy Options

CoS-based forwarding (CBF) enables you to control next-hop selection based on a packet’s CoS and, in particular, the value of the IP packet’s precedence bits. For example, you can specify a particular interface or next hop to carry high-priority traffic while all best-effort traffic takes some other path. CBF allows path selection based on FC. When a routing protocol discovers equal-cost paths, it can either pick a path
at random or load-balance the packets across the paths, through either hash selection or round-robin selection.

A forwarding policy also allows you to create CoS classification overrides. You can override the incoming CoS classification and assign the packets to an FC based on the packets’ input interfaces, input precedence bits, or destination addresses. When you override the classification of incoming packets, any mappings you configured for associated precedence bits or incoming interfaces to output transmission queues are ignored.

RELATED DOCUMENTATION

- Example: Assigning Forwarding Classes to Output Queues | 76
- Example: Assigning a Forwarding Class to an Interface | 79
- Example: Configuring Forwarding Classes | 70

Example: Configuring Forwarding Classes

By default on all platforms, four output queues are mapped to four FCs as shown in “Forwarding Classes Overview” on page 67. On Juniper Networks devices, you can configure up to eight FCs and eight queues.

To configure up to eight FCs, include the queue statement at the [edit class-of-service forwarding-classes] hierarchy level:

```
[edit class-of-service forwarding-classes]
queue queue-number class-name;
```

The output queue number can be from 0 through 7, and you must map the forwarding classes one-to-one with the output queues. The default scheduler transmission rate and buffer size percentages for queues 0 through 7 are 95, 0, 0, 5, 0, 0, 0, and 0 percent, respectively.

For example, to configure a one-to-one mapping between eight FCs and eight queues, you would use the following configuration:

```
[edit class-of-service]
forwarding-classes {
  queue 0 be;
  queue 1 ef;
  queue 2 af;
  queue 3 nc;
  queue 4 ef1;
```
Defining Eight Classifiers

```
[edit class-of-service]
classifiers {
  dscp dscp-table {
    forwarding-class ef {
      loss-priority low code-points [101000, 101001];
      loss-priority high code-points [101010, 101011];
    }
    forwarding-class af {
      loss-priority low code-points [010000, 010001];
      loss-priority high code-points [010010, 010011];
    }
    forwarding-class be {
      loss-priority low code-points [000000];
    }
    forwarding-class nc {
      loss-priority low code-points [111000];
    }
    forwarding-class ef1 {
      loss-priority low code-points [101100, 101101];
      loss-priority high code-points [101110];
    }
    forwarding-class af1 {
      loss-priority high code-points [101110];
    }
    forwarding-class ef2 {
      loss-priority low code-points [101111];
    }
    forwarding-class nc1 {
      loss-priority low code-points [111001];
    }
  }
}
```

Adding Eight Schedulers to a Scheduler Map
Configure a custom scheduler map that applies globally to all interfaces, except those that are restricted to four queues:

```
[edit class-of-service]
scheduler-maps {
  sched {
    forwarding-class be scheduler Q0;
    forwarding-class ef scheduler Q1;
    forwarding-class af scheduler Q2;
    forwarding-class nc scheduler Q3;
    forwarding-class ef1 scheduler Q4;
    forwarding-class ef2 scheduler Q5;
    forwarding-class af1 scheduler Q6;
    forwarding-class nc1 scheduler Q7;
  }
}
schedulers {
  Q0 {
    transmit-rate percent 25;
    buffer-size percent 25;
    priority low;
    drop-profile-map loss-priority any protocol both drop-default;
  }
  Q1 {
    buffer-size temporal 2000;
    priority strict-high;
    drop-profile-map loss-priority any protocol both drop-ef;
  }
  Q2 {
    transmit-rate percent 35;
    buffer-size percent 35;
    priority low;
    drop-profile-map loss-priority any protocol both drop-default;
  }
  Q3 {
    transmit-rate percent 5;
    buffer-size percent 5;
    drop-profile-map loss-priority any protocol both drop-default;
  }
  Q4 {
    transmit-rate percent 5;
    priority high;
    drop-profile-map loss-priority any protocol both drop-ef;
  }
```
Configuring an IP Precedence Classifier and Rewrite Tables

[edit class-of-service]
classifiers {
 inet-precedence inet-classifier {
 forwarding-class be {
 loss-priority low code-points 000;
 }
 forwarding-class af11 {
 loss-priority high code-points 001;
 }
 forwarding-class ef {
 loss-priority low code-points 010;
 }
 forwarding-class nc1 {
 loss-priority high code-points 011;
 }
 forwarding-class {
 loss-priority low code-points 100;
 }
 forwarding-class af12 {
 loss-priority high code-points 101;
 }
 }
}
} }
forwarding-class ef1 {
 loss-priority low code-points 110;
}
forwarding-class nc2 {
 loss-priority high code-points 111;
}
exp exp-rw-table {
 forwarding-class be {
 loss-priority low code-point 000;
 }
 forwarding-class af11 {
 loss-priority high code-point 001;
 }
 forwarding-class ef {
 loss-priority low code-point 010;
 }
 forwarding-class nc1 {
 loss-priority high code-point 111;
 }
 forwarding-class be1 {
 loss-priority low code-point 100;
 }
 forwarding-class af12 {
 loss-priority high code-point 101;
 }
 forwarding-class ef1 {
 loss-priority low code-point 110;
 }
 forwarding-class nc2 {
 loss-priority low code-point 111;
 }
}
inet-precedence inet-rw-table {
 forwarding-class be {
 loss-priority low code-point 000;
 }
 forwarding-class af11 {
 loss-priority high code-point 001;
 }
Configuring an IDP Policy with a Forwarding Class

Configure an IDP policy with a forwarding class as an action to rewrite DSCP values of IP packets:

```
[edit class-of-service]
security idp idp-policy policy_name rulebase-ips rule rule_name {
    then {
        action {
            class-of-service {
                forwarding-class forwarding-class-name;
                dscp-code-point value;
            }
        }
    }
}
```
Example: Assigning Forwarding Classes to Output Queues

IN THIS SECTION

- Requirements | 76
- Overview | 76
- Configuration | 77
- Verification | 78

This example shows how to assign forwarding classes to output queues.

Requirements

Before you begin, determine the MF classifier. See "Example: Configuring and Applying a Firewall Filter for a Multifield Classifier" on page 59.

Overview

In this example, you configure class of service and assign best-effort traffic to queue 0 as be-class, expedited forwarding traffic to queue 1 as ef-class, assured forwarding traffic to queue 2 as af-class, and network control traffic to queue 3 as nc-class.

You must assign the forwarding classes established by the MF classifier to output queues. Table 14 on page 76 shows how this example assigns output queues.

Table 14: Sample Output Queue Assignments for mf-classifier Forwarding Queues

<table>
<thead>
<tr>
<th>mf-classifier Forwarding Class</th>
<th>For Traffic Type</th>
<th>Output Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>be-class</td>
<td>Best-effort traffic</td>
<td>Queue 0</td>
</tr>
<tr>
<td>ef-class</td>
<td>Expedited forwarding traffic</td>
<td>Queue 1</td>
</tr>
</tbody>
</table>
Table 14: Sample Output Queue Assignments for mf-classifier Forwarding Queues (continued)

<table>
<thead>
<tr>
<th>mf-classifier Forwarding Class</th>
<th>For Traffic Type</th>
<th>Output Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>af-class</td>
<td>Assured forwarding traffic</td>
<td>Queue 2</td>
</tr>
<tr>
<td>nc-class</td>
<td>Network control traffic</td>
<td>Queue 3</td>
</tr>
</tbody>
</table>

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from the configuration mode.

```
set class-of-service forwarding-classes queue 0 be-class
set class-of-service forwarding-classes queue 1 ef-class
set class-of-service forwarding-classes queue 2 af-class
set class-of-service forwarding-classes queue 3 nc-class
```

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode.

To assign forwarding classes to output queues:

1. Configure class of service.

 [edit]
 user@host# edit class-of-service forwarding-classes

2. Assign best-effort traffic to queue 0.

 [edit class-of-service forwarding-classes]
 user@host# set queue 0 be-class

3. Assign expedited forwarding traffic to queue 1.

 [edit class-of-service forwarding-classes]
 user@host# set queue 1 ef-class
4. Assign assured forwarding traffic to queue 2.

[edit class-of-service forwarding-classes]
user@host# set queue 2 af-class

5. Assign network control traffic to queue 3.

[edit class-of-service forwarding-classes]
user@host# set queue 3 nc-class

Results
From configuration mode, confirm your configuration by entering the `show class-of-service` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```plaintext
[edit]
user@host# show class-of-service
forwarding-classes {
    queue 0 be-class;
    queue 1 ef-class;
    queue 2 af-class;
    queue 3 nc-class;
}
```

If you are done configuring the device, enter **commit** from configuration mode.

NOTE: You cannot commit a configuration that assigns the same forwarding class to two different queues.

Verification

Verifying Forwarding Classes Are Assigned to Output Queues

Purpose
Verify that the forwarding classes are properly assigned to output queues.

Action
From configuration mode, enter the `show class-of-service` command.
Example: Assigning a Forwarding Class to an Interface

IN THIS SECTION

- Requirements | 79
- Overview | 79
- Configuration | 79
- Verification | 80

This example shows how to assign a forwarding class to an interface.

Requirements

No special configuration beyond device initialization is required before configuring this feature.

Overview

On a device, you can configure fixed classification on a logical interface by specifying a forwarding class to be applied to all packets received by the logical interface, regardless of the packet contents.

In this example, you configure class of service, create interface ge-3/0/0 unit 0 and then set the forwarding class to assured-forwarding.

All packets coming into the device from the ge-3/0/0 unit 0 interface are assigned to the assured-forwarding forwarding class.

Configuration

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode* in the *CLI User Guide*.

To assign a forwarding class to an interface:

1. Configure class of service and assign the interface.

   ```
   [edit]
   user@host# edit class-of-service interfaces ge-3/0/0 unit 0
   ```

2. Specify the forwarding class.

   ```
   [edit class-of-service interfaces ge-3/0/0 unit 0]
   user@host# set forwarding-class assured-forwarding
   ```

3. If you are done configuring the device, commit the configuration.

   ```
   [edit]
   user@host# commit
   ```

Verification

To verify the configuration is working properly, enter the `show class-of-service` command.

RELATED DOCUMENTATION

- Forwarding Classes Overview | 67
- Example: Assigning Forwarding Classes to Output Queues | 76

Understanding the SPC High-Priority Queue

The Services Processing Card (SPC) on SRX1400, SRX3000 line, and SRX5000 line devices provides processing power to run integrated services such as firewall, IPsec, and IDP. All traffic traversing the SRX Series device is passed to an SPC to have service processing applied. Junos OS provides a configuration option to enable packets with specific Differentiated Services (DiffServ) code points (DSCP) precedence bits to enter different priority queues on the SPC. The Services Processing Unit (SPU) draws packets from the higher priority queues and only draws packets from lower priority queues when the higher priority queues are empty. This feature can reduce overall latency for real-time traffic, such as voice traffic.
To designate packets for the high-priority, medium-priority, or low-priority queues, use the `spu-priority` configuration statement at the `[edit class-of-service forwarding-classes class]` hierarchy level. A value of `high` places packets into the high-priority queue, a value of `medium` places packets into the medium-priority queue, and a value of `low` places packets into the low-priority queue.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Example: Configuring the SPC High-Priority Queue</th>
<th>81</th>
</tr>
</thead>
<tbody>
<tr>
<td>forwarding-classes (CoS)</td>
<td>301</td>
</tr>
<tr>
<td>Forwarding Classes Overview</td>
<td>67</td>
</tr>
</tbody>
</table>

Example: Configuring the SPC High-Priority Queue

This example shows how to configure a forwarding class for the high-priority queue on the SPC.

Requirements

This example uses the following hardware and software components:

- SRX5000 line device
- Junos OS Release 11.4R2 or later
Overview

This example defines the following forwarding classes and assigns a queue number to each class:

<table>
<thead>
<tr>
<th>Forwarding Class</th>
<th>Queue Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>best-effort</td>
<td>0</td>
</tr>
<tr>
<td>assured-forwarding</td>
<td>1</td>
</tr>
<tr>
<td>network-control</td>
<td>3</td>
</tr>
<tr>
<td>expedited-forwarding</td>
<td>2</td>
</tr>
</tbody>
</table>

The expedited-forwarding class is configured for the high-priority queue on the SPC.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter `commit` from the configuration mode.

```
set class-of-service forwarding-classes class best-effort queue-num 0
set class-of-service forwarding-classes class assured-forwarding queue-num 1
set class-of-service forwarding-classes class network-control queue-num 3
set class-of-service forwarding-classes class expedited-forwarding queue-num 2 spu-priority high
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode* in the *CLI User Guide*.

To configure the high-priority queue on the SPC:

1. Define forwarding classes and assign queue numbers.
   ```
   [edit class-of-service forwarding-classes]
   user@host# set class best-effort queue-num 0
   user@host# set class assured-forwarding queue-num 1
   user@host# set class network-control queue-num 3
   user@host# set class expedited-forwarding queue-num 2
   ```

2. Configure the SPC high-priority queue.
[edit class-of-service forwarding-classes]
user@host# set class expedited-forwarding spu-priority high

Results
From configuration mode, confirm your configuration by entering the `show class-of-service forwarding-classes` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

[edit]
user@host# show class-of-service forwarding-classes
class best-effort queue-num 0;
class assured-forwarding queue-num 1;
class network-control queue-num 3;
class expedited-forwarding queue-num 2 spu-priority high;

If you are done configuring the device, enter `commit` from configuration mode.

Verification

Verifying SPU High-Priority Queue Mapping

Purpose
Verify that the forwarding class is mapped to the SPU high-priority queue.

Action
From operational mode, enter the `show class-of-service forwarding-class` command.

user@host> show class-of-service forwarding-class

<table>
<thead>
<tr>
<th>Forwarding class priority</th>
<th>Policing priority</th>
<th>ID</th>
<th>Queue</th>
<th>Restricted queue</th>
<th>Fabric</th>
</tr>
</thead>
<tbody>
<tr>
<td>best-effort normal</td>
<td>low</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>low</td>
</tr>
<tr>
<td>expedited-forwarding normal normal high</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>low</td>
<td></td>
</tr>
<tr>
<td>assured-forwarding normal</td>
<td>low</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>low</td>
</tr>
<tr>
<td>network-control normal</td>
<td>low</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>low</td>
</tr>
<tr>
<td>normal</td>
<td>low</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>low</td>
</tr>
</tbody>
</table>
This topic covers the following information:

Host Outbound Traffic Overview

Host outbound traffic, also called locally generated traffic, consists of traffic generated by the Routing Engine and traffic generated by the distributed protocol handler.

Routing Engine Sourced Traffic

Traffic sent from the Routing Engine includes control plane packets such as OSPF Hello packets, ICMP echo reply (ping) packets, and TCP-related packets such as BGP and LDP control packets.

Distributed Protocol Handler Traffic

Distributed protocol handler traffic refers to traffic from the router’s periodic packet management (PPM) process when it runs sessions distributed to the Packet Forwarding Engine (the default mode) in addition to the Routing Engine. The PPM process is responsible for periodic transmission of protocol Hello or other keepalive packets on behalf of its various client processes, such as Bidirectional Forwarding Detection (BFD) Protocol or Link Aggregation Control Protocol (LACP), and it also receives packets on behalf of client processes. In addition, PPM handles time-sensitive periodic processing and performs such tasks as sending process-specific packets and gathering statistics. By default, PPM sessions on the Routing Engine run distributed on the Packet Forwarding Engine, and this enables client processes to run on the Packet Forwarding Engine.
NOTE: For interfaces on MX80 routers, LACP control traffic is sent through the Routing Engine rather than through the Packet Forwarding Engine.

Distributed protocol handler traffic includes both IP (Layer 3) traffic such as BFD keepalive messages and non-IP (Layer 2) traffic such as LACP control traffic on aggregated Ethernet.

Default Queuing and Marking of Host Outbound Traffic

By default, the router assigns host outbound traffic to the best-effort forwarding class (which maps to queue 0) or to the network-control forwarding class (which maps to queue 3) based on protocol. For more information, see “Default Routing Engine Protocol Queue Assignments” on page 86.

By default, the router marks the type of service (ToS) field of Layer 3 packets in the host outbound traffic flow with DiffServ code point (DSCP) bits 000000 (which correlate with the best-effort forwarding class). The router does not remark Layer 2 traffic such as LACP control traffic on aggregated Ethernet. For more information, see Default DSCP and DSCP IPv6 Classifiers.

Configured Queuing and Marking of Host Outbound Traffic

You can configure a nondefault forwarding class and DSCP bits that the router uses to queue and remark host outbound traffic. These configuration settings apply to the following types of traffic:

- Packets generated by the Routing Engine
- Distributed protocol handler traffic for egress interfaces hosted on MX Series routers, M120 routers, and Enhanced III FPCs in M320 routers.

To change these default settings, include the forwarding-class class-name statement and the dscp-code-point value statement at the [edit class-of-service host-outbound-traffic] hierarchy level. This feature does not affect transit traffic or incoming traffic.

The configured forwarding class override applies to all packets relating to Layer 2 protocols, Layer 3 protocols, and all application-level traffic (such as FTP or ping operations). The configured DSCP bits override value does not apply to MPLS EXP bits or IEEE 802.1p bits, however.

Configured Queuing and Marking of Outbound Routing Engine Traffic Only

To configure a nondefault forwarding class and DSCP bits that the router uses to queue and remark traffic generated by the Routing Engine only, attach an IPv4 firewall filter to the output of the router’s loopback address. Use the forwarding-class and dscp filter actions to specify override values.

This feature overrides the host-outbound-traffic settings for the Routing Engine output traffic only.
Default Routing Engine Protocol Queue Assignments

Table 15 on page 86 lists the default output queues to which Routing Engine sourced traffic is mapped by protocol type. In general, control protocol packets are sent over queue 3 and management traffic is sent over queue 0. The following caveats apply to these default queue assignments:

- For all packets sent to queue 3 over a VLAN-tagged interface, the software sets the 802.1p bit to 110, except for VRRP packets, in which case the software sets the 802.1p bit to 111.
- Outgoing BFD packets should be marked with VLAN-tagged 802.1p bit to 110; however, this is true only for RE based BFD. For inline BFD, it does not modify by default.
- For IPv4 and IPv6 packets, the software copies the IP type-of-service (ToS) value into the 802.1p field independently of which queue the packets are sent out.
- For MPLS packets, the software copies the EXP bits into the 802.1p field.

Table 15: Default Queue Assignments for Packets Generated by the Routing Engine

<table>
<thead>
<tr>
<th>Routing Engine Protocol</th>
<th>Default Queue Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptive Services PIC TCP tickle (keepalive packets for idle session generated with stateful firewall to probe idle TCP sessions)</td>
<td>Queue 0</td>
</tr>
<tr>
<td>Address Resolution Protocol (ARP)</td>
<td>Queue 0</td>
</tr>
<tr>
<td>ATM Operation, Administration, and Maintenance (OAM)</td>
<td>Queue 3</td>
</tr>
<tr>
<td>Bidirectional Forwarding Detection (BFD) Protocol</td>
<td>Queue 3</td>
</tr>
<tr>
<td>BGP</td>
<td>Queue 0</td>
</tr>
<tr>
<td>BGP TCP Retransmission</td>
<td>Queue 3</td>
</tr>
<tr>
<td>Cisco High-Level Data Link Control (HDLC)</td>
<td>Queue 3</td>
</tr>
<tr>
<td>Routing Engine Protocol</td>
<td>Default Queue Assignment</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Distance Vector Multicast Routing Protocol (DVMRP)</td>
<td>Queue 3</td>
</tr>
<tr>
<td>Ethernet Operation, Administration, and Maintenance (OAM)</td>
<td>Queue 3</td>
</tr>
<tr>
<td>Frame Relay Local Management Interface (LMI)</td>
<td>Queue 3</td>
</tr>
<tr>
<td>Frame Relay Asynchronization permanent virtual circuit (PVC)/data link connection identifier (DLCI) status messages</td>
<td>Queue 3</td>
</tr>
<tr>
<td>FTP</td>
<td>Queue 0</td>
</tr>
<tr>
<td>IS-IS Open Systems Interconnection (OSI)</td>
<td>Queue 3</td>
</tr>
<tr>
<td>Internet Control Message Protocol (ICMP)</td>
<td>Queue 0</td>
</tr>
<tr>
<td>Internet Group Management Protocol (IGMP) query</td>
<td>Queue 3</td>
</tr>
<tr>
<td>IGMP Report</td>
<td>Queue 0</td>
</tr>
<tr>
<td>Internet Key Exchange (IKE)</td>
<td>Queue 3</td>
</tr>
<tr>
<td>IP version 6 (IPv6) Neighbor Solicitation</td>
<td>Queue 3</td>
</tr>
<tr>
<td>IPv6 Neighbor Advertisement</td>
<td>Queue 3</td>
</tr>
<tr>
<td>IPv6 Router Advertisement</td>
<td>Queue 0</td>
</tr>
<tr>
<td>Label Distribution Protocol (LDP) User Datagram Protocol (UDP) hello</td>
<td>Queue 3</td>
</tr>
<tr>
<td>LDP keepalive and Session data</td>
<td>Queue 0</td>
</tr>
<tr>
<td>LDP TCP Retransmission</td>
<td>Queue 3</td>
</tr>
<tr>
<td>Link Aggregation Control Protocol (LACP)</td>
<td>Queue 3</td>
</tr>
<tr>
<td>Link Services (LS) PIC</td>
<td></td>
</tr>
</tbody>
</table>

If link fragmentation and interleaving (LFI) is enabled, all routing protocol packets larger than 128 bytes are transmitted from queue 0. This ensures that VoIP traffic is not affected. Fragmentation is supported on queue 0 only.
<table>
<thead>
<tr>
<th>Routing Engine Protocol</th>
<th>Default Queue Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast listener discovery (MLD)</td>
<td>Queue 0</td>
</tr>
<tr>
<td>Multicast Source Discovery Protocol (MSDP)</td>
<td>Queue 0</td>
</tr>
<tr>
<td>MSDP TCP Retransmission</td>
<td>Queue 3</td>
</tr>
<tr>
<td>Multilink Frame Relay Link Integrity Protocol (LIP)</td>
<td>Queue 3</td>
</tr>
<tr>
<td>NETCONF</td>
<td>Queue 0</td>
</tr>
<tr>
<td>NetFlow</td>
<td>Queue 0</td>
</tr>
<tr>
<td>OSPF protocol data unit (PDU)</td>
<td>Queue 3</td>
</tr>
<tr>
<td>Point-to-Point Protocol (PPP)</td>
<td>Queue 3</td>
</tr>
<tr>
<td>Protocol Independent Multicast (PIM)</td>
<td>Queue 3</td>
</tr>
<tr>
<td>Real-time performance monitoring (RPM) probe packets</td>
<td>Queue 3</td>
</tr>
<tr>
<td>RSVP</td>
<td>Queue 3</td>
</tr>
<tr>
<td>Routing Information Protocol (RIP)</td>
<td>Queue 3</td>
</tr>
<tr>
<td>SNMP</td>
<td>Queue 0</td>
</tr>
<tr>
<td>SSH</td>
<td>Queue 0</td>
</tr>
<tr>
<td>sFlow monitoring technology</td>
<td>Queue 0</td>
</tr>
<tr>
<td>Telnet</td>
<td>Queue 0</td>
</tr>
<tr>
<td>Two-Way Active Monitoring Protocol (TWAMP)</td>
<td>Queue 0</td>
</tr>
<tr>
<td>Virtual Router Redundancy Protocol (VRRP)</td>
<td>Queue 3</td>
</tr>
<tr>
<td>xnm-clear-text</td>
<td>Queue 0</td>
</tr>
<tr>
<td>xnm-ssl</td>
<td>Queue 0</td>
</tr>
</tbody>
</table>
CHAPTER 5

Altering Outgoing Packets Headers with Rewrite Rules

IN THIS CHAPTER

- Rewrite Rules Overview | 89
- Rewriting Frame Relay Headers | 90
- Example: Configuring and Applying Rewrite Rules on a Security Device | 91

Rewrite Rules Overview

A rewrite rule modifies the appropriate class-of-service (CoS) bits in an outgoing packet. Modification of CoS bits allows the next downstream device to classify the packet into the appropriate service group. Rewriting or marking outbound packets is useful when the device is at the border of a network and must alter the CoS values to meet the policies of the targeted peer. A rewrite rule examines the forwarding class and loss priority of a packet and sets its bits to a corresponding value specified in the rule.

Typically, a device rewrites CoS values in outgoing packets on the outbound interfaces of an edge device, to meet the policies of the targeted peer. After reading the current forwarding class and loss priority information associated with the packet, the transmitting device locates the chosen CoS value from a table, and writes this CoS value into the packet header.

NOTE:

- You can configure up to 32 IEEE 802.1p rewrite rules on each SRX5K-MPC on the SRX5600 and SRX5800 devices.
- Starting in Junos OS Release 18.2R1, you can configure 802.1p rewrite on logical VDSL interface, that is, pt interface.

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.2R1</td>
<td>Starting in Junos OS Release 18.2R1, you can configure 802.1p rewrite on logical VDSL interface, that is, pt interface.</td>
</tr>
</tbody>
</table>
Rewriting Frame Relay Headers

Assigning the Default Frame Relay Rewrite Rule to an Interface

For Juniper Networks device interfaces with Frame Relay encapsulation, you can rewrite the discard eligibility (DE) bit based on the loss priority of Frame Relay traffic. For each outgoing frame with the loss priority set to low, medium-low, medium-high, or high, you can set the DE bit CoS value to 0 or 1. You can combine a Frame Relay rewrite rule with other rewrite rules on the same interface. For example, you can rewrite both the DE bit and MPLS EXP bit.

The default Frame Relay rewrite rule contains the following settings:

- loss-priority low code-point 0;
- loss-priority medium-low code-point 0;
- loss-priority medium-high code-point 1;
- loss-priority high code-point 1;

This default rule sets the DE CoS value to 0 for each outgoing frame with the loss priority set to low or medium-low. This default rule sets the DE CoS value to 1 for each outgoing frame with the loss priority set to medium-high or high.

To assign the default rule to an interface, include the `frame-relay-de default` statement at the `[edit class-of-service interfaces interface interface-name unit logical-unit-number unit rewrite-rules]` hierarchy level:

```
[edit class-of-service interfaces interface-name unit logical-unit-number rewrite-rules]
frame-relay-de default;
```

Defining a Custom Frame Relay Rewrite Rule

To define a custom Frame Relay rewrite rule, include the following statements at the `[edit class-of-service]` hierarchy level:
A custom rewrite rule sets the DE bit to the 0 or 1 CoS value based on the assigned loss priority of low, medium-low, medium-high, or high for each outgoing frame.

The rule does not take effect until you apply it to a logical interface. To apply the rule to a logical interface, include the `frame-relay-de map-name` statement at the `[edit class-of-service interfaces interface-name unit logical-unit-number rewrite-rules]` hierarchy level:

```
[edit class-of-service interfaces interface-name unit logical-unit-number rewrite-rules]
frame-relay-de map-name;
```

RELATED DOCUMENTATION

- Rewrite Rules Overview | 89
- Example: Configuring and Applying Rewrite Rules on a Security Device | 91

Example: Configuring and Applying Rewrite Rules on a Security Device

IN THIS SECTION

- Requirements | 92
- Overview | 92
- Configuration | 93
- Verification | 95

This example shows how to configure and apply rewrite rules for a device.
Requirements

Before you begin, create and configure the forwarding classes.

Overview

You can configure rewrite rules to replace CoS values on packets received from the customer or host with the values expected by other devices. You do not have to configure rewrite rules if the received packets already contain valid CoS values. Rewrite rules apply the forwarding class information and packet loss priority used internally by the device to establish the CoS value on outbound packets. After you configure rewrite rules, you must apply them to the correct interfaces.

In this example, you configure the rewrite rule for DiffServ CoS as rewrite-dscps. You specify the best-effort forwarding class as be-class, expedited forwarding class as ef-class, an assured forwarding class as af-class, and a network control class as nc-class. Finally, you apply the rewrite rule to an IRB interface.

NOTE: You can apply one rewrite rule to each logical interface.

Table 16 on page 92 shows how the rewrite rules replace the DSCPs on packets in the four forwarding classes.

Table 16: Sample rewrite-dscps Rewrite Rules to Replace DSCPs

<table>
<thead>
<tr>
<th>mf-classifier Forwarding Class</th>
<th>For CoS Traffic Type</th>
<th>rewrite-dscps Rewrite Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>be-class</td>
<td>Best-effort traffic—Provides no special CoS handling of packets. Typically, RED drop profile is aggressive and no loss priority is defined.</td>
<td>Low-priority code point: 000000 High-priority code point: 000001</td>
</tr>
<tr>
<td>ef-class</td>
<td>Expedited forwarding traffic—Provides low loss, low delay, low jitter, assured bandwidth, and end-to-end service. Packets can be forwarded out of sequence or dropped.</td>
<td>Low-priority code point: 101110 High-priority code point: 101111</td>
</tr>
<tr>
<td>af-class</td>
<td>Assured forwarding traffic—Provides high assurance for packets within the specified service profile. Excess packets are dropped.</td>
<td>Low-priority code point: 001010 High-priority code point: 001100</td>
</tr>
<tr>
<td>nc-class</td>
<td>Network control traffic—Packets can be delayed, but not dropped.</td>
<td>Low-priority code point: 110000 High-priority code point: 110001</td>
</tr>
</tbody>
</table>
NOTE: Forwarding classes can be configured in a DSCP rewriter and also as an action of an IDP policy to rewrite DSCP code points. To ensure that the forwarding class is used as an action in an IDP policy, it is important that you do not configure an IDP policy and interface-based rewrite rules with the same forwarding class.

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from the configuration mode.

```
set class-of-service rewrite-rules dscp rewrite-dscps forwarding-class be-class loss-priority low code-point 000000
set class-of-service rewrite-rules dscp rewrite-dscps forwarding-class be-class loss-priority high code-point 000001
set class-of-service rewrite-rules dscp rewrite-dscps forwarding-class ef-class loss-priority low code-point 101110
set class-of-service rewrite-rules dscp rewrite-dscps forwarding-class ef-class loss-priority high code-point 101111
set class-of-service rewrite-rules dscp rewrite-dscps forwarding-class af-class loss-priority low code-point 001010
set class-of-service rewrite-rules dscp rewrite-dscps forwarding-class af-class loss-priority high code-point 001100
set class-of-service rewrite-rules dscp rewrite-dscps forwarding-class nc-class loss-priority low code-point 110000
set class-of-service rewrite-rules dscp rewrite-dscps forwarding-class nc-class loss-priority high code-point 110001
set class-of-service interfaces irb unit 0 rewrite-rules dscp rewrite-dscps
```

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode* in the *CLI User Guide*.

To configure and apply rewrite rules for a device:

1. Configure rewrite rules for DiffServ CoS.

   ```
   [edit]
   user@host# edit class-of-service
   user@host# edit rewrite-rules dscp rewrite-dscps
   ```

2. Configure best-effort forwarding class rewrite rules.

   ```
   [edit class-of-service rewrite-rules dscp rewrite-dscps]
   user@host# set forwarding-class be-class loss-priority low code-point 000000
   user@host# set forwarding-class be-class loss-priority high code-point 000001
   ```

3. Configure expedited forwarding class rewrite rules.

   ```
   [edit class-of-service rewrite-rules dscp rewrite-dscps]
   user@host# set forwarding-class ef-class loss-priority low code-point 101110
   user@host# set forwarding-class ef-class loss-priority high code-point 101111
   ```

4. Configure assured forwarding class rewrite rules.

   ```
   [edit class-of-service rewrite-rules dscp rewrite-dscps]
   user@host# set forwarding-class af-class loss-priority low code-point 001010
   user@host# set forwarding-class af-class loss-priority high code-point 001100
   ```

5. Configure network control class rewrite rules.

   ```
   [edit class-of-service rewrite-rules dscp rewrite-dscps]
   user@host# set forwarding-class nc-class loss-priority low code-point 110000
   user@host# set forwarding-class nc-class loss-priority high code-point 110001
   ```

6. Apply rewrite rules to an IRB interface.

   ```
   [edit class-of-service]
   user@host# set interfaces irb 0 rewrite-rules dscp rewrite-dscps
   ```
Results
From configuration mode, confirm your configuration by entering the `show class-of-service` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```plaintext
[edit]
user@host# show class-of-service
interfaces {
  irb {
    unit 0 {
      rewrite-rules {
        dscp rewrite-dscps;
      }
    }
  }
  rewrite-rules {
    dscp rewrite-dscps {
      forwarding-class be-class {
        loss-priority low code-point 000000;
        loss-priority high code-point 000001;
      }
      forwarding-class ef-class {
        loss-priority low code-point 101110;
        loss-priority high code-point 101111;
      }
      forwarding-class af-class {
        loss-priority low code-point 001010;
        loss-priority high code-point 001100;
      }
      forwarding-class nc-class {
        loss-priority low code-point 110000;
        loss-priority high code-point 110001;
      }
    }
  }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

Verification

Verifying Rewrite Rules Configuration

Purpose
Verify that rewrite rules are configured properly.
Action

From operational mode, enter the `show class-of-service interface irb` command.

```
user@host> show class-of-service interface irb
```

```
Physical interface: irb, Index: 130
  Maximum usable queues: 8, Queues in use: 4
  Scheduler map: <default>, Index: 2
  Congestion-notification: Disabled

Logical interface: irb.10, Index: 71
  Object                  Name                   Type                    Index
  Rewrite-Output          rewrite-dscps          dscp                    17599
  Classifier              ipprec-compatibility   ip                      13
```

Meaning

Rewrite rules are configured on IRB interface as expected.

RELATED DOCUMENTATION

- Rewrite Rules Overview | 89
Defining Output Queue Properties with Schedulers

IN THIS CHAPTER

- Schedulers Overview | 97
- Default Scheduler Settings | 102
- Transmission Scheduling Overview | 104
- Excess Bandwidth Sharing and Minimum Logical Interface Shaping | 106
- Excess Bandwidth Sharing Proportional Rates | 106
- Calculated Weights Mapped to Hardware Weights | 108
- Weight Allocation with Only Shaping Rates or Unshaped Logical Interfaces | 109
- Shared Bandwidth Among Logical Interfaces | 110
- Example: Configuring Class-of-Service Schedulers on a Security Device | 112
- Scheduler Buffer Size Overview | 117
- Example: Configuring a Large Delay Buffer on a Channelized T1 Interface | 122
- Configuring Large Delay Buffers in CoS | 125
- Example: Configuring and Applying Scheduler Maps | 130

Schedulers Overview

IN THIS SECTION

- Transmit Rate | 98
- Delay Buffer Size | 100
- Scheduling Priority | 101
- Shaping Rate | 102
You use schedulers to define the properties of output queues. These properties include the amount of interface bandwidth assigned to the queue, the size of the memory buffer allocated for storing packets, the priority of the queue, and the random early detection (RED) drop profiles associated with the queue.

You associate the schedulers with forwarding classes by means of scheduler maps. You can then associate each scheduler map with an interface, thereby configuring the hardware queues, packet schedulers, and RED processes that operate according to this mapping.

An individual device interface has multiple queues assigned to store packets temporarily before transmission. To determine the order to service the queues, the device uses a round-robin scheduling method based on priority and the queue’s weighted round-robin (WRR) credits. Junos OS schedulers allow you to define the priority, bandwidth, delay buffer size, rate control status, and RED drop profiles to be applied to a particular queue for packet transmission.

You can configure per-unit scheduling (also called logical interface scheduling) to allow multiple output queues on a logical interface and to associate an output scheduler with each queue.

NOTE: For Juniper Network devices, when configuring the `protocol` parameter in the `drop-profile-map` statement, TCP and non-TCP values are not supported; only the value `any` is supported.

vSRX and vSRX 3.0 instances support class of service (CoS) configurations for shapers at different Gigabit Ethernet interface speeds of 1-Gbps, 10-Gbps, 40-Gbps, and 100-Gbps.

This topic contains the following sections:

Transmit Rate

The transmission rate determines the traffic transmission bandwidth for each forwarding class you configure. The rate is specified in bits per second (bps). Each queue is allocated some portion of the bandwidth of the outgoing interface.

This bandwidth amount can be a fixed value, such as 1 megabit per second (Mbps), a percentage of the total available bandwidth, or the rest of the available bandwidth. You can limit the transmission bandwidth to the exact value you configure, or allow it to exceed the configured rate if additional bandwidth is available from other queues (SRX5400, SRX5600, and SRX5800 devices do not support an exact value transmit rate). This property helps ensure that each queue receives the amount of bandwidth appropriate to its level of service.

The minimum transmit rate supported on high-speed interfaces is one-tenth thousandth of the speed of that interface. For example, on a Gigabit Ethernet interface with a speed of 1000 Mbps, the minimum transmit rate is 100 Kbps (1,000 Mbps x 1/10,000). You can configure transmit rates in the range 3200 bps through
160,000,000,000 bps. When the configured rate is less than the minimum transmit rate, the minimum transmit rate is used instead.

NOTE: Interfaces with slower interface speeds, like T1, E1, or channelized T1/E1/ISDN PRI, cannot support minimum transmit rates because the minimum transmit rate supported on a device is 3,200 bps.

Transmit rate assigns the weighted round-robin (WRR) priority values within a given priority level and not between priorities.

The transmit rate defines the transmission rate of a scheduler. The transmit rate determines the traffic bandwidth from each forwarding class you configure.

By default, queues 0 through 7 have the following percentage of transmission capacity:

- Queue 0—95 percent
- Queue 1—0 percent
- Queue 2—0 percent
- Queue 3—0 percent
- Queue 4—0 percent
- Queue 6—0 percent
- Queue 7—5 percent

To define a transmit rate, select the appropriate option:

- To specify a transmit rate, select rate and type an integer from 3200 to 160,000,000,000 bits per second.
- To enforce an exact transmit rate, select rate.
- To specify the remaining transmission capacity, select remainder.
- To specify a percentage of transmission capacity, select percent and type an integer from 1 through 100.

Optionally, you can specify the percentage of the remainder to be used for allocating the transmit rate of the scheduler on a prorated basis. If there are still points left even after allocating the remainder percentage with the transmit rate and there are no queues, then the points are allocated point by point to each queue in a round-robin method. If the remainder percentage is not specified, the remainder value will be shared equally.
Delay Buffer Size

You can configure the delay buffer size to control congestion at the output stage. A delay buffer provides packet buffer space to absorb burst traffic up to a specified duration of delay. When the buffer is full, all packets are dropped.

On Juniper Networks devices, you can configure larger delay buffers on channelized T1/E1 interfaces. Larger delay buffers help these slower interfaces to avoid congestion and packet dropping when they receive large bursts of traffic.

By default, SRX300, SRX320, SRX340, SRX345, and SRX550M device interfaces support a delay buffer time of 100,000 microseconds. (Platform support depends on the Junos OS release in your implementation.)

To define a delay buffer size for a scheduler, select the appropriate option:

- To enforce exact buffer size, select **Exact**.
- To specify a buffer size as a temporal value (microseconds), select **Temporal**.
- To specify buffer size as a percentage of the total buffer, select **Percent** and type an integer from 1 through 100.
- To specify buffer size as the remaining available buffer, select **Remainder**.

Optionally, you can specify the percentage of the remainder to be used for allocating the buffer size of the scheduler on a prorated basis.

By default, sizes of the delay buffer queues 0 through 7 have the following percentage of the total available buffer space:

- Queue 0—95 percent
- Queue 1—0 percent
- Queue 2—0 percent
- Queue 3—0 percent
- Queue 4—0 percent
- Queue 5—0 percent
- Queue 6—0 percent
- Queue 7—5 percent

NOTE: A large buffer size value correlates with a greater possibility of packet delays. This might not be practical for sensitive traffic such as voice or video. For a Juniper Networks device, if the buffer size percentage is set to zero for T1 interfaces, traffic does not pass.
For various interface speeds, the default parameters such as buffer time, maximum buffer time, maximum buffer size, and maximum number of interfaces vary. When the traffic shaping rate is more than 1-Gbps, then 1-Gbps delay buffer is considered.

Packets are dropped from the queue if:

- The total buffer limit is exceeded.
- The queue size exceeds the total free buffer size.
- The packet buffer pool is less than 25 percent free and the queue exceeds the guaranteed minimum buffer size.
- The packet buffer pool is only 5 percent free (or less).
- The queue size exceeds the guaranteed buffer size (RED profile condition (RED-dropped)). The queue size will be restricted to be less than or equal to the free shared buffers available.

Scheduling Priority

Scheduling priority determines the order in which an output interface transmits traffic from the queues, thus ensuring that queues containing important traffic are provided better access to the outgoing interface.

The queues for an interface are divided into sets based on their priority. Each set contains queues of the same priority. The device examines the sets in descending order of priority. If at least one queue in a set has a packet to transmit, the device selects that set. If multiple queues in the set have packets to transmit, the device selects a queue from the set according to the weighted round-robin (WRR) algorithm that operates within the set.

The packets in a queue are transmitted based on the configured scheduling priority, the transmit rate, and the available bandwidth.

The scheduling priority of the scheduler determines the order in which an output interface transmits traffic from the queues. You can set scheduling priority at different levels in an order of increasing priority from low to high. A high-priority queue with a high transmission rate might lock out lower-priority traffic.

To specify a scheduling priority, select one of the following levels:

- **high**—Packets in this queue have high priority.
- **low**—Packets in this queue are transmitted last.
- **medium-low**—Packets in this queue have medium-low priority.
- **medium-high**—Packets in this queue have medium-high priority.
- **strict-high**—Packets in this queue are transmitted first.
Shaping Rate

Shaping rates control the maximum rate of traffic transmitted on an interface. You can configure the shaping rate so that the interface transmits less traffic than it is physically capable of carrying.

You can configure shaping rates on logical interfaces. By default, output scheduling is not enabled on logical interfaces. Logical interface scheduling (also called per-unit scheduling) allows you to enable multiple output queues on a logical interface and associate an output scheduler and shaping rate with the queues.

By default, the logical interface bandwidth is the average of unused bandwidth for the number of logical interfaces that require default bandwidth treatment. You can specify a peak bandwidth rate in bits per second (bps), either as a complete decimal number or as a decimal number followed by the abbreviation \(k \) (1000), \(m \) (1,000,000), or \(g \) (1,000,000,000). The range is from 1000 through 32,000,000,000 bps.

For low-speed interfaces, the queue-limit values might become lower than the interface MTU so that traffic with large packets can no longer pass through some of the queues. If you want larger-sized packets to flow through, set the buffer-size configuration in the scheduler to a larger value. For more accuracy, the 100-ms queue-limit values are calculated based on shaping rate and not on interface rates.

The shaping rate defines the minimum bandwidth allocated to a queue. The default shaping rate is 100 percent, which is the same as no shaping at all. To define a shaping rate, select the appropriate option:

- To specify shaping rate as an absolute number of bits per second, select `rate` and type an integer from 3200 to 160,000,000,000 bits per second.
- To specify shaping rate as a percentage, select `percent` and type an integer from 0 through 100.

RELATED DOCUMENTATION

- Default Scheduler Settings | 102
- Example: Configuring Class-of-Service Schedulers on a Security Device | 112
- Scheduler Buffer Size Overview | 117
- Example: Configuring a Large Delay Buffer on a Channelized T1 Interface | 122
- Example: Configuring and Applying Scheduler Maps | 130
- Transmission Scheduling Overview | 104

Default Scheduler Settings

Each forwarding class has an associated scheduler priority. Only two forwarding classes, best-effort (ID 0, queue 0) and network-control (ID 3, queue 7), are used in the Junos OS default scheduler configuration.
By default, the best-effort forwarding class (queue 0) receives 95 percent, and the network-control (queue 7) receives 5 percent of the bandwidth and buffer space for the output link. The default drop profile causes the buffer to fill and then discard all packets until it again has space.

The expedited-forwarding and assured-forwarding classes have no schedulers, because by default no resources are assigned to queue 5 (ID 1) and queue 1 (ID 2). However, you can manually configure resources for the expedited-forwarding and the assured-forwarding classes.

NOTE: The ID refers to the forwarding class ID assigned by the COSD daemon. COSD assigns a forwarding class ID to every forwarding class. The ID is unique to a forwarding-class and is used as a unique identifier in any internal communication with the PFE. PFE side software knows nothing about forwarding-class names but only IDs. So, there is one-to-one mapping from forwarding class name to ID.

By default, each queue can exceed the assigned bandwidth if additional bandwidth is available from other queues. When a forwarding class does not fully use the allocated transmission bandwidth, the remaining bandwidth can be used by other forwarding classes if they receive a larger amount of offered load than the bandwidth allocated. If you do not want a queue to use any leftover bandwidth, you must configure it for strict allocation.

The device uses the following default scheduler settings. You can configure these settings.

```
[edit class-of-service]
schedulers {
  network-control {
    transmit-rate percent 5;
    buffer-size percent 5;
    priority low;
    drop-profile-map loss-priority any protocol any drop-profile terminal;
  }
  best-effort {
    transmit-rate percent 95;
    buffer-size percent 95;
    priority low;
    drop-profile-map loss-priority any protocol any drop-profile terminal;
  }
}
drop-profiles {
  terminal {
    fill-level 100 drop-probability 100;
  }
}
```
Transmission Scheduling Overview

The packets in a queue are transmitted based on their transmission priority, transmit rate, and the available bandwidth.

By default, each queue can exceed the assigned bandwidth if additional bandwidth is available from other queues. When a forwarding class does not fully use the allocated transmission bandwidth, the remaining bandwidth can be used by other forwarding classes if they receive a larger amount of offered load than the bandwidth allocated. A queue receiving traffic within its bandwidth configuration is considered to have positive bandwidth credit, and a queue receiving traffic in excess of its bandwidth allocation is considered to have negative bandwidth credit.

NOTE: The queues in a logical interface do not use the available buffer from other queues for packet transmission. Instead, the packets transmitted to a queue consider only the buffer size available in its own queue.

A queue with positive credit does not need to use leftover bandwidth, because it can use its own allocation. For such queues, packets are transmitted based on the priority of the queue, with packets from higher-priority queues transmitting first. The transmit rate is not considered during transmission. In contrast, a queue with negative credit needs a share of the available leftover bandwidth.

The leftover bandwidth is allocated to queues with negative credit in proportion to the configured transmit rate of the queues within a given priority set. The queues for an interface are divided into sets based on their priority. If no transmit rate is configured, each queue in the set receives an equal percentage of the leftover bandwidth. However, if a transmit rate is configured, each queue in the set receives the configured percentage of the leftover bandwidth.

Table 17 on page 105 shows a sample configuration of priority and transmit rate on six queues. The total available bandwidth on the interface is 100 Mbps.
Table 17: Sample Transmission Scheduling

<table>
<thead>
<tr>
<th>Queue</th>
<th>Scheduling Priority</th>
<th>Transmit Rate</th>
<th>Incoming Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Low</td>
<td>10%</td>
<td>20 Mbps</td>
</tr>
<tr>
<td>1</td>
<td>High</td>
<td>20%</td>
<td>20 Mbps</td>
</tr>
<tr>
<td>2</td>
<td>High</td>
<td>30%</td>
<td>20 Mbps</td>
</tr>
<tr>
<td>3</td>
<td>Low</td>
<td>30%</td>
<td>20 Mbps</td>
</tr>
<tr>
<td>4</td>
<td>Medium-high</td>
<td>No transmit rate configured</td>
<td>10 Mbps</td>
</tr>
<tr>
<td>5</td>
<td>Medium-high</td>
<td>No transmit rate configured</td>
<td>20 Mbps</td>
</tr>
</tbody>
</table>

In this example, queues are divided into three sets based on their priority:

- **High priority set**—Consists of queue 1 and queue 2. Packets use 40 Mbps (20+20) of the available bandwidth (100 Mbps) and are transmitted first. Because of positive credit, the configured transmit rate is not considered.

- **Medium-high priority set**—Consists of queue 4 and queue 5. Packets use 30 Mbps (10+20) of the remaining 60 Mbps bandwidth. Because of positive credit, the transmit rate is not considered. If the queues had negative credit, they would receive an equal share of the leftover bandwidth because no transmit rate is configured.

- **Low priority set**—Consists of queue 0 and queue 3. Packets share the 20 Mbps of leftover bandwidth based on the configured transmit rate. The distribution of bandwidth is in proportion to the assigned percentages. Because the total assigned percentage is 40 (10 + 30), each queue receives a share of bandwidth accordingly. Thus queue 0 receives 5 Mbps (10/40 x 20), and queue 3 receives 15 Mbps (30/40 x 20).

RELATED DOCUMENTATION

- Schedulers Overview | 97
- Default Scheduler Settings | 102
- Example: Configuring Class-of-Service Schedulers on a Security Device | 112
- Scheduler Buffer Size Overview | 117
- Example: Configuring a Large Delay Buffer on a Channelized T1 Interface | 122
- Example: Configuring and Applying Scheduler Maps | 130
Excess Bandwidth Sharing and Minimum Logical Interface Shaping

The default excess bandwidth sharing proportional rate is 32.65 Mbps (128 Kbps x 255). In order to have better weighed fair queuing (WFQ) accuracy among queues, the shaping rate configured should be larger than the excess bandwidth sharing proportional rate. Some examples are shown in Table 18 on page 106.

Table 18: Shaping Rates and WFQ Weights

<table>
<thead>
<tr>
<th>Shaping Rate</th>
<th>Configured Queue Transmit Rate</th>
<th>WFQ Weight</th>
<th>Total Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Mbps</td>
<td>(30, 40, 25, 5)</td>
<td>(22, 30, 20, 4)</td>
<td>76</td>
</tr>
<tr>
<td>33 Mbps</td>
<td>(30, 40, 25, 5)</td>
<td>(76, 104, 64, 13)</td>
<td>257</td>
</tr>
<tr>
<td>40 Mbps</td>
<td>(30, 40, 25, 5)</td>
<td>(76, 104.64, 13)</td>
<td>257</td>
</tr>
</tbody>
</table>

With a 10-Mbps shaping rate, the total weights are 76. This is divided among the four queues according to the configured transmit rate. Note that when the shaping rate is larger than the excess bandwidth sharing proportional rate of 32.65 Mbps, the total weight on the logical interface is 257 and the WFQ accuracy will be the same.

When using the IOC (40x1GE IOC or 4x10GE IOC) on a Juniper Networks device, there are circumstances when you should configure excess bandwidth sharing and minimum logical interface shaping.

RELATED DOCUMENTATION

- Schedulers Overview | 97
- Excess Bandwidth Sharing Proportional Rates | 106
- Calculated Weights Mapped to Hardware Weights | 108
- Weight Allocation with Only Shaping Rates or Unshaped Logical Interfaces | 109
- Shared Bandwidth Among Logical Interfaces | 110

Excess Bandwidth Sharing Proportional Rates

To determine a good excess bandwidth-sharing proportional rate to configure, choose the largest CIR (guaranteed rate) among all the logical interfaces (units). If the logical units have PIRs (shaping rates) only, then choose the largest PIR rate. However, this is not ideal if a single logical interface has a large WRR rate. This method can skew the distribution of traffic across the queues of the other logical interfaces. To
avoid this issue, set the excess bandwidth-sharing proportional rate to a lower value on the logical interfaces where the WRR rates are concentrated. This improves the bandwidth sharing accuracy among the queues on the same logical interface. However, the excess bandwidth sharing for the logical interface with the larger WRR rate is no longer proportional.

As an example, consider five logical interfaces on the same physical port, each with four queues, all with only PIRs configured and no CIRs. The WRR rate is the same as the PIR for the logical interface. The excess bandwidth is shared proportionally with a rate of 40 Mbps. The traffic control profiles for the logical interfaces are shown in Table 19 on page 107.

Table 19: Example Shaping Rates and WFQ Weights

<table>
<thead>
<tr>
<th>Shaping Rate</th>
<th>Configured Queue Transmit Rate</th>
<th>WFQ Weight</th>
<th>Total Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Unit 0) 10 Mbps</td>
<td>(95, 0, 0, 5)</td>
<td>(60, 0, 0, 3)</td>
<td>63</td>
</tr>
<tr>
<td>(Unit 1) 20 Mbps</td>
<td>(25, 25, 25, 25)</td>
<td>(32, 32, 32, 32)</td>
<td>128</td>
</tr>
<tr>
<td>(Unit 2) 40 Mbps</td>
<td>(40, 30, 20, 10)</td>
<td>(102, 77, 51, 26)</td>
<td>255</td>
</tr>
<tr>
<td>(Unit 3) 200 Mbps</td>
<td>(70, 10, 10, 10)</td>
<td>(179, 26, 26, 26)</td>
<td>255</td>
</tr>
<tr>
<td>(Unit 4) 2 Mbps</td>
<td>(25, 25, 25, 25)</td>
<td>(5, 5, 5, 5)</td>
<td>20</td>
</tr>
</tbody>
</table>

Even though the maximum transmit rate for the queue on logical interface unit 3 is 200 Mbps, the excess bandwidth-sharing proportional rate is kept at a much lower value. Within a logical interface, this method provides a more accurate distribution of weights across queues. However, the excess bandwidth is now shared equally between unit 2 and unit 3 (total weights = 255).

RELATED DOCUMENTATION

- Schedulers Overview | 97
- Excess Bandwidth Sharing and Minimum Logical Interface Shaping | 106
- CalculatedWeights Mapped to Hardware Weights | 108
- Weight Allocation with Only Shaping Rates or Unshaped Logical Interfaces | 109
- Shared Bandwidth Among Logical Interfaces | 110
Calculated Weights Mapped to Hardware Weights

The calculated weight in a traffic control profile is mapped to hardware weight, but the hardware only supports a limited WFQ profile. The weights are rounded to the nearest hardware weight according to the values in Table 20 on page 108.

Table 20: Rounding Configured Weights to Hardware Weights

<table>
<thead>
<tr>
<th>Traffic Control Profile Number</th>
<th>Number of Traffic Control Profiles</th>
<th>Weights</th>
<th>Maximum Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–16</td>
<td>16</td>
<td>1–16 (interval of 1)</td>
<td>50.00%</td>
</tr>
<tr>
<td>17–29</td>
<td>13</td>
<td>18–42 (interval of 2)</td>
<td>6.25%</td>
</tr>
<tr>
<td>30–35</td>
<td>6</td>
<td>45–60 (interval of 3)</td>
<td>1.35%</td>
</tr>
<tr>
<td>36–43</td>
<td>8</td>
<td>64–92 (interval of 4)</td>
<td>2.25%</td>
</tr>
<tr>
<td>44–49</td>
<td>6</td>
<td>98–128 (interval of 6)</td>
<td>3.06%</td>
</tr>
<tr>
<td>50–56</td>
<td>7</td>
<td>136–184 (interval of 8)</td>
<td>3.13%</td>
</tr>
<tr>
<td>57–62</td>
<td>6</td>
<td>194–244 (interval of 10)</td>
<td>2.71%</td>
</tr>
<tr>
<td>63–63</td>
<td>1</td>
<td>255–255 (interval of 11)</td>
<td>2.05%</td>
</tr>
</tbody>
</table>

As shown in Table 20 on page 108, the calculated weight of 18.9 is mapped to a hardware weight of 18, because 18 is closer to 18.9 than 20 (an interval of 2 applies in the range of 18 to 42).

RELATED DOCUMENTATION

- Schedulers Overview | 97
- Excess Bandwidth Sharing and Minimum Logical Interface Shaping | 106
- Excess Bandwidth Sharing Proportional Rates | 106
- Weight Allocation with Only Shaping Rates or Unshaped Logical Interfaces | 109
- Shared Bandwidth Among Logical Interfaces | 110
Weight Allocation with Only Shaping Rates or Unshaped Logical Interfaces

Logical interfaces with only shaping rates (PIRs) or unshaped logical interfaces (units) are given a weight of 10. A logical interface with a small guaranteed rate (CIR) might get an overall weight less than 10. To allocate a higher share of the excess bandwidth to logical interfaces with a small guaranteed rate in comparison to the logical interfaces with only shaping rates configured, a minimum weight of 20 is given to the logical interfaces with guaranteed rates configured.

For example, a logical interface configuration with five units is shown in Table 21 on page 109.

Table 21: Allocating Weights with PIR and CIR on Logical Interfaces

<table>
<thead>
<tr>
<th>Logical Interface (Unit)</th>
<th>Traffic Control Profile</th>
<th>WRR Percentages</th>
<th>Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1</td>
<td>PIR 100 Mbps</td>
<td>95, 0, 0, 5</td>
<td>10, 1, 1, 1</td>
</tr>
<tr>
<td>Unit 2</td>
<td>CIR 20 Mbps</td>
<td>25, 25, 25, 25</td>
<td>64, 64, 64, 64</td>
</tr>
<tr>
<td>Unit 3</td>
<td>PIR 40 Mbps, CIR 20 Mbps</td>
<td>50, 30, 15, 5</td>
<td>128, 76, 38, 13</td>
</tr>
<tr>
<td>Unit 4</td>
<td>Unshaped</td>
<td>95, 0, 0, 5</td>
<td>10, 1, 1, 1</td>
</tr>
<tr>
<td>Unit 5</td>
<td>CIR 1 Mbps</td>
<td>95, 0, 0, 5</td>
<td>10, 1, 1, 1</td>
</tr>
</tbody>
</table>

The weights for these units are calculated as follows:

- The excess bandwidth-sharing proportional rate is the maximum CIR among all the logical interfaces which is 20 Mbps (unit 2).
- Unit 1 has a PIR and unit 4 is unshaped. The weight for these units is 10.
- The weight for unit 1 queue 0 is 9.5 (10 x 95%), which translates to a hardware weight of 10.
- The weight for unit 1 queue 1 is 0 (0 x 0%) but though the weight is zero, a weight of 1 is assigned to give minimal bandwidth to queues with zero WRR.
- Unit 5 has a very small CIR (1 Mbps), and a weight of 20 is assigned to units with a small CIR.
- The weight for unit 5 queue 0 is 19 (20 x 95%), which translates to a hardware weight of 18.
- Unit 3 has a CIR of 20 Mbps, which is the same as the excess bandwidth-sharing proportional rate, so it has a total weight of 255.
- The weight of unit 3 queue 0 is 127.5 (255 x 50%), which translates to a hardware weight of 128.
Shared Bandwidth Among Logical Interfaces

As a simple example showing how bandwidth is shared among the logical interfaces, assume that all traffic is sent on queue 0. Assume also that there is a 40-Mbps load on all of the logical interfaces. Configuration details are shown in Table 22 on page 110.

Table 22: Example of Shared Bandwidth Among Logical Interfaces

<table>
<thead>
<tr>
<th>Logical Interface (Unit)</th>
<th>Traffic Control Profile</th>
<th>WRR Percentages</th>
<th>Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1</td>
<td>PIR 100 Mbps</td>
<td>95, 0, 0, 5</td>
<td>10, 1, 1, 1</td>
</tr>
<tr>
<td>Unit 2</td>
<td>CIR 20 Mbps</td>
<td>25, 25, 25, 25</td>
<td>64, 64, 64, 64</td>
</tr>
<tr>
<td>Unit 3</td>
<td>PIR 40 Mbps, CIR 20 Mbps</td>
<td>50, 30, 15, 5</td>
<td>128, 76, 38, 13</td>
</tr>
<tr>
<td>Unit 4</td>
<td>Unshaped</td>
<td>95, 0, 0, 5</td>
<td>10, 1, 1, 1</td>
</tr>
</tbody>
</table>

When the port is shaped at 40 Mbps, because units 2 and 3 have a guaranteed rate (CIR) configured, both units 2 and 3 get 20 Mbps of shared bandwidth.

When the port is shaped at 100 Mbps, because units 2 and 3 have a guaranteed rate (CIR) configured, each of them can transmit 20 Mbps. On units 1, 2, 3, and 4, the 60 Mbps of excess bandwidth is shaped according to the values shown in Table 23 on page 110.

Table 23: First Example of Bandwidth Sharing

<table>
<thead>
<tr>
<th>Logical Interface (Unit)</th>
<th>Calculation</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 / (10+64+128+10) x 60 Mbps</td>
<td>2.83 Mbps</td>
</tr>
<tr>
<td>2</td>
<td>64 / (10+64+128+10) x 60 Mbps</td>
<td>18.11 Mbps</td>
</tr>
<tr>
<td>3</td>
<td>128 / (10+64+128+10) x 60 Mbps</td>
<td>36.22 Mbps</td>
</tr>
</tbody>
</table>
Table 23: First Example of Bandwidth Sharing (continued)

<table>
<thead>
<tr>
<th>Logical Interface (Unit)</th>
<th>Calculation</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>10 ((10+64+128+10)\times 60) Mbps</td>
<td>2.83 Mbps</td>
</tr>
</tbody>
</table>

However, unit 3 only has 20 Mbps extra (PIR and CIR) configured. This means that the leftover bandwidth of 16.22 Mbps \((36.22 - 20)\) is shared among units 1, 2, and 4. This is shown in Table 24 on page 111.

Table 24: Second Example of Bandwidth Sharing

<table>
<thead>
<tr>
<th>Logical Interface (Unit)</th>
<th>Calculation</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 ((10+64+128+10)\times 16.22) Mbps</td>
<td>1.93 Mbps</td>
</tr>
<tr>
<td>2</td>
<td>64 ((10+64+128+10)\times 16.22) Mbps</td>
<td>12.36 Mbps</td>
</tr>
<tr>
<td>4</td>
<td>10 ((10+64+128+10)\times 16.22) Mbps</td>
<td>1.93 Mbps</td>
</tr>
</tbody>
</table>

Finally, Table 25 on page 111 shows the resulting allocation of bandwidth among the logical interfaces when the port is configured with a 100-Mbps shaping rate.

Table 25: Final Example of Bandwidth Sharing

<table>
<thead>
<tr>
<th>Logical Interface (Unit)</th>
<th>Calculation</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.83 Mbps + 1.93 Mbps</td>
<td>4.76 Mbps</td>
</tr>
<tr>
<td>2</td>
<td>20 Mbps + 18.11 Mbps + 12.36 Mbps</td>
<td>50.47 Mbps</td>
</tr>
<tr>
<td>3</td>
<td>20 Mbps + 20 Mbps</td>
<td>40 Mbps</td>
</tr>
<tr>
<td>4</td>
<td>2.83 Mbps + 1.93 Mbps</td>
<td>4.76 Mbps</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Schedulers Overview | 97
- Excess Bandwidth Sharing and Minimum Logical Interface Shaping | 106
- Excess Bandwidth Sharing Proportional Rates | 106
- Calculated Weights Mapped to Hardware Weights | 108
- Weight Allocation with Only Shaping Rates or Unshaped Logical Interfaces | 109
Example: Configuring Class-of-Service Schedulers on a Security Device

IN THIS SECTION
- Requirements | 112
- Overview | 112
- Configuration | 113
- Verification | 116

This example shows how to configure CoS schedulers on a device.

Requirements

Before you begin, determine the buffer size allocation method to use. See "Scheduler Buffer Size Overview" on page 117.

Overview

An individual device interface has multiple queues assigned to store packets temporarily before transmission. To determine the order in which to service the queues, the device uses a round-robin scheduling method based on priority and the queue's weighted round-robin (WRR) credits. Junos OS schedulers allow you to define the priority, bandwidth, delay buffer size, rate control status, and RED drop profiles to be applied to a particular queue for packet transmission.

You configure schedulers to assign resources, priorities, and drop profiles to output queues. By default, only queues 0 and 3 have resources assigned.

NOTE: Juniper Network devices support hierarchical schedulers, including per-unit schedulers.

In this example, you configure a best-effort scheduler called be-scheduler. You set the priority as low and the buffer size to 40. You set the be-scheduler transmit-rate remainder percentage to 40. You configure an expedited forwarding scheduler called ef-scheduler and set the priority as high and the buffer size to 10. You set the ef-scheduler transmit-rate remainder percentage to 50.

Then you configure an assured forwarding scheduler called af-scheduler and set the priority as high and buffer size to 45. You set an assured forwarding scheduler transmit rate to 45. You then configure a drop
profile map for assured forwarding as low and high priority. (DiffServ can have a RED drop profile associated with assured forwarding.)

Finally, you configure a network control scheduler called nc-scheduler and set the priority as low and buffer size to 5. You set a network control scheduler transmit rate to 5.

Table 26 on page 113 shows the schedulers created in this example.

Table 26: Sample Schedulers

<table>
<thead>
<tr>
<th>Scheduler</th>
<th>For CoS Traffic Type</th>
<th>Assigned Priority</th>
<th>Allocated Portion of Queue Buffer</th>
<th>Allocated Portion of Remainder (Transmit Rate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>be-scheduler</td>
<td>Best-effort traffic</td>
<td>Low</td>
<td>40 percent</td>
<td>40 percent</td>
</tr>
<tr>
<td>ef-scheduler</td>
<td>Expedited forwarding traffic</td>
<td>High</td>
<td>10 percent</td>
<td>50 percent</td>
</tr>
<tr>
<td>af-scheduler</td>
<td>Assured forwarding traffic</td>
<td>High</td>
<td>45 percent</td>
<td>–</td>
</tr>
<tr>
<td>nc-scheduler</td>
<td>Network control traffic</td>
<td>Low</td>
<td>5 percent</td>
<td>–</td>
</tr>
</tbody>
</table>

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from the configuration mode.

```
set class-of-service-schedulers be-scheduler priority low buffer-size percent 40
set class-of-service-schedulers be-scheduler transmit-rate remainder 40
set class-of-service-schedulers ef-scheduler priority high buffer-size percent 10
set class-of-service-schedulers ef-scheduler transmit-rate remainder 50
set class-of-service-schedulers af-scheduler priority high buffer-size percent 45
set class-of-service-schedulers af-scheduler transmit-rate percent 45
set class-of-service-schedulers af-scheduler drop-profile-map loss-priority low protocol any drop-profile af-normal
set class-of-service-schedulers af-scheduler drop-profile-map loss-priority high protocol any drop-profile af-with-PLP
set class-of-service-schedulers nc-scheduler priority low buffer-size percent 5
set class-of-service-schedulers nc-scheduler transmit-rate percent 5
```
Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure CoS schedulers:

1. Configure a best-effort scheduler.

   ```
   [edit]
   user@host# edit class-of-service schedulers be-scheduler
   ```

2. Specify a best-effort scheduler priority and buffer size.

   ```
   [edit class-of-service schedulers be-scheduler]
   user@host# set priority low
   user@host# set buffer-size percent 40
   ```

3. Configure a remainder option for a best-effort scheduler transmit rate.

   ```
   [edit class-of-service schedulers be-scheduler]
   user@host# set transmit-rate remainder 40
   ```

4. Configure an expedited forwarding scheduler.

   ```
   [edit]
   user@host# edit class-of-service schedulers ef-scheduler
   ```

5. Specify an expedited forwarding scheduler priority and buffer size.

   ```
   [edit class-of-service schedulers ef-scheduler]
   user@host# set priority high
   user@host# set buffer-size percent 10
   ```

6. Configure a remainder option for an expedited forwarding scheduler transmit rate.

   ```
   [edit class-of-service schedulers ef-scheduler]
   user@host# set transmit-rate remainder 50
   ```

7. Configure an assured forwarding scheduler.
8. Specify an assured forwarding scheduler priority and buffer size.

```
[edit class-of-service schedulers af-scheduler]
user@host# set priority high
user@host# set buffer-size percent 45
```

9. Configure an assured forwarding scheduler transmit rate.

```
[edit class-of-service schedulers af-scheduler]
user@host# set transmit-rate percent 45
```

10. Configure a drop profile map for assured forwarding low and high priority.

```
[edit class-of-service schedulers af-scheduler]
user@host# set drop-profile-map loss-priority low protocol any drop-profile af-normal
user@host# set drop-profile-map loss-priority high protocol any drop-profile af-with-PLP
```

11. Configure a network control scheduler.

```
[edit]
user@host# edit class-of-service schedulers nc-scheduler
```

12. Specify a network control scheduler priority and buffer size.

```
[edit class-of-service schedulers nc-scheduler]
user@host# set priority low
user@host# set buffer-size percent 5
```

13. Configure a network control scheduler transmit rate.

```
[edit class-of-service schedulers nc-scheduler]
user@host# set transmit-rate percent 5
```

Results
From configuration mode, confirm your configuration by entering the `show class-of-service` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show class-of-service
  schedulers {
    be-scheduler {
      transmit-rate remainder 40;
      buffer-size percent 40;
      priority low;
    }
    ef-scheduler {
      transmit-rate remainder 50;
      buffer-size percent 10;
      priority high;
    }
    af-scheduler {
      transmit-rate percent 45;
      buffer-size percent 45;
      priority high;
    }
    nc-scheduler {
      transmit-rate percent 5;
      buffer-size percent 5;
      priority low;
    }
  }
```

If you are done configuring the device, enter `commit` from configuration mode.

Verification

Verifying Schedulers Configuration

Purpose
Verify that the schedulers are configured properly.

Action
From operational mode, enter the `show class-of-service` command.
Large bursts of traffic from faster interfaces can cause congestion and dropped packets on slower interfaces that have small delay buffers. For example, a Juniper Networks device operating at the edge of the network can drop a portion of the burst traffic it receives on a channelized T1/E1 interface from a Fast Ethernet or Gigabit Ethernet interface on a router at the network core. On Juniper Networks devices, large delay buffers can be configured for both channelized T1/E1 and nonchannelized T1/E1 interfaces.

To ensure that traffic is queued and transmitted properly on slower interfaces, you can configure a buffer size larger than the default maximum.

This section contains the following topics:

Maximum Delay Buffer Sizes Available to Channelized T1/E1 Interfaces

When you enable the large delay buffer feature on interfaces, a larger buffer is available for allocation to scheduler queues. The maximum delay buffer size that is available for an interface depends on the maximum available delay buffer time and the speed of the interface as shown in Table 27 on page 118.

The default values are as follows:

- **Clear-channel interface**—The default delay buffer time is 500,000 microseconds (0.5 s).
• NxDS0 interface—The default delay buffer time is 1,200,000 microseconds (1.2 s).

Table 27: Maximum Available Delay Buffer Time by Channelized Interface and Rate

<table>
<thead>
<tr>
<th>Effective Line Rate</th>
<th>Maximum Available Delay Buffer Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 4xDS0</td>
<td>4,000,000 microseconds (4 s)</td>
</tr>
<tr>
<td>< 8xDS0</td>
<td>2,000,000 microseconds (2 s)</td>
</tr>
<tr>
<td>< 16xDS0</td>
<td>1,000,000 microseconds (1 s)</td>
</tr>
<tr>
<td><= 32xDS0</td>
<td>500,000 microseconds (0.5 s)</td>
</tr>
<tr>
<td><= 10 mbps</td>
<td>400,000 microseconds (0.4 s)</td>
</tr>
<tr>
<td><= 20 mbps</td>
<td>300,000 microseconds (0.3 s)</td>
</tr>
<tr>
<td><= 30 mbps</td>
<td>200,000 microseconds (0.2 s)</td>
</tr>
<tr>
<td><= 40 mbps</td>
<td>150,000 microseconds (0.15 s)</td>
</tr>
</tbody>
</table>

You can calculate the maximum delay buffer size available for an interface, with the following formula:

\[
\text{interface speed \times maximum delay buffer time = maximum available delay buffer size}
\]

For example, the following maximum delay buffer sizes are available to 1xDS0 and 2xDS0 interfaces:

1xDS0—64 Kbps \times 4 s = 256 Kb (32 KB)

2xDS0—128 Kbps \times 4 s = 512 Kb (64 KB)

If you configure a delay buffer size larger than the maximum, the system allows you to commit the configuration but displays a system log warning message and uses the default buffer size setting instead of the configured maximum setting.

Maximum Delay Buffer Size for vSRX Interfaces

For a vSRX virtual machine, 1 Gbps interfaces have a default delay buffer time of 1 second, a maximum buffer time of 32 seconds, and a maximum buffer size of 128 MB. Use the following CLI command to set the maximum delay buffer time for a scheduler:

\[
\text{set class-of-service schedulers be-scheduler buffer-size temporal 32m}
\]
On a logical vSRX interface, the delay buffer size for a queue that does not have a specific shaping rate acts as a guaranteed minimum buffer size, and the queue is allowed to grow without any packet drops if the queue size is less than the guaranteed buffer size.

The sum of the guaranteed delay buffer sizes for all the queues acts as a pool that can be shared among the queues that do not have a specific shaping rate.

NOTE: The delay buffers are used to control the size of the queues, but do not represent actual memory. The packet buffer pool contains the actual memory used to store packets.

Packets are tail-dropped (100% probability) from the queue if:

- The total buffer limit would be exceeded.
- The queue size would exceed the total free buffer size.
- The packet buffer pool is less than 25% free and the queue exceeds the guaranteed minimum buffer size.
- The packet buffer pool is only 5% free (or less).

Packets also can be dropped by a RED profile (RED-dropped) if the queue size exceeds the guaranteed buffer size. The queue size will be restricted to be less than or equal to the free shared buffers available.

NOTE: Support for vSRX virtual machines depends on the Junos OS release in your installation.

Delay Buffer Size Allocation Methods

You can specify delay buffer sizes for each queue using schedulers. The queue buffer can be specified as a period of time (microseconds) or as a percentage of the total buffer or as the remaining buffer. **Table 28 on page 119** shows different methods that you can specify for buffer allocation in queues.

Table 28: Delay Buffer Size Allocation Methods

<table>
<thead>
<tr>
<th>Buffer Size Allocation Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage</td>
<td>A percentage of the total buffer.</td>
</tr>
</tbody>
</table>
Table 28: Delay Buffer Size Allocation Methods (continued)

<table>
<thead>
<tr>
<th>Buffer Size Allocation Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporal</td>
<td>A period of time, value in microseconds. When you configure a temporal buffer, you must also configure a transmit rate. The system calculates the queue buffer size by multiplying the available bandwidth of the interface times the configured temporal value and transmit rate. When you specify a temporal method, the drop profile is assigned a static buffer and the system starts dropping packets once the queue buffer size is full. By default, the other buffer types are assigned dynamic buffers that use surplus transmission bandwidth to absorb bursts of traffic.</td>
</tr>
<tr>
<td>Remainder</td>
<td>The remaining buffer available. The remainder is the percentage buffer that is not assigned to other queues. For example, if you assign 40 percent of the delay buffer to queue 0, allow queue 3 to keep the default allotment of 5 percent, and assign the remainder to queue 7, then queue 7 uses approximately 55 percent of the delay buffer. Optionally, you can specify the percentage of the remainder to be used for allocating the buffer size of the scheduler on a prorated basis. If the remainder percentage is not specified, the remainder value will be shared equally.</td>
</tr>
</tbody>
</table>

Delay Buffer Sizes for Queues

You specify delay buffer sizes for queues using schedulers. The system calculates the buffer size of a queue based on the buffer allocation method you specify for it in the scheduler. See Table 28 on page 119 for different buffer allocation methods and Table 29 on page 120 for buffer size calculations.

Table 29: Delay Buffer Allocation Method and Queue Buffer

<table>
<thead>
<tr>
<th>Buffer Size Allocation Method</th>
<th>Queue Buffer Calculation</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage</td>
<td>available interface bandwidth x configured buffer size percentage x maximum delay buffer time = queue buffer</td>
<td>Suppose you configure a queue on a 1xDS0 interface to use 30 percent of the available delay buffer size. The system uses the maximum available delay buffer time (4 seconds) and allocates the queue 9600 bytes of delay buffer: 64 Kbps x 0.3 x 4 s=76,800 bits=9,600 bytes</td>
</tr>
</tbody>
</table>
Table 29: Delay Buffer Allocation Method and Queue Buffer (continued)

<table>
<thead>
<tr>
<th>Buffer Size Allocation Method</th>
<th>Queue Buffer Calculation</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporal</td>
<td>available interface bandwidth x configured transmit rate percentage x configured temporal buffer size = queue buffer</td>
<td>Suppose you configure a queue on a 1xDS0 interface to use 3,000,000 microseconds (3 seconds) of delay buffer, and you configure the transmission rate to be 20 percent. The queue receives 4800 bytes of delay buffer: 64 Kbps x 0.2 x 3 s = 38,400 bits = 4,800 bytes. If you configure a temporal value that exceeds the maximum available delay buffer time, the queue is allocated the buffer remaining after buffers are allocated for the other queues. Suppose you configure a temporal value of 6,000,000 microseconds on a 1xDS0 interface. Because this value exceeds the maximum allowed value of 4,000,000 microseconds, the queue is allocated the remaining delay buffer.</td>
</tr>
</tbody>
</table>

When you specify the buffer size as a percentage, the system ignores the transmit rate and calculates the buffer size based only on the buffer size percentage.

RELATED DOCUMENTATION

- Schedulers Overview | 97
- Default Scheduler Settings | 102
- Example: Configuring Class-of-Service Schedulers on a Security Device | 112
- Example: Configuring a Large Delay Buffer on a Channelized T1 Interface | 122
- Example: Configuring and Applying Scheduler Maps | 130
- Transmission Scheduling Overview | 104
Example: Configuring a Large Delay Buffer on a Channelized T1 Interface

IN THIS SECTION

- Requirements | 122
- Overview | 122
- Configuration | 122
- Verification | 124

This example shows how to configure a large delay buffer on a channelized T1 interface to help slower interfaces avoid congestion and packet dropping when they receive large bursts of traffic.

Requirements

Before you begin, enable the large buffer feature on the channelized T1/E1 PIM and then configure a buffer size for each queue in the CoS scheduler. See “Scheduler Buffer Size Overview” on page 117.

Overview

On devices, you can configure large delay buffers on channelized T1/E1 interfaces. Each channelized T1/E1 interface can be configured as a single clear channel, or for channelized (NxDS0) operation, where N denotes channels 1 to 24 for a T1 interface and channels 1 to 32 for an E1 interface.

In this example, you specify a queue buffer of 30 percent in scheduler be-scheduler and associate the scheduler to a defined forwarding class be-class using scheduler map large-buf-sched-map. Finally, you apply the scheduler map to channelized T1 interface t1-3/0/0.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from the configuration mode.

```
set chassis fpc 3 pic 0 q-pic-large-buffer
set class-of-service schedulers be-scheduler buffer-size percent 30
set class-of-service scheduler-maps large-buf-sched-map forwarding-class be-class scheduler be-scheduler
set class-of-service interfaces t1-3/0/0 unit 0 scheduler-map large-buf-sched-map
```
Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode* in the CLI User Guide.

To configure a large delay buffer on a channelized T1 interface:

1. **Enable the large buffer size feature on the channelized T1 interface.**

   ```
   [edit]
   user@host# edit chassis
   user@host# set fpc 3 pic 0 q-pic-large-buffer
   ```

2. **Create best-effort traffic and specify a buffer size.**

   ```
   [edit]
   user@host# edit class-of-service
   user@host# set schedulers be-scheduler buffer-size percent 30
   ```

3. **Configure the scheduler map to associate schedulers with defined forwarding classes.**

   ```
   [edit class-of-service]
   user@host# set scheduler-maps large-buf-sched-map forwarding-class be-class scheduler be-scheduler
   ```

4. **Apply the scheduler map to the channelized T1 interface.**

   ```
   [edit class-of-service]
   user@host# set interfaces t1-3/0/0 unit 0 scheduler-map large-buf-sched-map
   ```

Results

From configuration mode, confirm your configuration by entering the `show class-of-service` and `show chassis` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show class-of-service
interfaces {
  t1-3/0/0 {
    unit 0 {
      scheduler-map large-buf-sched-map;
    }
  }
  
  
```
If you are done configuring the device, enter `commit` from configuration mode.

Verification

Verifying Large Delay Buffers Configuration

Purpose
Verify that the large delay buffers are configured properly.

Action
From configuration mode, enter the `show class-of-service` and `show chassis` commands.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Related documentation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedulers Overview</td>
<td>97</td>
</tr>
<tr>
<td>Default Scheduler Settings</td>
<td>102</td>
</tr>
<tr>
<td>Example: Configuring Class-of-Service Schedulers on a Security Device</td>
<td>112</td>
</tr>
<tr>
<td>Example: Configuring and Applying Scheduler Maps</td>
<td>130</td>
</tr>
<tr>
<td>Transmission Scheduling Overview</td>
<td>104</td>
</tr>
</tbody>
</table>
Configuring Large Delay Buffers in CoS

You can configure very large delay buffers using the `buffer-size-temporal` command combined with the `q-pic-large-buffer` command. The `buffer-size temporal` option in combination with `q-pic-large-buffer` can create extra-large delay buffer allocations for one or several queues on an interface.

NOTE: If the configured buffer size is too low, the buffer size for the forwarding class defaults to 9192 and the following log message is displayed: "fwdd_cos_set_delay_bandwidth:queue:16 delay buffer size (1414) too low, setting to default 9192."

Configuring Large Delay Buffers

The following configuration applies to the examples that follow:

1. Configure two VLANs (one ingress, one egress) on one interface. No interface shaping rate is initially defined for this configuration.

   ```
   [edit]
   set interfaces ge-0/0/3 per-unit-scheduler
   set interfaces ge-0/0/3 vlan-tagging
   set interfaces ge-0/0/3 unit 102 vlan-id 102
   set interfaces ge-0/0/3 unit 102 family inet address 203.0.113.2/24
   set interfaces ge-0/0/3 unit 201 vlan-id 201
   set interfaces ge-0/0/3 unit 201 family inet address 198.51.100.2/24
   set routing-options static route 192.0.2.1/32 next-hop 198.51.100.3
   ```

2. Enable the `q-pic-large-buffer` option on the same PIC, in addition to the `buffer-size temporal` option on the queue, to create a large buffer on the queue:

   ```
   [edit]
   set chassis fpc 0 pic 0 q-pic-large-buffer
   ```

 NOTE: The CLI does not provide a warning when you use `buffer-size temporal` without `q-pic-large-buffer`. When you use `buffer-size temporal`, verify that the configuration also includes the `q-pic-large buffer` command.

3. Define four forwarding-classes (queue names) for the four queues:
4. Configure the forwarding classes (queue names) included in a scheduler map, applied to the egress VLAN:

```
[edit]
set class-of-service forwarding-classes queue 0 be-Queue0
set class-of-service forwarding-classes queue 1 video-Queue1
set class-of-service forwarding-classes queue 2 voice-Queue2
set class-of-service forwarding-classes queue 3 nc-Queue3
```

5. Set the queue priorities. Only queue priorities are initially defined, not transmit rates or buffer sizes.

```
[edit]
set class-of-service schedulers be-Scheduler0 priority low
set class-of-service schedulers video-Scheduler1 priority medium-low
set class-of-service schedulers voice-Scheduler2 priority medium-high
set class-of-service schedulers nc-Scheduler3 priority high
```

Example: Simple Configuration Using Four Queues

This configuration allocates 12,500,000 bytes of buffer for each of the four queues. To avoid exceeding the limits of the delay buffer calculation, this initial example has no interface shaping rate, scheduler transmit rate, or scheduler buffer size percent configuration.

1. Specify the maximum 4-second delay buffer on each of the four queues:

```
[edit]
set class-of-service schedulers be-Scheduler0 buffer-size temporal 4m
set class-of-service schedulers video-Scheduler1 buffer-size temporal 4m
set class-of-service schedulers voice-Scheduler2 buffer-size temporal 4m
set class-of-service schedulers nc-Scheduler3 buffer-size temporal 4m
```

Specifying **buffer-size temporal** on some or all queues uses implicit (default) or explicit transmit rate percentages as the buffer-size percentages of the temporal values for those queues. Because there are no explicitly specified transmit rate percentages, divide 100 percent by the number of configured
queues (queues with schedulers configured in the scheduler map) to get the implicit (default) per-queue transmit rate percentages. Each queue gets an implicit (default) transmit rate of $100\% / 4 = 25\%$.

In this example, specifying the maximum 4-second delay on each queue, with no shaping rate on the interface and implicit (default) per-queue transmit rates of 25 percent, the total buffer for all temporal 4m queues on an interface $= 4$ seconds $\times 100,000,000$ maximum interface bps / 8 bits/byte $= 4$ seconds $\times 12,500,000$ bytes $= 50,000,000$ bytes. Each queue specifying temporal 4m gets $25\% \times 50,000,000 = 12,500,000$ bytes.

2. Add a shaping rate of 4 Mbps to the interface:

```
[edit]
set class-of-service interfaces ge-0/0/3 unit 201 shaping-rate 4m
```

The total buffer for all temporal 4m queues on an interface $= 4$ sec $\times 4,000,000$ bps shaping-rate / 8 bits/byte $= 4$ sec $\times 500,000$ bytes $= 2,000,000$ bytes. Therefore, each queue specifying temporal 4m receives $25\% \times 2,000,000 = 500,000$ bytes.

When using `buffer-size temporal` on any interface queues, if you also use the `transmit-rate percent` command, or the `buffer-size percent` command, or both commands, on any of the interface queues, the buffer size calculations become more complex and the limits of available queue depth might be reached. If the configuration attempts to exceed the available memory, then at commit time two system log messages appear in the `/var/log/messages` file, the interface class-of-service configuration is ignored, and the interface class-of-service configuration reverts to the two-queue defaults:

```
Mar 11 11:02:10.239  elma-n4 elma-n4 COSMAN_FWDD: queue mem underflow for ge-0/0/3
Mar 11 11:02:10.240  elma-n4 elma-n4 cosman_compute_install_sched_params: Failed to compute scheduler params for ge-0/0/3.Hence retaining defaults
```

When configuring `buffer-size temporal` along with `transmit-rate percent` or `buffer-size percent`, or both, you must monitor the system log to see whether the available queue depth limit has been reached.

Example: Using buffer-size temporal with Explicit transmit-rate percent Commands

To add explicit transmit rates to all four queues:

```
[edit]
set class-of-service schedulers be-Scheduler0 transmit-rate percent 10
set class-of-service schedulers video-Scheduler1 transmit-rate percent 25
set class-of-service schedulers voice-Scheduler2 transmit-rate percent 25
set class-of-service schedulers nc-Scheduler3 transmit-rate percent 40
```
For example, if an interface is shaped to 4 Mbps, the transmit rate percentage of 10 for a queue means that the bandwidth share for the specific queue is 0.4 Mbps. The queues are allocated portions of the 2,000,000 bytes of total buffer available for temporal queues on this interface, proportionally to their transmit rates. The four queues get 200,000, 500,000, 500,000, and 800,000 bytes of delay buffer, respectively.

To avoid exceeding the queue depth limits and triggering system log messages and default configuration behavior, when configuring queues with buffer-size temporal and transmit rate percent and other (non-temporal) queues with buffer-size percent, the following configuration rule must be followed: When one or more queues on an interface are configured with buffer-size temporal, the sum of the temporal queues explicitly configured transmit rate percentages plus other non-temporal queues explicitly configured buffer size percentages must not exceed 100 percent.

If the total of the temporal queues transmit rate percentages and the non-temporal queues buffer-size percentages exceeds 100 percent, the queue mem underflow and Failed to compute scheduler params system log messages appear in the messages log, the explicitly configured CLI CoS configuration for the interface is ignored, and the interface reverts to a two-queue default CoS configuration.

When buffer-size temporal is specified on a queue, if transmit-rate percent is also configured on the same queue, the queue depth configured is based on the fractional bandwidth for the queue as obtained by the specified transmit-rate percent.

In addition to temporal delay times specified for one or more queues using buffer size temporal, there is another delay time automatically computed for the entire interface. This interface delay time is distributed across all non-temporal queues, proportionally to their implicit (default) or explicit transmit-rate percentages. If q-pic-large-buffer is not enabled, the interface delay time defaults to 100 ms. As shown in Table 30 on page 128, when q-pic-large-buffer is enabled, interface delay time is calculated according to configured shaping rate for the interface. Because the shaping-rate configured in the example above was 4 Mbps (> 2,048,000 bps), the interface delay time for the configuration is 100 msec.

Table 30: Interface Delay Times Enabled By q-pic-large-buffer

<table>
<thead>
<tr>
<th>Configured Shaping Rate (bps)</th>
<th>Interface Delay Time (msec) Used for Non-Temporal Queues with q-pic-large-buffer Enabled</th>
<th>Default Delay Time Used (msec) Without q-pic-large-buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>64,000-255,999</td>
<td>4000</td>
<td>100</td>
</tr>
<tr>
<td>256,000 - 511,999</td>
<td>2000</td>
<td>100</td>
</tr>
<tr>
<td>512,000 - 102,3999</td>
<td>1000</td>
<td>100</td>
</tr>
<tr>
<td>1,024,000 - 2,047,999</td>
<td>500</td>
<td>100</td>
</tr>
<tr>
<td>>= 2,048,000</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
This example properly computes the delay buffer limits on both temporal and non-temporal queues:

1. Substitute `buffer-size percent` for `buffer-size temporal` on queues 0 and 1:

   ```
   [edit]
   delete class-of-service schedulers be-Scheduler0 buffer-size temporal 4m
   delete class-of-service schedulers video-Scheduler1 buffer-size temporal 4m
   set class-of-service schedulers be-Scheduler0 buffer-size percent 10
   set class-of-service schedulers video-Scheduler1 buffer-size percent 25
   ```

 This deletes the requirement for hard-specified 4 seconds of buffering and replaces it with a proportional limit of 10 percent (or 25 percent) of the total interface delay time for the non-temporal queues. In both cases, the queue depth is calculated based on the share of the interface bandwidth for the specific queues. Total Interface Non-Temporal Queue Memory = shaping-rate * Interface delay time (Table 1) = 4 Mbps * 0.1 seconds = 500,000 bytes per second * 0.1 seconds = 50,000 bytes, therefore queues 0 and 1 get 10% * 50,000 = 5000 bytes and 25% * 50,000 = 12,500 bytes of delay buffer, respectively.

2. Configure `buffer-size temporal` on queues 2 and 3:

   ```
   [edit]
   set class-of-service schedulers voice-Scheduler2 buffer-size temporal 4m
   set class-of-service schedulers voice-Scheduler2 transmit-rate percent 25
   set class-of-service schedulers nc-Scheduler3 buffer-size temporal 4m
   set class-of-service schedulers nc-Scheduler3 transmit-rate percent 40
   ```

 Queues 2 and 3 still get 500,000 and 800,000 bytes of delay buffer, respectively, as previously calculated. This configuration obeys the rule that the sum of the temporal queues transmit rate percentages (25% + 40% = 65%), plus the non-temporal queues buffer size percentages (10% + 25% = 35%) do not exceed 100% (65% + 35% <= 100%).

 The following example exceeds the delay buffer limit, triggering the system log messages and the default, two-queue class-of-service behavior.

 Increase the buffer-size percentage from 25 percent to 26 percent for non-temporal queue 1:

   ```
   [edit]
   set class-of-service schedulers video-Scheduler1 buffer-size percent 26
   ```

 This violates the configuration rule that the sum of the non-temporal queues buffer-size percentages (10% + 26% = 36%), plus the temporal queues transmit rate percentages (25% + 40% = 65%) now exceed 100%
Therefore, the following two system log messages appear in the /var/log/messages file:

```
Mar 23 18:08:23  elma-n4 elma-n4 COSMAN_FWDD: %PFE-3: queue mem underflow for ge-0/0/3 q_num(3)
Mar 23 18:08:23  elma-n4 elma-n4 cosman_compute_install_sched_params: %PFE-3: Failed to compute scheduler params for ge-0/0/3. Hence retaining defaults
```

When the delay buffer limits are exceeded, the CLI-configured class-of-service settings are not used and the default class-of-service configuration (the default scheduler-map) is assigned to the interface. This uses two queues: the forwarding-class best-effort (queue 0) has transmit rate percent 95 and buffer-size percent 95 and the forwarding-class network-control (queue 3) has the transmit rate percent 5 and buffer-size percent 5.

```
queue 0: 1,187,500 Bytes
queue 1: 9,192 Bytes
queue 2: 9,192 Bytes
queue 3: 62,500 Bytes
```

RELATED DOCUMENTATION

- Example: Configuring and Applying Scheduler Maps | 130
- Scheduler Buffer Size Overview | 117

Example: Configuring and Applying Scheduler Maps

IN THIS SECTION

- Requirements | 131
- Overview | 131
- Configuration | 131
- Verification | 133
This example shows how to configure and apply a scheduler map to a device's interface.

Requirements

Before you begin:

- Create and configure the forwarding classes. See *Configuring a Custom Forwarding Class for Each Queue*.
- Create and configure the schedulers. See "Example: Configuring Class-of-ServiceSchedulers on a Security Device" on page 112.

Overview

After you define a scheduler, you can include it in a scheduler map, which maps a specified forwarding class to a scheduler configuration. You configure a scheduler map to assign a forwarding class to a scheduler, and then apply the scheduler map to any interface that must enforce DiffServ CoS.

After they are applied to an interface, the scheduler maps affect the hardware queues, packet schedulers, and RED drop profiles.

In this example, you create the scheduler map diffserv-cos-map and apply it to the device's Ethernet interface ge-0/0/0. The map associates the mf-classifier forwarding classes to the schedulers as shown in Table 31 on page 131.

Table 31: Sample diffserv-cos-map Scheduler Mapping

<table>
<thead>
<tr>
<th>mf-classifier Forwarding Class</th>
<th>For CoS Traffic Type</th>
<th>diffserv-cos-map Scheduler</th>
</tr>
</thead>
<tbody>
<tr>
<td>be-class</td>
<td>Best-effort traffic</td>
<td>be-scheduler</td>
</tr>
<tr>
<td>ef-class</td>
<td>Expedited forwarding traffic</td>
<td>ef-scheduler</td>
</tr>
<tr>
<td>af-class</td>
<td>Assured forwarding traffic</td>
<td>af-scheduler</td>
</tr>
<tr>
<td>nc-class</td>
<td>Network control traffic</td>
<td>nc-scheduler</td>
</tr>
</tbody>
</table>

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from the configuration mode.

```
set class-of-service scheduler-maps diffserv-cos-map forwarding-class be-class scheduler be-scheduler
```
Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure and apply a scheduler map to a device's interface:

1. Configure a scheduler map for DiffServ CoS.

 [edit class-of-service]
 user@host# edit scheduler-maps diffserv-cos-map

2. Configure a best-effort forwarding class and scheduler.

 [edit class-of-service scheduler-maps diffserv-cos-map]
 user@host# set forwarding-class be-class scheduler be-scheduler

3. Configure an expedited forwarding class and scheduler.

 [edit class-of-service scheduler-maps diffserv-cos-map]
 user@host# set forwarding-class ef-class scheduler ef-scheduler

4. Configure an assured forwarding class and scheduler.

 [edit class-of-service scheduler-maps diffserv-cos-map]
 user@host# set forwarding-class af-class scheduler af-scheduler

5. Configure a network control class and scheduler.

 [edit class-of-service scheduler-maps diffserv-cos-map]
 user@host# set forwarding-class nc-class scheduler nc-scheduler

6. Apply the scheduler map to an interface.
Results
From configuration mode, confirm your configuration by entering the `show class-of-service` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show class-of-service
interfaces {
    ge-0/0/0 {
        unit 0 {
            scheduler-map diffserv-cos-map;
        }
    }
}
scheduler-maps {
    diffserv-cos-map {
        forwarding-class be-class scheduler be-scheduler;
        forwarding-class ef-class scheduler ef-scheduler;
        forwarding-class af-class scheduler af-scheduler;
        forwarding-class nc-class scheduler nc-scheduler;
    }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

Verification

Verifying the Scheduler Map Configuration

Purpose
Verify that scheduler maps are configured properly.

Action
From operational mode, enter the `show class-of-service` command.

RELATED DOCUMENTATION

- Default Schedulers Overview
Configuring Schedulers

Configuring Scheduler Maps
Removing Delays with Strict-Priority Queues

IN THIS CHAPTER

- Strict-Priority Queue Overview | 135
- Understanding Strict-Priority Queues | 136
- Example: Configuring Priority Scheduling | 137
- Example: Configuring Strict-Priority Queuing | 140
- Example: Configuring CoS Non-Strict Priority Scheduling | 151

Strict-Priority Queue Overview

You can configure one queue per interface to have strict-priority, which causes delay-sensitive traffic, such as voice traffic, to be removed and forwarded with minimum delay. Packets that are queued in a strict-priority queue are removed before packets in other queues, including high-priority queues.

The strict-high-priority queuing feature allows you to configure traffic policing that prevents lower priority queues from being starved. The strict-priority queue does not cause starvation of other queues because the configured policer allows the queue to exceed the configured bandwidth only when other queues are not congested. If the interface is congested, the software directs strict-priority queues to the configured bandwidth.

To prevent queue starvation of other queues, you must configure an output (egress) policer that defines a limit for the amount of traffic that the queue can service. The software services all traffic in the strict-priority queue that is under the defined limit. When strict-priority traffic exceeds the limit, the policer marks the traffic in excess of the limit as out-of-profile. If the output port is congested, the software drops out-of-profile traffic.

You can also configure a second policer with an upper limit. When strict-priority traffic exceeds the upper limit, the software drops the traffic in excess of the upper limit, regardless of whether the output port is congested. This upper-limit policer is not a requirement for preventing starvation of the lower priority queues. The policer for the lower limit, which marks the packets as out-of-profile, is sufficient to prevent starvation of other queues.
Understanding Strict-Priority Queues

You use strict-priority queuing and policing as follows:

- Identify delay-sensitive traffic by configuring a behavior aggregate (BA) or multifield (MF) classifier.
- Minimize delay by assigning all delay-sensitive packets to the strict-priority queue.
- Prevent starvation on other queues by configuring a policer that checks the data stream entering the strict-priority queue. The policer defines a lower bound, marks the packets that exceed the lower bound as out-of-profile, and drops the out-of-profile packets if the physical interface is congested. If there is no congestion, the software forwards all packets, including the out-of-profile packets.
- Optionally, configure another policer that defines an upper bound and drops the packets that exceed the upper bound, regardless of congestion on the physical interface.

To configure strict-priority queuing and prevent starvation of other queues, include the `priority strict-high` statement at the [edit class-of-service schedulers scheduler-name] hierarchy level and the `if-exceeding` and `then out-of-profile` statements at the [edit firewall policer policer-name] hierarchy level:

```
[edit class-of-service schedulers scheduler-name]
priority strict-high;

[edit firewall policer policer-name]
if-exceeding {
    bandwidth-limit bps;
    bandwidth-percent number;
    burst-size-limit bytes;
}
then out-of-profile;
```
Example: Configuring Priority Scheduling

This example shows how to configure priority scheduling so important traffic receives better access to the outgoing interface.

Requirements

Before you begin, review how to assign forwarding classes. See "Example: Assigning Forwarding Classes to Output Queues" on page 76.

Overview

In this example, you configure CoS and a scheduler called be-sched with a medium-low priority. Then you configure scheduler map be-map to associate be-sched with the best-effort forwarding class. Finally, you apply be-map to interface ge-0/0/0.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from the configuration mode.

```
set class-of-service schedulers be-sched priority medium-low
set class-of-service scheduler-maps be-map forwarding-class best-effort scheduler be-sched
set class-of-service interfaces ge-0/0/0 scheduler-map be-map
```
Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode* in the CLI User Guide.

To configure priority scheduling:


   ```
   [edit]
   user@host# edit class-of-service
   user@host# edit schedulers be-sched
   ```

2. Set a priority.

   ```
   [edit class-of-service schedulers be-sched]
   user@host# set priority medium-low
   ```

3. Configure a scheduler map.

   ```
   [edit]
   user@host# edit class-of-service
   user@host# edit scheduler-maps be-map
   ```

4. Specify the best-effort forwarding class.

   ```
   [edit class-of-service scheduler-maps be-map]
   user@host# set forwarding-class best-effort scheduler be-sched
   ```

5. Apply best-effort map to an interface.

   ```
   [edit]
   user@host# edit class-of-service
   user@host# set interfaces ge-0/0/0 scheduler-map be-map
   ```

Results

From configuration mode, confirm your configuration by entering the `show class-of-service` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.
[edit]
 user@host# show class-of-service
 interfaces {
 ge-0/0/0 {
 scheduler-map be-map;
 }
 }
 scheduler-maps {
 be-map {
 forwarding-class best-effort scheduler be-sched;
 }
 }
 schedulers {
 be-sched {
 priority medium-low;
 }
 }

If you are done configuring the device, enter **commit** from configuration mode.

Verification

Verifying Priority Scheduling

Purpose
Verify that the priority scheduling is configured properly on a device.

Action
From configuration mode, enter the **show class-of-service** command.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Strict-Priority Queue Overview</th>
<th>135</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding Strict-Priority Queues</td>
<td>136</td>
</tr>
<tr>
<td>Example: Configuring Strict-Priority Queuing</td>
<td>140</td>
</tr>
</tbody>
</table>
Example: Configuring Strict-Priority Queuing

This example shows how to configure strict-priority queuing and prevent starvation of other queues.

Requirements

Before you begin, review how to create and configure forwarding classes. See “Forwarding Classes Overview” on page 67.

Overview

In this example, you create a BA classifier to classify traffic based on the IP precedence of the packet. The classifier defines IP precedence value 101 as voice traffic and 000 as data traffic. You assign forwarding-class priority queue 0 to voice traffic and queue 1 as data traffic. You then configure the scheduler map as corp-map and voice scheduler as voice-sched.

Then you set the priority for the voice traffic scheduler as strict-high and for the data traffic scheduler as strict-low. You apply the BA classifier to input interface ge-0/0/0 and apply the scheduler map to output interface e1-1/0/0. You then configure two policers called voice-drop and voice-excess. You set the burst size limit and bandwidth limit for voice-drop policer and for voice-excess policer. You then create a firewall filter that includes the new policers and add the policer to the term.

Finally, you apply the filter to output interface e1-1/0/1 and set the IP address as 203.0.113.1/24.

Configuration
Configuring a BA Classifier

CLI Quick Configuration

To quickly configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set class-of-service classifiers inet-precedence corp-traffic forwarding-class voice-class loss-priority low code-points 101
set class-of-service classifiers inet-precedence corp-traffic forwarding-class data-class loss-priority high code-points 000
```

Step-by-Step Procedure

To configure a BA classifier:

1. Create a BA classifier and set the IP precedence value for voice traffic.

   ```
   [edit]
   user@host# edit class-of-service classifiers inet-precedence corp-traffic forwarding-class voice-class loss-priority low
   user@host# set code-points 101
   ```

2. Create a BA classifier and set the IP precedence value for data traffic.

   ```
   [edit]
   user@host# edit class-of-service classifiers inet-precedence corp-traffic forwarding-class data-class loss-priority high
   user@host# set code-points 000
   ```
Results
From configuration mode, confirm your configuration by entering the `show class-of-service` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
  user@host# show class-of-service
  classifiers {
    inet-precedence corp-traffic {
      forwarding-class voice-class {
        loss-priority low code-points 101;
      }
      forwarding-class data-class {
        loss-priority high code-points 000;
      }
    }
  }
```

If you are done configuring the device, enter `commit` from configuration mode.

Configuring Forwarding Classes

CLI Quick Configuration
To quickly configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the `[edit]` hierarchy level, and then enter `commit` from configuration mode.

```
set class-of-service forwarding-classes queue 0 voice-class
set class-of-service forwarding-classes queue 1 data-class
```

Step-by-Step Procedure
To configure forwarding classes:

1. Assign priority queuing to voice traffic.

```
[edit]
  user@host# set class-of-service forwarding-classes queue 0 voice-class
```

2. Assign priority queuing to data traffic.

```
[edit]
```
set class-of-service forwarding-classes queue 1 data-class

Results
From configuration mode, confirm your configuration by entering the `show class-of-service` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show class-of-service
forwarding-classes {
    queue 0 voice-class;
    queue 1 data-class;
}
```

If you are done configuring the device, enter `commit` from configuration mode.

Configuring a Scheduler Map

CLI Quick Configuration
To quickly configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.

```
set class-of-service scheduler-maps corp-map forwarding-class voice-class scheduler voice-sched
set class-of-service scheduler-maps corp-map forwarding-class data-class scheduler data-sched
```

Step-by-Step Procedure
To configure a scheduler map:

1. Configure a scheduler map and voice scheduler.

```
[edit]
user@host# edit class-of-service scheduler-maps corp-map forwarding-class voice-class
user@host# set scheduler voice-sched
```

2. Configure a scheduler map and data scheduler.

```
[edit]
user@host# edit class-of-service scheduler-maps corp-map forwarding-class data-class
user@host# set scheduler data-sched
```
Results
From configuration mode, confirm your configuration by entering the `show class-of-service` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show class-of-service
scheduler-maps {
    corp-map {
        forwarding-class voice-class scheduler voice-sched;
        forwarding-class data-class scheduler data-sched;
    }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

Configuring a Scheduler

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the `[edit]` hierarchy level, and then enter `commit` from configuration mode.

```
set class-of-service schedulers voice-sched priority strict-high
set class-of-service schedulers data-sched priority low
set xxx
```

Step-by-Step Procedure
To configure schedulers:

1. Configure a voice traffic scheduler and set the priority.

```
[edit]
user@host# edit class-of-service schedulers voice-sched
user@host# set priority strict-high
```

2. Configure a data traffic scheduler and set the priority.

```
[edit]
user@host# edit class-of-service schedulers data-sched
user@host# set priority low
```

Results
From configuration mode, confirm your configuration by entering the `show class-of-service` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show class-of-service
  schedulers {
    voice-sched {
      priority strict-high;
    }
    data-sched {
      priority low;
    }
  }
```

If you are done configuring the device, enter `commit` from configuration mode.

Applying a BA Classifier to an Input Interface

CLI Quick Configuration

To quickly configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the `[edit]` hierarchy level, and then enter `commit` from configuration mode.

```
set class-of-service interfaces ge-0/0/0 unit 0 classifiers inet-precedence corp-traffic
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode* in the *CLI User Guide*.

To apply a BA classifier to an input interface:

1. Configure an interface.

   ```
   [edit]
   user@host# edit class-of-service interfaces ge-0/0/0 unit 0
   ```

2. Apply a BA classifier to an input interface.

   ```
   [edit class-of-service interfaces ge-0/0/0 unit 0]
   user@host# set classifiers inet-precedence corp-traffic
   ```
Results
From configuration mode, confirm your configuration by entering the `show class-of-service interfaces` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show class-of-service interfaces
ge-0/0/0 {
  unit 0 {
    classifiers {
      inet-precedence corp-traffic;
    }
  }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

Applying a Scheduler Map to an Output Interface

CLI Quick Configuration
To quickly configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the `[edit]` hierarchy level, and then enter `commit` from configuration mode.

```
set class-of-service interfaces e1-1/0/0 unit 0 scheduler-map corp-map
```

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode* in the CLI User Guide.

To apply the scheduler map to an output interface:

1. Configure an interface.

```
[edit]
user@host# edit class-of-service interfaces e1-1/0/0 unit 0
```

2. Apply a scheduler map to an output interface.

```
[edit class-of-service interfaces e1-1/0/0 unit 0]
user@host# set scheduler-map corp-map
```
Results
From configuration mode, confirm your configuration by entering the `show class-of-service` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```plaintext
[edit]
  user@host# show class-of-service
  interfaces {
    e1-1/0/0 {
      unit 0 {
        scheduler-map corp-map;
      }
    }
  }
```

If you are done configuring the device, enter `commit` from configuration mode.

Configuring Two Policers

CLI Quick Configuration
To quickly configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the `[edit]` hierarchy level, and then enter `commit` from configuration mode.

```plaintext
set firewall policer voice-drop if-exceeding burst-size-limit 200000 bandwidth-limit 2000000
set firewall policer voice-drop then discard
set firewall policer voice-excess if-exceeding burst-size-limit 200000 bandwidth-limit 1000000
set firewall policer voice-excess then out-of-profile
set firewall filter voice-term term 01 from forwarding-class voice-class
set firewall filter voice-term term 01 then policer voice-drop next term
set firewall filter voice-term term 02 from forwarding-class voice-class
set firewall filter voice-term term 02 then policer voice-excess accept
```

Step-by-Step Procedure
To configure two policers:

1. Configure a policer voice drop.

```plaintext
[edit]
  user@host# edit firewall policer voice-drop
  user@host# set if-exceeding burst-size-limit 200000 bandwidth-limit 2000000
  user@host# set then discard
```
2. Configure a policer voice excess.

```
[edit]
user@host# edit firewall policer voice-excess
user@host# set if-exceeding burst-size-limit 200000 bandwidth-limit 1000000
user@host# set then out-of-profile
```

3. Create a firewall filter that includes the new policers.

```
[edit]
user@host# edit firewall filter voice-term term 01
user@host# set from forwarding-class voice-class
user@host# set then policer voice-drop next term
```

4. Add the policer to the term.

```
[edit]
user@host# edit firewall filter voice-term term 02
user@host# set from forwarding-class voice-class
user@host# set then policer voice-excess accept
```

Results

From configuration mode, confirm your configuration by entering the `show firewall` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show firewall
policer voice-drop {  
  if-exceeding {  
    burst-size-limit 200k;  
    then discard;  
  }  
  then discard;
}
policer voice-excess {  
  if-exceeding {  
    burst-size-limit 200k;
  }  
  then out-of-profile;
```
If you are done configuring the device, enter `commit` from configuration mode.

Applying a Filter to an Output Interface

CLI Quick Configuration

To quickly configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the `[edit]` hierarchy level, and then enter `commit` from configuration mode.

```
set interfaces e1-1/0/1 unit 0 family inet filter output voice-term
set interfaces e1-1/0/1 unit 0 family inet address 203.0.113.1/24
```

Step-by-Step Procedure

To apply a filter to an output interface:

1. Apply a filter to an interface.

```
[edit]
user@host# edit interfaces e1-1/0/1 unit 0 family inet filter output
user@host# set voice-term
```
2. Set an IP address.

```
[edit]
user@host# set interfaces e1-1/0/1 unit 0 family inet address 203.0.113.1/24
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show interfaces
e1-1/0/1 {
  unit 0 {
    family inet {
      filter {
        output voice-term;
      }
      address 203.0.113.1/24;
    }
  }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

Verification

IN THIS SECTION

- Verifying the Scheduler Map | 150
- Verifying the Interfaces | 151
- Verifying the Interface Queues | 151

Confirm that the configuration is working properly.

Verifying the Scheduler Map

Purpose

Verify that the scheduler map is configured properly.
Action
From operational mode, enter the `show class-of-service scheduler-map corp-map` command.

Verifying the Interfaces

Purpose
Verify that the interfaces are configured properly.

Action
From configuration mode, enter the `show interfaces` command.

Verifying the Interface Queues

Purpose
Verify that the interface queues are configured properly.

Action
From configuration mode, enter the `show interfaces queue` command.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Strict-Priority Queue Overview</th>
<th>135</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding Strict-Priority Queues</td>
<td>136</td>
</tr>
<tr>
<td>Example: Configuring Priority Scheduling</td>
<td>137</td>
</tr>
</tbody>
</table>

Example: Configuring CoS Non-Strict Priority Scheduling

Starting in Junos OS Release 15.1X49-D80 and Junos OS Release 17.3R1, you can configure non-strict priority scheduling to avoid starvation of lower priority queues on SRX300, SRX320, SRX340, SRX345, SRX550M, SRX1500, and vSRX 2.0 devices.
This example shows how to assign non-strict priority scheduling to CoS queues.

Requirements

Before you begin, determine the shaping rate, schedulers, and forwarding classes for the CoS traffic. See shaping-rate (CoS Interfaces), “Example: Configuring Class-of-Service Schedulers on a Security Device” on page 112, and “Example: Assigning Forwarding Classes to Output Queues” on page 76.

Overview

Traffic shaping bandwidth allocation is based on the egress (outgoing) interface that the packet traverses. If you have several traffic streams with CoS prioritized, all traffic streams across the network are sent with more bandwidth than the bandwidth on the egress interface. This can sometimes result in higher-priority queues getting all of the bandwidth and lower priority queues not getting any bandwidth, and thus being starved.

This example demonstrates how the non-strict priority feature can resolve the starvation of strict priority scheduling problem. For this scenario, you initialize two traffic streams (50 Mbps each) with CoS classifiers configured. Interface ge-0/0/1 is configured for ingress traffic, and ge-0/0/2 is configured for egress traffic with shaping enabled at 50 million. For traffic stream Q2, you set the queue priority as high and the shaping rate at 10%. For the other traffic stream Q1, you set the queue priority as low and the shaping rate at 10%. See Figure 6 on page 152.

Figure 6: CoS Traffic with High and Low Priority Queues

NOTE: Since CoS is strict priority scheduling, please keep in mind that higher priority queues can starve lower priority queues.

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from the configuration mode.

```
set class-of-service interfaces ge-0/0/2 unit 0 shaping-rate 50m
set interfaces ge-0/0/2 per-unit-scheduler
set class-of-service interfaces ge-0/0/1 unit 0 classifiers dscp dscp_custom
set class-of-service classifiers dscp dscp_custom forwarding-class HIGH loss-priority low code-points 100011
set class-of-service classifiers dscp dscp_custom forwarding-class LOW loss-priority low code-points 100100
set class-of-service forwarding-classes queue 1 HIGH
set class-of-service forwarding-classes queue 0 LOW
set class-of-service scheduler-maps sched forwarding-class HIGH scheduler Q1
set class-of-service scheduler-maps sched forwarding-class LOW scheduler Q2
set class-of-service schedulers Q2 transmit-rate percent 10
set class-of-service schedulers Q2 priority high
set class-of-service schedulers Q1 transmit-rate percent 10
set class-of-service schedulers Q1 priority low
set-class-of-service non-strict-priority-scheduling
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode* in the CLI User Guide.

To configure non-strict priority scheduling:

1. Configure shaping rate of 50 Mbps on the egress interface.

   ```
   [edit]
   user@host# set class-of-service interfaces ge-0/0/2 unit 0 shaping-rate 50m
   set interfaces ge-0/0/2 per-unit-scheduler
   ```

2. Configure classifiers on the ingress interface.

   ```
   [edit]
   user@host# set class-of-service interfaces ge-0/0/1 unit 0 classifiers dscp dscp_custom
   ```

3. Define the DSCP value to be assigned to the forwarding class.

   ```
   [edit]
   user@host# set class-of-service classifiers dscp dscp_custom forwarding-class HIGH loss-priority low code-points 100011
   ```
4. Define the forwarding class to a queue number.

[edit]
user@host# set class-of-service forwarding-classes queue 1 HIGH
user@host# set class-of-service forwarding-classes queue 0 LOW

5. Map the forwarding classes to a scheduler to control prioritized queueing.

[edit]
user@host# set class-of-service scheduler-maps sched forwarding-class HIGH scheduler Q1
user@host# set class-of-service scheduler-maps sched forwarding-class LOW scheduler Q2

6. Define the schedulers with priority and transmit rates. The example uses the same ratio for transmit rate but defines different priorities.

[edit]
user@host# set class-of-service schedulers Q2 transmit-rate percent 10
user@host# set class-of-service schedulers Q2 priority high
user@host# set class-of-service schedulers Q1 transmit-rate percent 10
user@host# set class-of-service schedulers Q1 priority low

7. Configure the new non-strict-priority-scheduling option.

[edit]
user@host# set-class-of-service non-strict-priority-scheduling

Results
From configuration mode, confirm your configuration by entering the `show interfaces queue` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
user@host> show interface queue ge-0/0/2
Queue: 0, Forwarding classes: LOW
Queued:
  Packets : 18085500 8571 pps
```
You will notice that the LOW priority queue got some traffic.

NOTE: Traffic on the low priority queue is still less than the high priority queue, as the non-priority scheduling option still works to control traffic.

If you are done configuring the device, enter commit from configuration mode.

Verification

Verifying Non-Strict Priority Configuration

Purpose
Verify that non-strict priority scheduling is configured properly.

Action
From operational mode, enter the show class-of-service command.

RELATED DOCUMENTATION

non-strict-priority-scheduling	319
Example: Configuring and Applying Scheduler Maps	130
Transmission Scheduling Overview	104
Controlling Congestion with Drop Profiles

RED Drop Profiles Overview

A drop profile is a feature of the random early detection (RED) process that allows packets to be dropped before queues are full. Drop profiles are composed of two main values—the queue fullness and the drop probability. The queue fullness represents percentage of memory used to store packets in relation to the total amount that has been allocated for that queue. The drop probability is a percentage value that correlates to the likelihood that an individual packet is dropped from the network. These two variables are combined in a graph-like format.

A random number between 0 and 100 is calculated for each packet. This random number is plotted against the drop profile having the current queue fullness of that particular queue. When the random number falls above the graph line, the packet is transmitted onto the physical media. When the number falls below the graph line, the packet is dropped from the network.

Randomly dropped packets are counted as RED-dropped, while packets dropped for other reasons (100% probability) are counted as tail-dropped.

You specify drop probabilities in the drop profile section of the class-of-service (CoS) configuration hierarchy and reference them in each scheduler configuration. For each scheduler, you can configure multiple separate drop profiles, one for each combination of loss priority (low, medium-low, medium-high, or high) and IP transport protocol (TCP or non-TCP or any).
NOTE: For some SRX Series devices, tcp and non-tcp values are not supported; only the value "any" is supported. Actual platform support depends on the Junos OS release in your implementation.

You can configure a maximum of 32 different drop profiles.

To configure RED drop profiles, include the following statements at the [edit class-of-service] hierarchy level of the configuration:

```
[edit class-of-service]
drop-profiles {
  profile-name {
    fill-level percentage drop-probability percentage;
    interpolate {
      drop-probability [ values ];
      fill-level [ values ];
    }
  }
}
```

Default Drop Profiles

By default, if you configure no drop profiles, RED is still in effect and functions as the primary mechanism for managing congestion. In the default RED drop profile, when the fill level is 0 percent, the drop probability is 0 percent. When the fill level is 100 percent, the drop probability is 100 percent.

RELATED DOCUMENTATION

Example: Configuring RED Drop Profiles | 161

RED Drop Profiles and Congestion Control

If the device must support assured forwarding, you can control congestion by configuring random early detection (RED) drop profiles. RED drop profiles use drop probabilities for different levels of buffer fullness to determine which scheduling queue on the device is likely to drop assured forwarding packets under congested conditions. The device can drop packets when the queue buffer becomes filled to the configured percentage.
Assured forwarding traffic with the PLP (packet loss priority) bit set is more likely to be discarded than traffic without the PLP bit set. This example shows how to configure a drop probability and a queue fill level for both PLP and non-PLP assured forwarding traffic. It is only one example of how to use RED drop profiles.

The example shows how to configure the RED drop profiles listed in Table 32 on page 158.

Table 32: Sample RED Drop Profiles

<table>
<thead>
<tr>
<th>Drop Profile</th>
<th>Drop Probability</th>
<th>Queue Fill Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>af-normal—For non-PLP (normal) assured forwarding traffic</td>
<td>Between 0 (never dropped) and 100 percent (always dropped)</td>
<td>Between 95 and 100 percent</td>
</tr>
<tr>
<td>af-with-plp—For PLP (aggressive packet dropping) assured forwarding traffic</td>
<td>Between 95 and 100 percent (always dropped)</td>
<td>Between 80 and 95 percent</td>
</tr>
</tbody>
</table>

To configure RED drop profiles for assured forwarding congestion control on the device:

1. Navigate to the top of the configuration hierarchy in either the J-Web or CLI configuration editor.

2. Perform the configuration tasks described in Table 33 on page 158.

3. If you are finished configuring the device, commit the configuration.

4. Go on to one of the following tasks:
 - To assign resources, priorities, and profiles to output queues, see "Example: Configuring Class-of-Service Schedulers on a Security Device" on page 112.
 - To apply rules to logical interfaces, see "Example: Configuring Virtual Channels" on page 178.
 - To use adaptive shapers to limit bandwidth for Frame Relay, see "Example: Configuring and Applying an Adaptive Shaper" on page 172.

Table 33: Configuring RED Drop Profiles for Assured Forwarding Congestion Control

<table>
<thead>
<tr>
<th>Task</th>
<th>CLI Configuration Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigate to the Class of service level in the configuration hierarchy.</td>
<td>From the [edit] hierarchy level, enter edit class-of-service</td>
</tr>
</tbody>
</table>
Table 33: Configuring RED Drop Profiles for Assured Forwarding Congestion Control (continued)

<table>
<thead>
<tr>
<th>Task</th>
<th>CLI Configuration Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configure the lower drop probability for normal, non-PLP traffic.</td>
<td>Enter</td>
</tr>
<tr>
<td></td>
<td>edit drop-profiles af-normal interpolate</td>
</tr>
<tr>
<td></td>
<td>set drop-probability 0</td>
</tr>
<tr>
<td></td>
<td>set drop-probability 100</td>
</tr>
<tr>
<td>Configure a queue fill level for the lower non-PLP drop probability.</td>
<td>Enter</td>
</tr>
<tr>
<td></td>
<td>set fill-level 95</td>
</tr>
<tr>
<td></td>
<td>set fill-level 100</td>
</tr>
<tr>
<td>Configure the higher drop probability for PLP traffic.</td>
<td>From the [edit class of service] hierarchy level, enter</td>
</tr>
<tr>
<td></td>
<td>edit drop-profiles af-with-PLP interpolate</td>
</tr>
<tr>
<td></td>
<td>set drop-probability 95</td>
</tr>
<tr>
<td></td>
<td>set drop-probability 100</td>
</tr>
<tr>
<td>Configure a queue fill level for the higher PLP drop probability.</td>
<td>Enter</td>
</tr>
<tr>
<td></td>
<td>set fill-level 80</td>
</tr>
<tr>
<td></td>
<td>set fill-level 95</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

Example: Configuring RED Drop Profiles | 161

Configuring RED Drop Profiles

Create a segmented configuration and an interpolated configuration that correspond to the graphs in Figure 7 on page 160. The values defined in the configuration are matched to represent the data points in the graph line. In this example, the drop probability is 25 percent when the queue is 50 percent full. The drop probability increases to 50 percent when the queue is 75 percent full.
To create the profile’s graph line, the software begins at the bottom-left corner, representing a 0 percent fill level and a 0 percent drop probability. This configuration draws a line directly to the right until it reaches the first defined fill level, 25 percent for this configuration. The software then continues the line vertically until the first drop probability is reached. This process is repeated for all of the defined levels and probabilities until the top-right corner of the graph is reached.

Create a smoother graph line by configuring the profile with the `interpolate` statement. This allows the software to automatically generate 64 data points on the graph beginning at (0, 0) and ending at (100, 100). Along the way, the graph line intersects specific data points, which you define as follows:
class-of-service {
 drop-profiles {
 interpolated-style-profile {
 interpolate {
 fill-level [50 75];
 drop-probability [25 50];
 }
 }
 }
}

RELATED DOCUMENTATION

Understanding RED Drop Profiles

Example: Configuring RED Drop Profiles

IN THIS SECTION
- Requirements | 161
- Overview | 162
- Configuration | 162
- Verification | 164

This example shows how to configure RED drop profiles.

Requirements

Before you begin, determine which type of profile you want to configure. See “Example: Configuring Segmented and Interpolated Style Profiles” on page 164.
Overview

A drop profile is a feature of the RED process that allows packets to be dropped before queues are full. Drop profiles are composed of two main values the queue fullness and the drop probability.

You can control congestion by configuring RED drop profiles, if the device supports assured forwarding. RED drop profiles use drop probabilities for different levels of buffer fullness to determine which scheduling queue on the device is likely to drop assured forwarding packets under congested conditions. The device can drop packets when the queue buffer becomes filled to the configured percentage. Assured forwarding traffic with the PLP bit set is more likely to be discarded than traffic without the PLP bit set.

In this example, you configure a drop probability and a queue fill level for both PLP and non-PLP assured forwarding traffic.

Table 34 on page 162 shows how to configure the RED drop profiles listed.

Table 34: Sample RED Drop Profiles

<table>
<thead>
<tr>
<th>Drop Profile</th>
<th>Drop Probability</th>
<th>Queue Fill Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>af-normal—For non-PLP (normal) assured forwarding traffic</td>
<td>Between 0 (never dropped) and 100 percent (always dropped)</td>
<td>Between 95 and 100 percent</td>
</tr>
<tr>
<td>af-with-plp—For PLP (aggressive packet dropping) assured forwarding traffic</td>
<td>Between 95 and 100 percent (always dropped)</td>
<td>Between 80 and 95 percent</td>
</tr>
</tbody>
</table>

Configuration

CLI Quick Configuration

To quickly configure RED drop profiles, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
[edit]
  set class-of-service drop-profiles af-normal interpolate drop-probability 0
  set class-of-service drop-profiles af-normal interpolate drop-probability 100
  set class-of-service drop-profiles af-normal interpolate fill-level 95
  set class-of-service drop-profiles af-normal interpolate fill-level 100
  set class-of-service drop-profiles af-with-PLP interpolate drop-probability 95
  set class-of-service drop-profiles af-with-PLP interpolate drop-probability 100
  set class-of-service drop-profiles af-with-PLP interpolate fill-level 80
  set class-of-service drop-profiles af-with-PLP interpolate fill-level 95
```

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode*.

To configure RED drop profiles:

1. Configure the lower drop probability for normal, non-PLP traffic.

   ```
   [edit]
   user@host# edit class-of-service
   user@host# edit drop-profiles af-normal interpolate
   user@host# set drop-probability 0
   user@host# set drop-probability 100
   ```

2. Configure a queue fill level for the lower non-PLP drop probability.

   ```
   [edit class-of-service drop-profiles af-normal interpolate]
   user@host# set fill-level 95
   user@host# set fill-level 100
   ```

3. Configure the higher drop probability for PLP traffic.

   ```
   [edit]
   user@host# edit class-of-service
   user@host# edit drop-profiles af-with-PLP interpolate
   user@host# set drop-probability 95
   user@host# set drop-probability 100
   ```

4. Configure a queue fill level for the higher PLP drop probability.

   ```
   [edit class-of-service drop-profiles af-with-PLP interpolate]
   user@host# set fill-level 80
   user@host# set fill-level 95
   ```

Results

From configuration mode, confirm your configuration by entering the `show class-of-service` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
user@host# show class-of-service
drop-profiles {
```
If you are done configuring the device, enter `commit` from configuration mode.

Verification

Verifying RED Drop Profiles Configuration

Purpose
Verify that the RED drop profiles are configured properly.

Action
From operational mode, enter the `show class-of-service` command.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>RED Drop Profiles Overview</th>
<th>156</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding RED Drop Profiles</td>
<td></td>
</tr>
</tbody>
</table>

Example: Configuring Segmented and Interpolated Style Profiles

IN THIS SECTION

- Requirements | 165
- Overview | 165
This example shows how to configure segmented and interpolated style profiles.

Requirements

No special configuration beyond device initialization is required before configuring this feature.

Overview

In this example, you configure the segmented style profile by setting the drop probability to 25 percent when the queue is 25 percent full. The drop probability increases to 50 percent when the queue is 50 percent full. You set the drop probability to 75 percent when the queue is 75 percent full and finally the drop probability is set to 95 percent when the queue is 100 percent full.

Then you configure the interpolated style profile and set the fill level to 50 percent and 75 percent. Finally you set the drop probability to 25 percent and later to 50 percent.

Configuration

Configuring Segmented Style Profiles

CLI Quick Configuration

To quickly configure segmented style profiles, copy the following commands and paste them into the CLI:

```
[edit]
set class-of-service drop-profiles segmented-style-profile fill-level 25 drop-probability 25
set class-of-service drop-profiles segmented-style-profile fill-level 50 drop-probability 50
set class-of-service drop-profiles segmented-style-profile fill-level 75 drop-probability 75
```
Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode.

To configure segmented style profiles:

1. Configure class of service.

   ```
   [edit]
   user@host# edit class-of-service
   ```

2. Configure segmented style profile.

   ```
   [edit class-of-service]
   user@host# edit drop-profiles segmented-style-profile
   ```

3. Specify fill levels and drop probabilities.

   ```
   [edit class-of-service drop-profiles segmented-style-profile]
   user@host# set fill-level 25 drop-probability 25
   user@host# set fill-level 50 drop-probability 50
   user@host# set fill-level 75 drop-probability 75
   user@host# set fill-level 95 drop-probability 100
   ```

Results

From configuration mode, confirm your configuration by entering the `show class-of-service` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show class-of-service
drop-profiles {
  segmented-style-profile {
    fill-level 25 drop-probability 25;
    fill-level 50 drop-probability 50;
    fill-level 75 drop-probability 75;
    fill-level 95 drop-probability 100;
  }
```
If you are done configuring the device, enter `commit` from configuration mode.

Configuring Interpolated Style Profiles

CLI Quick Configuration

To quickly configure interpolated style profiles, copy the following commands and paste them into the CLI:

```
[edit]
  set class-of-service drop-profiles interpolated-style-profile interpolate fill-level 50
  set class-of-service drop-profiles interpolated-style-profile interpolate fill-level 75
  set class-of-service drop-profiles interpolated-style-profile interpolate drop-probability 25
  set class-of-service drop-profiles interpolated-style-profile interpolate drop-probability 50
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode*.

To configure interpolated style profile:

1. Configure class of service.

   ```
   [edit]
   user@host# edit class-of-service
   ```

2. Configure interpolated style profile.

   ```
   [edit class-of-service]
   user@host# edit drop-profiles interpolated-style-profile interpolate
   ```

3. Specify fill levels.

   ```
   [edit class-of-service drop-profiles interpolated-style-profile interpolate]
   user@host# set fill-level 50
   user@host# set fill-level 75
   ```

4. Specify drop probabilities.
Results
From configuration mode, confirm your configuration by entering the `show class-of-service` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show class-of-service
drop-profiles {
  interpolated-style-profile {
    fill-level [50 75];
    drop-probability [25 50];
  }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

Verification

To confirm that the configuration is working properly, perform these tasks:

* **Verifying Segmented Style Profile Configuration**

 Purpose
 Verify that the segmented style profile is configured properly.

 Action
 From configuration mode, enter the `show class-of-service` command.
Verifying Interpolated Style Profile Configuration

Purpose
Verify that the interpolated style profile is configured properly.

Action
From configuration mode, enter the `show class-of-service` command.

RELATED DOCUMENTATION

| Junos OS Feature Support Reference for SRX Series and J Series Devices |
|---|--------------------------|
| RED Drop Profiles Overview | 156 |
| Understanding RED Drop Profiles | |
| Example: Configuring RED Drop Profiles | 161 |
Controlling Congestion with Adaptive Shapers

IN THIS CHAPTER

- Adaptive Shaping Overview | 170
- Assigning the Default Frame Relay Loss Priority Map to an Interface | 171
- Defining a Custom Frame Relay Loss Priority Map | 171
- Example: Configuring and Applying an Adaptive Shaper | 172

Adaptive Shaping Overview

You can use adaptive shaping to limit the bandwidth of traffic flowing on a Frame Relay logical interface. If you configure and apply adaptive shaping, the device checks the backward explicit congestion notification (BECN) bit within the last inbound (ingress) packet received on the interface.

NOTE: Adaptive shaping is not available on SRX5600 and SRX5800 devices.

To configure an adaptive shaper, include the `adaptive-shaper` statement at the `[edit class-of-service]` hierarchy level:

```
[edit class-of-service]
adaptive-shaper {
  adaptive-shaper-name {
    trigger type shaping-rate (percent percentage | rate);
  }
}
```

The trigger type can be `BECN` only. If the last ingress packet on the logical interface has its BECN bit set to 1, the output queues on the logical interface are shaped according to the associated shaping rate.

The associated shaping rate can be a percentage of the available interface bandwidth from 0 through 100 percent. Alternatively, you can configure the shaping rate to be an absolute peak rate, in bits per second (bps) from 3200 through 32,000,000,000 bps. You can specify the value either as a complete
assigning the default frame relay loss priority map to an interface

171

Assigning the Default Frame Relay Loss Priority Map to an Interface

For SRX210, SRX240, and SRX650 device interfaces with Frame Relay encapsulation, you can set the loss priority of Frame Relay traffic based on the discard eligibility (DE) bit. (Platform support depends on the Junos OS release in your installation.) For each incoming frame with the DE bit containing the CoS value 0 or 1, you can configure a Frame Relay loss priority value of low, medium-low, medium-high, or high.

The default Frame Relay loss priority map contains the following settings:

```
  loss-priority low code-point 0;
  loss-priority high code-point 1;
```

This default map sets the loss priority to low for each incoming frame with the DE bit containing the 0 CoS value. The map sets the loss priority to high for each incoming frame with the DE bit containing the 1 CoS value.

To assign the default map to an interface, include the `frame-relay-de default` statement at the [edit class-of-service interfaces interface-name unit logical-unit-number loss-priority-maps] hierarchy level:

```
[edit class-of-service interfaces interface-name unit logical-unit-number loss-priority-maps]
frame-relay-de default;
```

Defining a Custom Frame Relay Loss Priority Map

You can apply a classifier to the same interface on which you configure a Frame Relay loss priority value. The Frame Relay loss priority map is applied first, followed by the classifier. The classifier can change the loss priority to a higher value only (for example, from low to high). If the classifier specifies a loss priority
with a lower value than the current loss priority of a particular packet, the classifier does not change the loss priority of that packet.

To define a custom Frame Relay loss priority map, include the following statements at the [edit class-of-service] hierarchy level:

```
[edit class-of-service]
loss-priority-maps {
  frame-relay-de map-name {
    loss-priority (low | medium-low | medium-high | high) code-point (0 | 1);
  }
}
```

A custom loss priority map sets the loss priority to low, medium-low, medium-high, or high for each incoming frame with the DE bit containing the specified 0 or 1 CoS value.

The map does not take effect until you apply it to a logical interface. To apply a map to a logical interface, include the `frame-relay-de map-name` statement at the [edit class-of-service interfaces interface-name unit logical-unit-number loss-priority-maps] hierarchy level:

```
[edit class-of-service interfaces interface-name unit logical-unit-number loss-priority-maps]
frame-relay-de map-name;
```

Example: Configuring and Applying an Adaptive Shaper

This example shows how to configure and apply an adaptive shaper to limit the bandwidth of traffic on a Frame Relay logical interface.
Requirements

Before you begin, review how to create and apply scheduler maps. See “Example: Configuring and Applying Scheduler Maps” on page 130

Overview

In this example, you create adaptive shaper fr-shaper and apply it to T1 interface t1-0/0/2. The adapter shaper limits the transmit bandwidth on the interface to 64 Kbps.

Configuration

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure and apply an adaptive shaper to a logical interface:

1. Specify the name and the maximum transmit rate of the adaptive shaper.

   ```
   [edit]
   user@host# edit class-of-service
   user@host# set adaptive-shapers fr-shaper trigger becn shaping-rate 64k
   ```

2. Apply the adaptive shaper to the logical interface.

   ```
   [edit class-of-service]
   user@host# set interfaces t1-0/0/2 unit 0 adaptive-shaper fr-shaper
   ```

3. If you are done configuring the device, commit the configuration.

   ```
   [edit]
   user@host# commit
   ```

Verification

To verify the configuration is working properly, enter the show class-of-service command.

RELATED DOCUMENTATION
Adaptive Shaping Overview | 170
Assigning the Default Frame Relay Loss Priority Map to an Interface | 171
Defining a Custom Frame Relay Loss Priority Map | 171
CHAPTER 10

Limiting Traffic Using Virtual Channels

IN THIS CHAPTER

- Virtual Channels Overview | 175
- Understanding Virtual Channels | 176
- Example: Configuring Virtual Channels | 178

Virtual Channels Overview

You can configure virtual channels to limit traffic sent from a corporate headquarters to its branch offices. Virtual channels might be required when the headquarters site has an expected aggregate bandwidth higher than that of the individual branch offices. The headquarters router must limit the traffic sent to each branch office router to avoid oversubscribing their links. For instance, if branch 1 has a 1.5 Mbps link and the headquarters router attempts to send 6 Mbps to branch 1, all of the traffic in excess of 1.5-Mbps is dropped in the ISP network.

You configure virtual channels on a logical interface. Each virtual channel has a set of eight queues with a scheduler and an optional shaper. You can use an output firewall filter to direct traffic to a particular virtual channel. For example, a filter can direct all traffic with a destination address for branch office 1 to virtual channel 1, and all traffic with a destination address for branch office 2 to virtual channel 2.

Although a virtual channel group is assigned to a logical interface, a virtual channel is quite different from a logical interface. The only features supported on a virtual channel are queuing, packet scheduling, and accounting. Rewrite rules and routing protocols apply to the entire logical interface.

When you configure virtual channels on an interface, the virtual channel group uses the same scheduler and shaper you configure at the [edit interfaces interface-name unit logical-unit-number] hierarchy level. In this way, virtual channels are an extension of regular scheduling and shaping and are not independent entities.

RELATED DOCUMENTATION

- Understanding Virtual Channels | 176
Understanding Virtual Channels

You configure a virtual channel to set up queuing, packet scheduling, and accounting rules to be applied to one or more logical interfaces. You must apply then the virtual channel to a particular logical interface.

You also create a list of virtual channels that you can assign to a virtual channel group. To define a virtual channel group that you can assign to a logical interface, include the `virtual-channel-groups` statement at the `[edit class-of-service]` hierarchy level.

The `virtual-channel-group-name` can be any name that you want. The `virtual-channel-name` must be one of the names that you define at the `[edit class-of-service virtual-channels]` hierarchy level. You can include multiple virtual channel names in a group.

The scheduler map is required. The `map-name` must be one of the scheduler maps that you configure at the `[edit class-of-service scheduler-maps]` hierarchy level. For more information, see "Example: Configuring Class-of-Service Schedulers on a Security Device" on page 112.

The shaping rate is optional. If you configure the shaping rate as a percentage, when the virtual channel is applied to a logical interface, the shaping rate is set to the specified percentage of the interface bandwidth. If you configure a shaper on a virtual channel, the shaper limits the maximum bandwidth transmitted by that virtual channel. Virtual channels without a shaper can use the full logical interface bandwidth. If there are multiple unshaped virtual channels, they share the available logical interface bandwidth equally.

When you apply the virtual channel group to a logical interface, a set of eight queues is created for each of the virtual channels in the group. The `scheduler-map` statement applies a scheduler to these queues. If you include the `shaping-rate` statement, a shaper is applied to the entire virtual channel.

You must configure one of the virtual channels in the group to be the default channel. Therefore, the `default` statement is required in the configuration of one virtual channel per channel group. Any traffic not explicitly directed to a particular channel is transmitted by this default virtual channel.

For the corresponding physical interface, you must also include the `per-unit-scheduler` statement at the `[edit interfaces interface-name]` hierarchy level as follows:

```plaintext
[edit interfaces interface-name]
per-unit-scheduler;
```

The `per-unit-scheduler` statement enables one set of output queues for each logical interface configured under the physical interface.

When you apply a virtual channel group to a logical interface, the software creates a set of eight queues for each of the virtual channels in the group.
If you apply a virtual channel group to multiple logical interfaces, the software creates a set of eight queues on each logical interface. The virtual channel names listed in the group are used on all the logical interfaces. We recommend specifying the scheduler and shaping rates in the virtual channel configuration in terms of percentages, rather than absolute rates. This allows you to apply the same virtual channel group to logical interfaces that have different bandwidths.

When you apply a virtual channel group to a logical interface, you cannot include the `scheduler-map` and `shaping-rate` statements at the `[edit class-of-service interfaces interface-name unit logical-unit-number]` hierarchy level. In other words, you can configure a scheduler map and a shaping rate on a logical interface, or you can configure virtual channels on the logical interface, but not both.

If you configure multiple logical interfaces on a single physical interface, each logical interface is guaranteed an equal fraction of the physical interface bandwidth as follows:

\[
\text{logical-interface-bandwidth} = \frac{\text{physical-interface-bandwidth}}{\text{number-of-logical-interfaces}}
\]

If one or more logical interfaces do not completely use their allocation, the other logical interfaces share the excess bandwidth equally.

If you configure multiple virtual channels on a logical interface, they are each guaranteed an equal fraction of the logical interface bandwidth as follows:

\[
\text{virtual-channel-bandwidth} = \frac{\text{logical-interface-bandwidth}}{\text{number-of-virtual-channels}}
\]

If you configure a shaper on a virtual channel, the shaper limits the maximum bandwidth transmitted by that virtual channel. Virtual channels without a shaper can use the full logical interface bandwidth. If there are multiple unshaped virtual channels, they share the available logical interface bandwidth equally.

RELATED DOCUMENTATION

- Virtual Channels Overview | 175
- Example: Configuring Virtual Channels on a Security Device
Example: Configuring Virtual Channels

This example shows how to create virtual channels between a headquarters and its branch office.

Requirements

Before you begin, ensure that your headquarters and branch office have a network connection where the expected aggregate bandwidth is higher for your headquarters than for your branch office. The devices at your headquarters will then be set up to limit the traffic sent to the branch office to avoid oversubscribing the link.

Overview

In this example, you create the virtual channels as branch1–vc, branch2–vc, branch3–vc, and default-vc. You then define the virtual channel group as wan-vc-group to include the four virtual channels and assign the scheduler map as bestscheduler to each virtual channel. Three of the virtual channels are shaped to 1.5 Mbps. The fourth virtual channel is default-vc, and it is not shaped so it can use the full interface bandwidth.

Then you apply them in the firewall filter as choose-vc to the device's interface t3-1/0/0. The output filter on the interface sends all traffic with a destination address matching 192.168.10.0/24 to branch1-vc, and similar configurations are set for branch2-vc and branch3-vc. Traffic not matching any of the addresses goes to the default, unshaped virtual channel.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from the configuration mode.
To configure virtual channels:

1. Define the virtual channels and the default virtual channel.

```
[edit]
user@host# edit class-of-service
user@host# set virtual-channels branch1-vc
user@host# set virtual-channels branch2-vc
user@host# set virtual-channels branch3-vc
user@host# set virtual-channels default-vc
```

2. Define the virtual channel group and assign each virtual channel a scheduler map.

```
set class-of-service virtual-channels branch1-vc
set class-of-service virtual-channels branch2-vc
set class-of-service virtual-channels branch3-vc
set class-of-service virtual-channels default-vc
set class-of-service virtual-channel-groups wan-vc-group branch1-vc scheduler-map bestscheduler
set class-of-service virtual-channel-groups wan-vc-group branch2-vc scheduler-map bestscheduler
set class-of-service virtual-channel-groups wan-vc-group branch3-vc scheduler-map bestscheduler
set class-of-service virtual-channel-groups wan-vc-group default-vc scheduler-map bestscheduler
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure virtual channels:

1. Define the virtual channels and the default virtual channel.

```
[edit]
user@host# edit class-of-service
user@host# set virtual-channels branch1-vc
user@host# set virtual-channels branch2-vc
user@host# set virtual-channels branch3-vc
user@host# set virtual-channels default-vc
```

2. Define the virtual channel group and assign each virtual channel a scheduler map.

```
set class-of-service virtual-channel-groups wan-vc-group branch1-vc shaping-rate 150000
set class-of-service virtual-channel-groups wan-vc-group branch2-vc shaping-rate 150000
set class-of-service virtual-channel-groups wan-vc-group branch3-vc shaping-rate 150000
set class-of-service virtual-channel-groups wan-vc-group default-vc shaping-rate 150000
set interfaces t3-1/0/0 unit 0 virtual-channel-group wan-vc-group
set firewall family inet filter choose-vc term branch1 from destination-address 192.168.10.0/24
set firewall family inet filter choose-vc term branch1 then virtual-channel branch1-vc
set firewall family inet filter choose-vc term branch1 then accept
set firewall family inet filter choose-vc term branch2 from destination-address 192.168.20.0/24
set firewall family inet filter choose-vc term branch2 then virtual-channel branch2-vc
set firewall family inet filter choose-vc term branch2 then accept
set firewall family inet filter choose-vc term branch3 from destination-address 192.168.30.0/24
set firewall family inet filter choose-vc term branch3 then virtual-channel branch3-vc
set firewall family inet filter choose-vc term branch3 then accept
set firewall family inet filter choose-vc term default then virtual-channel default-vc
set interfaces t3-1/0/0 unit 0 family inet filter output choose-vc
```
3. Specify a shaping rate.

[edit class-of-service]
user@host# set virtual-channel-groups wan-vc-group branch1-vc scheduler-map bestscheduler
user@host# set virtual-channel-groups wan-vc-group branch2-vc scheduler-map bestscheduler
user@host# set virtual-channel-groups wan-vc-group branch3-vc scheduler-map bestscheduler
user@host# set virtual-channel-groups wan-vc-group default-vc scheduler-map bestscheduler
user@host# set virtual-channel-groups wan-vc-group default-vc default

4. Apply the virtual channel group to the logical interface.

[edit class-of-service]
user@host# set interfaces t3-1/0/0 unit 0 virtual-channel-group wan-vc-group

5. Create the firewall filter to select the traffic.

[edit firewall]
user@host# set firewall family inet filter choose-vcterm branch1 from destination-address 192.168.10.0/24
user@host# set firewall family inet filter choose-vcterm branch1 then virtual-channel branch1-vc
user@host# set firewall family inet filter choose-vcterm branch1 then accept
user@host# set firewall family inet filter choose-vcterm branch2 from destination-address 192.168.20.0/24
user@host# set firewall family inet filter choose-vcterm branch2 then virtual-channel branch2-vc
user@host# set firewall family inet filter choose-vcterm branch2 then accept
user@host# set firewall family inet filter choose-vcterm branch3 from destination-address 192.168.30.0/24
user@host# set firewall family inet filter choose-vcterm branch3 then virtual-channel branch3-vc
user@host# set firewall family inet filter choose-vcterm branch3 then accept
user@host# set firewall family inet filter choose-vcterm default then virtual-channel default-vc
user@host# set firewall family inet filter choose-vcterm default then accept

6. Apply the firewall filter to output traffic.

[edit interfaces]
user@host# set t3-1/0/0 unit 0 family inet filter output choose-vc

Results
From configuration mode, confirm your configuration by entering the **show class-of-service**, **show firewall**, and **show interfaces t3-1/0/0** commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
user@host# show class-of-service
virtual-channels {
    branch1-vc;
    branch2-vc;
    branch3-vc;
    default-vc;
}
virtual-channel-groups {
    wan-vc-group {
        branch1-vc {
            scheduler-map bestscheduler;
            shaping-rate 1500000;
        }
        branch2-vc {
            scheduler-map bestscheduler;
            shaping-rate 1500000;
        }
        branch3-vc {
            scheduler-map bestscheduler;
            shaping-rate 1500000;
        }
        default-vc {
            scheduler-map bestscheduler;
            default;
        }
    }
}
interfaces {
    t3-1/0/0 {
        unit 0 {
            virtual-channel-group wan-vc-group;
        }
    }
}
[edit]
user@host# show firewall
family inet {
    filter choose-vc {
        term branch1 {
            from {
                destination-address {

```
192.168.10.0/24;
}
}
then {
virtual-channel branch1-vc;
accept;
}
}
term branch2 {
from {
destination-address {
192.168.20.0/24;
}
}
then {
virtual-channel branch2-vc;
accept;
}
}
term branch3 {
from {
destination-address {
192.168.30.0/24;
}
}
then {
virtual-channel branch1-vc;
accept;
}
}
term branch2 {
from {
destination-address {
192.168.20.0/24;
}
}
then {
virtual-channel branch2-vc;
accept;
}
}
term branch3 {
from {
destination-address {
If you are done configuring the device, enter **commit** from configuration mode.

Verification

Verifying Virtual Channel Configuration

Purpose

Verify that the virtual channels are properly configured.

Action

From configuration mode, enter the **show class-of-service**, **show firewall**, and **show interfaces t3-1/0/0** commands.

RELATED DOCUMENTATION

- Virtual Channels Overview | 175
- Understanding Virtual Channels | 176
Enabling Queuing for Tunnel Interfaces

IN THIS CHAPTER

- CoS Queuing for Tunnels Overview | 184
- Understanding the ToS Value of a Tunnel Packet | 190
- Example: Configuring CoS Queuing for GRE or IP-IP Tunnels | 191
- Copying Outer IP Header DSCP and ECN to Inner IP Header | 196
- Understanding CoS Support on st0 Interfaces | 198

CoS Queuing for Tunnels Overview

IN THIS SECTION

- Benefits of CoS Queuing for Tunnel Interfaces | 185
- Configuring CoS on Logical Tunnels | 186
- How CoS Queuing Works | 188
- Limitations on CoS Shapers for Tunnel Interfaces | 189
On an SRX Series device running Junos OS, a tunnel interface is an internal interface and supports many of the same CoS features as a physical interface. The tunnel interface creates a virtual point-to-point link between two SRX Series devices at remote points over an IP network.

For example, you can configure CoS features for generic routing encapsulation (GRE) and IP-IP tunnel interfaces. Tunneling protocols encapsulate packets inside a transport protocol.

GRE and IP-IP tunnels are used with services like IPsec and NAT to set up point-to-point VPNs. Junos OS allows you to enable CoS queuing, scheduling, and shaping for traffic exiting through these tunnel interfaces. For an example of configuring CoS Queueing for GRE tunnels, see “Example: Configuring CoS Queueing for GRE or IP-IP Tunnels” on page 191.

NOTE: CoS queuing is not supported on GRE tunnels in chassis clusters.

NOTE: The CoS queuing feature does not work for Junos OS Release 12.3X48 or for older devices such as SRX 550 (low memory), SRX 100, or SRX 200.

Starting with Junos OS Release 15.1X49-D100 and Junos OS Release 17.3R1, you can configure CoS on logical tunnels for SRX 300, SRX320, SRX340, SRX 345, and SRX 550M devices.

Benefits of CoS Queuing for Tunnel Interfaces

CoS queuing enabled for tunnel interfaces has the following benefits:

- **Segregates tunnel traffic.**

 Each tunnel can be shaped so that a tunnel with low-priority traffic cannot flood other tunnels that carry high-priority traffic.

 Traffic for one tunnel does not impact traffic on other tunnels.

- **Controls tunnel bandwidth.**

 Traffic through various tunnels is limited to not exceed a certain bandwidth.

 For example, suppose you have three tunnels to three remote sites through a single WAN interface. You can select CoS parameters for each tunnel such that traffic to some sites gets more bandwidth than traffic to other sites.

- **Customizes CoS policies.**

 You can apply different queuing, scheduling, and shaping policies to different tunnels based on user requirements. Each tunnel can be configured with different scheduler maps, different queue depths,
and so on. Customization allows you to configure granular CoS policy providing for better control over tunnel traffic.

- Prioritizes traffic before it enters a tunnel.

 For example, CoS queuing avoids having low-priority packets scheduled ahead of high-priority packets when the interface speed is higher than the tunnel traffic speed. This feature is most useful when combined with IPsec. Typically, IPsec processes packets in a FIFO manner. However, with CoS queuing each tunnel can prioritize high-priority packets over low-priority packets. Also, each tunnel can be shaped so that a tunnel with low-priority traffic does not flood tunnels carrying high-priority traffic.

Configuring CoS on Logical Tunnels

CoS has four typical scenarios that allow connection with remote sites using secure tunnels. However different secure tunnels may connect using different reth interfaces to different Network Providers (NP). For a specific NP, limited uplink bandwidth may be used to prioritize high-priority business and to avoid blindly dropping traffic at the NP side. Currently CoS does not support queuing across physical interfaces (IFD). Having a shared policer does not work as well as queuing, the policer may drop high-priority traffic regardless of priority. To support queuing on an IFD to enable CoS features to prioritize queuing and shaping requires logical tunnel (LT) and NP configuration.

You must define a pair of logical tunnels that are one-to-one mapped to NPs and redirect traffic with routing to the LT interface before encrypting the traffic through a secure tunnel.

For example, configure lt-0/0/0.0 and lt-0/0/0.1 to connect inet 0 and NP1 (virtual router) and configure a static route to redirect traffic to NP1 as lt-0/0/0.0 next-hop. Because NP1 has 10mbps bandwidth for upstream traffic, lt-0/0/0.0 can be configured with 10mbps of bandwidth shaping. See Figure 8 on page 187.
routing-instances {
 NP1 {
 instance-type virtual-router;
 interface lt-0/0/0.1;
 interface lo0.0;
 interface reth1.0;
 interface reth2.0;
 interface st0.1;
 interface st0.2;
 routing-options {
 static {
 route 59.200.200.1/32 next-hop <next-hop addr of ipsec tunnel st0.1>;
 route 59.200.200.2/32 next-hop <next-hop addr of ipsec tunnel st0.2>;
 route 60.60.60.1/32 next-hop st0.1;
 route 60.60.60.2/32 next-hop st0.2;
 route 58.58.58.1/32 next-hop lt-0/0/0.1;
 route 58.58.58.2/32 next-hop lt-0/0/0.1;
 }
 }
 }
 NP2 {
 instance-type virtual-router;
 interface lt-0/0/0.3;
 interface lo0.1;
 interface reth3.0;
 interface reth4.0;
 interface st0.3;
 interface st0.4;
 }
}
How CoS Queuing Works

Figure 9 on page 189 shows CoS-related processing that occurs for traffic entering and exiting a tunnel. For information on flow-based packet processing, see the Flow-Based and Packet-Based Processing User Guide for Security Devices.
Limitations on CoS Shapers for Tunnel Interfaces

When defining a CoS shaping rate on a tunnel interface, be aware of the following restrictions:

- The shaping rate on the tunnel interface must be less than that of the physical egress interface.
- The shaping rate only measures the packet size that includes the Layer 3 packet with GRE or IP-IP encapsulation. The Layer 2 encapsulation added by the physical interface is not factored into the shaping rate measurement.
- The CoS behavior works as expected only when the physical interface carries the shaped GRE or IP-IP tunnel traffic alone. If the physical interface carries other traffic, thereby lowering the available bandwidth for tunnel interface traffic, the CoS features do not work as expected.
- You cannot configure a logical interface shaper and a virtual circuit shaper simultaneously on the router. If virtual circuit shaping is desired, do not define a logical interface shaper. Instead, define a shaping rate for all the virtual circuits.
Understanding the ToS Value of a Tunnel Packet

To ensure that the tunneled packet continues to have the same CoS treatment even in the physical interface, you must preserve the type-of-service (ToS) value from the inner IP header to the outer IP header.

For transit traffic, Junos OS preserves the CoS value of the tunnel packet for both GRE and IP-IP tunnel interfaces. The inner IPv4 or IPv6 ToS bits are copied to the outer IPv4 ToS header for both types of tunnel interfaces.

For Routing Engine traffic, however, the router handles GRE tunnel interface traffic differently from IP-IP tunnel interface traffic. Unlike for IP-IP tunnels, the IPv4 ToS bits are not copied to the outer IPv4 header by default. You have a configuration option to copy the ToS value from the packet's inner IPv4 header to the outer IPv4 header.

To copy the inner ToS bits to the outer IP header (which is required for some tunneled routing protocols) on packets sent by the Routing Engine, include the `copy-tos-to-outer-ip-header` statement at the logical unit hierarchy level of a GRE interface.

NOTE: For IPv6 traffic, the inner ToS value is not copied to the outer IPv4 header for both GRE and IP-IP tunnel interfaces even if the `copy-tos-to-outer-ip-header` statement is specified.

This example copies the inner ToS bits to the outer IP header on a GRE tunnel:

```
[edit interfaces]
gr-0/0/0 {
    unit 0 {
        copy-tos-to-outer-ip-header;
        family inet;
    }
}
```
Example: Configuring CoS Queuing for GRE or IP-IP Tunnels

This example shows how to configure CoS queuing for GRE or IP-IP tunnels.

NOTE: CoS queuing is not supported on GRE tunnels in chassis clusters.

Requirements

Before you begin:

- Establish a main office and a branch office connected by a VPN using GRE or IP-IP tunneled interfaces.
- Configure forwarding classes and schedulers. See "Example: Assigning Forwarding Classes to Output Queues" on page 76 and "Example: Configuring Class-of-Service Schedulers on a Security Device" on page 112.
- Configure a scheduler map and apply the scheduler map to the tunnel interface. See "Example: Configuring and Applying Scheduler Maps" on page 130.
- Configure classifiers and apply them to the tunnel interface. See "Example: Configuring Behavior Aggregate Classifiers" on page 21.
- Create rewrite rules and apply them to the tunnel interface. See "Example: Configuring and Applying Rewrite Rules on a Security Device" on page 91.
Overview

In this example, you enable tunnel queuing, define the GRE tunnel interface as gr-0/0/0, (Alternatively, you could define the IP-IP tunnel interface as ip-0/0/0,) and set the per unit scheduler. You then set the GRE tunnel’s line rate as 100 Mbps by using the shaper definition.

In Figure 10 on page 192, Router A has a GRE tunnel established with Router B through interface ge-1/0/0. Router A also has an IP-IP tunnel established with Router C through interface ge-1/0/1. Router A is configured so that tunnel-queuing is enabled. Router B and Router C do not have tunnel-queuing configured.

Figure 10: Configuring CoS Queuing for GRE Tunnels

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from the configuration mode.

```
set chassis fpc 0 pic 0 tunnel-queuing
set interfaces gr-0/0/0 unit 0
set interfaces gr-0/0/0 per-unit-scheduler
set class-of-services interfaces gr-0/0/0 unit 0 shaping-rate 100m
```

Step-by-Step Procedure

To configure CoS queuing for GRE tunnels:

1. Enable tunnel queuing on the device.
2. Define the GRE tunnel interface.

[edit]
user@host# set interfaces gr-0/0/0 unit 0

3. Define the per-unit scheduler for the GRE tunnel interface.

[edit]
user@host# set interfaces gr-0/0/0 per-unit-scheduler

4. Define the GRE tunnel’s line rate by using the shaper definition.

[edit]
user@host# set class-of-services interfaces gr-0/0/0 unit 0 shaping-rate 100m

Results

From configuration mode, confirm your configuration by entering the `show class-of-service interfaces gr-0/0/0`, `show interfaces gr-0/0/0`, and `show chassis` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

[edit]
user@host# show class-of-service interfaces gr-0/0/0
unit 0 {
 shaping-rate 100m;
}
[edit]
user@host# show interfaces gr-0/0/0
 per-unit-scheduler;
unit 0;
[edit]
user@host# show chassis
 fpc 0 {
 pic 0 {
 tunnel-queuing;
 }
 }

If you are done configuring the device, enter `commit` from configuration mode.
Verification

IN THIS SECTION

- Verifying a CoS Queuing for GRE Tunnel Configuration | 194
- Verifying a CoS Queuing for IP-IP Tunnel Configuration | 196

Confirm that the configuration is working properly.

Verifying a CoS Queuing for GRE Tunnel Configuration

Purpose
Verify that the device is configured properly for tunnel configuration.

Action
From configuration mode, enter the `show interfaces queue gr-0/0/0.0` command.

NOTE: If you enter `gr-0/0/0.0` only, queue information for all tunnels is displayed. If you enter `gr-0/0/0.0`, queue information for the specific tunnel is displayed.

```
user@host> show interfaces queue gr-0/0/0.0
```

```
Logical interface gr-0/0/0.0 (Index 68) (SNMP ifIndex 112)
Forwarding classes: 8 supported, 4 in use
Egress queues: 8 supported, 4 in use Burst size: 0
Queue: 0, Forwarding classes: VOICE
Queued:
    Packets         :    7117734            7998 pps
    Bytes           :    512476848          4606848 bps
Transmitted:
    Packets         :    4548146            3459 pps
    Bytes           :    327466512          1992912 bps
    Tail-dropped packets :        0            0 pps
    RED-dropped packets  :    2569421          4537 pps
    Low               :        0            0 pps
    Medium-low        :        0            0 pps
    Medium-high       :        0            0 pps
    High              :    2569421          4537 pps
```
<table>
<thead>
<tr>
<th>Queue: 1, Forwarding classes: GOLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queued:</td>
</tr>
<tr>
<td>Packets :</td>
</tr>
<tr>
<td>Bytes :</td>
</tr>
<tr>
<td>Transmitted:</td>
</tr>
<tr>
<td>Packets :</td>
</tr>
<tr>
<td>Bytes :</td>
</tr>
<tr>
<td>Tail-dropped packets :</td>
</tr>
<tr>
<td>RED-dropped packets :</td>
</tr>
<tr>
<td>Low :</td>
</tr>
<tr>
<td>Medium-low :</td>
</tr>
<tr>
<td>Medium-high :</td>
</tr>
<tr>
<td>High :</td>
</tr>
<tr>
<td>RED-dropped bytes :</td>
</tr>
<tr>
<td>Low :</td>
</tr>
<tr>
<td>Medium-low :</td>
</tr>
<tr>
<td>Medium-high :</td>
</tr>
<tr>
<td>High :</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Queue: 2, Forwarding classes: SILVER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queued:</td>
</tr>
<tr>
<td>Packets :</td>
</tr>
<tr>
<td>Bytes :</td>
</tr>
<tr>
<td>Transmitted:</td>
</tr>
<tr>
<td>Packets :</td>
</tr>
<tr>
<td>Bytes :</td>
</tr>
<tr>
<td>Tail-dropped packets :</td>
</tr>
<tr>
<td>RED-dropped packets :</td>
</tr>
<tr>
<td>Low :</td>
</tr>
<tr>
<td>Medium-low :</td>
</tr>
<tr>
<td>Medium-high :</td>
</tr>
<tr>
<td>High :</td>
</tr>
<tr>
<td>RED-dropped bytes :</td>
</tr>
<tr>
<td>Low :</td>
</tr>
<tr>
<td>Medium-low :</td>
</tr>
<tr>
<td>Medium-high :</td>
</tr>
<tr>
<td>High :</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Queue: 3, Forwarding classes: BRONZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queued:</td>
</tr>
<tr>
<td>Packets :</td>
</tr>
<tr>
<td>Bytes :</td>
</tr>
</tbody>
</table>
Verifying a CoS Queuing for IP-IP Tunnel Configuration

Purpose
Verify that the device is configured properly for tunnel configuration.

Action
From configuration mode, enter the `show interfaces queue ip-0/0/0.0` command.

NOTE: If you enter `ip-0/0/0.0` only, queue information for all tunnels is displayed. If you enter `ip-0/0/0.0`, queue information for the specific tunnel is displayed.

RELATED DOCUMENTATION

- CoS Queuing for Tunnels Overview | 184
- Understanding the ToS Value of a Tunnel Packet | 190

Copying Outer IP Header DSCP and ECN to Inner IP Header

Starting in Junos OS Release 15.1X49-D30 and Junos OS Release 17.3R1, copying of a Differentiated Services Code Point (DSCP) (outer DSCP+ECN) field from the outer IP header encrypted packet to the inner IP header plain text message on the decryption path is supported.
The benefit in enabling this feature is that after IPsec decryption, clear text packets can follow the inner CoS (DSCP+ECN) rules.

This feature supports chassis cluster and also supports IPv6 and IPv4. The following are supported:

- Copying outer IPv4 DSCP and Explicit Congestion Notification (ECN) field to inner IPv4 DSCP and ECN field
- Copying outer IPv6 DSCP and ECN field to inner IPv6 DSCP and ECN field
- Copying outer IPv4 DSCP and ECN field to inner IPv6 DSCP and ECN field
- Copying outer IPv6 DSCP and ECN field to inner IPv4 DSCP and ECN field

By default this feature is disabled. When you enable this feature on a VPN object, the corresponding IPsec security Association (SA) is cleared and reestablished.

- To enable the feature:

  ```
  set security ipsec vpn vpn-name copy-outer-dscp
  ```

- To disable the feature:

  ```
  delete security ipsec vpn vpn-name copy-outer-dscp
  ```

- To verify whether the feature is enabled or not:

  ```
  show security ipsec security-associations detail
  ```

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1X49-D30</td>
<td>Starting in Junos OS Release 15.1X49-D30 and Junos OS Release 17.3R1, copying of a Differentiated Services Code Point (DSCP) (outer DSCP+ECN) field from the outer IP header encrypted packet to the inner IP header plain text message on the decryption path is supported.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- [IPsec VPN User Guide for Security Devices](#)
- [show security ipsec security-associations](#)
Understanding CoS Support on st0 Interfaces

Starting with Junos OS Release 15.1X49-D60 and Junos OS Release 17.3R1, class of service (CoS) features such as classifier, policer, queuing, scheduling, shaping, rewriting markers, and virtual channels can now be configured on the secure tunnel interface (st0) for point-to-point VPNs.

The st0 tunnel interface is an internal interface that can be used by route-based VPNs to route cleartext traffics to an IPsec VPN tunnel. The following CoS features are supported on the st0 interface on all available SRX Series devices and vSRX2.0:

- Classifiers
- Policers
- Queuing, scheduling, and shaping
- Rewrite markers
- Virtual channels

NOTE: Starting with Junos OS Release 15.1X49-D70 and Junos OS Release 17.3R1, support for queuing, scheduling, shaping, and virtual channels is added to the st0 interface for SRX5400, SRX5600, and SRX5800 devices. Support for all the listed CoS features is added for the st0 interface for SRX1500, SRX4100, and SRX4200 devices. Starting with Junos OS Release 17.4R1, support for listed CoS features is added for the st0 interface for SRX4600 devices.

Limitations of CoS support on VPN st0 interfaces

The following limitations apply to CoS support on VPN st0 interfaces:

- The maximum number for software queues is 2048. If the number of st0 interfaces exceeds 2048, not enough software queues can be created for all the st0 interfaces.
- Only route-based VPNs can apply CoS features on st0 interfaces. Table 35 on page 198 describes the st0 CoS feature support for different types of VPNs.

Table 35: CoS Feature Support for VPN

<table>
<thead>
<tr>
<th>Classifier Features</th>
<th>Site-to-Site VPN (P2P)</th>
<th>AutoVPN (P2P)</th>
<th>Site-to-Site/Auto VPN /AD-VPN (P2MP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classifiers, policers, and rewriting markers</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>
Table 35: CoS Feature Support for VPN (continued)

<table>
<thead>
<tr>
<th>Queueing, scheduling, and shaping based on st0 logical interfaces</th>
<th>Supported</th>
<th>Not supported</th>
<th>Not supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queueing, scheduling, and shaping based on virtual channels</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>

- On SRX300, SRX320, SRX340, SRX345, and SRX550HM devices, one st0 logical interface can bind to multiple VPN tunnels. The eight queues for the st0 logical interface cannot reroute the traffic to different tunnels, so pre-tunneling is not supported.

NOTE: The virtual channel feature can be used as a workaround on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.

- When defining a CoS shaping rate on an st0 tunnel interface, consider the following restrictions:
 - The shaping rate on the tunnel interface must be less than that of the physical egress interface.
 - The shaping rate only measures the packet size that includes the inner Layer 3 cleartext packet with an ESP/AH header and an outer IP header encapsulation. The outer Layer 2 encapsulation added by the physical interface is not factored into the shaping rate measurement.
 - The CoS behavior works as expected when the physical interface carries the shaped GRE or IP-IP tunnel traffic only. If the physical interface carries other traffic, thereby lowering the available bandwidth for tunnel interface traffic, the CoS features do not work as expected.

- On SRX550M, SRX5400, SRX5600, and SRX5800 devices, bandwidth limit and burst size limit values in a policer configuration are a per-SPU, not per-system limitation. This is the same policer behavior as on the physical interface.
Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4R1</td>
<td>Starting with Junos OS Release 17.4R1, support for listed CoS features is added for the st0 interface for SRX4600 devices.</td>
</tr>
<tr>
<td>15.1X49-D70</td>
<td>Starting with Junos OS Release 15.1X49-D70 and Junos OS Release 17.3R1, support for queuing, scheduling, shaping, and virtual channels is added to the st0 interface for SRX5400, SRX5600, and SRX5800 devices. Support for all the listed CoS features is added for the st0 interface for SRX1500, SRX4100, and SRX4200 devices.</td>
</tr>
<tr>
<td>15.1X49-D60</td>
<td>Starting with Junos OS Release 15.1X49-D60 and Junos OS Release 17.3R1, class of service (CoS) features such as classifier, policer, queuing, scheduling, shaping, rewriting markers, and virtual channels can now be configured on the secure tunnel interface (st0) for point-to-point VPNs.</td>
</tr>
</tbody>
</table>
CHAPTER 12

Naming Components with Code-Point Aliases

IN THIS CHAPTER

- Code-Point Aliases Overview | 201
- Default CoS Values and Aliases | 202
- Example: Defining Code-Point Aliases for Bits on a Security Device | 206

Code-Point Aliases Overview

A code-point alias assigns a name to a pattern of code-point bits. You can use this name instead of the bit pattern when you configure other class-of-service (CoS) components, such as classifiers, drop-profile maps, and rewrite rules.

When you configure classes and define classifiers, you can refer to the markers by alias names. You can configure user-defined classifiers in terms of alias names. If the value of an alias changes, it alters the behavior of any classifier that references it.

The following types of code points are supported by Junos operating system (OS):

- **DSCP**—Defines aliases for DiffServ code point (DSCP) IPv4 values.
 You can refer to these aliases when you configure classes and define classifiers.

- **DSCP-IPv6**—Defines aliases for DSCP IPv6 values.
 You can refer to these aliases when you configure classes and define classifiers.

- **EXP**—Defines aliases for MPLS EXP bits.
 You can map MPLS EXP bits to the device forwarding classes.

- **inet-precedence**—Defines aliases for IPv4 precedence values.
 Precedence values are modified in the IPv4 type-of-service (ToS) field and mapped to values that correspond to levels of service.

RELATED DOCUMENTATION
Default CoS Values and Aliases

Table 36 on page 203 shows the default mapping between the standard aliases and the bit values.
Table 36: Standard CoS Aliases and Bit Values

<table>
<thead>
<tr>
<th>CoS Value Type</th>
<th>Alias</th>
<th>Bit Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLS EXP</td>
<td>be</td>
<td>000</td>
</tr>
<tr>
<td></td>
<td>be1</td>
<td>001</td>
</tr>
<tr>
<td></td>
<td>ef</td>
<td>010</td>
</tr>
<tr>
<td></td>
<td>ef1</td>
<td>011</td>
</tr>
<tr>
<td></td>
<td>af11</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>af12</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>nc1/cs6</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>nc2/cs7</td>
<td>111</td>
</tr>
<tr>
<td>CoS Value Type</td>
<td>Alias</td>
<td>Bit Value</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>DSCP and DSCP IPv6</td>
<td>ef</td>
<td>101110</td>
</tr>
<tr>
<td></td>
<td>af11</td>
<td>001010</td>
</tr>
<tr>
<td></td>
<td>af12</td>
<td>001100</td>
</tr>
<tr>
<td></td>
<td>af13</td>
<td>001110</td>
</tr>
<tr>
<td></td>
<td>af21</td>
<td>010010</td>
</tr>
<tr>
<td></td>
<td>af22</td>
<td>010100</td>
</tr>
<tr>
<td></td>
<td>af23</td>
<td>010110</td>
</tr>
<tr>
<td></td>
<td>af31</td>
<td>011010</td>
</tr>
<tr>
<td></td>
<td>af32</td>
<td>011100</td>
</tr>
<tr>
<td></td>
<td>af33</td>
<td>011110</td>
</tr>
<tr>
<td></td>
<td>af41</td>
<td>100010</td>
</tr>
<tr>
<td></td>
<td>af42</td>
<td>100100</td>
</tr>
<tr>
<td></td>
<td>af43</td>
<td>100110</td>
</tr>
<tr>
<td></td>
<td>be</td>
<td>000000</td>
</tr>
<tr>
<td></td>
<td>cs1</td>
<td>001000</td>
</tr>
<tr>
<td></td>
<td>cs2</td>
<td>010000</td>
</tr>
<tr>
<td></td>
<td>cs3</td>
<td>011000</td>
</tr>
<tr>
<td></td>
<td>cs4</td>
<td>100000</td>
</tr>
<tr>
<td></td>
<td>cs5</td>
<td>101000</td>
</tr>
<tr>
<td></td>
<td>nc1/cs6</td>
<td>110000</td>
</tr>
<tr>
<td></td>
<td>nc2/cs7</td>
<td>111000</td>
</tr>
</tbody>
</table>
Table 36: Standard CoS Aliases and Bit Values (continued)

<table>
<thead>
<tr>
<th>CoS Value Type</th>
<th>Alias</th>
<th>Bit Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.1</td>
<td>be</td>
<td>000</td>
</tr>
<tr>
<td></td>
<td>be1</td>
<td>001</td>
</tr>
<tr>
<td></td>
<td>ef</td>
<td>010</td>
</tr>
<tr>
<td></td>
<td>ef1</td>
<td>011</td>
</tr>
<tr>
<td></td>
<td>af11</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>af12</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>nc1/cs6</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>nc2/cs7</td>
<td>111</td>
</tr>
<tr>
<td>IP precedence</td>
<td>be</td>
<td>000</td>
</tr>
<tr>
<td></td>
<td>be1</td>
<td>001</td>
</tr>
<tr>
<td></td>
<td>ef</td>
<td>010</td>
</tr>
<tr>
<td></td>
<td>ef1</td>
<td>011</td>
</tr>
<tr>
<td></td>
<td>af11</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>af12</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>nc1/cs6</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>nc2/cs7</td>
<td>111</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Code-Point Aliases Overview | 201
- Example: Defining Code-Point Aliases for Bits on a Security Device | 206
Example: Defining Code-Point Aliases for Bits on a Security Device

This example shows how to define code-point aliases for bits on a device.

Requirements

Before you begin, determine which default mapping to use. See "Default CoS Values and Aliases" on page 202.

Overview

In this example, you configure class of service and specify names and values for the CoS code-point aliases that you want to configure. Finally, you specify CoS value using the appropriate formats.

Configuration

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To define code-point aliases for bits on a device:

1. Configure class of service.

 [edit]
 user@host# edit class-of-service

2. Specify CoS values.

 [edit class-of-service]
3. If you are done configuring the device, commit the configuration.

```
[edit]
user@host# commit
```

Verification

To verify the configuration is working properly, enter the `show class-of-service code-point-aliases dscp` command.

RELATED DOCUMENTATION

- Code-Point Aliases Overview | 201
Configuring Class of Service Scheduler Hierarchy
Understanding Hierarchical Schedulers

Hierarchical schedules consist of nodes and queues. Queues terminate the CLI hierarchy. Nodes can be either root nodes, leaf nodes, or internal (non-leaf) nodes. Internal nodes are nodes that have other nodes as "children" in the hierarchy. For example, if an interface-set statement is configured with a logical interface (such as unit 0) and queue, then the interface-set is an internal node at level 2 of the hierarchy. However, if there are no traffic control profiles configured on logical interfaces, then the interface set is at level 3 of the hierarchy.

Table 37 on page 209 shows how the configuration of an interface set or logical interface affects the terminology of hierarchical scheduler nodes.

<table>
<thead>
<tr>
<th>Root Node (Level 1)</th>
<th>Internal Node (Level 2)</th>
<th>Leaf Node (Level 3)</th>
<th>Queue (Level 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical interface</td>
<td>Interface set</td>
<td>Logical interfaces</td>
<td>One or more queues</td>
</tr>
<tr>
<td>Physical interface</td>
<td>–</td>
<td>Interface set</td>
<td>One or more queues</td>
</tr>
<tr>
<td>Physical interface</td>
<td>–</td>
<td>Logical interfaces</td>
<td>One or more queues</td>
</tr>
</tbody>
</table>

When used, the interface set level of the hierarchy falls between the physical interface level (level 1) and the logical interface (level 3). Queues are always level 4 of the hierarchy. The schedulers hold the information about the queues, the last level of the hierarchy. In all cases, the properties for level 4 of the hierarchical schedulers are determined by the scheduler map.
Hierarchical schedulers add CoS parameters to the new interface set level of the configuration. They use traffic control profiles to set values for parameters such as shaping rate (the peak information rate [PIR]), guaranteed rate (the committed information rate [CIR] on these interfaces), and scheduler maps (the queues and resources assigned to traffic).

The following CoS configuration places the following parameters in traffic control profiles at various levels:

- **Traffic control profile at the port level** (**tcp-port-level1**):
 - A shaping rate (PIR) of 100 Mbps
 - A delay buffer rate of 100 Mbps

- **Traffic control profile at the interface set level** (**tcp-interface-level2**):
 - A shaping rate (PIR) of 60 Mbps
 - A guaranteed rate (CIR) of 40 Mbps

- **Traffic control profile at the logical interface level** (**tcp-unit-level3**):
 - A shaping rate (PIR) of 50 Mbps
 - A guaranteed rate (CIR) of 30 Mbps
 - A scheduler map called smap1 to hold various queue properties (level 4)
 - A delay buffer rate of 40 Mbps

In this case, the traffic control profiles look like this:

```bash
[edit class-of-service traffic-control-profiles]
tcp-port-level1 { # This is the physical port level
    shaping-rate 100m;
    delay-buffer-rate 100m;
}
tcp-interface-level2 { # This is the interface set level
    shaping-rate 60m;
    guaranteed-rate 40m;
}
tcp-unit-level3 { # This is the logical interface level
    shaping-rate 50m;
    guaranteed-rate 30m;
    scheduler-map smap1;
    delay-buffer-rate 40m;
}
```
Once configured, the traffic control profiles must be applied to the proper places in the CoS interfaces hierarchy.

```plaintext
[edit class-of-service interfaces]
interface-set level-2 {
    output-traffic-control-profile tcp-interface-level-2;
}
ge-0/1/0 {
    output-traffic-control-profile tcp-port-level-1;
    unit 0 {
        output-traffic-control-profile tcp-unit-level-3;
    }
}
```

Interface sets can be defined as a list of logical interfaces, for example, unit 100, unit 200, and so on. Service providers can use these statements to group interfaces to apply scheduling parameters such as guaranteed rate and shaping rate to the traffic in the groups. Interface sets are currently only used by CoS, but they are applied at the [edit interfaces] hierarchy level so that they might be available to other services.

All traffic heading downstream must be gathered into an interface set with the `interface-set` statement at the [edit class-of-service interfaces] hierarchy level.

NOTE: Ranges are not supported; you must list each logical interface separately.

Although the interface set is applied at the [edit interfaces] hierarchy level, the CoS parameters for the interface set are defined at the [edit class-of-service interfaces] hierarchy level, usually with the `output-traffic-control-profile profile-name` statement.

You cannot specify an interface set mixing the logical interface, S-VLAN, or VLAN outer tag list forms of the `interface-set` statement. A logical interface can only belong to one interface set. If you try to add the same logical interface to different interface sets, the commit will fail.

This example will generate a commit error:

```plaintext
[edit interfaces]
interface-set set-one {
    ge-2/0/0 {
        unit 0;
        unit 2;
    }
}
interface-set set-two {
```
Members of an interface set cannot span multiple physical interfaces. Only one physical interface is allowed to appear in an interface set.

This configuration is not supported:

```plaintext
[edit interfaces]
interface-set set-group {
  ge-0/0/1 {
    unit 0;
    unit 1;
  }
  ge-0/0/2 { # This type of configuration is NOT supported in the same interface set!
    unit 0;
    unit 1;
  }
}
```

You can configure many logical interfaces under an interface. However, only a subset of them might have a traffic control profile attached. For example, you can configure three logical interfaces (units) over the same service VLAN, but you can apply a traffic control profile specifying best-effort and voice queues to only one of the logical interface units. Traffic from the two remaining logical interfaces is considered remaining traffic.

The scheduler map configured at individual interfaces (Level 3), interface sets (Level 2), or physical ports (Level 1), defines packet scheduling behavior at different levels. You can group logical interfaces in an interface set and configure the interfaces with scheduler maps. Any egress packet arriving at the physical or logical interfaces will be handled by the interface specific scheduler. If the scheduler map is not configured at the interface level, the packet will be handled by the scheduler configured at the interface set level or the port level.

RELATED DOCUMENTATION

- Example: Configuring a Four-Level Scheduler Hierarchy | 216
- Example: Controlling Remaining Traffic | 232
- Understanding Internal Scheduler Nodes | 213
Understanding Internal Scheduler Nodes

A node in the hierarchy is considered internal if either of the following conditions apply:

- One of its children nodes has a traffic control profile configured and applied.
- You configure the `internal-node` statement.

There are more resources available at the logical interface (unit) level than at the interface set level. It might be desirable to configure all resources at a single level, rather than spread over several levels. The `internal-node` statement provides this flexibility. This can be a helpful configuration device when interface-set queuing without logical interfaces is used exclusively on the interface.

You can use the `internal-node` statement to raise the interface set without children to the same level as the other configured interface sets with children, allowing them to compete for the same set of resources.

Using the `internal-node` statement allows statements to all be scheduled at the same level with or without children.

The following example makes the interface sets **if-set-1** and **if-set-2** internal:

```
[edit class-of-service interfaces ]
interface-set {
   if-set-1 {
      internal-node;
      output-traffic-control-profile tcp-200m-no-smap;
   }
   if-set-2 {
      internal-node;
      output-traffic-control-profile tcp-100m-no-smap;
   }
}
```

If an interface set has logical interfaces configured with a traffic control profile, then the use of the `internal-node` statement has no effect.

Internal nodes can specify a `traffic-control-profile-remaining` statement.

RELATED DOCUMENTATION

- Understanding Hierarchical Schedulers | 209
- Example: Configuring a Four-Level Scheduler Hierarchy | 216
- Example: Controlling Remaining Traffic | 232
SRX1400, SRX3400, and SRX3600 Device Hardware Capabilities and Limitations

For SRX1400, SRX3400, and SRX3600 devices, each Input/Output Card (IOC), Flexible PIC Concentrator (FPC), or IOC slot has only one Physical Interface Card (PIC), which contains either two 10-Gigabit Ethernet ports or sixteen 1-Gigabit Ethernet ports. Table 38 on page 214 shows the maximum number of cards and ports allowed in SRX1400, SRX3400, and SRX3600 devices.

NOTE: The number of ports the Network Processing Unit (NPU) needs to handle might be different from the fixed 10:1 port to NPU ratio for 1-Gigabit IOC, or the 1:1 ratio for the 10-Gigabit IOC that is needed on the SRX5600 and SRX5800 devices, leading to oversubscription on the SRX1400, SRX3400, and SRX3600 devices.

Platform support depends on the Junos OS release in your installation.

Table 38: Available NPCs and IO Ports for SRX1400, SRX3400, and SRX3600 Devices

<table>
<thead>
<tr>
<th>System</th>
<th>IOCs</th>
<th>IO Ports</th>
<th>NPCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX3600</td>
<td>7</td>
<td>108 (16 x 6 + 12)</td>
<td>3</td>
</tr>
<tr>
<td>SRX3400</td>
<td>5</td>
<td>76 (16 x 4 + 12)</td>
<td>2</td>
</tr>
<tr>
<td>SRX1400</td>
<td>2</td>
<td>28 (16 x 1 + 12)</td>
<td>1</td>
</tr>
</tbody>
</table>

SRX3400 and SRX3600 devices allow you to install up to three Network Processing Cards (NPCs). In a single NPC configuration, the NPC has to process all of the packets to and from each IOC. However, when there is more than one NPC available, an IOC will only exchange packets with a preassigned NPC. You can use the set chassis ioc-npc-connectivity CLI statement to configure the IOC-to-NPC mapping. By default, the mapping is assigned so that the load is shared equally among all NPCs. When the mapping is changed, for example, an IOC or NPC is removed, or you have mapped a specific NPC to an IOC, then the device has to be restarted.

NOTE: SRX1400 devices support a single NPC or an NSPC combo card.

For SRX1400, SRX3400, and SRX3600 devices, the IOC supports the following hierarchical scheduler characteristics:

- Level 1- Shaping at the physical interface (ifd)
- Level 2: Shaping and scheduling at the logical interface level (ifl)
- Level 3: Scheduling at the queue level

NOTE: Interface set (ifset) is not supported for SRX1400, SRX3400, and SRX3600 devices.

In SRX5600 and SRX5800 devices, an NPC supports 32 port-level shaping profiles at level 1, such that each front port can have its own shaping profile.

In SRX1400, SRX3400, and SRX3600 devices, an NPC supports only 16 port-level shaping profiles in the hardware, including two profiles that are predefined for 10-GB and 1-GB shaping rates. The user can configure up to 14 different levels of shaping rates. If more levels are configured, then the closest match found in the 16 profiles will be used instead.

For example, assume that a system is already configured with the following rates for ifd:

10 Mbps, 20 Mbps, 40 Mbps, 60 Mbps, 80 Mbps, 100 Mbps, 200 Mbps, 300 Mbps, 400 Mbps, 500 Mbps, 600 Mbps, 700 Mbps, 800 Mbps, 900 Mbps, 1 GB (predefined), 10 GB (predefined)

Each of these 16 rates is programmed into one of the 16 profiles in the hardware; then consider the following two scenarios:

- **Scenario 1:** If the user changes one port’s shaping rate from 1 GB to 100 Mbps, which is already programmed in one of the 16 profiles, the profile with a 100 Mbps shaping rate will be used by the port.

- **Scenario 2:** If the user changes another port’s shaping rate from 1 GB to 50 Mbps, which is not in the shaping profiles, the closest matching profile with a 60 Mbps shaping rate will be used instead.

When scenario 2 occurs, not all of the user-configured rates can be supported by the hardware. Even if more than 14 different rates are specified, only 14 will be programmed in the hardware. Which 14 rates are programmed in the hardware depends on many factors. For this reason, we recommend that you plan carefully and use no more than 14 levels of port-level shaping rates.

Each device supports Weighed Random Early Discard (WRED) at the port level, and each NPU has 512 MB of frame memory. Also, 10-Gigabit Ethernet ports get more buffers than the 1-Gigabit Ethernet ports. Buffer availability depends on how much bandwidth (number of NPCs, ports, 1 GB or 10 GB, and so on) the device has to support. The more bandwidth that the device has to support, the less buffer is available. When two NPCs are available, the amount of frame buffer available is doubled.

RELATED DOCUMENTATION

- **Understanding Hierarchical Schedulers | 209**
- **Example: Configuring a Four-Level Scheduler Hierarchy | 216**
- **Example: Controlling Remaining Traffic | 232**
Example: Configuring a Four-Level Scheduler Hierarchy

IN THIS SECTION

- Requirements | 216
- Overview | 216
- Configuration | 217
- Verification | 232

This example shows how to configure a 4-level hierarchy of schedulers.

Requirements

Before you begin:

- Review how to configure schedulers. See "Example: Configuring Class-of-Service Schedulers on a Security Device" on page 112.
- Review RED drop profiles. See Understanding RED Drop Profiles.
- Review how to configure and apply scheduler maps. See "Example: Configuring and Applying Scheduler Maps" on page 130.

Overview

The configuration parameters for this example are shown in Figure 11 on page 217. The queues are shown at the top of the figure with the other three levels of the hierarchy below.
Figure 11: Building a Scheduler Hierarchy

![Scheduler Hierarchy Diagram]

Figure 11 on page 217's PIR values will be configured as the shaping rates, and the CIRs will be configured as the guaranteed rate on the Ethernet interface **ge-1/0/0**. The PIR can be oversubscribed (that is, the sum of the children PIRs can exceed the parent's, as in **svlan1**, where 200 + 200 + 100 exceeds the parent rate of 400). However, the sum of the children node level's CIRs must never exceed the parent node's CIR, as shown in all the service VLANs (otherwise, the guaranteed rate could never be provided in all cases).

NOTE: Although a shaping rate can be applied directly to the physical interface, hierarchical schedulers must use a traffic control profile to hold the shaping rate parameter.

The keyword to configure hierarchical schedulers is at the physical interface level, as are VLAN tagging and the VLAN IDs. In this example, the interface sets are defined by logical interfaces (units) and not outer VLAN tags. All VLAN tags in this example are customer VLAN tags.

The traffic control profiles in this example are for both the service VLAN level (logical interfaces) and the customer VLAN (VLAN tag) level.

This example shows all details of the CoS configuration for the **ge-1/0/0** interface in **Figure 11 on page 217**.

Configuration

IN THIS SECTION

- Configuring the Interfaces | 218
- Configuring the Interface Sets | 219
- Applying an Interface Set | 220
- Configuring the Forwarding Classes | 221
- Configuring the Traffic Control Profiles | 222
This section contains the following topics:

Configuring the Interfaces

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter `commit` from the configuration mode.

```
set interfaces ge-1/0/0 hierarchical-scheduler
set interfaces ge-1/0/0 vlan-tagging
set interfaces ge-1/0/0 unit 0 vlan-id 100
set interfaces ge-1/0/0 unit 1 vlan-id 101
set interfaces ge-1/0/0 unit 2 vlan-id 102
set interfaces ge-1/0/0 unit 3 vlan-id 103
set interfaces ge-1/0/0 unit 4 vlan-id 104
```

Step-by-Step Procedure

To configure the interfaces:

1. Create the physical interface, and enable hierarchical scheduling and VLAN tagging.

   ```
   [edit interfaces ge-1/0/0]
   user@host# set hierarchical-scheduler
   user@host# set vlan-tagging
   ```

2. Create logical interfaces and assign VLAN IDs.

   ```
   [edit interface ge-1/0/0]
   user@host# set unit 0 vlan-id 100
   user@host# set unit 1 vlan-id 101
   user@host# set unit 2 vlan-id 102
   user@host# set unit 3 vlan-id 103
   ```
user@host# set unit 4 vlan-id 104

Results
From configuration mode, confirm your configuration by entering the `show interface ge-1/0/0` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

 [edit]
 user@host# show interface ge-1/0/0
 hierarchical-scheduler;
 vlan-tagging;
 unit 0 {
 vlan-id 100;
 }
 unit 1 {
 vlan-id 101;
 }
 unit 2 {
 vlan-id 102;
 }
 unit 3 {
 vlan-id 103;
 }
 unit 4 {
 vlan-id 104;
 }

If you are done configuring the device, enter `commit` from configuration mode.

Configuring the Interface Sets

CLI Quick Configuration
To quickly configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.

 set interfaces interface-set svlan-0 interface ge-1/0/0 unit 0
 set interfaces interface-set svlan-0 interface ge-1/0/0 unit 1
 set interfaces interface-set svlan-1 interface ge-1/0/0 unit 2
 set interfaces interface-set svlan-1 interface ge-1/0/0 unit 3
 set interfaces interface-set svlan-1 interface ge-1/0/0 unit 4
Step-by-Step Procedure
To configure the interface sets:

1. Create the first logical interface and its CoS parameters.

   ```
   [edit interfaces]
   user@host# set interface-set svlan-0 interface ge-1/0/0 unit 0
   user@host# set interface-set svlan-0 interface ge-1/0/0 unit 1
   ```

2. Create the second logical interface and its CoS parameters.

   ```
   [edit interfaces]
   user@host# set interface-set svlan-1 interface ge-1/0/0 unit 2
   user@host# set interface-set svlan-1 interface ge-1/0/0 unit 3
   user@host# set interface-set svlan-1 interface ge-1/0/0 unit 4
   ```

Results
From configuration mode, confirm your configuration by entering the `show interfaces` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

   ```
   [edit]
   user@host# show interfaces
   interface-set svlan-0 [ interface ge-1/0/0 [ unit 0; unit 1; ] ]
   interface-set svlan-1 [ interface ge-1/0/0 [ unit 2; unit 3; unit 4; ] ]
   ```

If you are done configuring the device, enter `commit` from configuration mode.

Applying an Interface Set

CLI Quick Configuration
To quickly configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set class-of-service interfaces interface-set set-ge-0 output-traffic-control-profile tcp-set1
```

Step-by-Step Procedure
To apply an interface set:

1. Create the Ethernet interface set.

```
[edit class-of-service interfaces]
user@host# set interface-set set-ge-0
```

2. Apply a traffic control parameter to the Ethernet interface set.

```
[edit class-of-service interfaces interface-set set-ge-0]
user@host# set output-traffic-control-profile tcp-set1
```

Results
From configuration mode, confirm your configuration by entering the show interfaces command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show interfaces
interface-set set-ge-0 {
    output-traffic-control-profile tcp-set1;
}
```

If you are done configuring the device, enter commit from configuration mode.

Configuring the Forwarding Classes

CLI Quick Configuration
To quickly configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.
set class-of-service forwarding-classes queue 1 data
set class-of-service forwarding-classes queue 2 video
set class-of-service forwarding-classes queue 3 voice

Step-by-Step Procedure

To configure the forwarding classes:

1. Specify a queue number and map it to a class name.

```
[edit class-of-service forwarding-classes]
user@host# set queue 1 data
user@host# set queue 2 video
user@host# set queue 3 voice
```

Results

From configuration mode, confirm your configuration by entering the `show class-of-service forwarding-classes` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show class-of-service forwarding-classes
queue 1 data;
queue 2 video;
queue 3 voice;
```

If you are done configuring the device, enter `commit` from configuration mode.

Configuring the Traffic Control Profiles

CLI Quick Configuration

To quickly configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the `[edit]` hierarchy level, and then enter `commit` from configuration mode.

```
set class-of-service traffic-control-profiles tcp-500m-shaping-rate shaping-rate 500m
set class-of-service traffic-control-profiles tcp-svlan0 shaping-rate 200m
set class-of-service traffic-control-profiles tcp-svlan0 guaranteed-rate 100m
set class-of-service traffic-control-profiles tcp-svlan0 delay-buffer-rate 300m
set class-of-service traffic-control-profiles tcp-svlan1 shaping-rate 400m
set class-of-service traffic-control-profiles tcp-svlan1 guaranteed-rate 300m
set class-of-service traffic-control-profiles tcp-svlan1 delay-buffer-rate 100m
```
Step-by-Step Procedure

To configure the traffic control profiles:

1. Create the traffic profile parameters.

 [edit class-of-service traffic-control-profiles]
 user@host# tcp-500m-shaping-rate shaping-rate 500m

2. Create the traffic control profiles and parameters for the S-VLAN (logical interfaces) level.

 [edit class-of-service traffic-control-profiles]
 user@host# set tcp-svlan0 shaping-rate 200m
 user@host# set tcp-svlan0 guaranteed-rate 100m
 user@host# set tcp-svlan0 delay-buffer-rate 300m
 user@host# set tcp-svlan1 shaping-rate 400m
 user@host# set tcp-svlan1 guaranteed-rate 300m
 user@host# set tcp-svlan1 delay-buffer-rate 100m

3. Create the traffic control profiles and parameters for the C-VLAN (VLAN tags) level.

 [edit class-of-service traffic-control-profiles]
 user@host# set tcp-cvlan0 shaping-rate 100m
 user@host# set tcp-cvlan0 guaranteed-rate 60m
 user@host# set tcp-cvlan0 scheduler-map tcp-map-cvlan0
 user@host# set tcp-cvlan1 shaping-rate 100m
user@host# set tcp-cvlan1 guaranteed-rate 40m
user@host# set tcp-cvlan1 scheduler-map tcp-map-cvlan1
user@host# set tcp-cvlan2 shaping-rate 200m
user@host# set tcp-cvlan2 guaranteed-rate 100m
user@host# set tcp-cvlan2 scheduler-map tcp-map-cvlanx
user@host# set tcp-cvlan3 shaping-rate 200m
user@host# set tcp-cvlan3 guaranteed-rate 150m
user@host# set tcp-cvlan3 scheduler-map tcp-map-cvlanx
user@host# set tcp-cvlan4 shaping-rate 100m
user@host# set tcp-cvlan4 guaranteed-rate 50m
user@host# set tcp-cvlan4 scheduler-map tcp-map-cvlanx

Results
From configuration mode, confirm your configuration by entering the `show class-of-service traffic-control-profiles` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

[edit]
user@host# show class-of-service traffic-control-profiles
tcp-500m-shaping-rate {
 shaping-rate 500m;
}
tcp-svlan0 {
 shaping-rate 200m;
 guaranteed-rate 100m;
 delay-buffer-rate 300m; # This parameter is not shown in the figure
}
tcp-svlan1 {
 shaping-rate 400m;
 guaranteed-rate 300m;
 delay-buffer-rate 100m; # This parameter is not shown in the figure
}
tcp-cvlan0 {
 shaping-rate 100m;
 guaranteed-rate 60m;
 scheduler-map tcp-map-cvlan0; # This example applies scheduler maps to customer VLANs
}
tcp-cvlan1 {
 shaping-rate 100m;
 guaranteed-rate 40m;
 scheduler-map tcp-map-cvlan1; # This example applies scheduler maps to customer VLANs
}
tcp-cvlan2 {
If you are done configuring the device, enter **commit** from configuration mode.

Configuring the Schedulers

CLI Quick Configuration

To quickly configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter **commit** from configuration mode.

```plaintext
set class-of-service schedulers sched-cvlan0-qx transmit-rate 20m
set class-of-service schedulers sched-cvlan0-qx buffer-size temporal 100k
set class-of-service schedulers sched-cvlan0-qx priority low
set class-of-service schedulers sched-cvlan0-qx drop-profile-map loss-priority low protocol any drop-profile dp-low
set class-of-service schedulers sched-cvlan0-qx drop-profile-map loss-priority high protocol any drop-profile dp-high
set class-of-service schedulers sched-cvlan1-q0 transmit-rate 20m
set class-of-service schedulers sched-cvlan1-q0 buffer-size percent 40
set class-of-service schedulers sched-cvlan1-q0 priority high
set class-of-service schedulers sched-cvlan1-q0 drop-profile-map loss-priority low protocol any drop-profile dp-low
set class-of-service schedulers sched-cvlan1-q0 drop-profile-map loss-priority high protocol any drop-profile dp-high
set class-of-service schedulers sched-cvlanx-qx transmit-rate percent 30
set class-of-service schedulers sched-cvlanx-qx buffer-size percent 30
set class-of-service schedulers sched-cvlanx-qx drop-profile-map loss-priority low protocol any drop-profile dp-low
```
Step-by-Step Procedure

To configure the schedulers:

1. Create the schedulers and their parameters.

```
[edit class-of-service schedulers]
user@host# set sched-cvlan0-qx priority low transmit-rate 20m
user@host# set sched-cvlan0-qx buffer-size temporal 100k
user@host# set sched-cvlan0-qx priority low
user@host# set sched-cvlan0-qx drop-profile-map loss-priority low protocol any drop-profile dp-low
user@host# set sched-cvlan0-qx drop-profile-map loss-priority high protocol any drop-profile dp-high
user@host# set sched-cvlan1-q0 priority high transmit-rate 20m
user@host# set sched-cvlan1-q0 buffer-size percent 40
user@host# set sched-cvlan1-q0 priority high
user@host# set sched-cvlan1-q0 drop-profile-map loss-priority low protocol any drop-profile dp-low
user@host# set sched-cvlan1-q0 drop-profile-map loss-priority high protocol any drop-profile dp-high
user@host# set sched-cvlanx-qx transmit-rate percent 30
user@host# set sched-cvlanx-qx buffer-size percent 30
user@host# set sched-cvlanx-qx drop-profile-map loss-priority low protocol any drop-profile dp-low
user@host# set sched-cvlanx-qx drop-profile-map loss-priority high protocol any drop-profile dp-high
user@host# set sched-cvlan1-qx transmit-rate 10m
user@host# set sched-cvlan1-qx buffer-size temporal 100k
user@host# set sched-cvlan1-qx drop-profile-map loss-priority low protocol any drop-profile dp-low
user@host# set sched-cvlan1-qx drop-profile-map loss-priority high protocol any drop-profile dp-high

[edit]
user@host# show class-of-service schedulers
sched-cvlan0-qx {

```

Results

From configuration mode, confirm your configuration by entering the `show class-of-service schedulers` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show class-of-service schedulers
sched-cvlan0-qx {

```
transmit-rate 20m;
buffer-size temporal 100k;
priority low;
drop-profile-map loss-priority low protocol any drop-profile dp-low;
drop-profile-map loss-priority high protocol any drop-profile dp-high;
}
sched-cvlan1-q0 {
transmit-rate 20m;
buffer-size percent 40;
priority high;
drop-profile-map loss-priority low protocol any drop-profile dp-low;
drop-profile-map loss-priority high protocol any drop-profile dp-high;
}
sched-cvlanx-qx {
transmit-rate percent 30;
buffer-size percent 30;
drop-profile-map loss-priority low protocol any drop-profile dp-low;
drop-profile-map loss-priority high protocol any drop-profile dp-high;
}
sched-cvlan1-qx {
transmit-rate 10m;
buffer-size temporal 100k;
drop-profile-map loss-priority low protocol any drop-profile dp-low;
drop-profile-map loss-priority high protocol any drop-profile dp-high;
}

If you are done configuring the device, enter **commit** from configuration mode.

Configuring the Drop Profiles

CLI Quick Configuration

To quickly configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter **commit** from configuration mode.

```
set class-of-service drop-profiles dp-low interpolate fill-level 80 drop-probability 80
set class-of-service drop-profiles dp-low interpolate fill-level 100 drop-probability 100
set class-of-service drop-profiles dp-high interpolate fill-level 60 drop-probability 80
set class-of-service drop-profiles dp-high interpolate fill-level 80 drop-probability 100
```

Step-by-Step Procedure
To configure the drop profiles:

1. Create the low drop profile.

   ```
   [edit class-of-service drop-profiles]
   user@host# set dp-low interpolate fill-level 80 drop-probability 80
   user@host# set dp-low interpolate fill-level 100 drop-probability 100
   ```

2. Create the high drop profile.

   ```
   [edit class-of-service drop-profiles]
   user@host# set dp-high interpolate fill-level 60 drop-probability 80
   user@host# set dp-high interpolate fill-level 80 drop-probability 100
   ```

Results

From configuration mode, confirm your configuration by entering the `show class-of-service drop-profiles` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show class-of-service drop-profiles
dp-low {
  interpolate {
    fill-level [ 80 100 ];
    drop-probability [ 80 100 ];
  }
}
dp-high {
  interpolate {
    fill-level [ 60 80 ];
    drop-probability [ 80 100 ];
  }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

Configuring the Scheduler Maps

CLI Quick Configuration

To quickly configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the `[edit]` hierarchy level, and then enter `commit` from configuration mode.
set class-of-service scheduler-maps tcp-map-cvlan0 forwarding-class voice scheduler sched-cvlan0-qx
set class-of-service scheduler-maps tcp-map-cvlan0 forwarding-class video scheduler sched-cvlan0-qx
set class-of-service scheduler-maps tcp-map-cvlan0 forwarding-class data scheduler sched-cvlan0-qx
set class-of-service scheduler-maps tcp-map-cvlan1 forwarding-class voice scheduler sched-cvlan1-q0
set class-of-service scheduler-maps tcp-map-cvlan1 forwarding-class video scheduler sched-cvlan1-qx
set class-of-service scheduler-maps tcp-map-cvlan1 forwarding-class data scheduler sched-cvlan1-qx
set class-of-service scheduler-maps tcp-map-cvlanx forwarding-class voice scheduler sched-cvlanx-qx
set class-of-service scheduler-maps tcp-map-cvlanx forwarding-class video scheduler sched-cvlanx-qx
set class-of-service scheduler-maps tcp-map-cvlanx forwarding-class data scheduler sched-cvlanx-qx

Step-by-Step Procedure

To configure three scheduler maps:

1. Create the first scheduler map.

 [edit class-of-service scheduler-maps]
 user@host# set tcp-map-cvlan0 forwarding-class voice scheduler sched-cvlan0-qx
 user@host# set tcp-map-cvlan0 forwarding-class video scheduler sched-cvlan0-qx
 user@host# set tcp-map-cvlan0 forwarding-class data scheduler sched-cvlan0-qx

2. Create the second scheduler map.

 [edit class-of-service scheduler-maps]
 user@host# set tcp-map-cvlan1 forwarding-class voice scheduler sched-cvlan1-q0
 user@host# set tcp-map-cvlan1 forwarding-class video scheduler sched-cvlan1-qx
 user@host# set tcp-map-cvlan1 forwarding-class data scheduler sched-cvlan1-qx

3. Create the third scheduler map.

 [edit class-of-service scheduler-maps]
 user@host# set tcp-map-cvlanx forwarding-class voice scheduler sched-cvlanx-qx
 user@host# set tcp-map-cvlanx forwarding-class video scheduler sched-cvlanx-qx
 user@host# set tcp-map-cvlanx forwarding-class data scheduler sched-cvlanx-qx

Results

From configuration mode, confirm your configuration by entering the `show class-of-service scheduler-maps` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.
If you are done configuring the device, enter **commit** from configuration mode.

Applying Traffic Control Profiles

CLI Quick Configuration

To quickly configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter **commit** from configuration mode.

```
set class-of-service interfaces ge-1/0/0 output-traffic-control-profile tcp-500m-shaping-rate
set class-of-service interfaces ge-1/0/0 unit 0 output-traffic-control-profile tcp-cvlan0
set class-of-service interfaces ge-1/0/0 unit 1 output-traffic-control-profile tcp-cvlan1
set class-of-service interfaces ge-1/0/0 unit 2 output-traffic-control-profile tcp-cvlan2
set class-of-service interfaces ge-1/0/0 unit 3 output-traffic-control-profile tcp-cvlan3
set class-of-service interfaces ge-1/0/0 unit 4 output-traffic-control-profile tcp-cvlan4
set class-of-service interfaces interface-set svlan0 output-traffic-control-profile tcp-svlan0
set class-of-service interfaces interface-set svlan1 output-traffic-control-profile tcp-svlan1
```

Step-by-Step Procedure

To apply traffic control profiles:

1. Set the traffic control profile for the interface.

    ```
    [edit class-of-service interfaces ge-1/0/0]
    user@host# set output-traffic-control-profile tcp-500m-shaping-rate
    ```
2. Set the traffic control profiles for the C-VLANs.

```
[edit class-of-service interfaces ge-1/0/0]
user@host# set unit 0 output-control-traffic-control-profile tcp-cvlan0
user@host# set unit 1 output-control-traffic-control-profile tcp-cvlan1
user@host# set unit 2 output-control-traffic-control-profile tcp-cvlan2
user@host# set unit 3 output-control-traffic-control-profile tcp-cvlan3
user@host# set unit 4 output-control-traffic-control-profile tcp-cvlan4
```

3. Set the traffic control profiles for the S-VLANs.

```
[edit class-of-service interfaces]
user@host# set interface-set-svlan0 output-control-traffic-control-profile tcp-svlan0
user@host# set interface-set-svlan1 output-control-traffic-control-profile tcp-svlan1
```

Results

From configuration mode, confirm your configuration by entering the `show class-of-service interfaces` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show class-of-service interfaces
ge-1/0/0 { 
    output-traffic-control-profile tcp-500m-shaping-rate;
    unit 0 { 
        output-traffic-control-profile tcp-cvlan0;
    }
    unit 1 { 
        output-traffic-control-profile tcp-cvlan1;
    }
    unit 2 { 
        output-traffic-control-profile tcp-cvlan2;
    }
    unit 3 { 
        output-traffic-control-profile tcp-cvlan3;
    }
    unit 4 { 
        output-traffic-control-profile tcp-cvlan4;
    }
}
interface-set svlan0 { 
    output-traffic-control-profile tcp-svlan0;
```
If you are done configuring the device, enter `commit` from configuration mode.

Verification

Verifying Scheduler Hierarchy Configuration

Purpose
Verify that the scheduler hierarchy is configured properly.

Action
From operational mode, enter the following commands:

- `show interface ge-1/0/0`
- `show class-of-service interfaces`
- `show class-of-service traffic-control-profiles`
- `show class-of-service schedulers`
- `show class-of-service drop-profiles`
- `show class-of-service scheduler-maps`

RELATED DOCUMENTATION

- Understanding Hierarchical Schedulers | 209
- Example: Controlling Remaining Traffic | 232
- Understanding Internal Scheduler Nodes | 213

Example: Controlling Remaining Traffic

IN THIS SECTION

- Requirements | 233
- Overview | 233
This example shows how to control remaining traffic from the remaining logical interfaces.

Requirements

Before you begin:

- Review how to configure schedulers. See “Example: Configuring Class-of-Service Schedulers on a Security Device” on page 112.
- Review how to configure and apply scheduler maps. See "Example: Configuring and Applying Scheduler Maps" on page 130.

Overview

To configure transmit rate guarantees for the remaining traffic, you configure the `output-traffic-control-profile-remaining` statement specifying a guaranteed rate for the remaining traffic. Without this statement, the remaining traffic gets a default, minimal bandwidth. Similarly, you can specify the `shaping-rate` and `delay-buffer-rate` statements in the traffic control profile referenced with the `output-traffic-control-profile-remaining` statement to shape and provide buffering for remaining traffic.

In the interface shown in Figure 12 on page 234, customer VLANs 3 and 4 have no explicit traffic control profile. However, the service provider might want to establish a shaping and guaranteed transmit rate for aggregate traffic heading for those C-VLANs. The solution is to configure and apply a traffic control profile for all remaining traffic on the interface.
Example 1 considers the case where C-VLANs 3 and 4 have no explicit traffic control profile, yet need to establish a shaping and guaranteed transmit rate for traffic heading for those C-VLANs. The solution is to add a traffic control profile to the svlan1 interface set. This example builds on the example used in “Example: Configuring a Four-Level Scheduler Hierarchy” on page 216 and does not repeat all configuration details, only those at the S-VLAN level.

Next, consider Example 2 shown in Figure 13 on page 234.

Figure 13: Example 2 Handling Remaining Traffic with an Interface Set

In Example 2, ge-1/0/0 has five logical interfaces (C-VLAN 0, 1, 2, 3 and 4), and S-VLAN 0, which are covered by the interface set:

- Scheduling for the interface set svlan0 is specified by referencing an output-traffic-control-profile statement, which specifies the guaranteed-rate, shaping-rate, and delay-buffer-rate statement values for the interface set. In this example, the output traffic control profile called tcp-svlan0 guarantees 100 Mbps and shapes the interface set svlan0 to 200 Mbps.

- Scheduling and queuing for remaining traffic of svlan0 is specified by referencing an output-traffic-control-profile-remaining statement, which references a scheduler-map statement that
establishes queues for the remaining traffic. The specified traffic control profile can also configure guaranteed, shaping, and delay-buffer rates for the remaining traffic. In Example 2, `output-traffic-control-profile-remaining tcp-svlan0-rem` references `scheduler-map smap-svlan0-rem`, which calls for a best-effort queue for remaining traffic (that is, traffic on unit 3 and unit 4, which is not classified by the `svlan0` interface set). The example also specifies a guaranteed-rate of 200 Mbps and a shaping-rate of 300 Mbps for all remaining traffic.

- Scheduling and queuing for logical interface `ge-1/0/0 unit 1` is configured “traditionally” and uses an output-traffic-control-profile specified for that unit. In this example, `output-traffic-control-profile tcp-ifl1` specifies scheduling and queuing for `ge-1/0/0 unit 1`.

Configuration

This section contains the following topics:

Controlling Remaining Traffic With No Explicit Traffic Control Profile

CLI Quick Configuration

To quickly configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```plaintext
set class-of-service interfaces interface-set svlan0 output-traffic-control-profile tcp-svlan0
set class-of-service interfaces interface-set svlan1 output-traffic-control-profile tcp-svlan1
set class-of-service interfaces interface-set svlan1 output-traffic-control-profile-remaining tcp-svlan1-remaining
set class-of-service traffic-control-profiles tcp-svlan1 shaping-rate 400m guaranteed-rate 300m
set class-of-service traffic-control-profiles tcp-svlan1-remaining shaping-rate 300m guaranteed-rate 200m
set class-of-service traffic-control-profiles tcp-svlan1-remaining scheduler-map smap-remainder
```

Step-by-Step Procedure

To control remaining traffic with no explicit traffic control profile:

1. Set the logical interfaces for the S-VLANs.
2. Set the shaping and guaranteed transmit rates for traffic heading for those C-VLANs.

Results

From configuration mode, confirm your configuration by entering the `show class-of-service interfaces` and `show class-of-service traffic-control-profiles` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

If you are done configuring the device, enter `commit` from configuration mode.
Controlling Remaining Traffic With An Interface Set

CLI Quick Configuration
To quickly configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set class-of-service interfaces interface-set svlan0 output-traffic-control-profile tcp-svlan0
set class-of-service interfaces ge-1/0/0 output-traffic-control-profile-remaining tcp-svlan0-rem unit 1
set class-of-service traffic-control-profiles tcp-svlan0 shaping-rate 200m guaranteed-rate 100m
set class-of-service traffic-control-profiles tcp-svlan0-rem shaping-rate 300m guaranteed-rate 200m
set class-of-service scheduler-maps smap-svlan0-rem
set class-of-service scheduler-maps smap-ifl1 forwarding-class best-effort scheduler-sched-foo
set class-of-service scheduler-maps smap-ifl1 forwarding-class assured-forwarding scheduler-sched-bar
```

Step-by-Step Procedure
To control remaining traffic with an interface set:

1. Set the interface set for the S-VLAN.

 [edit class-of-service interfaces]
 user@host# set interface-set svlan0 output-traffic-control-profile tcp-svlan0
 user@host# set ge-1/0/0 output-traffic-control-profile-remaining tcp-svlan0-rem unit 1

2. Set the traffic control profiles.

 [edit class-of-service traffic-control-profiles]
 user@host# set tcp-svlan0 shaping-rate 200m guaranteed-rate 100m
 user@host# set tcp-svlan0-rem shaping-rate 300m guaranteed-rate 200m scheduler-map smap-svlan0-rem
 user@host# set tcp-ifl1 scheduler-map smap-ifl1

3. Set the scheduler map.

 [edit class-of-service scheduler-maps]
 user@host# set smap-svlan0-rem forwarding-class best-effort scheduler-sched-foo
 user@host# set smap-ifl1 forwarding-class best-effort scheduler-sched-bar
 user@host# set smap-ifl1 forwarding-class assured-forwarding scheduler-sched-bar
Results

From configuration mode, confirm your configuration by entering the `show class-of-service interfaces`, `show class-of-service traffic-control-profiles`, and `show class-of-service scheduler-maps` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it. Example 2 does not include the [edit interfaces] configuration.

```plaintext
[edit]
user@host# show class-of-service interfaces
interface-set {
  svlan0 {
    output-traffic-control-profile tcp-svlan0; # Guarantee & shaper for svlan0
  }
}
ge-1/0/0 {
  output-traffic-control-profile-remaining tcp-svlan0-rem
    # Unit 3 and 4 are not explicitly configured, but captured by ‘remaining’
  unit 1 {
    output-traffic-control-profile tcp-ifl1; # Unit 1 be & ef queues
  }
}

[edit]
user@host# show class-of-service traffic-control-profiles
tcp-svlan0 {
  shaping-rate 200m;
  guaranteed-rate 100m;
}
tcp-svlan0-rem {
  shaping-rate 300m;
  guaranteed-rate 200m;
  scheduler-map smap-svlan0-rem; # This specifies queues for remaining traffic
}
tcp-ifl1 {
  scheduler-map smap-ifl1;
}

[edit]
user@host# show class-of-service scheduler-maps
smap-svlan0-rem {
  forwarding-class best-effort scheduler sched-foo;
}
smap-ifl1 {
  forwarding-class best-effort scheduler sched-bar;
  forwarding-class assured-forwarding scheduler sched-baz;
```
If you are done configuring the device, enter `commit` from configuration mode.

The configuration for the referenced schedulers is not given for this example.

Verification

Verifying Remaining Traffic Control

Purpose
Verify that the remaining traffic is controlled properly.

Action
From operational mode, enter the following commands:

- `show class-of-service interfaces`
- `show class-of-service traffic-control-profiles`
- `show class-of-service scheduler-maps`

RELATED DOCUMENTATION

| Understanding Hierarchical Schedulers | 209 |
CHAPTER 14

Configuring Class of Service for IPv6 Traffic

In This Chapter

- CoS Functions for IPv6 Traffic Overview | 241
- Understanding CoS with DSCP IPv6 BA Classifier | 243
- Example: Configuring CoS with DSCP IPv6 BA Classifiers | 246
- Understanding DSCP IPv6 Rewrite Rules | 250
- Example: Configuring CoS with DSCP IPv6 Rewrite Rules | 251

CoS Functions for IPv6 Traffic Overview

Class-of-service (CoS) processing for IPv6 traffic uses the IPv6 DiffServ code point (DSCP) value. The IPv6 DSCP value is the first six bits in the 8-bit Traffic Class field of the IPv6 header. The DSCP value is used to determine the behavior aggregate (BA) classification for the packet entering the network device. You use classifier rules to map the DSCP code points to a forwarding class and packet loss priority. You use rewrite rules to map the forwarding class and packet loss priority back to DSCP values on packets exiting the device.

Figure 14 on page 242 shows the components of the CoS features for Juniper Networks devices, illustrating the sequence in which they interact.
CoS components perform the following operations:

- BA classifier rules map DSCP code points to a forwarding class and loss priority. The forwarding class and loss priority determine the per-hop behavior of the packet throughout the system. The forwarding class associates a packet with an outbound transmission queue. Loss priority affects the scheduling of a packet without affecting the relative ordering of packets. BA classification is a simple way that “downstream” nodes can honor the CoS objectives that were encoded “upstream.”

 See “Example: Configuring CoS with DSCP IPv6 BA Classifiers” on page 246.

- Multifield classifier rules overwrite the initial forwarding class and loss priority determination read by the BA classifier rule. You typically use multifield classifier rules on nodes close to the content origin, where a packet might not have been encoded with the desired DSCP values in the headers. A multifield classifier rule assigns packets to a forwarding class and assigns a packet loss priority based on filters, such as source IP, destination IP, port, or application.

 See “Example: Configuring and Applying a Firewall Filter for a Multifield Classifier” on page 59.

- Input policers meter traffic to see if traffic flow exceeds its service level. Policers might discard, change the forwarding class and loss priority, or set the packet loss priority bit of a packet. A packet for which the packet loss priority bit is set has an increased probability of being dropped during congestion.

- Scheduler maps are applied to interfaces and associate the outgoing packets with a scheduler and a forwarding class.

 The scheduler manages the output transmission queue, including:

 - Buffer size—Defines the period for which a packet is stored during congestion.
 - Scheduling priority and transmit rate—Determines the order in which a packet is transmitted.
- Drop profile—Defines how aggressively to drop a packet that is using a particular scheduler. See "Example: Configuring Class-of-Service Schedulers on a Security Device" on page 112.

- Output policers meter traffic and might change the forwarding class and loss priority of a packet if a traffic flow exceeds its service level.

- Rewrite rules map forwarding class and packet loss priority to DSCP values. You typically use rewrite rules in conjunction with multifield classifier rules close to the content origin, or when the device is at the border of a network and must alter the code points to meet the policies of the targeted peer. See “Example: Configuring CoS with DSCP IPv6 Rewrite Rules” on page 251.

Only BA classification rules and rewrite rules require special consideration to support CoS for IPv6 traffic. The program logic for the other CoS features is not sensitive to differences between IPv4 and IPv6 traffic.

RELATED DOCUMENTATION

Understanding CoS with DSCP IPv6 BA Classifier	243
Example: Configuring CoS with DSCP IPv6 BA Classifiers	246
Understanding DSCP IPv6 Rewrite Rules	250
Example: Configuring CoS with DSCP IPv6 Rewrite Rules	251

Understanding CoS with DSCP IPv6 BA Classifier

A behavior aggregate (BA) classifier rule maps DSCP code points to a forwarding class and loss priority. The forwarding class and loss priority determine the per-hop behavior of the packet throughout the system. The forwarding class associates a packet with an outbound transmission queue. Loss priority affects the scheduling of a packet without affecting the relative ordering of packets.

BA classification can be applied within one DiffServ domain or between two domains, where each domain honors the CoS results generated by the other domain. Table 39 on page 243 shows the mapping for the default DSCP IPv6 BA classifier.

Table 39: Default IPv6 BA Classifier Mapping

<table>
<thead>
<tr>
<th>Code Points</th>
<th>DSCP IPv6 Alias</th>
<th>Forwarding Class</th>
<th>Packet Loss Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>101110</td>
<td>ef</td>
<td>expedited-forwarding</td>
<td>low</td>
</tr>
<tr>
<td>001010</td>
<td>af11</td>
<td>assured-forwarding</td>
<td>low</td>
</tr>
<tr>
<td>001100</td>
<td>af12</td>
<td>assured-forwarding</td>
<td>high</td>
</tr>
</tbody>
</table>
Table 39: Default IPv6 BA Classifier Mapping (continued)

<table>
<thead>
<tr>
<th>Code Points</th>
<th>DSCP IPv6 Alias</th>
<th>Forwarding Class</th>
<th>Packet Loss Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>001110</td>
<td>af13</td>
<td>assured-forwarding</td>
<td>high</td>
</tr>
<tr>
<td>010010</td>
<td>af21</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>010100</td>
<td>af22</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>010110</td>
<td>af23</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>011010</td>
<td>af31</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>011100</td>
<td>af32</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>011110</td>
<td>af33</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>100010</td>
<td>af41</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>100100</td>
<td>af42</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>100110</td>
<td>af43</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>000000</td>
<td>be</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>001000</td>
<td>cs1</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>010000</td>
<td>cs2</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>011000</td>
<td>cs3</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>100000</td>
<td>cs4</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>101000</td>
<td>cs5</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>110000</td>
<td>nc1/cs6</td>
<td>network-control</td>
<td>low</td>
</tr>
<tr>
<td>111000</td>
<td>nc2/cs7</td>
<td>network-control</td>
<td>low</td>
</tr>
</tbody>
</table>

You can use the CLI `show` command to display the settings for the CoS classifiers. The following command shows the settings for the default DSCP IPv6 classifier:

```
user@host# show class-of-service classifier type dscp-ipv6
```
Classifier: dscp-ipv6-default, Code point type: dscp-ipv6, Index: 8

<table>
<thead>
<tr>
<th>Code point</th>
<th>Forwarding class</th>
<th>Loss priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>000001</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>000010</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>000011</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>000100</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>000101</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>011011</td>
<td>best-effort</td>
<td>low</td>
</tr>
</tbody>
</table>

...

Classifier: dscp-ipv6-compatibility, Code point type: dscp-ipv6, Index: 9

<table>
<thead>
<tr>
<th>Code point</th>
<th>Forwarding class</th>
<th>Loss priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>000001</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>000010</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>000011</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>000100</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>000101</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>000110</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>000111</td>
<td>best-effort</td>
<td>low</td>
</tr>
</tbody>
</table>

...

NOTE: The predefined classifier named **dscp-ipv6-compatibility** maps all code point loss priorities to low. It maps 110000 and 111000 (typically seen in network control packets) to the network-control class and all other code points to the best-effort class. The **dscp-ipv6-compatibility** classifier is an implicit classifier similar to **ipprec-compatibility**, which is provided to map IP precedence bits in IPv4 traffic when no classifier has been configured.

RELATED DOCUMENTATION

- **Example: Configuring CoS with DSCP IPv6 BA Classifiers** | 246
- **CoS Functions for IPv6 Traffic Overview** | 241
- **Understanding DSCP IPv6 Rewrite Rules** | 250
- **Example: Configuring CoS with DSCP IPv6 Rewrite Rules** | 251
Example: Configuring CoS with DSCP IPv6 BA Classifiers

This example shows how to associate an interface with a default or user-defined DSCP IPv6 BA classifier.

Requirements

Before you begin, configure the ge-0/0/0 interface on the device for IPv6 and define your user-defined DSCP IPv6 classifier settings. See “Understanding CoS with DSCP IPv6 BA Classifier” on page 243.

Overview

In this example, you configure CoS and define forwarding classes. You create the behavior aggregate classifier for DiffServ CoS as dscp-ipv6-example and import the default DSCP IPv6 classifier.

You then specify the best-effort forwarding class as be-class, the expedited forwarding class as ef-class, the assured forwarding class as af-class, and the network control forwarding class as nc-class. Finally, you apply your user-defined classifier to interface ge-0/0/0.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set class-of-service forwarding-classes queue 0 be-class
set class-of-service forwarding-classes queue 1 ef-class
set class-of-service forwarding-classes queue 2 af-class
set class-of-service forwarding-classes queue 3 nc-class
set class-of-service classifiers dscp-ipv6 dscp-ipv6-example import default
```
Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure CoS with a user-defined DSCP IPv6 BA classifier:

1. Configure CoS.

   ```
   [edit]
   user@host# edit class-of-service
   ```

2. Define forwarding classes.

   ```
   [edit class-of-service]
   user@host# set forwarding-classes queue 0 be-class
   user@host# set forwarding-classes queue 1 ef-class
   user@host# set forwarding-classes queue 2 af-class
   user@host# set forwarding-classes queue 3 nc-class
   ```

3. Create a behavior aggregate classifier for DiffServ CoS.

   ```
   [edit class-of-service]
   user@host# edit classifiers dscp-ipv6 dscp-ipv6-example
   ```

4. Import a DSCP IPv6 classifier.

   ```
   [edit class-of-service classifiers dscp-ipv6 dscp-ipv6-example]
   user@host# set import default
   ```

5. Specify a best-effort forwarding class classifier.
6. Specify an expedited forwarding class classifier.

```
[edit class-of-service classifiers dscp-ipv6 dscp-ipv6-example]
user@host# set forwarding-class ef-class loss-priority high code-points 101111
```

7. Specify an assured forwarding class classifier.

```
[edit class-of-service classifiers dscp-ipv6 dscp-ipv6-example]
user@host# set forwarding-class af-class loss-priority high code-points 001100
```

8. Specify a network control forwarding class classifier.

```
[edit class-of-service classifiers dscp-ipv6 dscp-ipv6-example]
user@host# set forwarding-class nc-class loss-priority high code-points 110001
```

9. Associate a user-defined classifier with an interface.

```
[edit class-of-service]
user@host# set interfaces ge-0/0/0 unit 0 classifiers dscp-ipv6 dscp-ipv6-example
```

Results

From configuration mode, confirm your configuration by entering the `show class-of-service` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show class-of-service
classifiers {

dscp-ipv6 dscp-ipv6-example {

ingo default;
forwarding-class be-class {
    loss-priority high code-points 000001;
}
forwarding-class ef-class {
    loss-priority high code-points 101111;
}
```
If you are done configuring the device, enter `commit` from configuration mode.

Verification

Verifying the CoS with DSCP IPv6 BA Classifier Configuration

Purpose

Verify that the user-defined DSCP IPv6 BA classifier is associated with an interface.

Action

From configuration mode, enter the `show class-of-service` command.

RELATED DOCUMENTATION

- Understanding CoS with DSCP IPv6 BA Classifier | 243
- CoS Functions for IPv6 Traffic Overview | 241
- Understanding DSCP IPv6 Rewrite Rules | 250
Understanding DSCP IPv6 Rewrite Rules

After Junos OS CoS processing, a rewrite rule maps the forwarding class and loss priority after Junos OS CoS processing to a corresponding DSCP value specified in the rule. Typically, you use rewrite rules to alter the CoS values in outgoing packets to meet the requirements of the targeted peer.

You can use the CLI show command to display the configuration for the CoS classifiers. The following command shows the configuration of the default DSCP IPv6 rewrite rule:

```
user@host# show class-of-service rewrite-rule type dscp-ipv6
```

| Rewrite rule: dscp-ipv6-default, Code point type: dscp-ipv6, Index: 32 |
|---------------------------------|-----------------|----------------|
| Forwarding class | Loss priority | Code point |
| best-effort | low | 000000 |
| best-effort | high | 000000 |
| expedited-forwarding | low | 101110 |
| expedited-forwarding | high | 101110 |
| assured-forwarding | low | 001010 |
| assured-forwarding | high | 001100 |
| network-control | low | 110000 |
| network-control | high | 111000 |

RELATED DOCUMENTATION

- Example: Configuring CoS with DSCP IPv6 Rewrite Rules | 251
- CoS Functions for IPv6 Traffic Overview | 241
- Understanding CoS with DSCP IPv6 BA Classifier | 243
- Example: Configuring CoS with DSCP IPv6 BA Classifiers | 246
Example: Configuring CoS with DSCP IPv6 Rewrite Rules

This example shows how to associate an interface with a default or user-defined DSCP IPv6 rewrite rule. Typically, you use rewrite rules to alter CoS values in outgoing packets to meet the requirements of the targeted peer.

Requirements

Before you begin, configure the ge-0/0/0 interface on the device for IPv6 and define your user-defined DSCP IPv6 rewrite rules.

Overview

In this example, you configure CoS and create a user-defined rewrite rule called rewrite-ipv6-dscps. You then specify rewrite rules for the best-effort forwarding class as be-class, the expedited forwarding class as ef-class, the assured forwarding class as af-class, and the network control forwarding class as nc-class. Finally, you associate interface ge-0/0/0 with the user-defined rule.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```plaintext
set class-of-service rewrite-rules dscp-ipv6 rewrite-ipv6-dscps
set class-of-service rewrite-rules dscp-ipv6 rewrite-ipv6-dscps forwarding-class be-class loss-priority low code-point 000000
set class-of-service rewrite-rules dscp-ipv6 rewrite-ipv6-dscps forwarding-class be-class loss-priority high code-point 000001
```
Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure a CoS with a user-defined DSCP IPv6 rewrite rule:

1. Configure CoS.

   ```
   [edit]
   user@host# edit class-of-service
   ```

2. Create a user-defined rewrite rule.

   ```
   [edit class-of-service]
   user@host# edit rewrite-rules dscp-ipv6 rewrite-ipv6-dscps
   ```


   ```
   [edit class-of-service rewrite-rules dscp-ipv6 rewrite-ipv6-dscps]
   user@host# set forwarding-class be-class loss-priority low code-point 000000
   user@host# set forwarding-class be-class loss-priority high code-point 000001
   ```

4. Specify rewrite rules for the expedited-forwarding forwarding class.

   ```
   [edit class-of-service rewrite-rules dscp-ipv6 rewrite-ipv6-dscps]
   user@host# set forwarding-class ef-class loss-priority low code-point 101110
   user@host# set forwarding-class ef-class loss-priority high code-point 101111
   ```
5. Specify rewrite rules for the assured-forwarding forwarding class.

```bash
[edit class-of-service rewrite-rules dscp-ipv6 rewrite-ipv6-dscps]
user@host# set forwarding-class af-class loss-priority low code-point 001010
user@host# set forwarding-class af-class loss-priority high code-point 001100
```


```bash
[edit class-of-service rewrite-rules dscp-ipv6 rewrite-ipv6-dscps]
user@host# set forwarding-class nc-class loss-priority low code-point 110000
user@host# set forwarding-class nc-class loss-priority high code-point 110001
```

7. Associate an interface with a user-defined rule.

```bash
[edit class-of-service]
user@host# set interfaces ge-0/0/0 unit 0 rewrite-rules dscp-ipv6 rewrite-ipv6-dscps
```

Results

From configuration mode, confirm your configuration by entering the `show class-of-service` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```bash
[edit]
user@host# show class-of-service
interfaces {
    ge-0/0/0 {
        unit 0 {
            rewrite-rules {
                dscp-ipv6 rewrite-ipv6-dscps;
            }
        }
    }
    rewrite-rules {
        dscp-ipv6 rewrite-ipv6-dscps {
            forwarding-class be-class {
                loss-priority low code-point 000000;
                loss-priority high code-point 000001;
            }
            forwarding-class ef-class {
                loss-priority low code-point 101110;
            }
        }
    }
}
```
If you are done configuring the device, enter commit from configuration mode.

Verification

Verifying the CoS with DSCP IPv6 Rewrite Rule Configuration

Purpose
Verify that the user-defined CoS with DSCP IPv6 rewrite rule is associated with an interface.

Action
From configuration mode, enter the show class-of-service command.

RELATED DOCUMENTATION

- Understanding DSCP IPv6 Rewrite Rules | 250
- CoS Functions for IPv6 Traffic Overview | 241
- Understanding CoS with DSCP IPv6 BA Classifier | 243
- Example: Configuring CoS with DSCP IPv6 BA Classifiers | 246
Configuring Class of Service for I/O Cards
CHAPTER 15

Configuring Class of Service for I/O Cards

IN THIS CHAPTER

- PIR-Only and CIR Mode Overview | 256
- Understanding Priority Propagation | 258
- Understanding IOC Hardware Properties | 260
- Understanding IOC Map Queues | 262
- WRED on the IOC Overview | 263
- MDRR on the IOC Overview | 267
- CoS Support on the SRX5000 Module Port Concentrator Overview | 270
- Example: Configuring CoS on SRX5000 Devices with an MPC | 271

PIR-Only and CIR Mode Overview

IN THIS SECTION

- PIR-only Mode | 256
- CIR Mode | 257

The actual behavior of many CoS parameters, especially the shaping rate and guaranteed rate, depends on whether the physical interface is operating in one of the following modes:

PIR-only Mode

In PIR-only (peak information rate) mode, one or more nodes perform shaping. The physical interface is in PIR-only mode if no child (or grandchild) node under the port has a guaranteed rate configured. The mode of the port is important because in PIR-only mode, the scheduling across the child nodes is in proportion to their shaping rates (PIRs) and not the guaranteed rates (CIRs). This can be important if the observed behavior is not what is anticipated.
In PIR-only mode, nodes cannot send if they are above the configured shaping rate. Table 40 on page 257 shows the mapping between the configured priority and the hardware priority for PIR-only.

Table 40: Internal Node Queue Priority for PIR-Only Mode

<table>
<thead>
<tr>
<th>Configured Priority</th>
<th>Hardware Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strict-high</td>
<td>0</td>
</tr>
<tr>
<td>High</td>
<td>0</td>
</tr>
<tr>
<td>Medium-high</td>
<td>1</td>
</tr>
<tr>
<td>Medium-low</td>
<td>1</td>
</tr>
<tr>
<td>Low</td>
<td>2</td>
</tr>
</tbody>
</table>

CIR Mode

In CIR (committed information rate) mode, one or more nodes applies a guaranteed rate and might perform shaping. A physical interface is in CIR mode if at least one child (or grandchild) node has a guaranteed rate configured. In addition, any child or grandchild node under the physical interface can have a shaping rate configured. Only the guaranteed rate matters. In CIR mode, nodes that do not have a guaranteed rate configured are assumed to have a very small guaranteed rate (queuing weight).

In CIR mode, the priority for each internal node depends on whether the highest active child node is above or below the guaranteed rate. Table 41 on page 257 shows the mapping between the highest active child's priority and the hardware priority below and above the guaranteed rate.

Table 41: Internal Node Queue Priority for CIR Mode

<table>
<thead>
<tr>
<th>Configured Priority of Highest Active Child Node</th>
<th>Hardware Priority Below Guaranteed Rate</th>
<th>Hardware Priority Above Guaranteed Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strict-high</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>High</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Medium-high</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Medium-low</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Low</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
SRX5600 and SRX5800 devices with input/output cards (IOCs) perform priority propagation. Priority propagation is useful for mixed traffic environments when, for example, you want to make “Understanding IOC Map Queues” on page 262 sure that the voice traffic of one customer does not suffer from the data traffic of another customer. Nodes and queues are always serviced in the order of their priority. The priority of a queue is decided by configuration (the default priority is low) in the scheduler. However, not all elements of hierarchical schedulers have direct priorities configured. Internal nodes, for example, must determine their priority in other ways.

The priority of any internal node is decided as follows:

• By the highest priority of an active child (interface sets only take the highest priority of their active children)

• Whether the node is above its configured guaranteed rate (CIR) or not (this is relevant only if the physical interface is in CIR mode)

Each queue has a configured priority and a hardware priority. Table 42 on page 258 shows the usual mapping between the configured priority and the hardware priority.

Table 42: Queue Priority

<table>
<thead>
<tr>
<th>Configured Priority</th>
<th>Hardware Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strict-high</td>
<td>0</td>
</tr>
<tr>
<td>High</td>
<td>0</td>
</tr>
<tr>
<td>Medium-high</td>
<td>1</td>
</tr>
<tr>
<td>Medium-low</td>
<td>1</td>
</tr>
<tr>
<td>Low</td>
<td>2</td>
</tr>
</tbody>
</table>
Figure 15 on page 259 shows a physical interface with hierarchical schedulers configured. The configured priorities are shown for each queue at the top of the figure. The hardware priorities for each node are shown in parentheses. Each node also shows any configured shaping rate (PIR) or guaranteed rate (CIR) and whether or not the queues are above or below the CIR. The nodes are shown in one of the following three states:

- Above the CIR (clear)
- Below the CIR (dark)
- Condition where the CIR does not matter (gray)

Figure 15: Hierarchical Schedulers and Priorities

In Figure 15 on page 259, the strict high queue for C-VLAN 0 (cvlan 0) receives service first, even though the C-VLAN is above the configured CIR. Once that queue has been drained, and the priority of the node has become 3 instead of 0 (because of the lack of strict-high traffic), the system moves on to the medium queues (cvlan 1 and cvlan 3), draining them in a round-robin fashion where empty queues lose their hardware priority. The low queue on cvlan 4 (priority 2) is sent next because that mode is below the CIR. Then, the high queues on cvlan 0 and cvlan2 (both now with priority 3) are drained in a round-robin fashion, and finally the low queue on cvlan 0 is drained (because vlan 0 has a priority of 3).

RELATED DOCUMENTATION

- PIR-Only and CIR Mode Overview | 256
- Understanding IOC Hardware Properties | 260
- Understanding IOC Map Queues | 262
- WRED on the IOC Overview | 263
- MDRR on the IOC Overview | 267
Understanding IOC Hardware Properties

On SRX5600 and SRX5800 devices, two IOCs (40x1GE IOC and 4x10GE IOC) are supported on which you can configure schedulers and queues. You can configure 15 VLAN sets per Gigabit Ethernet (40x1GE IOC) port and 255 VLAN sets per 10-Gigabit Ethernet (4x10GE IOC) port. The IOC performs priority propagation from one hierarchy level to another, and drop statistics are available on the IOC per color per queue instead of just per queue.

SRX5600 and SRX5800 devices with IOCs have Packet Forwarding Engines that can support up to 512 MB of frame memory, and packets are stored in 512-byte frames. Table 43 on page 260 compares the major properties of the Packet Forwarding Engine within the IOC.

Table 43: Packet Forwarding Engine Properties within 40x1GE IOC and 4x10GE IOC

<table>
<thead>
<tr>
<th>Feature</th>
<th>PFE Within 40x1GE IOC and 4x10GE IOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of usable queues</td>
<td>16,000</td>
</tr>
<tr>
<td>Number of shaped logical interfaces</td>
<td>2,000 with 8 queues each, or 4,000 with 4 queues each.</td>
</tr>
<tr>
<td>Number of hardware priorities</td>
<td>4</td>
</tr>
<tr>
<td>Priority propagation</td>
<td>Yes</td>
</tr>
<tr>
<td>Dynamic mapping</td>
<td>Yes: schedulers per port are not fixed.</td>
</tr>
<tr>
<td>Drop statistics</td>
<td>Per queue per color (PLP high, low)</td>
</tr>
</tbody>
</table>

Additionally, the IOC features also support hierarchical weighted random early detection (WRED).

The IOC supports the following hierarchical scheduler characteristics:

- Shaping at the physical interface level
- Shaping and scheduling at the service VLAN interface set level
- Shaping and scheduling at the customer VLAN logical interface level
- Scheduling at the queue level

The IOC supports the following features for scalability:

- 16,000 queues per PFE
- 4 PFEs per IOC
 - 4000 schedulers at logical interface level (level 3) with 4 queues each
 - 2000 schedulers at logical interface level (level 3) with 8 queues each
• 255 schedulers at the interface set level (level 2) per 1-port PFE on a 10-Gigabit Ethernet IOC (4x10GE IOC)

• 15 schedulers at the interface set level (level 2) per 10-port PFE on a 1-Gigabit Ethernet IOC (40x1GE IOC)

• About 400 milliseconds of buffer delay (this varies by packet size and if large buffers are enabled)

• 4 levels of priority (strict-high, high, medium, and low)

NOTE: The exact option for a transmit-rate (transmit-rate rate exact) is not supported on the IOCs on SRX Series devices.

NOTE: The above information is mostly for IOC1 cards. For MPC (IOC2), MPC3 (IOC3), and IOC4 cards (which use a subset of the CoS features available on IOC1), you can configure IEEE 802.1p classifiers, IEEE 802.1p rewrites, eight priority queues, and schedulers. After configuration, the classifiers and rewrites can be applied to logical interfaces, and queues and schedulers can be applied to physical interfaces.

• Due to hardware limitation, per-unit-scheduler or hierarchical-scheduler is not supported. Only the default mode is supported for egress scheduling and queuing.

• When an SPU is too busy to process every ingress packets from NG-IOCs, some high priority packets - for example, voice packets - may be delayed or dropped inside the SRX5600 or SRX 5800 chassis.

RELATED DOCUMENTATION

PIR-Only and CIR Mode Overview	256
Understanding Priority Propagation	258
Understanding IOC Map Queues	262
WRED on the IOC Overview	263
MDRR on the IOC Overview	267
Understanding IOC Map Queues

The manner in which the IOC maps a queue to a scheduler depends on whether 8 queues or 4 queues are configured. By default, a scheduler at level 3 has 4 queues. Level 3 scheduler X controls queue X∗4 to X∗4+3, so that scheduler 100 (for example) controls queues 400 to 403. However, when 8 queues per scheduler are enabled, the odd-numbered schedulers are disabled, allowing twice the number of queues per subscriber as before. With 8 queues, level 3 scheduler X controls queue X∗4 to X∗4+7, so that scheduler 100 (for example) now controls queues 400 to 407.

You configure the max-queues-per-interface statement to set the number of queues at 4 or 8 at the FPC level of the hierarchy. Changing this statement will result in a restart of the FPC.

The IOC maps level 3 (customer VLAN) schedulers in groups to level 2 (service VLAN) schedulers. Sixteen contiguous level 3 schedulers are mapped to level 2 when 4 queues are enabled, and 8 contiguous level 3 schedulers are mapped to level 2 when 8 queues are enabled. All the schedulers in the group should use the same queue priority mapping. For example, if the queue priorities of one scheduler are high, medium, and low, all members of the group should have the same queue priority.

Groups at level 3 to level 2 can be mapped at any time. However, a group at level 3 can only be unmapped from a level 2 scheduler, and only if all the schedulers in the group are free. Once unmapped, a level 3 group can be remapped to any level 2 scheduler. There is no restriction on the number of level 3 groups that can be mapped to a particular level 2 scheduler. There can be 256 level 3 groups, but fragmentation of the scheduler space can reduce the number of schedulers available. In other words, there are scheduler allocation patterns that might fail even though there are free schedulers.

In contrast to level 3 to level 2 mapping, the IOC maps level 2 (service VLAN) schedulers in a fixed mode to level 1 (physical interface) schedulers. On 40-port Gigabit Ethernet IOCs, there are 16 level 1 schedulers, and 10 of these are used for the physical interfaces. There are 256 level 2 schedulers, or 16 per level 1 schedulers. A level 1 scheduler uses level schedulers X∗16 through X∗16+15. Therefore level 1 scheduler 0 uses level 2 schedulers 0 through 15, level 1 scheduler 1 uses level 2 schedulers 16 through 31, and so on. On 4-port 10-Gigabit Ethernet PICs, there is one level 1 scheduler for the physical interface, and 256 level 2 schedulers are mapped to the single level 1 scheduler.

The maximum number of level 3 (customer VLAN) schedulers that can be used is 4076 (4 queues) or 2028 (8 queues) for the 10-port Gigabit Ethernet Packet Forwarding Engine and 4094 (4 queues) or 2046 (8 queues) for the 10-Gigabit Ethernet Packet Forwarding Engine.

RELATED DOCUMENTATION

- PIR-Only and CIR Mode Overview | 256
- Understanding Priority Propagation | 258
- Understanding IOC Hardware Properties | 260
Shaping to drop out-of-profile traffic is done on the IOC at all levels except the queue level. However, weighed random early discard (WRED) is done at the queue level with much the same result. With WRED, the decision to drop or send the packet is made before the packet is placed in the queue.

WRED shaping on the IOC involves two levels. The probabilistic drop region establishes a minimum and a maximum queue depth. Below the minimum queue depth, the drop probability is 0 (send). Above the maximum level, the drop probability is 100 (certainty).

There are four drop profiles associated with each queue. These correspond to each of four loss priorities (low, medium-low, medium-high, and high). Sixty-four sets of four drop profiles are available (32 for ingress and 32 for egress). In addition, there are eight WRED scaling profiles in each direction.

An example of an IOC drop profile for expedited forwarding traffic is as follows:

```plaintext
[edit class-of-service drop-profiles]
drop-ef {
  fill-level 20 drop-probability 0; # Minimum Q depth
  fill-level 100 drop-probability 100; # Maximum Q depth
}
```

NOTE: You can specify only two fill levels for the IOC.

You can configure the `interpolate` statement, but only two fill levels are used. The `delay-buffer-rate` statement in the traffic control profile determines the maximum queue size. This delay buffer rate is
converted to packet delay buffers, where one buffer is equal to 512 bytes. For example, at 10 Mbps, the IOC will allocate 610 delay buffers when the delay buffer rate is set to 250 milliseconds. The WRED threshold values are specified in terms of absolute buffer values.

The WRED scaling factor multiples all WRED thresholds (both minimum and maximum) by the value specified. There are eight values in all: 1, 2, 4, 8, 16, 32, 64, and 128. The WRED scaling factor is chosen to best match the user-configured drop profiles. This is done because the hardware supports only certain values of thresholds (all values must be a multiple of 16). So if the configured value of a threshold is 500 (for example), the multiple of 16 is 256 and the scaling factor applied is 2, making the value 512, which allows the value of 500 to be used. If the configured value of a threshold is 1500, the multiple of 16 is 752 and the scaling factor applied is 2, making the value 1504, which allows the value of 1500 to be used.

Hierarchical RED is used to support the oversubscription of the delay buffers (WRED is configured only at the queue, physical interface, and PIC levels). Hierarchical RED works with WRED as follows:

- If any level accepts the packet (the queue depth is less than the minimum buffer levels), this level accepts the packet.
- If any level probabilistically drops the packet, then this level drops the packet.

However, these rules might lead to the accepting of packets under loaded conditions that might otherwise have been dropped. In other words, the logical interface will accept packets if the physical interface is not congested.

Because of the limits placed on shaping thresholds used in the hierarchy, there is a granularity associated with the IOCs. The shaper accuracies differ at various levels of the hierarchy:

- Level 3
- Level 2
- Level 1

Shapers at the logical interface level (level 3) are more accurate than shapers at the interface set level (level 2) or at the port level (level 1).

This section contains the following topics:

Shapers at the Logical Interface Level (Level 3)

Because of the limits placed on shaping thresholds used in the hierarchy, there is a granularity associated with the IOCs. The shaper accuracies differ at various levels of the hierarchy, with shapers at the logical interface level (level 3) being more accurate than shapers at the interface set level (level 2) or at the port level (level 1). Table 44 on page 265 shows the accuracy of the logical interface shaper at various speeds for Ethernet ports operating at 1 Gbps.
Table 44: Shaper Accuracy of 1-Gbps Ethernet at the Logical Interface Level

<table>
<thead>
<tr>
<th>Range of Logical Interface Shaper</th>
<th>Step Granularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 4.096 Mbps</td>
<td>16 Kbps</td>
</tr>
<tr>
<td>4.096 to 8.192 Mbps</td>
<td>32 Kbps</td>
</tr>
<tr>
<td>8.192 to 16.384 Mbps</td>
<td>64 Kbps</td>
</tr>
<tr>
<td>16.384 to 32.768 Mbps</td>
<td>128 Kbps</td>
</tr>
<tr>
<td>32.768 to 65.535 Mbps</td>
<td>256 Kbps</td>
</tr>
<tr>
<td>65.535 to 131.072 Mbps</td>
<td>512 Kbps</td>
</tr>
<tr>
<td>131.072 to 262.144 Mbps</td>
<td>1024 Kbps</td>
</tr>
<tr>
<td>262.144 to 1 Gbps</td>
<td>4096 Kbps</td>
</tr>
</tbody>
</table>

Table 45 on page 265 shows the accuracy of the logical interface shaper at various speeds for Ethernet ports operating at 10 Gbps.

Table 45: Shaper Accuracy of 10-Gbps Ethernet at the Logical Interface Level

<table>
<thead>
<tr>
<th>Range of Logical Interface Shaper</th>
<th>Step Granularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 10.24 Mbps</td>
<td>40 Kbps</td>
</tr>
<tr>
<td>10.24 to 20.48 Mbps</td>
<td>80 Kbps</td>
</tr>
<tr>
<td>10.48 to 40.96 Mbps</td>
<td>160 Kbps</td>
</tr>
<tr>
<td>40.96 to 81.92 Mbps</td>
<td>320 Kbps</td>
</tr>
<tr>
<td>81.92 to 163.84 Mbps</td>
<td>640 Kbps</td>
</tr>
<tr>
<td>163.84 to 327.68 Mbps</td>
<td>1280 Kbps</td>
</tr>
<tr>
<td>327.68 to 655.36 Mbps</td>
<td>2560 Kbps</td>
</tr>
<tr>
<td>655.36 to 2611.2 Mbps</td>
<td>10240 Kbps</td>
</tr>
<tr>
<td>2611.2 to 5222.4 Mbps</td>
<td>20480 Kbps</td>
</tr>
<tr>
<td>5222.4 to 10 Gbps</td>
<td>40960 Kbps</td>
</tr>
</tbody>
</table>
Shapers at the Interface Set Level (Level 2)

Table 46 on page 266 shows the accuracy of the interface set shaper at various speeds for Ethernet ports operating at 1 Gbps.

Table 46: Shaper Accuracy of 1-Gbps Ethernet at the Interface Set Level

<table>
<thead>
<tr>
<th>Range of Interface Set Shaper</th>
<th>Step Granularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 20.48 Mbps</td>
<td>80 Kbps</td>
</tr>
<tr>
<td>20.48 Mbps to 81.92 Mbps</td>
<td>320 Kbps</td>
</tr>
<tr>
<td>81.92 Mbps to 327.68 Mbps</td>
<td>1.28 Mbps</td>
</tr>
<tr>
<td>327.68 Mbps to 1 Gbps</td>
<td>20.48 Mbps</td>
</tr>
</tbody>
</table>

Table 47 on page 266 shows the accuracy of the interface set shaper at various speeds for Ethernet ports operating at 10 Gbps.

Table 47: Shaper Accuracy of 10-Gbps Ethernet at the Interface Set Level

<table>
<thead>
<tr>
<th>Range of Interface Set Shaper</th>
<th>Step Granularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 128 Mbps</td>
<td>500 Kbps</td>
</tr>
<tr>
<td>128 Mbps to 512 Mbps</td>
<td>2 Mbps</td>
</tr>
<tr>
<td>512 Mbps to 2.048 Gbps</td>
<td>8 Mbps</td>
</tr>
<tr>
<td>2.048 Gbps to 10 Gbps</td>
<td>128 Mbps</td>
</tr>
</tbody>
</table>

Shapers at the Port Level (Level 1)

Table 48 on page 266 shows the accuracy of the physical port shaper at various speeds for Ethernet ports operating at 1 Gbps.

Table 48: Shaper Accuracy of 1-Gbps Ethernet at the Physical Port Level

<table>
<thead>
<tr>
<th>Range of Physical Port Shaper</th>
<th>Step Granularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 64 Mbps</td>
<td>250 Kbps</td>
</tr>
<tr>
<td>64 Mbps to 256 Mbps</td>
<td>1 Mbps</td>
</tr>
</tbody>
</table>
Table 48: Shaper Accuracy of 1-Gbps Ethernet at the Physical Port Level (continued)

<table>
<thead>
<tr>
<th>Range of Physical Port Shaper</th>
<th>Step Granularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>256 Mbps to 1 Gbps</td>
<td>4 Mbps</td>
</tr>
</tbody>
</table>

Table 49 on page 267 shows the accuracy of the physical port shaper at various speeds for Ethernet ports operating at 10 Gbps.

Table 49: Shaper Accuracy of 10-Gbps Ethernet at the Physical Port Level

<table>
<thead>
<tr>
<th>Range of Physical Port Shaper</th>
<th>Step Granularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 640 Mbps</td>
<td>2.5 Mbps</td>
</tr>
<tr>
<td>640 Mbps to 2.56 Gbps</td>
<td>10 Mbps</td>
</tr>
<tr>
<td>2.56 Gbps to 10 Gbps</td>
<td>40 Mbps</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- PIR-Only and CIR Mode Overview | 256
- Understanding Priority Propagation | 258
- Understanding IOC Hardware Properties | 260
- Understanding IOC Map Queues | 262
- MDRR on the IOC Overview | 267

MDRR on the IOC Overview

The guaranteed rate CIR at the interface set level is implemented by using modified deficit round-robin (MDRR). The IOC hardware provides four levels of strict priority. There is no restriction on the number of queues for each priority. MDRR is used among queues of the same priority. Each queue has one priority when it is under the guaranteed rate and another priority when it is over the guaranteed rate but still under the shaping rate PIR. The IOC hardware implements the priorities with 256 service profiles. Each service profile assigns eight priorities for eight queues. One set is for logical interfaces under the guaranteed rate and another set is for logical interfaces over the guaranteed rate but under the shaping rate. Each service profile is associated with a group of 16 level 3 schedulers, so there is a unique service profile available for all 256 groups at level 3, giving 4,096 logical interfaces.
Junos OS provides three priorities for traffic under the guaranteed rate and one reserved priority for traffic over the guaranteed rate that is not configurable. Junos OS provides three priorities when there is no guaranteed rate configured on any logical interface.

Table 50 on page 268 shows the relationship between Junos OS priorities and the IOC hardware priorities below and above the guaranteed rate CIR.

Table 50: Junos Priorities Mapped to IOC Hardware Priorities

<table>
<thead>
<tr>
<th>Junos OS Priority</th>
<th>IOC Hardware Priority Below Guaranteed Rate</th>
<th>IOC Hardware Priority Above Guaranteed Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strict-high</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>High</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Medium-high</td>
<td>Medium-high</td>
<td>Low</td>
</tr>
<tr>
<td>Medium-low</td>
<td>Medium-high</td>
<td>Low</td>
</tr>
<tr>
<td>Low</td>
<td>Medium-low</td>
<td>Low</td>
</tr>
</tbody>
</table>

The Junos OS parameters are set in the scheduler map:

```
[edit class-of-service schedulers]
  best-effort-scheduler {
    transmit-rate percent 30; # if no shaping rate
    buffer-size percent 30;
    priority high;
  }
  expedited-forwarding-scheduler {
    transmit-rate percent 40; # if no shaping rate
    buffer-size percent 40;
    priority strict-high;
  }
```

NOTE: The use of both a shaping rate and a guaranteed rate at the interface set level (level 2) is not supported.

MDRR is provided at three levels of the scheduler hierarchy of the IOC with a granularity of 1 through 255. There are 64 MDRR profiles at the queue level, 16 at the interface set level, and 32 at the physical interface level.
Queue transmit rates are used for queue-level MDRR profile weight calculation. The queue MDRR weight is calculated differently based on the mode set for sharing excess bandwidth. If you configure the `equal` option for excess bandwidth, then the queue MDRR weight is calculated as:

\[
\text{Queue weight} = \frac{255 \times \text{Transmit-rate-percentage}}{100}
\]

If you configure the `proportional` option for excess bandwidth, which is the default, then the queue MDRR weight is calculated as:

\[
\text{Queue weight} = \frac{\text{Queue-transmit-rate}}{\text{Queue-base-rate}}, \text{ where}
\]

\[
\text{Queue-transmit-rate} = \frac{\text{Logical-interface-rate} \times \text{Transmit-rate-percentage}}{100}, \text{ and}
\]

\[
\text{Queue-base-rate} = \frac{\text{Excess-bandwidth-proportional-rate}}{255}
\]

To configure the way that the IOC should handle excess bandwidth, configure the `excess-bandwidth-share` statement at the `[edit interface-set interface-set-name]` hierarchy level. By default, the excess bandwidth is set to `proportional` with a default value of 32.64 Mbps. In this mode, the excess bandwidth is shared in the ratio of the logical interface shaping rates. If set to `equal`, the excess bandwidth is shared equally among the logical interfaces.

The following example sets the excess bandwidth sharing to proportional at a rate of 100 Mbps with a shaping rate of 80 Mbps:

```
[edit interface-set example-interface-set]
excess-bandwidth-share proportional 100m;
output-traffic-control-profile PIR-80Mbps;
```

Shaping rates established at the logical interface level are used to calculate the MDRR weights used at the interface set level. The 16 MDRR profiles are set to initial values, and the closest profile with rounded values is chosen. By default, the physical port MDRR weights are preset to the full bandwidth on the interface.

RELATED DOCUMENTATION

- PIR-Only and CIR Mode Overview | 256
- Understanding Priority Propagation | 258
- Understanding IOC Hardware Properties | 260
- Understanding IOC Map Queues | 262
- WRED on the IOC Overview | 263
CoS Support on the SRX5000 Module Port Concentrator Overview

The SRX5000 Module Port Concentrator (SRX5K-MPC) for the SRX5600 and SRX5800 uses the Trio chipset-based queuing model, which supports class of service (CoS) characteristics that are optimized compared to CoS characteristics supported by the standard queuing model. These CoS features enable SRX5600 and SRX5800 devices to achieve end-to-end quality of service and protect the network using various security functions.

CoS features on the SRX5600 and SRX5800 devices provide differentiated services to traffic in addition to the best-effort packet processing. The main CoS features include classification, CoS field rewriting, queuing, scheduling, and traffic shaping.

When a network experiences congestion and delay, you can use the CoS features to classify packets; assign them with different levels of packet loss priority, delay, and throughput; and mark their CoS-related fields defined in Layer 2 and Layer 3 headers.

The MPC supports the following CoS features:

- BA classifier based on IEEE 802.1p for packet classification (Layer 2 headers) for priority bits of ingress packets
- Rewrite rule based on IEEE 802.1p for priority bits of egress packets

NOTE: You can configure up to 32 IEEE 802.1p rewriters on each SRX5K-MPC on the SRX5600 and SRX5800 devices.

- Eight priority queues per port with configurable schedulers at the egress physical interface

By default, the MPC supports eight queues. You can use the following CLI statement to change that setting to four queues:

```
set chassis fpc fpc-number pic pic-number max-queues-per-interface 4
```

Changing to four-queue mode limits that number of configurable queues to four on the MPC. This does not have any effect on the performance.

The CoS features on the MPC have the following limitations:

- On the MPC, the per-unit-scheduler or the hierarchical-scheduler is not supported. For egress scheduling and queuing, only the default mode is supported.
- When an SPU is too busy to process every ingress packet from the MPC, some high-priority packets, such as voice packets, might be delayed or dropped by the SRX5600 or SRX5800.
NOTE: The total number of classifiers supported on a Services Processing Unit (SPU) is 79. Three classifiers are installed on the SPU as default classifiers in the Layer 3 mode, independent of any CoS configuration, which leaves 76 classifiers that can be configured using the CoS CLI commands. The default classifiers number might vary in future releases or in different modes. You can verify the number of default classifiers installed on the SPU to determine how many classifiers can be configured using the CoS CLI commands.

RELATED DOCUMENTATION

Example: Configuring CoS on SRX5000 Devices with an MPC | 271

Example: Configuring CoS on SRX5000 Devices with an MPC

IN THIS SECTION

- Requirements | 271
- Overview | 272
- Configuration | 273
- Verification | 280

This example shows how to configure CoS on an SRX5000 line device with an MPC.

Requirements

This example uses the following hardware and software components:

- SRX5600 with an SRX5K-MPC
- Junos OS Release 12.1X46-D10 or later for SRX Series

Before you begin:

- Understand CoS. See “Understanding Class of Service” on page 2.
• Understand chassis cluster configuration. See Example: Configuring an Active/Passive Chassis Cluster on SRX5800 Devices.

• Understand chassis cluster redundant interface configuration. See Example: Configuring Chassis Cluster Redundant Ethernet Interfaces.

No special configuration beyond device initialization is required before configuring this feature.

Overview

In this example, you create a behavior aggregate (BA) classifier to classify traffic based on the IEEE 802.1p value of the packet and assign forwarding-class priority queue to the traffic. You then configure the scheduler map and set the priority for the traffic.

By default, the SRX5K-MPC supports eight queues. In this example, you are configuring eight queues.

You apply the BA classifier to the input interface and apply the scheduler map to the output interface.

Table 51 on page 272 and Table 52 on page 272 show forwarding class details with priority, assigned queue numbers, and allocated queue buffers used in this example.

Table 51: Forwarding Class Samples

<table>
<thead>
<tr>
<th>Forwarding Class</th>
<th>Queue Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE</td>
<td>0</td>
</tr>
<tr>
<td>SIG</td>
<td>1</td>
</tr>
<tr>
<td>AF</td>
<td>2</td>
</tr>
<tr>
<td>Bronze-class</td>
<td>3</td>
</tr>
<tr>
<td>Silver-class</td>
<td>4</td>
</tr>
<tr>
<td>Gold-class</td>
<td>5</td>
</tr>
<tr>
<td>Control</td>
<td>6</td>
</tr>
<tr>
<td>VOIP</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 52: Scheduler Samples

<table>
<thead>
<tr>
<th>Scheduler</th>
<th>For CoS Traffic Type</th>
<th>Assigned Priority</th>
<th>Allocated Portion of Queue Buffer (Transmit Rate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>s-be</td>
<td>0</td>
<td>low</td>
<td>15</td>
</tr>
</tbody>
</table>
Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.

```plaintext
set class-of-service classifiers ieee-802.1 c802 forwarding-class BE loss-priority low code-points 000
set class-of-service classifiers ieee-802.1 c802 forwarding-class SIG loss-priority low code-points 001
set class-of-service classifiers ieee-802.1 c802 forwarding-class AF loss-priority low code-points 010
set class-of-service classifiers ieee-802.1 c802 forwarding-class Bronze-Class loss-priority low code-points 011
set class-of-service classifiers ieee-802.1 c802 forwarding-class Silver-Class loss-priority low code-points 100
set class-of-service classifiers ieee-802.1 c802 forwarding-class Gold-Class loss-priority low code-points 101
set class-of-service classifiers ieee-802.1 c802 forwarding-class Central loss-priority low code-points 110
set class-of-service classifiers ieee-802.1 c802 forwarding-class VOIP loss-priority low code-points 111
set class-of-service forwarding-classes class BE queue-num 0
set class-of-service forwarding-classes class SIG queue-num 1
set class-of-service forwarding-classes class AF queue-num 2
set class-of-service forwarding-classes class Bronze-Class queue-num 3
set class-of-service forwarding-classes class Silver-Class queue-num 4
set class-of-service forwarding-classes class Gold-Class queue-num 5
set class-of-service forwarding-classes class Control queue-num 6
set class-of-service forwarding-classes class VOIP queue-num 7
set class-of-service scheduler-maps test forwarding-class BE scheduler s-be
```

Table 52: Scheduler Samples (continued)

<table>
<thead>
<tr>
<th>Scheduler</th>
<th>For CoS Traffic Type</th>
<th>Assigned Priority</th>
<th>Allocated Portion of Queue Buffer (Transmit Rate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>s-sig</td>
<td>1</td>
<td>low</td>
<td>15</td>
</tr>
<tr>
<td>s-af</td>
<td>2</td>
<td>medium-low</td>
<td>20</td>
</tr>
<tr>
<td>s-bronze</td>
<td>3</td>
<td>medium-low</td>
<td>20</td>
</tr>
<tr>
<td>s-silver</td>
<td>4</td>
<td>medium-high</td>
<td>10</td>
</tr>
<tr>
<td>s-gold</td>
<td>5</td>
<td>medium-high</td>
<td>10</td>
</tr>
<tr>
<td>s-nc</td>
<td>6</td>
<td>high</td>
<td>5</td>
</tr>
<tr>
<td>s-voip</td>
<td>7</td>
<td>high</td>
<td>5</td>
</tr>
</tbody>
</table>

Note: The table continues on the next page.
set class-of-service scheduler-maps test forwarding-class SIG scheduler s-sig
set class-of-service scheduler-maps test forwarding-class AF scheduler s-af
set class-of-service scheduler-maps test forwarding-class Bronze-Class scheduler s-bronze
set class-of-service scheduler-maps test forwarding-class Silver-Class scheduler s-silver
set class-of-service scheduler-maps test forwarding-class Gold-Class scheduler s-gold
set class-of-service scheduler-maps test forwarding-class Control scheduler s-nc
set class-of-service scheduler-maps test forwarding-class VOIP scheduler s-voip
set class-of-service rewrite-rules ieee-802.1 rw802 forwarding-class BE loss-priority low code-point 000
set class-of-service rewrite-rules ieee-802.1 rw802 forwarding-class SIG loss-priority low code-point 001
set class-of-service rewrite-rules ieee-802.1 rw802 forwarding-class AF loss-priority low code-point 010
set class-of-service rewrite-rules ieee-802.1 rw802 forwarding-class Bronze-Class loss-priority low code-point 011
set class-of-service rewrite-rules ieee-802.1 rw802 forwarding-class Silver-Class loss-priority low code-point 100
set class-of-service rewrite-rules ieee-802.1 rw802 forwarding-class Gold-Class loss-priority low code-point 101
set class-of-service rewrite-rules ieee-802.1 rw802 forwarding-class Control loss-priority low code-point 110
set class-of-service rewrite-rules ieee-802.1 rw802 forwarding-class VOIP loss-priority low code-point 111
set class-of-service schedulers s-be transmit-rate percent 15
set class-of-service schedulers s-be priority low
set class-of-service schedulers s-sig transmit-rate percent 15
set class-of-service schedulers s-sig priority low
set class-of-service schedulers s-af transmit-rate percent 20
set class-of-service schedulers s-af priority medium-low
set class-of-service schedulers s-bronze transmit-rate percent 20
set class-of-service schedulers s-bronze priority medium-low
set class-of-service schedulers s-silver transmit-rate percent 10
set class-of-service schedulers s-silver priority medium-high
set class-of-service schedulers s-gold transmit-rate percent 10
set class-of-service schedulers s-gold priority medium-high
set class-of-service schedulers s-nc transmit-rate percent 5
set class-of-service schedulers s-nc priority high
set class-of-service schedulers s-voip transmit-rate percent 5
set class-of-service schedulers s-voip priority high
set class-of-service interfaces reth0 unit 0 classifiers ieee-802.1 c802
set class-of-service interfaces reth0 unit 0 rewrite-rules ieee-802.1 rw802
set class-of-service interfaces reth0 scheduler-map test
set class-of-service interfaces reth0 shaping-rate 1g

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure forwarding classes:

1. Configure a classifier.

   ```
   [edit class-of-service]
   user@host# set classifiers ieee-802.1 c802 forwarding-class BE loss-priority low code-points 000
   user@host# set classifiers ieee-802.1 c802 forwarding-class SIG loss-priority low code-points 001
   user@host# set classifiers ieee-802.1 c802 forwarding-class AF loss-priority low code-points 010
   user@host# set classifiers ieee-802.1 c802 forwarding-class Bronze-Class loss-priority low code-points 011
   user@host# set classifiers ieee-802.1 c802 forwarding-class Silver-Class loss-priority low code-points 100
   user@host# set classifiers ieee-802.1 c802 forwarding-class Gold-Class loss-priority low code-points 101
   user@host# set classifiers ieee-802.1 c802 forwarding-class Central loss-priority low code-points 110
   user@host# set classifiers ieee-802.1 c802 forwarding-class VOIP loss-priority low code-points 111
   ```

2. Assign best-effort traffic to queue.

   ```
   [edit class-of-service forwarding-classes class]
   user@host# BE queue-num 0
   user@host# SIG queue-num 1
   user@host# AF queue-num 2
   user@host# Bronze-Class queue-num 3
   user@host# Silver-Class queue-num 4
   user@host# Gold-Class queue-num 5
   user@host# Control queue-num 6
   user@host# VOIP queue-num 7
   ```

3. Define mapping of forwarding classes to packet schedulers.

   ```
   [edit class-of-service]
   user@host# set scheduler-maps test forwarding-class BE scheduler s-be
   user@host# set scheduler-maps test forwarding-class SIG scheduler s-sig
   user@host# set scheduler-maps test forwarding-class AF scheduler s-af
   user@host# set scheduler-maps test forwarding-class Bronze-Class scheduler s-bronze
   user@host# set scheduler-maps test forwarding-class Silver-Class scheduler s-silver
   user@host# set scheduler-maps test forwarding-class Gold-Class scheduler s-silver
   user@host# set scheduler-maps test forwarding-class Control scheduler s-nc
   user@host# set scheduler-maps test forwarding-class VOIP scheduler s-voip
   ```

4. Configure the CoS rewrite rules to map the forwarding class to the desired value for the 802.1p field.
5. Configure eight packet schedulers with scheduling priority and transmission rates.

6. Apply the classifier and rewrite rules to interfaces.

7. Apply the scheduler-map “test” to an interface.
8. Apply the shaping rates to control the maximum rate of traffic transmitted on an interface.

```
user@host# set interfaces reth0 scheduler-map test

user@host# set interfaces reth0 shaping-rate 1g
```

Results

From configuration mode, confirm your configuration by entering the `show xxx` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```c
classifiers {
  ieee-802.1 c802 {
    forwarding-class BE {
      loss-priority low code-points 000;
    }
    forwarding-class SIG {
      loss-priority low code-points 001;
    }
    forwarding-class AF {
      loss-priority low code-points 010;
    }
    forwarding-class Bronze-Class {
      loss-priority low code-points 011;
    }
    forwarding-class Silver-Class {
      loss-priority low code-points 100;
    }
    forwarding-class Gold-Class {
      loss-priority low code-points 101;
    }
    forwarding-class Control {
      loss-priority low code-points 110;
    }
    forwarding-class VOIP {
      loss-priority low code-points 111;
    }
  }
}
```
class BE queue-num 0;
class SIG queue-num 1;
class VOIP queue-num 7;
class AF queue-num 2;
class Bronze-Class queue-num 3;
class Silver-Class queue-num 4;
class Gold-Class queue-num 5;
class Control queue-num 6;
}

interfaces {
 reth0 {
 shaping-rate 1g;
 unit 0 {
 scheduler-map test;
 }
 }
 reth0 {
 shaping-rate 1g;
 unit 0 {
 classifiers {
 ieee-802.1 c802;
 }
 rewrite-rules {
 ieee-802.1 rw802;
 }
 }
 }
}
rewrite-rules {
 ieee-802.1 rw802 {
 forwarding-class BE {
 loss-priority low code-point 000;
 }
 forwarding-class SIG {
 loss-priority low code-point 001;
 }
 forwarding-class AF {
 loss-priority low code-point 010;
 }
 forwarding-class Bronze-Class {
 loss-priority low code-point 011;
 }
 forwarding-class Silver-Class {
 loss-priority low code-point 100;
 }
 }
}
forwarding-class Gold-Class {
 loss-priority low code-point 101;
}
forwarding-class Control {
 loss-priority low code-point 110;
}
forwarding-class VOIP {
 loss-priority low code-point 111;
}
}
}
scheduler-maps {
 test {
 forwarding-class BE scheduler s-be;
 forwarding-class VOIP scheduler s-voip;
 forwarding-class Gold-Class scheduler s-gold;
 forwarding-class SIG scheduler s-sig;
 forwarding-class AF scheduler s-af;
 forwarding-class Bronze-Class scheduler s-bronze;
 forwarding-class Silver-Class scheduler s-silver;
 forwarding-class Control scheduler s-nc;
 }
}
}
schedulers {
 s-be {
 transmit-rate percent 15;
 priority low;
 }
 s-nc {
 transmit-rate percent 5;
 priority high;
 }
 s-gold {
 transmit-rate percent 10;
 priority medium-high;
 }
 s-sig {
 transmit-rate percent 15;
 priority low;
 }
 s-af {
 transmit-rate percent 20;
 priority medium-low;
If you are done configuring the device, enter **commit** from configuration mode.

Verification

IN THIS SECTION

- Verifying Class-of-Service Configuration | 280
- Verifying the Number of Dedicated Queues Configured on MPC Interfaces | 281

Confirm that the configuration is working properly.

Verifying Class-of-Service Configuration

Purpose
Verify that CoS is configured.

Action
From operational mode, enter the **show class-of-service classifier** command.

```
user@host> show class-of-service classifier type ieee-802.1
```

<table>
<thead>
<tr>
<th>Forwarding class</th>
<th>ID</th>
<th>Queue</th>
<th>Restricted queue</th>
<th>Fabric priority</th>
<th>Policing</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>low</td>
<td></td>
</tr>
</tbody>
</table>
Verifying the Number of Dedicated Queues Configured on MPC Interfaces

Purpose
Display the number of dedicated queue resources that are configured for the interfaces on a port.

Action
From operational mode, enter the `show class-of-service interface` command.

```bash
user@host> show class-of-service interface reth0
```

Physical interface: reth0, Index: 129
Queues supported: 8, Queues in use: 4
Scheduler map: <default>, Index: 2
Congestion-notification: Disabled

Logical interface: reth0.0, Index: 71
```

<table>
<thead>
<tr>
<th>Object</th>
<th>Name</th>
<th>Type</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classifier</td>
<td>dscp-ipv6-compatibility</td>
<td>dscp-ipv6</td>
<td>9</td>
</tr>
<tr>
<td>Classifier</td>
<td>ipprec-compatibility</td>
<td>ip</td>
<td>13</td>
</tr>
</tbody>
</table>

Logical interface: reth1.32767, Index: 70

RELATED DOCUMENTATION
Configuration Statements and Operational Commands
Configuration Statements

IN THIS CHAPTER

- adaptive-shaper | 286
- adaptive-shapers | 287
- application-traffic-control | 288
- buffer-size (Schedulers) | 290
- classifiers (CoS) | 292
- code-points (CoS) | 293
- default (CoS) | 294
- drop-profile-map (Schedulers) | 295
- dscp-code-point (CoS Host Outbound Traffic) | 296
- egress-shaping-overhead | 298
- forwarding-class (CoS Host Outbound Traffic) | 300
- forwarding-classes (CoS) | 301
- frame-relay-de (CoS Interfaces) | 304
- frame-relay-de (CoS Loss Priority) | 305
- frame-relay-de (CoS Rewrite Rule) | 306
- host-outbound-traffic (Class-of-Service) | 307
- ingress-policer-overhead | 309
- interfaces (CoS) | 312
- logical-interface-policer | 314
- loss-priority (CoS Loss Priority) | 315
- loss-priority (CoS Rewrite Rules) | 316
- loss-priority-maps (CoS Interfaces) | 317
- loss-priority-maps (CoS) | 318
- non-strict-priority-scheduling | 319
- policer-overhead | 320
- priority (Schedulers) | 322
- rate-limiters | 324
- rewrite-rules (CoS) | 326
- rewrite-rules (CoS Interfaces) | 327
- rule-sets (CoS AppQoS) | 328
- scheduler-map (CoS Virtual Channels) | 330
- schedulers (CoS) | 331
- shaping-rate (CoS Adaptive Shapers) | 332
- shaping-rate (CoS Interfaces) | 333
- shaping-rate (CoS Virtual Channels) | 335
- shaping-rate (Schedulers) | 336
- transmit-rate (Schedulers) | 338
- trigger (CoS) | 340
- tunnel-queuing | 341
- virtual-channels | 342
- virtual-channel-group (CoS Interfaces) | 343
- virtual-channel-groups | 344
adaptive-shaper

Syntax

adaptive-shaper adaptive-shaper-name;

Hierarchy Level

[edit class-of-service interfaces interface-name unit logical-unit-number]

Release Information

Statement introduced in Release 8.5 of Junos OS.

Description

Assign an adaptive shaper to an interface.

Adaptive shapers enable bandwidth limits on Frame Relay interfaces when the device receives frames containing the backward explicit congestion notification (BECN) bit.

Options

adaptive-shaper-name—Name of the adaptive shaper.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| adaptive-shapers | 287 |
| Junos OS Class of Service Configuration Guide for Security Devices |
adaptive-shapers

Syntax

adaptive-shapers {
  adaptive-shaper-name {
    trigger type shaping-rate (percent percentage | rate);
  }
}

Hierarchy Level

[edit class-of-service]

Release Information

Statement introduced in Release 8.5 of Junos OS.

Description

Define trigger types and associated rates. Adaptive shapers enable bandwidth limits on Frame Relay interfaces when the Services Router receives frames containing the backward explicit congestion notification (BECN) bit.

Options

adaptive-shaper-name—Name of the adaptive shaper.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

interface— view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

adaptive-shaper | 286

Junos OS Class of Service Configuration Guide for Security Devices
application-traffic-control

Syntax

```
application-traffic-control {
 rate-limiters {
 rate-limiter-name {
 bandwidth-limit value-in-kbps;
 burst-size-limit value-in-bytes;
 }
 }

 rule-sets ruleset-name{
 rule rule-name {
 match {
 application application-name1;
 application-any;
 application-group application-group-name;
 application-known;
 application-unknown;
 }
 then {
 dscp-code-point dscp-value;
 forwarding-class forwarding-class-name;
 log;
 loss-priority [high | medium-high | medium-low | low];
 rate-limit {
 loss-priority-high;
 client-to-server rate-limiter-name;
 server-to-client rate-limiter-name;
 }
 }
 }
 }
}
```

Hierarchy Level

```
[edit class-of-service]
```

Release Information

Statement introduced in Junos OS Release 11.4.
Description
Mark DSCP values for outgoing packets or apply rate limits based on the specified Layer 7 application types.

Options
The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
security—To view this statement in the configuration.
security-control—To add this statement to the configuration.

RELATED DOCUMENTATION
Example: Configuring AppTrack
### buffer-size (Schedulers)

**Syntax**

```plaintext
buffer-size (percent percentage | remainder | shared | temporal microseconds);
```

**Hierarchy Level**

```
[edit class-of-service schedulers scheduler-name]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.1X48 for PTX Series Packet Transport Routers.
Statement introduced in Junos OS Release 12.2 for ACX Series Routers.
`shared` option introduced in Junos OS Release 18.1 for PTX Series Packet Transport Routers.

**Description**

Specify buffer size.

**NOTE:** On PTX Series Packet Transport Routers, buffer-size cannot be configured on rate-limited queues.

**Default**

If you do not include this statement, the default scheduler transmission rate and buffer size percentages for queues 0 through 7 are 95, 0, 0, 5, 0, 0, 0, and 0 percent, respectively.

**Options**

- **percent** `percentage`—Buffer size as a percentage of the total buffer.
  
  Range: 0 through 100

  **NOTE:** For the routers with channelized OC12/STM4 IQE PIC with SFP (PB-4CHOC12-STM4-IQE-SFP) and channelized OC48/STM16 IQE PIC with SFP (PB-1CHOC48-STM16-IQE-SFP), the minimum buffer allocated to any queue is 18,432 bytes. If a queue is configured to have a buffer size less than 18K, the queue retains a buffer size of 18,432 bytes.

- **remainder**—Remaining buffer available.
shared—On PTX Series routers, set a queue’s buffer to be up to 100 percent of the interface’s buffer. This option allows the queue’s buffer to grow as large as 100 percent of the interface’s buffer if and only if it is the only active queue for the interface.

temporal microseconds—Buffer size as a temporal value. The queuing algorithm starts dropping packets when it queues more than a computed number of bytes. This maximum is computed by multiplying the logical interface speed by the configured temporal value.

**Range:** The ranges vary by platform as follows:
- For SRX Series Services Gateways: 1 through 2,000,000 microseconds.
- For vSRX instances: 1 through 32,000,000 microseconds.

**Required Privilege Level**
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**
- Managing Congestion on the Egress Interface by Configuring the Scheduler Buffer Size
- Buffer Size Temporal Value Ranges by Router Type
**classifiers (CoS)**

**Syntax**

```plaintext
classifiers {
 (dscp | dscp-ipv6 | exp | ieee-802.1 | ieee-802.1ad | inet-precedence) classifier-name {
 forwarding-class forwarding-class-name {
 loss-priority (high | low | medium-high | medium-low) {
 code-point alias-or-bit-string ;
 }
 import (default | user-defined;)
 }
 }
}
```

**Hierarchy Level**

```plaintext
[edit class-of-service]
```

**Release Information**

Statement introduced in Junos OS Release 9.2

**Description**

Configure a user-defined behavior aggregate (BA) classifier.

**Options**

- `classifier-name`—User-defined name for the classifier.

- `import (default | user-defined)`—Specify the template to use to map any code points not explicitly mapped in this configuration. For example, if the classifier is of type `dscp` and you specify `import default`, code points you do not map in your configuration will use the predefined DSCP default mapping; if you specify `import mymap`, for example, code points not mapped in the forwarding-class configuration would use the mappings in a user-defined classifier named `mymap`.

- `forwarding-class class-name`—Specify the name of the forwarding class. You can use the default forwarding class names or define new ones.

- `loss-priority level`—Specify a loss priority for this forwarding class: `high`, `low`, `medium-high`, `medium-low`.

- `code-points (alias | bits)`—Specify a code-point alias or the code points that map to this forwarding class.

**Required Privilege Level**

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.
code-points (CoS)

Syntax

code-points [ aliases ] [ 6-bit-patterns ];

Hierarchy Level

[edit class-of-service classifiers type classifier-name forwarding-class class-name]

Release Information
Statement introduced in Junos OS Release 8.5.

Description
Specify one or more DSCP code-point aliases or bit sets for association with a forwarding class.

Options

aliases—Name of the DSCP alias.

6-bit patterns—Value of the code-point bits, in decimal form.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
default (CoS)

Syntax

```
default;
```

Hierarchy Level

```
[edit class-of-service virtual-channel-groups group-name virtual-channel-name]
```

Release Information

Statement introduced in Release 8.5 of Junos OS.

Description

Specify the default channel. You must configure one of the virtual channels in the group to be the default. Any traffic not explicitly directed to a virtual channel is transmitted by way of this default.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- scheduler-map (CoS Virtual Channels) | 330
- shaping-rate (CoS Virtual Channels) | 335
- virtual-channel-group (CoS Interfaces) | 343
- virtual-channel-groups | 344
- virtual-channels | 342

*Junos OS Class of Service Configuration Guide for Security Devices*
drop-profile-map (Schedulers)

Syntax

```
drop-profile-map loss-priority (any | low | medium-low | medium-high | high) protocol (any | non-tcp | tcp) drop-profile (Schedulers) profile-name;
```

Hierarchy Level

```
[edit class-of-service schedulers scheduler-name]
```

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.1X48 for PTX Series Packet Transport Routers.
Statement introduced in Junos OS Release 12.2 for ACX Series Routers.

Description
Define the loss-priority value for a drop profile.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Default Schedulers Overview
- Determining Packet Drop Behavior by Configuring Drop Profile Maps for Schedulers
**dscp-code-point (CoS Host Outbound Traffic)**

**Syntax**

```
dscp-code-point value;
```

**Hierarchy Level**

```
[edit class-of-service host-outbound-traffic]
```

**Release Information**

Statement introduced in Junos OS Release 8.4.
Statement introduced before Junos OS Release 11.4 for EX Series switches.
Support for distributed protocol handler traffic introduced in Junos OS Release 13.2.

**Description**

Specify the value of the DSCP bits in the type of service (ToS) field of host outbound traffic (packets generated by the local Routing Engine) as they are placed in the default or specified output queue on all egress interfaces. This statement does not affect transit traffic or incoming traffic.

If you use the `ping` operational mode command with the `tos type-of-service` option, the value specified in this configuration statement overrides the DSCP value you specify in the `ping` command.

**NOTE:** Any DSCP rewrite rules configured on a 10-Gigabit Ethernet LAN/WAN PIC with SFP+ overwrite this DSCP value.

For egress interfaces hosted on MX Series routers, M120 routers, or Enhanced III FPCs in M320 routers, both Routing Engine sourced traffic and distributed protocol handler traffic are affected. For all other egress interfaces, only Routing Engine sourced traffic is affected.

**Options**

- `code-point`—Six-bit DSCP code point value.

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- *Understanding How Behavior Aggregate Classifiers Prioritize Trusted Traffic*
Default DSCP and DSCP IPv6 Classifiers

Changing the Default Queuing and Marking of Host Outbound Traffic.
egress-shaping-overhead

Syntax

egress-shaping-overhead number;

Hierarchy Level

[edit chassis fpc slot-number pic pic-number traffic-manager],
[edit chassis lcc number fpc slot-number pic pic-number traffic-manager]

Release Information

Statement introduced in Junos OS Release 8.3.

Description

Number of bytes to add to packet to determine shaped session packet length.

NOTE: On M Series and T Series routers with Gigabit Ethernet Intelligent Queuing 2 (IQ2) PICs and Enhanced IQ2 (IQ2E) PICs and on MX Series routers with Dense Port Concentrators (DPCs) only, to account for egress shaping overhead bytes added to output traffic on the line card, you must use the egress-policer-overhead statement to explicitly configure corresponding egress policing overhead for Layer 2 policers, MAC policers, or queue rate limits applied to output traffic on the line card.

NOTE: For MIC and MPC interfaces on MX Series routers, by default the value of egress-shaping-overhead is configured to 20, which means that the number of class-of-service (CoS) shaping overhead bytes to be added to the packets is 20. The interfaces on DPCs in MX Series routers, the default value is zero. For interfaces on PICs other than the 10-port 10-Gigabit Oversubscribed Ethernet (OSE) Type 4, you should configure egress-shaping-overhead to a minimum of 20 bytes to add a shaping overhead of 20 bytes to the packets.

NOTE: When you change the egress-shaping-overhead value, on M Series, T Series, and MX104 routers the PIC on which it is changed is restarted. On MX5 routers, the MIC on which it is changed is restarted. On other MX Series routers, the DPC/MPC on which it is changed is restarted.
**Options**

*number*—When traffic management (queueing and scheduling) is configured on the egress side, the number of CoS shaping overhead bytes to add to the packets on the egress interface.

**Range:**
- –63 through 192.
- –62 through 192 for vSRX.

**NOTE:** The L2 headers (DA/SA + VLAN tags) are automatically a part of the shaping calculation.

**Required Privilege Level**

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- egress-policer-overhead
- Configuring CoS for L2TP Tunnels on ATM Interfaces
- ingress-shaping-overhead
- mode (Layer 2 Tunneling Protocol Shaping), ingress-shaping-overhead
- traffic-manager
forwarding-class (CoS Host Outbound Traffic)

Syntax

forwarding-class class-name;

Hierarchy Level

[edit class-of-service host-outbound-traffic]

Release Information

Statement introduced in Junos OS Release 8.4.
Statement introduced before Junos OS Release 11.4 for EX Series switches.
Support for distributed protocol handler traffic introduced in Junos OS Release 13.2.

Description

Specify the name of the forwarding class to which host outbound traffic is assigned on all egress interfaces. The output queue associated with the forwarding class must be properly configured on all interfaces. In the case of a restricted interface, the traffic flows through a restricted queue.

For egress interfaces hosted on MX Series routers, M120 routers, or Enhanced III FPCs in M320 routers, both Routing Engine sourced traffic and distributed protocol handler traffic are affected. For all other egress interfaces, only Routing Engine sourced traffic is affected.

This statement does not affect transit traffic or incoming traffic.

Default

If you do not configure an output queue for host outbound traffic, the router uses the default queue assignments for host outbound traffic.

Options

class-name—Name of the forwarding class.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Understanding How Forwarding Classes Assign Classes to Output Queues
Default Routing Engine Protocol Queue Assignments | 86
Changing the Default Queuing and Marking of Host Outbound Traffic.
forwarding-classes (CoS)

List of Syntax
SRX Series on page 301
M320, MX Series, T Series, EX Series, PTX Series on page 301

SRX Series

```plaintext
forwarding-classes {
 class class-name {
 priority (high | low);
 queue-num number;
 spu-priority (high | low | medium);
 }
 queue queue-number {
 class-name {
 priority (high | low);
 }
 }
}
```

M320, MX Series, T Series, EX Series, PTX Series

```plaintext
forwarding-classes {
 class queue-num queue-number priority (high | low);
 queue queue-number class-name priority (high | low) [policing-priority (premium | normal)];
}
```

Hierarchy Level

[edit class-of-service]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 8.5.
**policing-priority** option introduced in Junos OS Release 9.5.
Statement updated in Junos OS Release 11.4.
The **spu-priority** option introduced in Junos OS Release 11.4R2.
Change from 2 to 4 queues was made in Junos OS Release 12.3X48-D40 and in Junos OS Release 15.1X49-D70.
**medium-high** and **medium-low** priorities for **spu-priority** are deprecated and **medium** priority is added in Junos OS Release 19.1R1.
Description

Command used to associate forwarding classes with class names and queues with queue numbers.

All traffic traversing the SRX Series device is passed to an SPC to have service processing applied. Junos OS provides a configuration option to enable packets with specific Differentiated Services (DiffServ) code points (DSCP) precedence bits to enter a high-priority queue or a medium-priority queue or low-priority queue on the SPC. The Services Processing Unit (SPU) draws packets from the highest priority queue first, then from the medium priority queue, last from the low priority queue. The processing of queue is weighted-based not strict-priority-based. This feature can reduce overall latency for real-time traffic, such as voice traffic.

Initially, the spu-priority queue options were "high" and "low". Then, these options (depending on the devices) were expanded to "high", "medium-high", "medium-low", and "low". The two middle options ("medium-high" and "medium-low") have now been deprecated (again, depending on the devices) and replaced with "medium". So, the available options for spu-priority queue are "high", "medium", and "low".

We recommend that the high-priority queue be selected for real-time and high-value traffic. The other options would be selected based on user judgement on the value or sensitivity of the traffic.

For M320, MX Series, T Series routers and EX Series switches only, you can configure fabric priority queuing by including the priority statement. For Enhanced IQ PICs, you can include the policing-priority option.

NOTE: The priority and policing-priority options are not supported on PTX Series Packet Transport Routers.
Options

• **class class-name**—Displays the forwarding class name assigned to the internal queue number.

  NOTE: This option is supported only on SRX5400, SRX5600, and SRX5800.

  NOTE: AppQoS forwarding classes must be different from those defined for interface-based rewriters.

• **priority**—Fabric priority value:
  - **high**—Forwarding class’ fabric queuing has high priority.
  - **low**—Forwarding class’ fabric queuing has low priority.

  The default priority is low.

• **queue queue-number**—Specify the internal queue number to which a forwarding class is assigned.

• **spu-priority**—Services Processing Unit (SPU) priority queue, **high**, **medium**, or **low**. The default spu-priority is low.

  NOTE: The spu-priority option is supported only on SRX5000 line devices.

**Required Privilege Level**

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

Example: Configuring AppQoS
Configuring a Custom Forwarding Class for Each Queue
Forwarding Classes and Fabric Priority Queues
Configuring Hierarchical Layer 2 Policers on IQE PICs
Classifying Packets by Egress Interface
frame-relay-de (CoS Interfaces)

Syntax

frame-relay-de (name | default);

Hierarchy Level

[edit class-of-service interfaces interface-name unit logical-unit-number loss-priority-maps],
[edit class-of-service interfaces interface-name unit logical-unit-number rewrite-rules]

Release Information
Statement introduced in Release 8.5 of Junos OS.

Description
Assign the loss priority map or the rewrite rule to a logical interface.

Options
• default—Apply default loss priority map or default rewrite rule. The default loss priority map contains the following settings:
  
  loss-priority low code-point 0;
  loss-priority high code-point 1;

• name—Name of loss priority map or rewrite rule to be applied.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION
**frame-relay-de (CoS Loss Priority)**

**Syntax**

```
frame-relay-de map-name {
 loss-priority level code-point (0 | 1);
}
```

**Hierarchy Level**

```
[edit class-of-service loss-priority-maps]
```

**Release Information**
Statement introduced in Release 8.5 of Junos OS.

**Description**
Define a Frame Relay discard-eligible bit loss-priority map.

**Options**
- **level**—Level of loss priority to be applied based on the specified CoS values. The level can be **low**, **medium-low**, **medium-high**, or **high**.
- **map-name**—Name of the loss-priority map.

The remaining statements are explained separately. See CLI Explorer.

**Required Privilege Level**
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

* Junos OS Class of Service Configuration Guide for Security Devices
frame-relay-de (CoS Rewrite Rule)

Syntax

```plaintext
frame-relay-de rewrite-name {
 forwarding-class class-name {
 loss-priority level code-point (0 | 1);
 }
 import (default | rewrite-name);
}
```

Hierarchy Level

```plaintext
[edit class-of-service rewrite-rules]
```

Release Information

Statement introduced in Release 8.5 of Junos OS.

Description

Define a Frame Relay discard-eligible bit rewrite rule.

Options

- **level**—Level of loss priority on which to base the rewrite rule. The loss priority level can be low, medium-low, medium-high, or high.

- **rewrite-name**—Name of a rewrite-rules mapping configured at the [edit class-of-service rewrite-rules] hierarchy level.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Junos OS Class of Service Configuration Guide for Security Devices
host-outbound-traffic (Class-of-Service)

Syntax

```plaintext
host-outbound-traffic {
 dscp-code-point value;
 forwarding-class class-name;
 ieee-802.1 {
 default value;
 rewrite-rules;
 }
 protocol {
 isis-over-gre {
 dscp-code-point dscp-code-point;
 }
 }
}
```

Hierarchy Level

```
[edit class-of-service]
```

Release Information

Statement introduced in Junos OS Release 8.4.
Statement introduced before Junos OS Release 11.4 for EX Series switches.
Support for `ieee-802.1` statement introduced in Junos OS Release 12.3.
Support for distributed protocol handler traffic introduced in Junos OS Release 13.2.
Support for `protocol` statement introduced in Junos OS Release 17.3 for MX Series and PTX Series devices.

Description

Classify and mark host outbound traffic. This statement does not affect transit traffic or incoming traffic.

Default

If you do not specify a forwarding class or DSCP value, the router uses the default queue and DSCP bit assignments for host outbound traffic.

Options

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
Default Routing Engine Protocol Queue Assignments | 86

Default DSCP and DSCP IPv6 Classifiers

Changing the Default Queuing and Marking of Host Outbound Traffic.

Configuring a Global Default IEEE 802.1p Value for All Host Outbound Traffic

Applying Egress Interface Rewrite Rules to the IEEE 802.1p Field for All Host Outbound Traffic on the Interface
**ingress-policer-overhead**

**Syntax**

```plaintext
ingress-policer-overhead bytes;
```

**Hierarchy Level**

```plaintext
[edit chassis fpc slot-number pic pic-number]
```

**Release Information**

Statement introduced before Junos OS Release 11.1.
Statement introduced in Junos OS Release 15.1X49-D30 for vSRX.

**Description**

Add the configured number of bytes to the length of a packet entering the interface.

Configure a policer overhead to control the rate of traffic received on an interface. Use this feature to help prevent denial-of-service (DoS) attacks or to enforce traffic rates to conform to the service-level agreement (SLA). When you configure a policer overhead, the configured policer overhead value (bytes) is added to the length of the final Ethernet frame. This calculated length of frame is used to determine the policer or the rate-limiting action.

Traffic policing combines the configured policy bandwidth limits and the burst size to determine how to meter the incoming traffic. If you configure a policer overhead on an interface, Junos OS adds those bytes to the length of incoming Ethernet frames. This added overhead fills each frame closer to the burst size, allowing you to control the rate of traffic received on an interface.

You can configure the policer overhead to rate-limit queues and Layer 2 and Layer 3 policers, for standalone (SA) and high-availability (HA) deployments. The policer overhead and the shaping overhead can be configured simultaneously on an interface.

**NOTE:** vSRX supports policer overhead on Layer 3 policers only.

The policer overhead applies to all interfaces on the PIC. In the following example, Junos OS adds 10 bytes of overhead to all incoming Ethernet frames on ports ge-0/0/0 through ge-0/0/4.

```plaintext
set chassis fpc 0 pic 0 ingress-policer-overhead 10
```
NOTE: vSRX only supports fpc 0 pic 0. When you commit the **ingress-policer-overhead** statement, the vSRX takes the PIC offline and then back online.

You need to craft the policer overhead size to match your network traffic. A value that is too low will have minimal impact on traffic bursts. A value that is too high will rate-limit too much of your incoming traffic.

In this example, the policer overhead of 255 bytes is configured for ge-0/0/0 through ge-0/0/4. The firewall policer is configured to discard traffic when the burst size is over 1500 bytes. This policer is applied to ge-0/0/0 and ge 0/0/1. Junos OS adds 255 bytes to every Ethernet frame that comes into the configured ports. If, during a burst of traffic, the combined length of incoming frames and the overhead bytes exceeds 1500 bytes, the policer starts to discard further incoming traffic.

```
set chassis fpc 0 pic 0 ingress-policer-overhead 255
set interfaces ge-0/0/0 unit 0 family inet policer input overhead_policer
set interfaces ge-0/0/0 unit 0 family inet address 10.9.1.2/24
set interfaces ge-0/0/1 unit 0 family inet policer input overhead_policer
set interfaces ge-0/0/1 unit 0 family inet address 10.9.2.2/24
set firewall policer overhead_policer if-exceeding bandwidth-limit 32k
set firewall policer overhead_policer if-exceeding burst-size-limit 1500
set firewall policer overhead_policer then discard
```

**Options**

*bytes*—Number of bytes added to a frame entering an interface.

**Range:** 0–255 bytes

**Default:** 0

```
[edit chassis fpc 0 pic 0]
user@host# set ingress-policer-overhead 10;
```

**Required Privilege Level**

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.
**RELATED DOCUMENTATION**

<table>
<thead>
<tr>
<th>ingress-shaping-overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policer Overhead to Account for Rate Shaping Overview</td>
</tr>
<tr>
<td>Example: Configuring Policer Overhead to Account for Rate Shaping</td>
</tr>
<tr>
<td>Configuring a Policer Overhead</td>
</tr>
<tr>
<td>CoS on Enhanced IQ2 PICs Overview</td>
</tr>
</tbody>
</table>
interfaces (CoS)

Syntax

```
interfaces
 interface-name {
 input-scheduler-map map-name ;
 input-shaping-rate rate ;
 scheduler-map map-name ;
 scheduler-map-chassis map-name ;
 shaping-rate rate ;
 unit logical-unit-number {
 adaptive-shaper adaptive-shaper-name ;
 classifiers {
 (dscp | dscp-ipv6 | exp | ieee-802.1 | inet-precedence)
 (classifier-name | default);
 }
 forwarding-class class-name ;
 fragmentation-map map-name ;
 input-scheduler-map map-name ;
 input-shaping-rate (percent percentage | rate) ;
 input-traffic-control-profile profiler-name shared-instance instance-name ;
 loss-priority-maps {
 default;
 map-name ;
 }
 output-traffic-control-profile profile-name shared-instance instance-name ;
 rewrite-rules {
 dscp (rewrite-name | default);
 dscp-ipv6 (rewrite-name | default);
 exp (rewrite-name | default) protocol protocol-types ;
 frame-relay-de (rewrite-name | default);
 inet-precedence (rewrite-name | default);
 }
 scheduler-map map-name ;
 shaping-rate rate ;
 virtual-channel-group group-name ;
 }
 }
}
```

Hierarchy Level

```
[edit class-of-service interface interface-name unit number]
```
**Release Information**
Statement introduced in Junos OS Release 8.5.

**Description**
Associate the class-of-service configuration elements with an interface.

**Options**

interface interface-name unit number—The user-specified interface name and unit number.

**Required Privilege Level**

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

---

**RELATED DOCUMENTATION**

Class of Service User Guide (Security Devices)
**logical-interface-policer**

**Syntax**

```
logical-interface-policer;
```

**Hierarchy Level**

```
[edit firewall policer policer-name]
```

**Release Information**
Statement introduced in Junos OS Release 9.5.

**Description**
Configure a logical interface (aggregate) policer.

**Required Privilege Level**
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Two-Color Policer Configuration Overview  |  43
- Example: Configuring a Two-Color Logical Interface (Aggregate) Policer  |  47
loss-priority (CoS Loss Priority)

Syntax

```plaintext
loss-priority level code-points [values];
```

Hierarchy Level

```plaintext
[edit class-of-service loss-priority-maps frame-relay-de map-name]
```

Release Information

Statement introduced in Junos OS Release 9.2.

Description

Map CoS values to a packet loss priority (PLP). In Junos OS, classifiers associate incoming packets with a forwarding class (FC) and PLP. PLPs allow you to set the priority for dropping packets. Typically, you mark packets exceeding some service level with a high loss priority—that is, a greater likelihood of being dropped.

Options

- `level` can be one of the following:
  - `high`—Packet has high loss priority.
  - `medium-high`—Packet has medium-high loss priority.
  - `medium-low`—Packet has medium-low loss priority.
  - `low`—Packet has low loss priority.

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- Understanding Interfaces
- Understanding Packet Loss Priorities | 17
loss-priority (CoS Rewrite Rules)

Syntax

loss-priority level;

Hierarchy Level

[edit class-of-service rewrite-rules type rewrite-name forwarding-class class-name]

Release Information
Statement introduced in Junos OS Release 9.2.

Description
Specify a loss priority to which to apply a rewrite rule. The rewrite rule sets the code-point aliases and bit patterns for a specific forwarding class and packet loss priority (PLP). The inputs for the map are the forwarding class and the PLP. The output of the map is the code-point alias or bit pattern.

Options
level can be one of the following:

- **high**—The rewrite rule applies to packets with high loss priority.
- **low**—The rewrite rule applies to packets with low loss priority.
- **medium-high**—The rewrite rule applies to packets with medium-high loss priority.
- **medium-low**—The rewrite rule applies to packets with medium-low loss priority.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Class of Service User Guide (Security Devices) |
loss-priority-maps (CoS Interfaces)

Syntax

```plaintext
loss-priority-maps {
 frame-relay-de (map-name | default);
}
```

Hierarchy Level

```
[edit class-of-service interfaces interface-name unit logical-unit-number]
```

Release Information

Statement introduced in Junos OS Release 9.2.

Description

Assign the loss priority map to a logical interface.

Options

- **default**—Apply default loss priority map. The default map contains the following:

  ```plaintext
 loss-priority low code-point 0;
 loss-priority high code-point 1;
  ```

- **map-name**—Name of loss priority map to be applied.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- *Understanding Interfaces*
loss-priority-maps (CoS)

Syntax

```
loss-priority-maps {
 frame-relay-de loss-priority-map-name {
 loss-priority (high | low | medium-high | medium-low) {
 code-points [bit-string];
 }
 }
}
```

Hierarchy Level

[edit class-of-service]

Release Information
Statement introduced in Junos OS Release 9.2.

Description
Map the loss priority of incoming packets based on CoS values.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Understanding Interfaces |
non-strict-priority-scheduling

Syntax

non-strict-priority-scheduling;

Hierarchy Level

[edit class-of-service],
[edit dynamic-profiles name class-of-service]

Release Information

Statement introduced in Junos OS Release 15.1X49-D80.

NOTE: This statement is supported only on SRX300, SRX320, SRX340, SRX345, SRX550M, SRX1500, and vSRX2.0 devices.

Description

Configure non-strict priority scheduling to avoid starvation of lower-priority queues on SRX300, SRX320, SRX340, SRX345, SRX1500, SRX550M, and vSRX 2.0 devices.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Example: Configuring CoS Non-Strict Priority Scheduling | 151
policer-overhead

Syntax

```
policer-overhead {
 egress bytes;
 ingress bytes;
 policer-overhead-value;
}
```

Hierarchy Level

```
[edit interfaces interface-name unit number]
```

Release Information

Statement introduced in Junos OS Release 18.2R1.

Description

Policer overhead adjustment for the logical interface. The adjustment can be made to ingress policers, egress policers, or both.

NOTE: The policer overhead adjustment only works on the `logical-interface-policer`.

Options

- **egress**—Optional. Egress overhead adjustment in bytes.
  - **Range:** -64 through 64

- **ingress**—Optional. Ingress overhead adjustment in bytes.
  - **Range:** -64 through 64

- **policer-overhead-value**—Policer overhead adjustment to be made in both ingress and egress directions.
  - **Range:** -64 through 64

Required Privilege Level

```
interface
```

RELATED DOCUMENTATION

```
logical-interface-policer | 314
```
| shaping-rate (CoS Interfaces) | 333 |
priority (Schedulers)

Syntax

```
priority priority-level;
```

Hierarchy Level

```
[edit class-of-service schedulers scheduler-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.1X48 for PTX Series Packet Transport Routers.
Statement introduced in Junos OS Release 12.2 for ACX Series Routers.

Description

Specify the packet-scheduling priority value.

Options

`priority-level` can be one of the following:

- **low**—Scheduler has low priority.
- **medium-low**—Scheduler has medium-low priority.
- **medium-high**—Scheduler has medium-high priority.
- **high**—Scheduler has high priority. Assigning high priority to a queue prevents the queue from being underserved.

- **strict-high**—Scheduler has strictly high priority. Configure a `high` priority queue with unlimited transmission bandwidth available to it. As long as it has traffic to send, the `strict-high` priority queue receives precedence over `low`, `medium-low`, and `medium-high` priority queues, but not `high` priority queues. You can configure `strict-high` priority on only one queue per interface.

**NOTE:** The `strict-high` priority level is the only priority level supported on ACX Series Routers. However, multiple strict-high priority queues can be configured per interface on ACX Series Routers.

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.
RELATED DOCUMENTATION

Configuring Schedulers for Priority Scheduling
rate-limiters

Syntax

```plaintext
rate-limiters {
 rate-limiter-name {
 bandwidth-limit value-in-kbps;
 burst-size-limit value-in-bytes;
 }
}
```

Hierarchy Level

```plaintext
[edit class-of-service application-traffic-control]
[edit logical-systems logical-system-name class-of-service application-traffic-control]
[edit tenants tenant-name class-of-service application-traffic-control]
```

Release Information

Statement introduced in Junos OS Release 11.4. Support at the following hierarchy levels introduced in Junos OS Release 19.3R1: [edit logical-systems logical-system-name class-of-service application-traffic-control], and [edit tenants tenant-name class-of-service application-traffic-control].

Description

Share the available bandwidth and burst size of a device’s PICs by defining rate limiter profiles and applying them in AppQoS rules.

Options

- **rate-limiter-name**—Name of the rate limiter. It is applied in AppQoS rules to share device resources based on quality-of-service requirements.

  The combination of rate limiting parameters, namely bandwidth- limit and burst-size-limit rate limit, make up the rate limiter profile. A maximum of 16 profiles are allowed per device. The same profile can be used by multiple rate limiters. For example, a profile with a bandwidth-limit of 200 Kbps and a burst-limit of 130,000 bytes, could be used in several rate limiters.

  A maximum of 1000 rate limiters can be created. Rate limiters are defined for the device, and are assigned in rules in a rule set. A single rate limiter can be used multiple times within the same rule set. However, the rate limiter cannot be used in another rule set.

- **bandwidth-limit value-in-Kbps**—Maximum number of kilobits to be transmitted per second for this rate limiter. Up to 2 GB of bandwidth can be provisioned among multiple rate limiters to share the resource proportionally.
- **burst-size-limit value-in-bytes**—Maximum number of bytes to be transferred in a single burst or time-slice. This limit ensures that a high-priority transmission does not keep a lower priority transmission from transmitting.

  **NOTE:** The number of **bandwidth-limit** and **burst-size-limit** combinations cannot exceed 16.

**Required Privilege Level**
- security—To view this statement in the configuration.
- security-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- *Example: Configuring AppQoS*
**rewrite-rules (CoS)**

**Syntax**

```plaintext
rewrite-rules {
 type rewrite-name {
 import (rewrite-name | default);
 forwarding-class class-name {
 loss-priority level code-point [aliases] [6-bit-patterns];
 }
 }
}
```

**Hierarchy Level**

[edit class-of-service]

**Release Information**

Statement introduced in Release 8.5 of Junos OS. `ieee-802.1ad` option introduced in 9.2 of Junos OS.

**Description**

Specify a rewrite-rules mapping for the traffic that passes through all queues on the interface.

**Options**

- **rewrite-name**—Name of a rewrite-rules mapping.
- **type**—Traffic type.

**Values:** `dscp`, `dscp-ipv6`, `exp`, `frame-relay-de` (J Series only), `ieee-802.1`, `ieee-802.1ad`, `inet-precedence`

The remaining statements are explained separately. See CLI Explorer.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

| rewrite-rules (CoS Interfaces) | 327 |
**rewrite-rules (CoS Interfaces)**

**Syntax**

```plaintext
rewrite-rules {
 dscp (rewrite-name | default);
 dscp-ipv6 (rewrite-name | default);
 exp (rewrite-name | default) protocol protocol-types;
 exp-push-push-push default;
 exp-swap-push-push default;
 ieee-802.1 (rewrite-name | default) vlan-tag (outer | outer-and-inner);
 inet-precedence (rewrite-name | default);
}
```

**Hierarchy Level**

```
[edit class-of-service interfaces interface-name unit logical-unit-number]
```

**Release Information**

Statement introduced in Release 8.5 of Junos OS.

The option to apply IEEE 802.1 rewrite rules to both inner and outer VLAN tags introduced for SRX Series devices in Junos OS Release 18.1.

**Description**

Associate a rewrite-rules configuration or default mapping with a specific interface.

**Options**

- **rewrite-name**—Name of a rewrite-rules mapping configured at the [edit class-of-service rewrite-rules] hierarchy level.

- **default**—The default mapping.

The remaining statements are explained separately. See CLI Explorer.

**Required Privilege Level**

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- **rewrite-rules (CoS) | 326**
rule-sets (CoS AppQoS)

Syntax

```plaintext
rule-sets {
 rule-set-name {
 rule rule-name {
 match {
 application application-name;
 application-any;
 application-group application-group-name;
 application-known;
 application-unknown;
 }
 then {
 dscp-code-point dscp-value;
 forwarding-class forwarding-class-name;
 log;
 loss-priority [high | medium-high | medium-low | low];
 rate-limit {
 loss-priority-high;
 client-to-server rate-limiter-name;
 server-to-client rate-limiter-name;
 }
 }
 }
 }
}
```

Hierarchy Level

- [edit class-of-service application-traffic-control]
- [edit logical-systems logical-system-name class-of-service application-traffic-control]
- [edit tenants tenant-name class-of-service application-traffic-control]

Release Information

Statement introduced in Junos OS Release 11.4.
Support at the following hierarchy levels introduced in Junos OS Release 19.3R1: [edit logical-systems logical-system-name class-of-service application-traffic-control], and [edit tenants tenant-name class-of-service application-traffic-control].

Description
Defines AppQoS rule sets and the rules that establish priorities based on quality-of-service requirements for the associated applications. AppQoS rules can be included in policy statements to implement application-aware quality of service control.

Options
- **rule-set-name**—Name used to refer to a collection of AppQoS rules.
- **rule rule-name**—Name applied to the match criteria and resulting actions that control the quality-of-service provided to any matching applications.
- **application application-name**—Name of the application to be used as match criteria for the rule.
- **application-any**—Any application encountering this rule. Note that when you use this specification, all application matching ends. Any application rule following this one will never be encountered.
- **application-group application-group-name**—Group of applications to be used as match criteria for the rule. Both applications and application groups can be match criteria for a single rule.
- **application-known**—Match criteria specifying any session that is identified, but its corresponding application is not specified.
- **application-unknown**—Match criteria specifying any session that is not identified.
- **forwarding-class forwarding-class-name**—The AppQoS class with which matching applications will be marked. This field identifies the rewriter that has marked the DSCP value. Therefore, the AppQoS forwarding class must be different from those used by IDP or firewall filters. With this class specified, firewall filter class will not overwrite the existing DSCP value.
- **dscp-code-point**—DSCP alias or bit map with which matching applications will be marked to establish the output queue. This value can be marked by rewriters from IDP, AppQoS, or a firewall filter. The forwarding-class value identifies which rewriter has re-marked the packet with the current DSCP value. If a packet triggers all three rewriters, IDP takes precedence over AppQoS, which takes precedence over a firewall filter.
- **loss-priority**—Loss priority with which matching applications will be marked. This value is used to determine the likelihood that a packet would be dropped when encountering congestion. A high loss priority means that there is an 80% chance of packet loss in congestion. Possible values are high, medium-high, medium-low and low.
- **rate-limit**—Rate limiters to be associated with client-to-server and with server-to-client traffic for this application. The rate limiter profile defines maximum speed and volume limits for matching applications.
- **log**—AppQoS event logging.

**Required Privilege Level**

security—To view this statement in the configuration.
security-control—To add this statement to the configuration.
scheduler-map (CoS Virtual Channels)

Syntax

```bash
scheduler-map map-name;
```

Hierarchy Level

```
[edit class-of-service virtual-channel-groups group-name virtual-channel-name]
```

Release Information

Statement introduced in Junos OS Release 9.2.

Description

Apply a scheduler map to this virtual channel.

Options

`map-name`—Name of the scheduler map.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

default (CoS)	294
shaping-rate (CoS Virtual Channels)	335
virtual-channel-group (CoS Interfaces)	343
virtual-channel-groups	344
virtual-channels	342
schedulers (CoS)

Syntax

```plaintext
schedulers {
 scheduler-name {
 adjust-minimum rate;
 adjust-percent percentage;
 buffer-size (seconds | percent percentage | remainder | temporal microseconds);
 drop-profile-map loss-priority (any | low | medium-low | medium-high | high) protocol (any | non-tcp | tcp)
 drop-profile profile-name;
 excess-priority (low | medium-low | medium-high | high | none);
 excess-rate (percent percentage | proportion value);
 priority priority-level;
 shaping-rate (percent percentage | rate);
 transmit-rate (percent percentage | rate | remainder) <exact | rate-limit>;
 }
}
```

Hierarchy Level

```
[edit class-of-service]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.1X48 for PTX Series routers.

Description

Specify the scheduler name and parameter values.

Options

**scheduler-name**—Name of the scheduler to be configured.

The remaining statements are explained separately. Search for a statement in CLI Explorer or click a linked statement in the Syntax section for details.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION
shaping-rate (CoS Adaptive Shapers)

Syntax

```
shaping-rate (percent percentage | rate);
```

Hierarchy Level

```
[edit class-of-service adaptive-shapers adaptive-shaper-name trigger type]
```

Release Information

Statement introduced in Release 8.5 of Junos OS.

Description

Define the list of trigger types and associated rates.

Options

- **percent percentage**—Shaping rate as a percentage of the available interface bandwidth.

  Range: 0 through 100 percent

- **rate**—Peak rate, in bits per second (bps). You can specify a value in bits per second either as a complete decimal number or as a decimal number followed by the abbreviation k (1000), m (1,000,000), or g (1,000,000,000).

  Range: 3200 through 32,000,000,000 bps

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- trigger (CoS) | 340
- Junos OS Class of Service Configuration Guide for Security Devices
shaping-rate (CoS Interfaces)

Syntax

```
shaping-rate rate <overhead bytes> ;
```

Hierarchy Level

```
[edit class-of-service interfaces interface-name],
[edit class-of-service interfaces interface-name unit logical-unit-number]
```

Release Information

Statement introduced in Junos OS Release 9.2.
overhead option introduced in Junos OS Release 18.1.

Description

For logical interfaces on which you configure packet scheduling, configure traffic shaping by specifying the amount of bandwidth to be allocated to the logical interface.

Logical and physical interface traffic shaping can be configured together. This means you can include the shaping-rate statement at the [edit class-of-service interfaces interface interface-name] hierarchy level and the [edit class-of-service interfaces interface interface-name unit logical-unit-number] hierarchy level. If you configure traffic shaping at both the logical and physical interface levels, the logical interface shaping credit is checked and updated before the physical interface shaping credit.

Alternatively, you can configure a shaping rate for a logical interface and oversubscribe the physical interface by including the shaping-rate statement at the [edit class-of-service traffic-control-profiles] hierarchy level. With this configuration approach, you can independently control the delay-buffer rate.

On the physical interface, you can set the Layer 2 overhead adjustment to the shaping rate calculation at egress.

Default

If you do not include this statement at the [edit class-of-service interfaces interface interface-name unit logical-unit-number] hierarchy level, the default logical interface bandwidth is the average of unused bandwidth for the number of logical interfaces that require default bandwidth treatment. If you do not include this statement at the [edit class-of-service interfaces interface interface-name] hierarchy level, the default physical interface bandwidth is the average of unused bandwidth for the number of physical interfaces that require default bandwidth treatment.

Options
rate—Peak rate, in bits per second (bps). You can specify a value in bits per second either as a complete decimal number or as a decimal number followed by the abbreviation k (1000), m (1,000,000), or g (1,000,000,000).

   Range: 1000 through 6,400,000,000,000 bps

overhead—Layer 2 shaping overhead adjustment to be applied at egress (bytes).

   Range: -62 through 192

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| policer-overhead | 320 |
shaping-rate (CoS Virtual Channels)

Syntax

shaping-rate (percent percentage | rate);

Hierarchy Level

[edit class-of-service virtual-channel-groups group-name virtual-channel-name]

Release Information

Statement introduced in Release 8.5 of Junos OS.

Description

Define the shaping rates to be associated with the virtual channel.

Options

- **percent percentage**—Shaping rate as a percentage of the available interface bandwidth.

Range: 0 through 100 percent

- **rate**—Peak rate, in bits per second (bps). You can specify a value in bits per second either as a complete decimal number or as a decimal number followed by the abbreviation k (1000), m (1,000,000), or g (1,000,000,000).

Range: 3200 through 32,000,000,000 bps

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

default (CoS)	294
scheduler-map (CoS Virtual Channels)	330
virtual-channel-group (CoS Interfaces)	343
virtual-channel-groups	344
virtual-channels	342

Junos OS Class of Service Configuration Guide for Security Devices
shaping-rate (Schedulers)

Syntax

shaping-rate (percent percentage | rate) <burst-size bytes>;

Hierarchy Level

[edit class-of-service schedulers scheduler-name]

Release Information
Statement introduced before Junos OS Release 7.4.
The burst-size option added for MIC and MPC interfaces on MX Series routers in Junos OS Release 11.4.
Statement introduced in Junos OS Release 12.2 for ACX Series Routers.

Description
Define a limit on excess bandwidth usage for a forwarding class/queue.

The transmit-rate statement at the [edit class-of-service schedulers scheduler-name] hierarchy level configures the minimum bandwidth allocated to a queue. The transmission bandwidth can be configured as an exact value or allowed to exceed the configured rate if additional bandwidth is available from other queues.

Configure the shaping rate as an absolute maximum usage and not the additional usage beyond the configured transmit rate.

Default
If you do not include this statement, the default shaping rate is 100 percent, which is the same as no shaping at all.

Options

percent percentage—Shaping rate as a percentage of the available interface bandwidth.

Range: 0 through 100 percent
NOTE: If you configure a shaping rate as a percent in a scheduler, the effective shaping rate is calculated based on the following hierarchy:

1. Logical interface shaping rate, if configured
2. Physical interface shaping rate, if configured
3. Physical interface bandwidth

With SRX300, SRX320, SRX340, SRX345, SRX550m, SRX1500, and vSRX2.0 devices, you can configure both logical interface shaping rates and physical interface shaping rates on the same physical interface. On all other models, you can only configure one or the other on a particular physical interface.

**rate**—Peak rate, in bits per second (bps). You can specify a value in bits per second either as a complete decimal number or as a decimal number followed by the abbreviation \( k \) (1000), \( m \) (1,000,000), or \( g \) (1,000,000,000).

**Range:** 3200 through 6,400,000,000,000 bps

NOTE: Through Junos OS Release 13.3, the upper limit is 160,000,000,000 bps. Beginning with Junos OS Release 14.1, the upper limit is 6,400,000,000,000 bps.

**burst-size bytes**—Maximum burst size, in bytes. The burst value determines the number of rate credits that can accrue when the queue or scheduler node is held in the inactive round robin.

**Range:** 0 through 1,000,000,000

**Required Privilege Level**
- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.

**RELATED DOCUMENTATION**
- *Applying Scheduler Maps Overview*
transmit-rate (Schedulers)

Syntax

```
transmit-rate (rate | percent percentage | remainder) <exact | rate-limit>;
```

Hierarchy Level

```
[edit class-of-service schedulers scheduler-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.
rate-limit option introduced in Junos OS Release 8.3. Applied to the Multiservices PICs in Junos OS Release 9.4.
Statement introduced in Junos OS Release 12.1X48 for PTX Series routers.
Statement introduced in Junos OS Release 12.2 for ACX Series routers.

Description

Specify the transmit rate or percentage for a scheduler.

Default

If you do not include this statement, the default scheduler transmission rate and buffer size percentages for queues 0 through 7 are 95, 0, 0, 5, 0, 0, 0, and 0 percent, respectively.

Options

exact—(Optional) Enforce the exact transmission rate. Under sustained congestion, a rate-controlled queue that goes into negative credit fills up and eventually drops packets. This value should never exceed the rate-controlled amount. For PTX Series routers, this option is allowed only on the non-strict-high (high, medium-high, medium-low, or low) queues.

percent percentage—Percentage of transmission capacity. A percentage of zero drops all packets in the queue unless additional bandwidth is available from other queues.

Range: 0 through 100 percent for M, MX and T Series routers and EX Series switches; 1 through 100 percent for PTX Series routers; 0 through 200 percent for the SONET/SDH OC48/STM16 IQE PIC
NOTE:

- On M Series Multiservice Edge Routers, for interfaces configured on 4-port E1 and 4-port T1 PICs only, you can configure a *percentage* value only from 11 through 100. These two PICs do not support transmission rates less than 11 percent.

- The configuration of the `transmit-rate percent 0 exact` statement at the `[edit class-of-service schedules scheduler-name]` hierarchy is ineffective on T4000 routers with Type 5 FPC.

- On MIC and MPC interfaces on MX Series routers, when the transmit rate is configured as a percentage and *exact* or *rate-limit* is enabled on a queue, the shaping rate of the parent node is used to compute the transmit rate. If *exact* or *rate-limit* is not configured, the guaranteed rate of the parent node is used to compute the transmit rate.

- On PTX Series routers, unconfigured interfaces are equivalent to *percent 0*. This means the system offers no guaranteed rate on the interface, and the queue will always be scheduled in the excess priority.

*rate*—Transmission rate, in bps. You can specify a value in bits per second either as a complete decimal number or as a decimal number followed by the abbreviation *k* (1000), *m* (1,000,000), or *g* (1,000,000,000).

Range: 3200 through 6,400,000,000,000 bps

NOTE: For all MX Series interfaces, the rate can be from 65,535 through 6,400,000,000,000 bps.

*rate-limit*—(Optional) Limit the transmission rate to the rate-controlled amount by applying a policing action to the queue. Packets are hard-dropped when traffic exceeds the specified maximum transmission rate.

NOTE: For PTX Series routers, this option is allowed only on the strict-high queue. We recommend that you configure rate limit on strict-high queues because the other queues may not meet their guaranteed bandwidths. The *rate-limit* option cannot rate limit the queue if strict-priority scheduling is configured with the `strict-priority-scheduler` statement.

NOTE: The configuration of the *rate-limit* statement is supported on T4000 routers only with a Type 5 FPC.

*remainder*—Use the remaining rate available.
trigger (CoS)

Syntax

```plaintext
trigger type shaping-rate (percent percentage | rate);
```

Hierarchy Level

```plaintext
[edit class-of-service adaptive-shapers adaptive-shaper-name]
```

Release Information
Statement introduced in Release 8.5 of Junos OS.

Description
Specify a trigger type and its associated rate.

Options
`type`—The type of trigger. Currently, the trigger type can be `becn` only.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
tunnel-queuing

Syntax

tunnel-queuing;

Hierarchy Level

[edit chassis fpc slot-number pic pic-number ]

Release Information
Statement modified in Release 9.0 of Junos OS.

Description
Enable class-of-service (CoS) queuing for generic routing encapsulation (GRE) and IP-IP tunnels.

**NOTE:** The `tunnel-queuing` option is not supported in chassis cluster mode.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
virtual-channels

Syntax

virtual-channels {
    virtual-channel-name;
}

Hierarchy Level

[edit class-of-service]

Release Information
Statement introduced in Release 8.5 of Junos OS.

Description
Specify a list of virtual channels.

Each virtual channel has eight transmission queues.

Options
virtual-channel-name—Name of the virtual channel.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

default (CoS)	294
scheduler-map (CoS Virtual Channels)	330
shaping-rate (CoS Virtual Channels)	335
virtual-channel-group (CoS Interfaces)	343
virtual-channel-groups	344

Junos OS Class of Service Configuration Guide for Security Devices
virtual-channel-group (CoS Interfaces)

Syntax

```
virtual-channel-group group-name;
```

Hierarchy Level

```
[edit class-of-service interfaces interface-name unit logical-unit-number]
```

Release Information

Statement introduced in Release 8.5 of Junos OS.

Description

Assign a virtual channel group to a logical interface.

If you apply a virtual channel group to multiple logical interfaces, separate queues are created on each of the interfaces. The same virtual channel names are used on all the interfaces. You can specify the scheduler and shaping rates in the virtual channels in percentages so that you can apply the same virtual channel group to logical interfaces with different available bandwidths.

Options

- **group-name**—Name of the virtual channel group.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- default (CoS) | 294
- scheduler-map (CoS Virtual Channels) | 330
- shaping-rate (CoS Virtual Channels) | 335
- virtual-channels | 342
- virtual-channel-groups | 344

*Junos OS Class of Service Configuration Guide for Security Devices*
virtual-channel-groups

Syntax

```
virtual-channel-groups {
 virtual-channel-group-name {
 virtual-channel-name {
 scheduler-map map-name;
 shaping-rate (percent percentage | rate);
 default;
 }
 }
}
```

Hierarchy Level

```
[edit class-of-service]
```

Release Information
Statement introduced in Release 8.5 of Junos OS.

Description
Associate a virtual channel with a scheduler map and a shaping rate. Virtual channels and virtual channel groups enable you to direct traffic into a virtual channel and apply bandwidth limits to the channel.

Options

- **group-name**—Name of the virtual channel group.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- default (CoS) | 294
- scheduler-map (CoS Virtual Channels) | 330
- shaping-rate (CoS Virtual Channels) | 335
- virtual-channel-group (CoS Interfaces) | 343
- virtual-channels | 342
Operational Commands

IN THIS CHAPTER

- show class-of-service application-traffic-control counter | 348
- show class-of-service application-traffic-control statistics rate-limiter | 354
- show class-of-service application-traffic-control statistics rule | 358
- show class-of-service forwarding-class | 361
- show class-of-service drop-profile | 363
- show class-of-service forwarding-table | 367
- show class-of-service rewrite-rule | 372
- show class-of-service scheduler-map | 375
- show class-of-service classifier | 379
- show class-of-service code-point-aliases | 382
- show class-of-service fabric scheduler-map | 384
- show class-of-service fabric statistics | 386
- show class-of-service forwarding-table classifier | 390
- show class-of-service forwarding-table classifier mapping | 392
- show class-of-service forwarding-table drop-profile | 394
- show class-of-service forwarding-table fabric scheduler-map | 396
- show class-of-service forwarding-table rewrite-rule | 398
- show class-of-service forwarding-table rewrite-rule mapping | 400
- show class-of-service forwarding-table scheduler-map | 402
- show class-of-service forwarding-table traffic-class-map | 405
- show class-of-service fragmentation-map | 408
- show class-of-service interface | 410
- show class-of-service loss-priority-rewrite | 450
- show class-of-service l2tp-session | 452
- show class-of-service policy-map | 454
- show class-of-service routing-instance | 456
- show class-of-service scheduler-hierarchy interface | 458
- show class-of-service traffic-class-map | 461
- show class-of-service translation-table  | 463
- show interfaces forwarding-class-counters  | 469
- show interfaces voq  | 475
show class-of-service application-traffic-control counter

Syntax

```
show class-of-service application-traffic-control counter
```

Release Information
Command introduced in Junos OS Release 11.4.

Description
Display AppQoS DSCP marking and honoring statistics based on Layer 7 application classifiers.

Required Privilege Level
view

RELATED DOCUMENTATION

| Example: Configuring AppQoS |

List of Sample Output

- show class-of-service application-traffic-control counter on page 349
- show class-of-service application-traffic-control counter (Unified Policies) on page 349
- show class-of-service application-traffic-control counter logical-system LSYS1 on page 350
- show class-of-service application-traffic-control counter logical-system all on page 350
- show class-of-service application-traffic-control counter tenant TSYS1 on page 351
- show class-of-service application-traffic-control counter tenant all on page 352

Output Fields

Table 53 on page 348 lists the output fields for the `show class-of-service application-traffic-control counter` command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pic</td>
<td>PIC number of the accumulated statistics. NOTE: The PIC number is always displayed as 0 for SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 devices.</td>
</tr>
<tr>
<td>Sessions processed</td>
<td>The number of sessions where the class of service was checked.</td>
</tr>
<tr>
<td>Sessions marked</td>
<td>The number of sessions marked based on application-aware DSCP marking.</td>
</tr>
</tbody>
</table>
Table 53: show class-of-service application-traffic-control counter Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sessions honored</td>
<td>The number of sessions honored based on application-aware traffic honoring.</td>
</tr>
<tr>
<td>Sessions rate limited</td>
<td>The number of sessions that have been rate limited.</td>
</tr>
<tr>
<td>Client-to-server flows rate limited</td>
<td>The number of client-to-server flows that have been rate limited.</td>
</tr>
<tr>
<td>Server-to-client flows rate limited</td>
<td>The number of server-to-client flows that have been rate limited.</td>
</tr>
</tbody>
</table>

Sample Output

```
show class-of-service application-traffic-control counter
user@host> show class-of-service application-traffic-control counter

pic: 2/1
Counter type Value
Sessions processed 300
Sessions marked 200
Sessions honored 0
Sessions rate limited 100
Client-to-server flows rate limited 100
Server-to-client flows rate limited 70

pic: 2/0
Counter type Value
Sessions processed 400
Sessions marked 300
Sessions honored 0
Sessions rate limited 200
Client-to-server flows rate limited 200
Server-to-client flows rate limited 100
```

show class-of-service application-traffic-control counter (Unified Policies)
user@host> show class-of-service application-traffic-control counter
show class-of-service application-traffic-control counter logical-system LSYS1

user@host> show class-of-service application-traffic-control counter logical-system LSYS1

Logical System: LSYS1

counter logical-system LSYS1

pic: 0/0

<table>
<thead>
<tr>
<th>Counter type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sessions processed</td>
<td>2</td>
</tr>
<tr>
<td>Sessions marked</td>
<td>1</td>
</tr>
<tr>
<td>Sessions honored</td>
<td>1</td>
</tr>
<tr>
<td>Sessions rate limited</td>
<td>1</td>
</tr>
<tr>
<td>Client-to-server flows rate limited</td>
<td>0</td>
</tr>
<tr>
<td>Server-to-client flows rate limited</td>
<td>0</td>
</tr>
<tr>
<td>Session default ruleset hit</td>
<td>1</td>
</tr>
<tr>
<td>Session ignored no default ruleset</td>
<td>1</td>
</tr>
</tbody>
</table>

Logical System: root-logical-system

counter logical-system all

user@host> show class-of-service application-traffic-control counter logical-system all

Logical System: root-logical-system

counter logical-system all

pic: 0/0

<table>
<thead>
<tr>
<th>Counter type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sessions processed</td>
<td>0</td>
</tr>
<tr>
<td>Sessions marked</td>
<td>0</td>
</tr>
<tr>
<td>Sessions honored</td>
<td>0</td>
</tr>
<tr>
<td>Sessions rate limited</td>
<td>0</td>
</tr>
<tr>
<td>Client-to-server flows rate limited</td>
<td>0</td>
</tr>
<tr>
<td>Server-to-client flows rate limited</td>
<td>0</td>
</tr>
<tr>
<td>Session default ruleset hit</td>
<td>0</td>
</tr>
<tr>
<td>Session ignored no default ruleset</td>
<td>0</td>
</tr>
</tbody>
</table>
### Logical System: LSYS0

<table>
<thead>
<tr>
<th>Counter type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sessions processed</td>
<td>0</td>
</tr>
<tr>
<td>Sessions marked</td>
<td>0</td>
</tr>
<tr>
<td>Sessions honored</td>
<td>0</td>
</tr>
<tr>
<td>Sessions rate limited</td>
<td>0</td>
</tr>
<tr>
<td>Client-to-server flows rate limited</td>
<td>0</td>
</tr>
<tr>
<td>Server-to-client flows rate limited</td>
<td>0</td>
</tr>
<tr>
<td>Session default ruleset hit</td>
<td>0</td>
</tr>
<tr>
<td>Session ignored no default ruleset</td>
<td>0</td>
</tr>
</tbody>
</table>

### Logical System: LSYS1

<table>
<thead>
<tr>
<th>Counter type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sessions processed</td>
<td>1</td>
</tr>
<tr>
<td>Sessions marked</td>
<td>0</td>
</tr>
<tr>
<td>Sessions honored</td>
<td>0</td>
</tr>
<tr>
<td>Sessions rate limited</td>
<td>0</td>
</tr>
<tr>
<td>Client-to-server flows rate limited</td>
<td>0</td>
</tr>
<tr>
<td>Server-to-client flows rate limited</td>
<td>0</td>
</tr>
<tr>
<td>Session default ruleset hit</td>
<td>0</td>
</tr>
<tr>
<td>Session ignored no default ruleset</td>
<td>0</td>
</tr>
</tbody>
</table>

### Logical System: LSYS2

<table>
<thead>
<tr>
<th>Counter type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sessions processed</td>
<td>0</td>
</tr>
<tr>
<td>Sessions marked</td>
<td>0</td>
</tr>
<tr>
<td>Sessions honored</td>
<td>0</td>
</tr>
<tr>
<td>Sessions rate limited</td>
<td>0</td>
</tr>
<tr>
<td>Client-to-server flows rate limited</td>
<td>0</td>
</tr>
<tr>
<td>Server-to-client flows rate limited</td>
<td>0</td>
</tr>
<tr>
<td>Session default ruleset hit</td>
<td>0</td>
</tr>
<tr>
<td>Session ignored no default ruleset</td>
<td>0</td>
</tr>
</tbody>
</table>

```bash
show class-of-service application-traffic-control counter tenant TSYS1

user@host> show class-of-service application-traffic-control counter tenant TSYS1
```
Tenant System: TSYS1

pic: 0/0

<table>
<thead>
<tr>
<th>Counter type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sessions processed</td>
<td>1</td>
</tr>
<tr>
<td>Sessions marked</td>
<td>0</td>
</tr>
<tr>
<td>Sessions honored</td>
<td>0</td>
</tr>
<tr>
<td>Sessions rate limited</td>
<td>0</td>
</tr>
<tr>
<td>Client-to-server flows rate limited</td>
<td>0</td>
</tr>
<tr>
<td>Server-to-client flows rate limited</td>
<td>0</td>
</tr>
<tr>
<td>Session default ruleset hit</td>
<td>0</td>
</tr>
<tr>
<td>Session ignored no default ruleset</td>
<td>0</td>
</tr>
</tbody>
</table>

show class-of-service application-traffic-control counter tenant all

user@host> show class-of-service application-traffic-control counter tenant all

Tenant System: root-logical-system

pic: 0/0

<table>
<thead>
<tr>
<th>Counter type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sessions processed</td>
<td>0</td>
</tr>
<tr>
<td>Sessions marked</td>
<td>0</td>
</tr>
<tr>
<td>Sessions honored</td>
<td>0</td>
</tr>
<tr>
<td>Sessions rate limited</td>
<td>0</td>
</tr>
<tr>
<td>Client-to-server flows rate limited</td>
<td>0</td>
</tr>
<tr>
<td>Server-to-client flows rate limited</td>
<td>0</td>
</tr>
<tr>
<td>Session default ruleset hit</td>
<td>0</td>
</tr>
<tr>
<td>Session ignored no default ruleset</td>
<td>0</td>
</tr>
</tbody>
</table>

Tenant System: TSYS0

pic: 0/0

<table>
<thead>
<tr>
<th>Counter type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sessions processed</td>
<td>0</td>
</tr>
<tr>
<td>Sessions marked</td>
<td>0</td>
</tr>
<tr>
<td>Sessions honored</td>
<td>0</td>
</tr>
<tr>
<td>Sessions rate limited</td>
<td>0</td>
</tr>
<tr>
<td>Client-to-server flows rate limited</td>
<td>0</td>
</tr>
<tr>
<td>Server-to-client flows rate limited</td>
<td>0</td>
</tr>
<tr>
<td>Session default ruleset hit</td>
<td>0</td>
</tr>
<tr>
<td>Session ignored no default ruleset</td>
<td>0</td>
</tr>
</tbody>
</table>

Tenant System: TSYS1
<table>
<thead>
<tr>
<th>Counter type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sessions processed</td>
<td>1</td>
</tr>
<tr>
<td>Sessions marked</td>
<td>0</td>
</tr>
<tr>
<td>Sessions honored</td>
<td>0</td>
</tr>
<tr>
<td>Sessions rate limited</td>
<td>0</td>
</tr>
<tr>
<td>Client-to-server flows rate limited</td>
<td>0</td>
</tr>
<tr>
<td>Server-to-client flows rate limited</td>
<td>0</td>
</tr>
<tr>
<td>Session default ruleset hit</td>
<td>0</td>
</tr>
<tr>
<td>Session ignored no default ruleset</td>
<td>0</td>
</tr>
</tbody>
</table>

Tenant System: TSYS2

<table>
<thead>
<tr>
<th>Counter type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sessions processed</td>
<td>0</td>
</tr>
<tr>
<td>Sessions marked</td>
<td>0</td>
</tr>
<tr>
<td>Sessions honored</td>
<td>0</td>
</tr>
<tr>
<td>Sessions rate limited</td>
<td>0</td>
</tr>
<tr>
<td>Client-to-server flows rate limited</td>
<td>0</td>
</tr>
<tr>
<td>Server-to-client flows rate limited</td>
<td>0</td>
</tr>
<tr>
<td>Session default ruleset hit</td>
<td>0</td>
</tr>
<tr>
<td>Session ignored no default ruleset</td>
<td>0</td>
</tr>
</tbody>
</table>
show class-of-service application-traffic-control statistics rate-limiter

Syntax

```
show class-of-service application-traffic-control statistics rate-limiter
```

Release Information

Command introduced in Junos OS Release 11.4.

Description

Display AppQoS real-time run information about application rate limiting of current or recent sessions.

Required Privilege Level

view

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Example: Configuring AppQoS</th>
</tr>
</thead>
</table>

List of Sample Output

- show class-of-service application-traffic-control statistics rate-limiter on page 355
- show class-of-service application-traffic-control statistics rate-limiter logical-system LSYS1 on page 355
- show class-of-service application-traffic-control statistics rate-limiter logical-system all on page 356
- show class-of-service application-traffic-control statistics rate-limiter tenant TSYS1 on page 356
- show class-of-service application-traffic-control statistics rate-limiter tenant all on page 356

Output Fields

Table 54 on page 354 lists the output fields for the `show class-of-service application-traffic-control statistics rate-limiter` command. Output fields are listed in the approximate order in which they appear.

Table 54: show class-of-service application-traffic-control statistics rate-limiter Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pic</code></td>
<td>PIC number.</td>
</tr>
<tr>
<td></td>
<td>NOTE: The PIC number is always displayed as 0 for SRX300, SRX320, SRX340, SRX345, and SRX550M devices.</td>
</tr>
<tr>
<td><code>Ruleset</code></td>
<td>The rule set applied on the session.</td>
</tr>
<tr>
<td><code>Application</code></td>
<td>The application match for applying the rule set.</td>
</tr>
</tbody>
</table>
Table 54: show class-of-service application-traffic-control statistics rate-limiter Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client-to-server</td>
<td>The rate limiter applied from client to server.</td>
</tr>
<tr>
<td>Rate(kbps)</td>
<td>The rate in the client-to-server direction</td>
</tr>
<tr>
<td>Server-to-client</td>
<td>The rate limiter applied from server to client.</td>
</tr>
<tr>
<td>Rate(kbps)</td>
<td>The rate in the server-to-client direction.</td>
</tr>
</tbody>
</table>

Sample Output

**show class-of-service application-traffic-control statistics rate-limiter**

```plaintext
user@host> show class-of-service application-traffic-control statistics rate-limiter
```

<table>
<thead>
<tr>
<th>Ruleset</th>
<th>Application</th>
<th>Client-to-server</th>
<th>Rate(kbps)</th>
<th>Server-to-client</th>
</tr>
</thead>
<tbody>
<tr>
<td>my-ruleset-1</td>
<td>HTTP</td>
<td>my-http-c2s-rl</td>
<td>10000000</td>
<td>my-http-s2c-rl</td>
</tr>
<tr>
<td>20000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>my-ruleset-2</td>
<td>HTTP</td>
<td>my-http-c2s-rl-2</td>
<td>20000000</td>
<td>my-http-s2c-rl-2</td>
</tr>
<tr>
<td>30000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>my-ruleset-2</td>
<td>FTP</td>
<td>my-ftp-c2s-rl</td>
<td>50000</td>
<td>my-ftp-s2c-rl</td>
</tr>
<tr>
<td>50000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```plaintext
user@host> show class-of-service application-traffic-control statistics rate-limiter logical-system LSYS1
```

```plaintext
user@host> show class-of-service application-traffic-control statistics rate-limiter logical-system LSYS1
```

```plaintext
```
Logical System: LSYS1
pic: 0/0

show class-of-service application-traffic-control statistics rate-limiter logical-system all

user@host> show class-of-service application-traffic-control statistics rate-limiter logical-system all

Logical System: root-logical-system
pic: 0/0
Logical System: LSYS0
pic: 0/0
Logical System: LSYS1
pic: 0/0
Logical System: LSYS2
pic: 0/0

show class-of-service application-traffic-control statistics rate-limiter tenant TSYS1

user@host> show class-of-service application-traffic-control statistics rate-limiter tenant TSYS1

Tenant System: LSYS1
pic: 0/0

show class-of-service application-traffic-control statistics rate-limiter tenant all

user@host> show class-of-service application-traffic-control statistics rate-limiter tenant all

Tenant System: root-logical-system
pic: 0/0
Tenant System: TSYS0
pic: 0/0
Tenant System: TSYS1

pic: 0/0
Tenant System: TSYS2

pic: 0/0
**show class-of-service application-traffic-control statistics rule**

**Syntax**

```
show class-of-service application-traffic-control statistics rule
```

**Release Information**

Command introduced in Junos OS Release 11.4.

**Description**

Display AppQoS counters identifying rule hits.

**Required Privilege Level**

view

**RELATED DOCUMENTATION**

*Example: Configuring AppQoS*

**List of Sample Output**

- `show class-of-service application-traffic-control statistics rule` on page 359
- `show class-of-service application-traffic-control statistics rule logical-system LSYS1` on page 359
- `show class-of-service application-traffic-control statistics rule logical-system all` on page 359
- `show class-of-service application-traffic-control statistics rule tenant TSYS1` on page 360
- `show class-of-service application-traffic-control statistics rule tenant all` on page 360

**Output Fields**

Table 55 on page 358 lists the output fields for the `show class-of-service application-traffic-control statistics rule` command. Output fields are listed in the approximate order in which they appear.

**Table 55: show class-of-service application-traffic-control statistics rule Output Fields**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
</table>
| pic | PIC number where the rule is applied.  
NOTE: The PIC number is always displayed as 0 for for SRX300, SRX320, SRX340, SRX345, and SRX550M devices. |
| Ruleset | The rule set containing the rule. |
| Rule | The rule to which the statistic applies. |
| Hits | The number of times a match for the rule was encountered. |
Sample Output

**show class-of-service application-traffic-control statistics rule**

```
user@host> show class-of-service application-traffic-control statistics rule
```

<table>
<thead>
<tr>
<th>Ruleset</th>
<th>Rule</th>
<th>Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>my-ruleset-1</td>
<td>ftp-rule</td>
<td>100</td>
</tr>
<tr>
<td>my-ruleset-1</td>
<td>http-rule</td>
<td>100</td>
</tr>
<tr>
<td>my-ruleset-2</td>
<td>telnet-rule</td>
<td>300</td>
</tr>
<tr>
<td>my-ruleset-2</td>
<td>smtp-rule</td>
<td>300</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
pic: 2/1
```

<table>
<thead>
<tr>
<th>Ruleset</th>
<th>Rule</th>
<th>Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>my-ruleset-1</td>
<td>ftp-rule</td>
<td>200</td>
</tr>
<tr>
<td>my-ruleset-1</td>
<td>http-rule</td>
<td>300</td>
</tr>
<tr>
<td>my-ruleset-2</td>
<td>telnet-rule</td>
<td>400</td>
</tr>
<tr>
<td>my-ruleset-2</td>
<td>smtp-rule</td>
<td>500</td>
</tr>
</tbody>
</table>

**show class-of-service application-traffic-control statistics rule logical-system LSYS1**

```
user@host> show class-of-service application-traffic-control statistics rule logical-system LSYS1
```

```
Logical System: LSYS1
```

```
pic: 0/0
```

**show class-of-service application-traffic-control statistics rule logical-system all**

```
user@host> show class-of-service application-traffic-control statistics rule logical-system all
```

```
Logical System: root-logical-system
```

```
pic: 0/0
```

```
Logical System: LSYS0
```

```
pic: 0/0
```

```
Logical System: LSYS1
```

```
pic: 0/0
```
Logical System: LSYS2

pic: 0/0

show class-of-service application-traffic-control statistics rule tenant TSYS1

user@host> show class-of-service application-traffic-control statistics rule tenant TSYS1

Tenant System: TSYS1

pic: 0/0

show class-of-service application-traffic-control statistics rule tenant all

user@host> show class-of-service application-traffic-control statistics rule tenant all

Tenant System: root-logical-system

pic: 0/0
Tenant System: TSYS0

pic: 0/0
Tenant System: TSYS1

pic: 0/0
Tenant System: TSYS2

pic: 0/0
show class-of-service forwarding-class

Syntax

```
show class-of-service forwarding-class
```

Release Information
Command introduced before Junos OS Release 12.1.

Description
Display mapping of forwarding class names to queues.

Required Privilege Level
view

RELATED DOCUMENTATION

- Forwarding Classes Overview | 67

List of Sample Output
show class-of-service forwarding-class on page 362

Output Fields
Table 56 on page 361 lists the output fields for the `show class-of-service forwarding-class` command. Output fields are listed in the approximate order in which they appear.

Table 56: show class-of-service forwarding-class Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forwarding class</td>
<td>Forwarding class name.</td>
</tr>
<tr>
<td>ID</td>
<td>ID number assigned to the forwarding class.</td>
</tr>
<tr>
<td>Queue</td>
<td>Queue number.</td>
</tr>
<tr>
<td>Restricted queue</td>
<td>Restricted queue number.</td>
</tr>
<tr>
<td>Fabric priority</td>
<td>Fabric priority, either low or high.</td>
</tr>
<tr>
<td>Policing priority</td>
<td>Layer 2 policing, either premium or normal.</td>
</tr>
<tr>
<td>SPU priority</td>
<td>Services Processing Unit (SPU) priority queue, either high or low.</td>
</tr>
</tbody>
</table>
Sample Output

```
show class-of-service forwarding-class

user@host> show class-of-service forwarding-class
```

<table>
<thead>
<tr>
<th>Forwarding class priority</th>
<th>ID</th>
<th>Queue</th>
<th>Restricted queue</th>
<th>Fabric priority</th>
<th>Policing</th>
</tr>
</thead>
<tbody>
<tr>
<td>best-effort</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>low</td>
<td>normal</td>
</tr>
<tr>
<td>low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>expedited-forwarding</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>low</td>
<td>normal</td>
</tr>
<tr>
<td>high</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>assured-forwarding</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>low</td>
<td>normal</td>
</tr>
<tr>
<td>low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>network-control</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>low</td>
<td>normal</td>
</tr>
<tr>
<td>low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
show class-of-service drop-profile

Syntax

```
show class-of-service drop-profile
<profile-name profile-name>
```

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
Command introduced in Junos OS Release 11.1 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Display data points for each class-of-service (CoS) random early detection (RED) drop profile.

Options
```
none—Display all drop profiles.
```
```
profile-name profile-name—(Optional) Display the specified profile only.
```

Required Privilege Level
view

List of Sample Output
```
show class-of-service drop-profile on page 364
show class-of-service drop-profile (EX4200 Switch) on page 365
show class-of-service drop-profile (EX8200 Switch) on page 365
```

Output Fields
```
Table 57 on page 363 describes the output fields for the show class-of-service drop-profile command. Output fields are listed in the approximate order in which they appear.
```

Table 57: show class-of-service drop-profile Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drop profile</td>
<td>Name of a drop profile.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of drop profile:</td>
</tr>
<tr>
<td></td>
<td>• discrete (default)</td>
</tr>
<tr>
<td></td>
<td>• interpolated (EX8200 switches, QFX Series switches, QFabric systems, EX4600 switches, OCX Series switches only)</td>
</tr>
</tbody>
</table>
Table 57: show class-of-service drop-profile Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>Internal index of this drop profile.</td>
</tr>
<tr>
<td>Fill Level</td>
<td>Percentage fullness of a queue.</td>
</tr>
<tr>
<td>Drop probability</td>
<td>Drop probability at this fill level.</td>
</tr>
</tbody>
</table>

Sample Output

`show class-of-service drop-profile`

```
user@host> show class-of-service drop-profile

Drop profile: <default-drop-profile>, Type: discrete, Index: 1
Fill level Drop probability
100 100

Drop profile: user-drop-profile, Type: interpolated, Index: 2989
Fill level Drop probability
0 0
1 1
2 2
4 4
5 5
6 6
8 8
10 10
12 15
14 20
15 23
... 64 entries total
90 96
92 96
94 97
95 98
96 98
98 99
99 99
100 100
```
show class-of-service drop-profile (EX4200 Switch)
user@switch>  show class-of-service drop-profile

Drop profile: <default-drop-profile>, Type: discrete, Index: 1
  Fill level
  100
Drop profile: dp1, Type: discrete, Index: 40496
  Fill level
  10

show class-of-service drop-profile (EX8200 Switch)
user@switch>  show class-of-service drop-profile

Drop profile: <default-drop-profile>, Type: discrete, Index: 1
  Fill level       Drop probability
                   100  100
Drop profile: dp1, Type: interpolated, Index: 40496
  Fill level       Drop probability
                   0    0
                   1    80
                   2    90
                   4    90
                   5    90
                   6    90
                   8    90
                  10    90
                  12    91
                  14    91
                  15    91
                  16    91
                  18    91
                  20    91
                  22    92
                  24    92
                  25    92
                  26    92
                  28    92
                  30    92
                  32    93
                  34    93
                  35    93
                  36    93
                  38    93
<table>
<thead>
<tr>
<th>Fill level</th>
<th>Drop probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Drop profile: dp2, Type: discrete, Index: 40499
show class-of-service forwarding-table

List of Syntax
Syntax on page 367
Syntax (TX Matrix and TX Matrix Plus Router) on page 367

Syntax

show class-of-service forwarding-table

Syntax (TX Matrix and TX Matrix Plus Router)

show class-of-service forwarding-table
<lcc number> | <sfc number>

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 11.1 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Display the entire class-of-service (CoS) configuration as it exists in the forwarding table. Executing this command is equivalent to executing all show class-of-service forwarding-table commands in succession.

Options
lcc number—(TX Matrix and TX Matrix Plus router only) (Optional) On a TX Matrix router, display the forwarding table configuration for a specific T640 router (or line-card chassis) configured in a routing matrix. On a TX Matrix Plus router, display the forwarding table configuration for a specific router (or line-card chassis) configured in the routing matrix.

Replace number with the following values depending on the LCC configuration:

- 0 through 3, when T640 routers are connected to a TX Matrix router in a routing matrix.
- 0 through 3, when T1600 routers are connected to a TX Matrix Plus router in a routing matrix.
- 0 through 7, when T1600 routers are connected to a TX Matrix Plus router with 3D SIBs in a routing matrix.
- 0, 2, 4, or 6, when T4000 routers are connected to a TX Matrix Plus router with 3D SIBs in a routing matrix.

sfc number—(TX Matrix Plus routers only) (Optional) Display the forwarding table configuration for the TX Matrix Plus router. Replace number with 0.
Required Privilege Level
view

List of Sample Output
show class-of-service forwarding-table on page 368
show class-of-service forwarding-table lcc (TX Matrix Plus Router) on page 369

Output Fields
See the output field descriptions for show class-of-service forwarding-table commands:

- show class-of-service forwarding-table classifier
- show class-of-service forwarding-table classifier mapping
- show class-of-service forwarding-table drop-profile
- show class-of-service forwarding-table fabric scheduler-map
- show class-of-service forwarding-table rewrite-rule
- show class-of-service forwarding-table rewrite-rule mapping
- show class-of-service forwarding-table scheduler-map

Sample Output
show class-of-service forwarding-table

user@host> show class-of-service forwarding-table

<p>| Classifier table index: 9, # entries: 8, Table type: EXP |
|---------------------------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Entry #</th>
<th>Code point</th>
<th>Forwarding-class #</th>
<th>PLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>010</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>011</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

| Table Index/ |
|-------------|------------|-----------------|
| Interface   | Index      | Q num       |
| sp-0/0/0.1001 | 66        | 11           |
| sp-0/0/0.2001 | 67        | 11           |
| sp-0/0/0.16383 | 68        | 11           |

IPv4 precedence
show class-of-service forwarding-table lcc (TX Matrix Plus Router)

user@host> show class-of-service forwarding-table lcc 0
## Classifier table index: 9, # entries: 64, Table type: IPv6 DSCP

<table>
<thead>
<tr>
<th>Entry #</th>
<th>Code point</th>
<th>Forwarding-class #</th>
<th>PLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>000001</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>000010</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>000011</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>000100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>000101</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>000110</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>000111</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>001000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>001001</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>001010</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>001011</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>001100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>001101</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>001110</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>001111</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>010000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>010001</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>010010</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>010011</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>010100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>010101</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>010110</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>010111</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>011000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>011001</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>011010</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>011011</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>011100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>011101</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>011110</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>011111</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>100000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>100001</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>100010</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>100011</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>100100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td>100101</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td>100110</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>39</td>
<td>100111</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>101000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>41</td>
<td>101001</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>42</td>
<td>101010</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>43</td>
<td>101011</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>44</td>
<td>101100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>45</td>
<td>101101</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>46</td>
<td>101110</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
show class-of-service rewrite-rule

Syntax

```
show class-of-service rewrite-rule
 <name name>
 <type type>
```

Release Information
Command introduced before Junos OS Release 7.4.

Description
Display the mapping of forwarding classes and loss priority to code point values.

Options

- **none**—Display all rewrite rules.
- **name name**—(Optional) Display the specified rewrite rule.
- **type type**—(Optional) Display the rewrite rule of the specified type. The rewrite rule type can be one of the following:
  - **dscp**—For IPv4 traffic.
  - **dscp-ipv6**—For IPv6 traffic.
  - **exp**—For MPLS traffic.
  - **frame-relay-de**—(SRX Series only) For Frame Relay traffic.
  - **ieee-802.1**—For Layer 2 traffic.
  - **inet-precedence**—For IPv4 traffic.

Required Privilege Level
view

RELATED DOCUMENTATION

- **Rewrite Rules Overview** | 89

List of Sample Output

show class-of-service rewrite-rule type dscp on page 373

Output Fields
Table 58 on page 373 describes the output fields for the `show class-of-service rewrite-rule` command. Output fields are listed in the approximate order in which they appear.

**Table 58: show class-of-service rewrite-rule Output Fields**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rewrite rule</td>
<td>Name of the rewrite rule.</td>
</tr>
<tr>
<td>Code point type</td>
<td>Type of rewrite rule: dscp, dscp-ipv6, exp, frame-relay-de, or inet-precedence.</td>
</tr>
<tr>
<td>Forwarding class</td>
<td>Classification of a packet affecting the forwarding, scheduling, and marking policies applied as the packet transits the router or switch.</td>
</tr>
<tr>
<td>Index</td>
<td>Internal index for this particular rewrite rule.</td>
</tr>
<tr>
<td>Loss priority</td>
<td>Loss priority for rewriting.</td>
</tr>
<tr>
<td>Code point</td>
<td>Code point value to rewrite.</td>
</tr>
</tbody>
</table>

### Sample Output

**show class-of-service rewrite-rule type dscp**

```
user@host> show class-of-service rewrite-rule type dscp
```

**Rewrite rule: dscp-default, Code point type: dscp**

<table>
<thead>
<tr>
<th>Forwarding class</th>
<th>Loss priority</th>
<th>Code point</th>
</tr>
</thead>
<tbody>
<tr>
<td>gold</td>
<td>high</td>
<td>000000</td>
</tr>
<tr>
<td>silver</td>
<td>low</td>
<td>110000</td>
</tr>
<tr>
<td>silver</td>
<td>high</td>
<td>111000</td>
</tr>
<tr>
<td>bronze</td>
<td>low</td>
<td>001010</td>
</tr>
<tr>
<td>bronze</td>
<td>high</td>
<td>001100</td>
</tr>
<tr>
<td>lead</td>
<td>high</td>
<td>101110</td>
</tr>
</tbody>
</table>

**Rewrite rule: abc-dscp-rewrite, Code point type: dscp, Index: 3245**

<table>
<thead>
<tr>
<th>Forwarding class</th>
<th>Loss priority</th>
<th>Code point</th>
</tr>
</thead>
<tbody>
<tr>
<td>gold</td>
<td>low</td>
<td>000111</td>
</tr>
<tr>
<td>gold</td>
<td>high</td>
<td>001010</td>
</tr>
<tr>
<td>silver</td>
<td>low</td>
<td>110000</td>
</tr>
<tr>
<td>silver</td>
<td>high</td>
<td>111000</td>
</tr>
<tr>
<td>Material</td>
<td>State</td>
<td>Code</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>bronze</td>
<td>high</td>
<td>001100</td>
</tr>
<tr>
<td>lead</td>
<td>low</td>
<td>101110</td>
</tr>
<tr>
<td>lead</td>
<td>high</td>
<td>110111</td>
</tr>
</tbody>
</table>
show class-of-service scheduler-map

Syntax

```
show class-of-service scheduler-map
 <name>
```

Release Information

Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 11.1 for the QFX Series.
Command introduced in Junos OS Release 15.1R3 on MX Series routers for enhanced subscriber management.

Description

Display the mapping of schedulers to forwarding classes and a summary of scheduler parameters for each entry.

Options

none—Display all scheduler maps.

name—(Optional) Display a summary of scheduler parameters for each forwarding class to which the named scheduler is assigned.

Required Privilege Level

view

RELATED DOCUMENTATION

Verifying and Managing Junos OS Enhanced Subscriber Management

List of Sample Output

show class-of-service scheduler-map on page 377
show class-of-service scheduler-map (QFX Series) on page 378

Output Fields

Table 59 on page 376 describes the output fields for the show class-of-service scheduler-map command. Output fields are listed in the approximate order in which they appear.
### Table 59: show class-of-service scheduler-map Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Scheduler map</strong></td>
<td>Name of the scheduler map. (Enhanced subscriber management for MX Series routers) The name of the dynamic scheduler map object is associated with a generated UID (for example, SMAP-1_UID1002) instead of with a subscriber interface.</td>
</tr>
<tr>
<td><strong>Index</strong></td>
<td>Index of the indicated object. Objects having indexes in this output include scheduler maps, schedulers, and drop profiles. (Enhanced subscriber management for MX Series routers) Index values for dynamic CoS traffic control profiles are larger for enhanced subscriber management than they are for legacy subscriber management.</td>
</tr>
<tr>
<td><strong>Scheduler</strong></td>
<td>Name of the scheduler.</td>
</tr>
<tr>
<td><strong>Forwarding class</strong></td>
<td>Classification of a packet affecting the forwarding, scheduling, and marking policies applied as the packet transits the router.</td>
</tr>
<tr>
<td><strong>Transmit rate</strong></td>
<td>Configured transmit rate of the scheduler (in bps). The rate is a percentage of the total interface bandwidth, or the keyword <em>remainder</em>, which indicates that the scheduler receives the remaining bandwidth of the interface.</td>
</tr>
<tr>
<td><strong>Rate Limit</strong></td>
<td>Rate limiting configuration of the queue. Possible values are <em>none</em>, meaning no rate limiting, and <em>exact</em>, meaning the queue only transmits at the configured rate.</td>
</tr>
<tr>
<td><strong>Maximum buffer delay</strong></td>
<td>Amount of transmit delay (in milliseconds) or the buffer size of the queue. The buffer size is shown as a percentage of the total interface buffer allocation, or by the keyword <em>remainder</em> to indicate that the buffer is sized according to what remains after other scheduler buffer allocations.</td>
</tr>
<tr>
<td><strong>Priority</strong></td>
<td>Scheduling priority: <em>low</em> or <em>high</em>.</td>
</tr>
<tr>
<td><strong>Excess priority</strong></td>
<td>Priority of excess bandwidth: <em>low</em>, <em>medium-low</em>, <em>medium-high</em>, <em>high</em>, or <em>none</em>.</td>
</tr>
<tr>
<td><strong>Explicit Congestion Notification</strong></td>
<td>(QFX Series, OCX Series, and EX4600 switches only) Explicit congestion notification (ECN) state:</td>
</tr>
<tr>
<td></td>
<td>• Disable—ECN is disabled on the specified scheduler</td>
</tr>
<tr>
<td></td>
<td>• Enable—ECN is enabled on the specified scheduler</td>
</tr>
<tr>
<td></td>
<td>ECN is disabled by default.</td>
</tr>
<tr>
<td><strong>Adjust minimum</strong></td>
<td>Minimum shaping rate for an adjusted queue, in bps.</td>
</tr>
</tbody>
</table>
Table 59: show class-of-service scheduler-map Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjust percent</td>
<td>Bandwidth adjustment applied to a queue, in percent.</td>
</tr>
<tr>
<td>Drop profiles</td>
<td>Table displaying the assignment of drop profiles by name and index to a given loss priority and protocol pair.</td>
</tr>
<tr>
<td>Loss priority</td>
<td>Packet loss priority for drop profile assignment.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Transport protocol for drop profile assignment.</td>
</tr>
<tr>
<td>Name</td>
<td>Name of the drop profile.</td>
</tr>
</tbody>
</table>

Sample Output

show class-of-service scheduler-map

user@host> show class-of-service scheduler-map

Scheduler map: dd-scheduler-map, Index: 84

Scheduler: aa-scheduler, Index: 8721, Forwarding class: aa-forwarding-class
Transmit rate: 30 percent, Rate Limit: none, Maximum buffer delay: 39 ms,
Priority: high
Drop profiles:
<table>
<thead>
<tr>
<th>Loss priority</th>
<th>Protocol</th>
<th>Index</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>non-TCP</td>
<td>8724</td>
<td>aa-drop-profile</td>
</tr>
<tr>
<td>Low</td>
<td>TCP</td>
<td>9874</td>
<td>bb-drop-profile</td>
</tr>
<tr>
<td>High</td>
<td>non-TCP</td>
<td>8833</td>
<td>cc-drop-profile</td>
</tr>
<tr>
<td>High</td>
<td>TCP</td>
<td>8484</td>
<td>dd-drop-profile</td>
</tr>
</tbody>
</table>

Scheduler: bb-scheduler, Forwarding class: aa-forwarding-class
Transmit rate: 40 percent, Rate limit: none, Maximum buffer delay: 68 ms,
Priority: high
Drop profiles:
<table>
<thead>
<tr>
<th>Loss priority</th>
<th>Protocol</th>
<th>Index</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>non-TCP</td>
<td>8724</td>
<td>aa-drop-profile</td>
</tr>
<tr>
<td>Low</td>
<td>TCP</td>
<td>9874</td>
<td>bb-drop-profile</td>
</tr>
<tr>
<td>High</td>
<td>non-TCP</td>
<td>8833</td>
<td>cc-drop-profile</td>
</tr>
<tr>
<td>High</td>
<td>TCP</td>
<td>8484</td>
<td>dd-drop-profile</td>
</tr>
</tbody>
</table>
show class-of-service scheduler-map (QFX Series)

user@switch# show class-of-service scheduler-map

Scheduler map: be-map, Index: 12240

Scheduler:be-sched, Forwarding class: best-effort, Index: 115
  Transmit rate: 30 percent, Rate Limit: none, Buffer size: remainder,
  Buffer Limit: none, Priority: low
  Excess Priority: unspecified, Explicit Congestion Notification: disable

Drop profiles:

<table>
<thead>
<tr>
<th>Loss priority</th>
<th>Protocol</th>
<th>Index</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>any</td>
<td>3312</td>
<td>lan-dp</td>
</tr>
<tr>
<td>Medium-high</td>
<td>any</td>
<td>2714</td>
<td>be-dp1</td>
</tr>
<tr>
<td>High</td>
<td>any</td>
<td>3178</td>
<td>be-dp2</td>
</tr>
</tbody>
</table>
**show class-of-service classifier**

**Syntax**

```
show class-of-service classifier
<name name>
<type dscp | type dscp-ipv6 | type exp | type ieee-802.1 | type inet-precedence>
```

**Release Information**

Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
Command introduced in Junos OS Release 11.1 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

**Description**

For each class-of-service (CoS) classifier, display the mapping of code point value to forwarding class and loss priority.

**Options**

- **none**—Display all classifiers.
- **name name**—(Optional) Display named classifier.
- **type dscp**—(Optional) Display all classifiers of the Differentiated Services code point (DSCP) type.
- **type dscp-ipv6**—(Optional) Display all classifiers of the DSCP for IPv6 type.
- **type exp**—(Optional) Display all classifiers of the MPLS experimental (EXP) type.
- **type ieee-802.1**—(Optional) Display all classifiers of the ieee-802.1 type.
- **type inet-precedence**—(Optional) Display all classifiers of the inet-precedence type.

**Required Privilege Level**

`view`

**List of Sample Output**

- `show class-of-service classifier type ieee-802.1` on page 380
- `show class-of-service classifier type ieee-802.1 (QFX Series)` on page 381

**Output Fields**

Table 60 on page 380 describes the output fields for the `show class-of-service classifier` command. Output fields are listed in the approximate order in which they appear.
Table 60: show class-of-service classifier Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Classifier</strong></td>
<td>Name of the classifier.</td>
</tr>
<tr>
<td><strong>Code point type</strong></td>
<td>Type of the classifier: exp (not on EX Series switch), dscp, dscp-ipv6 (not on EX</td>
</tr>
<tr>
<td></td>
<td>Series switch), ieee-802.1, or inet-precedence.</td>
</tr>
<tr>
<td><strong>Index</strong></td>
<td>Internal index of the classifier.</td>
</tr>
<tr>
<td><strong>Code point</strong></td>
<td>Code point value used for classification.</td>
</tr>
<tr>
<td><strong>Forwarding class</strong></td>
<td>Classification of a packet affecting the forwarding, scheduling, and marking</td>
</tr>
<tr>
<td></td>
<td>policies applied as the packet transits the router.</td>
</tr>
<tr>
<td><strong>Loss priority</strong></td>
<td>Loss priority value used for classification. For most platforms, the value is</td>
</tr>
<tr>
<td></td>
<td>high or low. For some platforms, the value is high, medium-high, medium-low, or</td>
</tr>
<tr>
<td></td>
<td>low.</td>
</tr>
</tbody>
</table>

Sample Output

show class-of-service classifier type ieee-802.1

user@host> show class-of-service classifier type ieee-802.1

Classifier: ieee802.1-default, Code point type: ieee-802.1, Index: 3

<table>
<thead>
<tr>
<th>Code Point</th>
<th>Forwarding Class</th>
<th>Loss priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>best-effort</td>
<td>low</td>
</tr>
<tr>
<td>001</td>
<td>best-effort</td>
<td>high</td>
</tr>
<tr>
<td>010</td>
<td>expedited-forwarding</td>
<td>low</td>
</tr>
<tr>
<td>011</td>
<td>expedited-forwarding</td>
<td>high</td>
</tr>
<tr>
<td>100</td>
<td>assured-forwarding</td>
<td>low</td>
</tr>
<tr>
<td>101</td>
<td>assured-forwarding</td>
<td>medium-high</td>
</tr>
<tr>
<td>110</td>
<td>network-control</td>
<td>low</td>
</tr>
<tr>
<td>111</td>
<td>network-control</td>
<td>high</td>
</tr>
</tbody>
</table>

Classifier: users-ieee802.1, Code point type: ieee-802.1

<table>
<thead>
<tr>
<th>Code point</th>
<th>Forwarding class</th>
<th>Loss priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>expedited-forwarding</td>
<td>low</td>
</tr>
</tbody>
</table>
show class-of-service classifier type ieee-802.1 (QFX Series)

user@switch>  show class-of-service classifier type ieee-802.1

<table>
<thead>
<tr>
<th>Classifier: ieee8021p-default, Code point type: ieee-802.1, Index: 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code point</td>
</tr>
<tr>
<td>000</td>
</tr>
<tr>
<td>001</td>
</tr>
<tr>
<td>010</td>
</tr>
<tr>
<td>011</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>101</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classifier: ieee8021p-untrust, Code point type: ieee-802.1, Index: 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code point</td>
</tr>
<tr>
<td>000</td>
</tr>
<tr>
<td>001</td>
</tr>
<tr>
<td>010</td>
</tr>
<tr>
<td>011</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>101</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classifier: ieee-mcast, Code point type: ieee-802.1, Index: 46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code point</td>
</tr>
<tr>
<td>000</td>
</tr>
<tr>
<td>001</td>
</tr>
<tr>
<td>010</td>
</tr>
<tr>
<td>011</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>101</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>111</td>
</tr>
</tbody>
</table>
show class-of-service code-point-aliases

Syntax

show class-of-service code-point-aliases
< dscp | dscp-ipv6 | exp | ieee-802.1 | inet-precedence >

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
Command introduced in Junos OS Release 11.1 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Display the mapping of class-of-service (CoS) code point aliases to corresponding bit patterns.

Options
none—Display code point aliases of all code point types.

dscp—(Optional) Display Differentiated Services code point (DSCP) aliases.

dscp-ipv6—(Optional) Display IPv6 DSCP aliases.

exp—(Optional) Display MPLS EXP code point aliases.

ieee-802.1—(Optional) Display IEEE-802.1 code point aliases.

inet-precedence—(Optional) Display IPv4 precedence code point aliases.

Required Privilege Level
view

List of Sample Output
show class-of-service code-point-aliases exp on page 383

Output Fields
Table 61 on page 382 describes the output fields for the show class-of-service code-point-aliases command. Output fields are listed in the approximate order in which they appear.

Table 61: show class-of-service code-point-aliases Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code point type</td>
<td>Type of the code points displayed: dscp, dscp-ipv6 (not on EX Series switch), exp (not on EX Series switch or the QFX Series), ieee-802.1, or inet-precedence (not on the QFX Series).</td>
</tr>
</tbody>
</table>
Table 61: show class-of-service code-point-aliases Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias</td>
<td>Alias for a bit pattern.</td>
</tr>
<tr>
<td>Bit pattern</td>
<td>Bit pattern for which the alias is displayed.</td>
</tr>
</tbody>
</table>

Sample Output

show class-of-service code-point-aliases exp

user@host> show class-of-service code-point-aliases exp

<table>
<thead>
<tr>
<th>Code point type: exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias</td>
</tr>
<tr>
<td>af11</td>
</tr>
<tr>
<td>af12</td>
</tr>
<tr>
<td>be</td>
</tr>
<tr>
<td>be1</td>
</tr>
<tr>
<td>cs6</td>
</tr>
<tr>
<td>cs7</td>
</tr>
<tr>
<td>ef</td>
</tr>
<tr>
<td>ef1</td>
</tr>
<tr>
<td>nc1</td>
</tr>
<tr>
<td>nc2</td>
</tr>
</tbody>
</table>
show class-of-service fabric scheduler-map

Syntax

show class-of-service fabric scheduler-map

Release Information

Command introduced before Junos OS Release 7.4.

Description

(M320 routers, MX Series routers, T Series routers and EX Series switches only) Display the mapping of class-of-service (CoS) schedulers to switch fabric traffic priorities and a summary of scheduler parameters for each priority.

Options

This command has no options.

Required Privilege Level

view

List of Sample Output

show class-of-service fabric scheduler-map on page 385

Output Fields

Table 62 on page 384 describes the output fields for the show class-of-service fabric scheduler-map command. Output fields are listed in the approximate order in which they appear.

Table 62: show class-of-service fabric scheduler-map Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric priority</td>
<td>Indicates the fabric traffic priority. Currently, two priorities are supported: low and high.</td>
</tr>
<tr>
<td>Scheduler</td>
<td>Name of the scheduler.</td>
</tr>
<tr>
<td>Index</td>
<td>Index of the indicated object. Objects that have indexes in this output include schedulers and drop profiles.</td>
</tr>
<tr>
<td>Drop profiles</td>
<td>Display the assignment of drop profile by name and index to a given loss priority and protocol pair:</td>
</tr>
<tr>
<td></td>
<td>• Loss priority—Packet loss priority for drop profile assignment.</td>
</tr>
<tr>
<td></td>
<td>• Protocol—Transport protocol for drop profile assignment.</td>
</tr>
<tr>
<td></td>
<td>• Name—Name of the drop profile.</td>
</tr>
</tbody>
</table>
Sample Output

show class-of-service fabric scheduler-map

user@host> show class-of-service fabric scheduler-map

Fabric priority: low
Scheduler: fab-ef-scheduler, Index: 60211
Drop profiles:

<table>
<thead>
<tr>
<th>Loss priority</th>
<th>Protocol</th>
<th>Index</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>non-TCP</td>
<td>44321</td>
<td>fab-ef-profile</td>
</tr>
<tr>
<td>Low</td>
<td>TCP</td>
<td>44321</td>
<td>fab-ef-profile</td>
</tr>
<tr>
<td>High</td>
<td>non-TCP</td>
<td>44321</td>
<td>fab-ef-profile</td>
</tr>
<tr>
<td>High</td>
<td>TCP</td>
<td>44321</td>
<td>fab-ef-profile</td>
</tr>
</tbody>
</table>

Fabric priority: high
Scheduler: fab-ef-scheduler, Index: 60211
Drop profiles:

<table>
<thead>
<tr>
<th>Loss priority</th>
<th>Protocol</th>
<th>Index</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>non-TCP</td>
<td>44321</td>
<td>fab-ef-profile</td>
</tr>
<tr>
<td>Low</td>
<td>TCP</td>
<td>44321</td>
<td>fab-ef-profile</td>
</tr>
<tr>
<td>High</td>
<td>non-TCP</td>
<td>44321</td>
<td>fab-ef-profile</td>
</tr>
<tr>
<td>High</td>
<td>TCP</td>
<td>44321</td>
<td>fab-ef-profile</td>
</tr>
</tbody>
</table>
show class-of-service fabric statistics

Syntax

show class-of-service fabric statistics
<destination fpc-number>
<detail>
<source fpc-number>
<summary>

Release Information
Command introduced before Junos OS Release 7.4.

Description

NOTE: On the Switch Control Board (SCB) and the SCBE on MX Series routers, the ratio between high-priority queue and low-priority queue for traffic scheduled to enter the fabric is 85:15. However, on the SCBE2, this ratio is 97:3.

NOTE: After an FPC restart, executing this command can return an Error = Operation timed out message for up to a minute even though the FPC is back online. No statistics are lost during this time, however.

Options
none—Same as summary.

destination fpc-number—(Optional) Display details for the specified destination Flexible PIC Concentrator (FPC). The FPC number is a value from 0 through 7.

detail—(Optional) Display detailed statistics at the PFE level.

source fpc-number—(Optional) Display details for the specified source FPC. The FPC number is a value from 0 through 7.

summary—(Optional) Display all switch fabric statistics.

Required Privilege Level
view
List of Sample Output

**show class-of-service fabric statistics on page 388**
**show class-of-service fabric statistics detail on page 388**

### Output Fields

*Table 63 on page 387* describes the output fields for the **show class-of-service fabric statistics** command. Output fields are listed in the approximate order in which they appear.

#### Table 63: show class-of-service fabric statistics Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Destination FPC Index</strong></td>
<td>Index number associated with the destination FPC</td>
</tr>
<tr>
<td><strong>Source PFC Index</strong></td>
<td>Index number associated with the source FPC.</td>
</tr>
<tr>
<td><strong>Total statistics</strong></td>
<td>Fabric queue statistic totals:</td>
</tr>
<tr>
<td></td>
<td>• <strong>Packets</strong>—Total packet count for high-priority and low-priority queues.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Bytes</strong>—Total byte count for high-priority and low-priority queues.</td>
</tr>
<tr>
<td></td>
<td>• <strong>pps</strong>—Total packets-per-second count for high-priority and low-priority queues.</td>
</tr>
<tr>
<td></td>
<td>• <strong>bps</strong>—Total bits-per-second count for high-priority and low-priority queues.</td>
</tr>
<tr>
<td><strong>Tx statistics</strong></td>
<td>Fabric queue statistics for transmitted traffic:</td>
</tr>
<tr>
<td></td>
<td>• <strong>Packets</strong>—Transmitted packet count for high-priority and low-priority queues.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Bytes</strong>—Transmitted byte count for high-priority and low-priority queues.</td>
</tr>
<tr>
<td></td>
<td>• <strong>pps</strong>—Transmitted packets-per-second count for high-priority and low-priority queues.</td>
</tr>
<tr>
<td></td>
<td>• <strong>bps</strong>—Transmitted bits-per-second count for high-priority and low-priority queues.</td>
</tr>
<tr>
<td><strong>Drop statistics</strong></td>
<td>Fabric queue statistics for dropped traffic, including packets dropped because of internal error:</td>
</tr>
<tr>
<td></td>
<td>• <strong>Packets</strong>—Dropped packet count for high-priority and low-priority queues.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Bytes</strong>—Dropped byte count for high-priority and low-priority queues.</td>
</tr>
<tr>
<td></td>
<td>• <strong>pps</strong>—Dropped packets-per-second count for high-priority and low-priority queues.</td>
</tr>
<tr>
<td></td>
<td>• <strong>bps</strong>—Dropped bits-per-second count for high-priority and low-priority queues.</td>
</tr>
<tr>
<td><strong>Qdepth statistics</strong></td>
<td>Fabric queue depth statistics</td>
</tr>
<tr>
<td></td>
<td>• <strong>Average</strong>—Average queue depth in bytes.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Current</strong>—Current queue depth in bytes.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Max</strong>—Maximum queue depth in bytes.</td>
</tr>
</tbody>
</table>
### Sample Output

**show class-of-service fabric statistics**

```
user@host> show class-of-service fabric statistics
```

Destination FPC Index: 0, Source FPC Index: 0	High priority	Low priority
Total statistics:		
Packets:	0	0
Bytes :	0	0
Pps :	0	0
bps :	0	0
Tx statistics:		
Packets:	0	0
Bytes :	0	0
Pps :	0	0
bps :	0	0
Drop statistics:		
Packets:	0	0
Bytes :	0	0
Pps :	0	0
bps :	0	0

Destination FPC Index: 0, Source FPC Index: 1	High priority	Low priority
Total statistics:		
Packets:	0	0
Bytes :	0	0
Pps :	0	0
bps :	0	0
Tx statistics:		
Packets:	0	0
Bytes :	0	0
Pps :	0	0
bps :	0	0
Drop statistics:		
Packets:	0	0
Bytes :	0	0
...		
<table>
<thead>
<tr>
<th></th>
<th>High priority</th>
<th>Low priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total statistics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packets:</td>
<td>28953</td>
<td>0</td>
</tr>
<tr>
<td>Bytes :</td>
<td>14823936</td>
<td>0</td>
</tr>
<tr>
<td>Pps :</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>bps :</td>
<td>81024</td>
<td>0</td>
</tr>
<tr>
<td>Tx statistics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packets:</td>
<td>28953</td>
<td>0</td>
</tr>
<tr>
<td>Bytes :</td>
<td>14823936</td>
<td>0</td>
</tr>
<tr>
<td>Pps :</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>bps :</td>
<td>81024</td>
<td>0</td>
</tr>
<tr>
<td>Drop statistics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packets:</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bytes :</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pps :</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bps :</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Qdepth statistics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average:</td>
<td>0</td>
<td>0 b</td>
</tr>
<tr>
<td>Current:</td>
<td>0</td>
<td>0 b</td>
</tr>
<tr>
<td>Peak :</td>
<td>0</td>
<td>0 b</td>
</tr>
<tr>
<td>Max :</td>
<td>1367343104</td>
<td>1367343104 b</td>
</tr>
</tbody>
</table>
show class-of-service forwarding-table classifier

Syntax

```
show class-of-service forwarding-table classifier
```

Release Information

Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 11.1 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Display the mapping of code point value to queue number and loss priority for each classifier as it exists in the forwarding table.

Options

This command has no options.

Required Privilege Level

view

List of Sample Output

show class-of-service forwarding-table classifier on page 391

Output Fields

Table 64 on page 390 describes the output fields for the `show class-of-service forwarding-table classifier` command. Output fields are listed in the approximate order in which they appear.

Table 64: show class-of-service forwarding-table classifier Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classifier table index</td>
<td>Index of the classifier table.</td>
</tr>
<tr>
<td>entries</td>
<td>Total number of entries.</td>
</tr>
<tr>
<td>Table type</td>
<td>Type of code points in the table: DSCP, EXP (not on the QFX Series), IEEE 802.1, IPv4 precedence (not on the QFX Series), or IPv6 DSCP.</td>
</tr>
<tr>
<td>Entry #</td>
<td>Entry number.</td>
</tr>
<tr>
<td>Code point</td>
<td>Code point value used for classification.</td>
</tr>
<tr>
<td>Forwarding-class #</td>
<td>Forwarding class to which the code point is assigned.</td>
</tr>
</tbody>
</table>
Table 64: show class-of-service forwarding-table classifier Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLP</td>
<td>Packet loss priority value set by classification. For most platforms, the value can be 0 or 1. For some platforms, the value is 0, 1, 2, or 3. The value 0 represents low PLP. The value 1 represents high PLP. The value 2 represents medium-low PLP. The value 3 represents medium-high PLP.</td>
</tr>
</tbody>
</table>

Sample Output

show class-of-service forwarding-table classifier

user@host> show class-of-service forwarding-table classifier

Classifier table index: 62436, # entries: 64, Table type: DSCP

<table>
<thead>
<tr>
<th>Entry #</th>
<th>Code point</th>
<th>Forwarding-class #</th>
<th>PLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>000001</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>000010</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>000011</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>000100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>000101</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>000110</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>000111</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>001000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>001001</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>001010</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>001011</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>111100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>61</td>
<td>111101</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>62</td>
<td>111110</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>63</td>
<td>111111</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
show class-of-service forwarding-table classifier mapping

Syntax

```
show class-of-service forwarding-table classifier mapping
```

Release Information

Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 11.1 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

For each logical interface, display either the table index of the classifier for a given code point type or the queue number (if it is a fixed classification) in the forwarding table.

Options

This command has no options.

Required Privilege Level

view

List of Sample Output

show class-of-service forwarding-table classifier mapping on page 393

Output Fields

Table 65 on page 392 describes the output fields for the show class-of-service forwarding-table classifier mapping command. Output fields are listed in the approximate order in which they appear.

Table 65: show class-of-service forwarding-table classifier mapping Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table index/Q num</td>
<td>If the table type is Fixed, the number of the queue to which the interface is mapped. For all other types, this value is the classifier index number.</td>
</tr>
<tr>
<td>Interface</td>
<td>Name of the logical interface. This field can also show the physical interface (QFX Series).</td>
</tr>
<tr>
<td>Index</td>
<td>Logical interface index.</td>
</tr>
<tr>
<td>Table type</td>
<td>Type of code points in the table: DSCP, EXP (not on the QFX Series), Fixed, IEEE 802.1, IPv4 precedence (not on the QFX Series), or IPv6 DSCP. None if no-default option set.</td>
</tr>
</tbody>
</table>
## Sample Output

```
show class-of-service forwarding-table classifier mapping

user@host> show class-of-service forwarding-table classifier mapping

<table>
<thead>
<tr>
<th>Interface</th>
<th>Index</th>
<th>Q num</th>
<th>Table type</th>
</tr>
</thead>
<tbody>
<tr>
<td>so-5/0/0.0</td>
<td>10</td>
<td>62436</td>
<td>DSCP</td>
</tr>
<tr>
<td>so-0/1/0.0</td>
<td>11</td>
<td>62436</td>
<td>DSCP</td>
</tr>
<tr>
<td>so-0/2/0.0</td>
<td>12</td>
<td>1</td>
<td>Fixed</td>
</tr>
<tr>
<td>so-0/2/1.0</td>
<td>13</td>
<td>62436</td>
<td>DSCP</td>
</tr>
<tr>
<td>so-0/2/1.0</td>
<td>13</td>
<td>62437</td>
<td>IEEE 802.1</td>
</tr>
<tr>
<td>so-0/2/2.0</td>
<td>14</td>
<td>62436</td>
<td>DSCP</td>
</tr>
<tr>
<td>so-0/2/2.0</td>
<td>14</td>
<td>62438</td>
<td>IPv4 precedence</td>
</tr>
</tbody>
</table>
```
show class-of-service forwarding-table drop-profile

Syntax

```show class-of-service forwarding-table drop-profile```

Release Information

Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 11.1 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Display the data points of all random early detection (RED) drop profiles as they exist in the forwarding table.

Options

This command has no options.

Required Privilege Level

view

List of Sample Output

show class-of-service forwarding-table drop-profile on page 395

Output Fields

Table 66 on page 394 describes the output fields for the `show class-of-service forwarding-table drop-profile` command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED drop profile index</td>
<td>Index of this drop profile.</td>
</tr>
<tr>
<td># entries</td>
<td>Number of entries in a particular RED drop profile index.</td>
</tr>
<tr>
<td>Entry</td>
<td>Drop profile entry number.</td>
</tr>
<tr>
<td>Fullness(%)</td>
<td>Percentage fullness of a queue.</td>
</tr>
<tr>
<td>Drop probability(%)</td>
<td>Drop probability at this fill level.</td>
</tr>
</tbody>
</table>
Sample Output

show class-of-service forwarding-table drop-profile

```bash
user@host> show class-of-service forwarding-table drop-profile
```

<table>
<thead>
<tr>
<th>Drop</th>
<th>Entry</th>
<th>Fullness(%)</th>
<th>Probability(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drop</th>
<th>Entry</th>
<th>Fullness(%)</th>
<th>Probability(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drop</th>
<th>Entry</th>
<th>Fullness(%)</th>
<th>Probability(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drop</th>
<th>Entry</th>
<th>Fullness(%)</th>
<th>Probability(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>61</td>
<td>98</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drop</th>
<th>Entry</th>
<th>Fullness(%)</th>
<th>Probability(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drop</th>
<th>Entry</th>
<th>Fullness(%)</th>
<th>Probability(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>61</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
show class-of-service forwarding-table fabric scheduler-map

Syntax

```
show class-of-service forwarding-table fabric scheduler-map
```

Release Information

Command introduced before Junos OS Release 7.4.

Description

(M320 routers, MX Series routers, T Series routers and EX Series switches only) Display the scheduler map information as it exists in the forwarding table for switch fabric.

Options

This command has no options.

Additional Information

For information about how packet loss priority is assigned to packets, see *Managing Congestion by Setting Packet Loss Priority for Different Traffic Flows*.

Required Privilege Level

view

List of Sample Output

show class-of-service forwarding-table fabric scheduler-map on page 397

Output Fields

Table 67 on page 396 describes the output fields for the `show class-of-service forwarding-table fabric scheduler-map` command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric priority</td>
<td>Fabric traffic priority: low and high.</td>
</tr>
<tr>
<td>Scheduler index</td>
<td>Index of the scheduler applied to a fabric traffic priority.</td>
</tr>
<tr>
<td>PLP high</td>
<td>Drop profile index for high-packet-loss-priority (PLP) packets.</td>
</tr>
<tr>
<td>PLP low</td>
<td>Drop profile index for low-PLP packets.</td>
</tr>
<tr>
<td>TCP PLP high</td>
<td>Drop profile index for low-PLP and Transmission Control Protocol (TCP) packets.</td>
</tr>
<tr>
<td>TCP PLP low</td>
<td>Drop profile index for high-PLP and TCP packets.</td>
</tr>
</tbody>
</table>
Sample Output

```bash
show class-of-service forwarding-table fabric scheduler-map

user@host> show class-of-service forwarding-table fabric scheduler-map

Fabric priority: low
    Scheduler index: 60211
        PLP high: 44321, PLP low: 44321, TCP PLP high: 44321, TCP PLP low: 44321

Fabric priority: high
    Scheduler index: 60211
        PLP high: 44321, PLP low: 44321, TCP PLP high: 44321, TCP PLP low: 44321
```
show class-of-service forwarding-table rewrite-rule

Syntax
show class-of-service forwarding-table rewrite-rule

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 11.1 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Display mapping of queue number and loss priority to code point value for each rewrite rule as it exists in the forwarding table.

Options
This command has no options.

Required Privilege Level
view

List of Sample Output
show class-of-service forwarding-table rewrite-rule on page 399

Output Fields
Table 68 on page 398 describes the output fields for the show class-of-service forwarding-table rewrite-rule command. Output fields are listed in the approximate order in which they appear.

Table 68: show class-of-service forwarding-table rewrite-rule Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rewrite table index</td>
<td>Index for this rewrite rule.</td>
</tr>
<tr>
<td># entries</td>
<td>Number of entries in this rewrite rule.</td>
</tr>
<tr>
<td>Table type</td>
<td>Type of table: DSCP, EXP (not on the QFX Series), EXP-PUSH-3 (not on the QFX Series), IEEE 802.1</td>
</tr>
<tr>
<td>Q#</td>
<td>Queue number to which this entry is assigned.</td>
</tr>
<tr>
<td>Low bits</td>
<td>Code point value for low-priority loss profile.</td>
</tr>
<tr>
<td>State</td>
<td>State of this code point: enabled, rewritten, or disabled.</td>
</tr>
</tbody>
</table>
Table 68: show class-of-service forwarding-table rewrite-rule Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>High bits</td>
<td>Code point value for high-priority loss profile.</td>
</tr>
</tbody>
</table>

Sample Output

```
show class-of-service forwarding-table rewrite-rule

user@host> show class-of-service forwarding-table rewrite-rule

Rewrite table index: 3753, # entries: 4, Table type: DSCP
Q#   Low bits  State   High bits  State
0    000111   Enabled  001010   Enabled
2    000000   Disabled 001100   Enabled
1    101110   Enabled  110111   Enabled
3    110000   Enabled  111000   Enabled
```
show class-of-service forwarding-table rewrite-rule mapping

Syntax

```
show class-of-service forwarding-table rewrite-rule mapping
```

Release Information

Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 11.1 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

For each logical interface, display the table identifier of the rewrite rule map for each code point type.

Options

This command has no options.

Required Privilege Level

view

List of Sample Output

show class-of-service forwarding-table rewrite-rule mapping on page 401

Output Fields

Table 69 on page 400 describes the output fields for the `show class-of-service forwarding-table rewrite-rule mapping` command. Output fields are listed in the approximate order in which they appear.

Table 69: show class-of-service forwarding-table rewrite-rule mapping Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of the logical interface. This field can also show the physical interface (QFX Series).</td>
</tr>
<tr>
<td>Index</td>
<td>Logical interface index.</td>
</tr>
<tr>
<td>Table index</td>
<td>Rewrite table index.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of classifier: DSCP, EXP (not on the QFX Series), EXP-PUSH-3 (not on the QFX Series), EXP-SWAP-PUSH-2 (not on the QFX Series), IEEE 802.1, IPv4 precedence (not on the QFX Series), IPv6 DSCP, or Fixed.</td>
</tr>
</tbody>
</table>
Sample Output

`show class-of-service forwarding-table rewrite-rule mapping`

```
user@host> show class-of-service forwarding-table rewrite-rule mapping

<table>
<thead>
<tr>
<th>Interface</th>
<th>Index</th>
<th>Table index</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>so-5/0/0.0</td>
<td>10</td>
<td>3753</td>
<td>DSCP</td>
</tr>
<tr>
<td>so-0/1/0.0</td>
<td>11</td>
<td>3753</td>
<td>DSCP</td>
</tr>
<tr>
<td>so-0/2/0.0</td>
<td>12</td>
<td>3753</td>
<td>DSCP</td>
</tr>
<tr>
<td>so-0/2/1.0</td>
<td>13</td>
<td>3753</td>
<td>DSCP</td>
</tr>
<tr>
<td>so-0/2/2.0</td>
<td>14</td>
<td>3753</td>
<td>DSCP</td>
</tr>
<tr>
<td>so-0/2/3.0</td>
<td>15</td>
<td>3753</td>
<td>DSCP</td>
</tr>
</tbody>
</table>
```
show class-of-service forwarding-table scheduler-map

Syntax

```
show class-of-service forwarding-table scheduler-map
```

Release Information

Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 11.1 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

For each physical interface, display the scheduler map information as it exists in the forwarding table.

Options

This command has no options.

Required Privilege Level

View

List of Sample Output

table 70 on page 402 describes the output fields for the show class-of-service forwarding-table scheduler-map command. Output fields are listed in the approximate order in which they appear.

Table 70: show class-of-service forwarding-table scheduler-map Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of the physical interface.</td>
</tr>
<tr>
<td>Index</td>
<td>Physical interface index.</td>
</tr>
<tr>
<td>Map index</td>
<td>Scheduler map index.</td>
</tr>
<tr>
<td>Num of queues</td>
<td>Number of queues defined in this scheduler map.</td>
</tr>
<tr>
<td>Entry</td>
<td>Number of this entry in the scheduler map.</td>
</tr>
<tr>
<td>Scheduler index</td>
<td>Scheduler policy index.</td>
</tr>
<tr>
<td>Forwading-class #</td>
<td>Forwarding class number to which this entry is applied.</td>
</tr>
</tbody>
</table>
Table 70: show class-of-service forwarding-table scheduler-map Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tx rate</td>
<td>Configured transmit rate of the scheduler (in bps). The rate is a percentage of the total interface bandwidth, or the keyword <code>remainder</code>, which indicates that the scheduler receives the remaining bandwidth of the interface.</td>
</tr>
<tr>
<td>Max buffer delay</td>
<td>Amount of transmit delay (in milliseconds) or buffer size of the queue. This amount is a percentage of the total interface buffer allocation or the keyword <code>remainder</code>, which indicates that the buffer is sized according to what remains after other scheduler buffer allocations.</td>
</tr>
<tr>
<td>Priority</td>
<td>• high—Queue priority is high.</td>
</tr>
<tr>
<td></td>
<td>• low—Queue priority is low.</td>
</tr>
<tr>
<td>PLP high</td>
<td>Drop profile index for a high packet loss priority profile.</td>
</tr>
<tr>
<td>PLP low</td>
<td>Drop profile index for a low packet loss priority profile.</td>
</tr>
<tr>
<td>PLP medium-high</td>
<td>Drop profile index for a medium-high packet loss priority profile.</td>
</tr>
<tr>
<td>PLP medium-low</td>
<td>Drop profile index for a medium-low packet loss priority profile.</td>
</tr>
<tr>
<td>TCP PLP high</td>
<td>Drop profile index for a high TCP packet loss priority profile.</td>
</tr>
<tr>
<td>TCP PLP low</td>
<td>Drop profile index for a low TCP packet loss priority profile.</td>
</tr>
<tr>
<td>Policy is exact</td>
<td>If this line appears in the output, exact rate limiting is enabled. Otherwise, no rate limiting is enabled.</td>
</tr>
</tbody>
</table>

Sample Output

```
show class-of-service forwarding-table scheduler-map

user@host> show class-of-service forwarding-table scheduler-map

Interface: so-5/0/0 (Index: 9, Map index: 17638, Num of queues: 2):
  Entry 0 (Scheduler index: 6090, Forwarding-class #: 0):
    Tx rate: 0 Kb (30%), Max buffer delay: 39 bytes (0%)
    Priority low
    PLP high: 25393, PLP low: 24627, TCP PLP high: 25393, TCP PLP low:8742
    Policy is exact
  Entry 1 (Scheduler index: 38372, Forwarding-class #: 1):
```
Traffic chunk: Max = 0 bytes, Min = 0 bytes
Tx rate: 0 Kb (40%), Max buffer delay: 68 bytes (0%)
Priority high
PLP high: 25393, PLP low: 24627, TCP PLP high: 25393, TCP PLP low: 8742

Interface: at-6/1/0 (Index: 10, Map index: 17638, Num of queues: 2):
 Entry 0 (Scheduler index: 6090, Forwarding-class #: 0):
 Traffic chunk: Max = 0 bytes, Min = 0 bytes
 Tx rate: 0 Kb (30%), Max buffer delay: 39 bytes (0%)
 Priority high
 PLP high: 25393, PLP low: 24627, TCP PLP high: 25393, TCP PLP low: 8742
 Entry 1 (Scheduler index: 38372, Forwarding-class #: 1):
 Traffic chunk: Max = 0 bytes, Min = 0 bytes
 Tx rate: 0 Kb (40%), Max buffer delay: 68 bytes (0%)
 Priority low
 PLP high: 25393, PLP low: 24627, TCP PLP high: 25393, TCP PLP low: 8742
show class-of-service forwarding-table traffic-class-map

Syntax

```
show class-of-service forwarding-table traffic-class-map <mapping>
```

Release Information

Command introduced in Junos OS Release 14.2 for T4000 routers with Type 5 FPCs.
Command introduced in Junos OS Release 17.2 for MX Routers with MPCs.

Description

Display the mapping of code point value to the traffic class map as it exists in the forwarding table.

Options

`mapping`—Display the mapping of interfaces to traffic class maps.

Required Privilege Level

`view`

RELATED DOCUMENTATION

- `traffic-class-map`
- `Managing Ingress Oversubscription at the PFE`
- `Configuring Traffic Class Maps to Manage Ingress Oversubscription`
- `Example: Configuring Traffic Class Maps`
- `show class-of-service traffic-class-map` | 461

List of Sample Output

- show class-of-service forwarding-table traffic-class-map on page 406
- show class-of-service forwarding-table traffic-class-map mapping on page 407

Output Fields

Table 71 on page 405 describes the output fields for the show class-of-service forwarding-table traffic-class-map command. Output fields are listed in the approximate order in which they appear.

Table 71: show class-of-service forwarding-table traffic-class-map Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic-class-map table index</td>
<td>Index of the traffic class map table.</td>
</tr>
<tr>
<td>entries</td>
<td>Total number of entries.</td>
</tr>
</tbody>
</table>
Table 71: show class-of-service forwarding-table traffic-class-map Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table type</td>
<td>Type of code points in the table: DSCP, EXP, IEEE 802.1, IEEE 802.1ad, or INET-precedence</td>
</tr>
<tr>
<td>Entry #</td>
<td>Entry number.</td>
</tr>
<tr>
<td>Code point</td>
<td>Code point value used for classification.</td>
</tr>
<tr>
<td>Traffic-class</td>
<td>Traffic class to which the code point is assigned.</td>
</tr>
</tbody>
</table>

Table 72 on page 406 describes the output fields for the `show class-of-service forwarding-table traffic-class-map mapping` command. Output fields are listed in the approximate order in which they appear.

Table 72: show class-of-service forwarding-table traffic-class-map mapping Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Interface to which the traffic class map is assigned.</td>
</tr>
<tr>
<td>Index</td>
<td>Internal index of the traffic class map.</td>
</tr>
<tr>
<td>Table Index</td>
<td>Index of the traffic class map table.</td>
</tr>
<tr>
<td>Table type</td>
<td>Type of code points in the table: DSCP, EXP, IEEE 802.1, IEEE 802.1ad, or INET-precedence</td>
</tr>
</tbody>
</table>

Sample Output

`show class-of-service forwarding-table traffic-class-map`

```
user@host> show class-of-service forwarding-table traffic-class-map

Traffic-class-map table index: 44231, # entries: 6, Table type: INET-Precedence

<table>
<thead>
<tr>
<th>Entry #</th>
<th>Code point</th>
<th>Traffic-class</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
<td>real-time</td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td>real-time</td>
</tr>
<tr>
<td>2</td>
<td>010</td>
<td>network-control</td>
</tr>
<tr>
<td>3</td>
<td>011</td>
<td>network-control</td>
</tr>
</tbody>
</table>
```
Sample Output

`show class-of-service forwarding-table traffic-class-map mapping`

```
user@host> show class-of-service forwarding-table traffic-class-map mapping
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Index</th>
<th>Table Index</th>
<th>Table type</th>
</tr>
</thead>
<tbody>
<tr>
<td>xe-4/0/0</td>
<td>210</td>
<td>44231</td>
<td>INET-Precedence</td>
</tr>
</tbody>
</table>
show class-of-service fragmentation-map

Syntax

```
show class-of-service fragmentation-map
```

Release Information
Command introduced in Junos OS Release 7.5.

Description
For Multiservices and Services PIC link services IQ interfaces (lsq) only, display fragmentation properties for specific forwarding classes.

Options
This command has no options.

Required Privilege Level
view

List of Sample Output
show class-of-service fragmentation-map on page 409

Output Fields
Table 73 on page 408 describes the output fields for the show class-of-service fragmentation-map command. Output fields are listed in the approximate order in which they appear.

Table 73: show class-of-service fragmentation-map Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragmentation map</td>
<td>Name of the class of service (CoS) fragmentation map.</td>
</tr>
<tr>
<td>Index</td>
<td>Index number of the CoS fragmentation map.</td>
</tr>
<tr>
<td>Forwarding class</td>
<td>Name of the associated forwarding class.</td>
</tr>
<tr>
<td>Fragmentation threshold</td>
<td>Maximum size of each multilink fragment.</td>
</tr>
<tr>
<td>No Fragmentation</td>
<td>Packets of this class are not fragmented.</td>
</tr>
<tr>
<td>Multilink Class</td>
<td>For multilink multiclass PPP only, the multilink class number corresponding to the forwarding class.</td>
</tr>
</tbody>
</table>
Sample Output

show class-of-service fragmentation-map

user@host> show class-of-service fragmentation-map

Fragmentation map: fragmap2, Index: 19801
 Forwarding class: fcDefault
 No Fragmentation

 Forwarding class: fcCopper
 Fragmentation threshold: 64, Multilink Class: 1

 Forwarding class: fcSilver
 Fragmentation threshold: 100, Multilink Class: 0

 Forwarding class: fcCritical
 Fragmentation threshold: 64, Multilink Class: 0

Fragmentation map: fragmap, Index: 23147
 Forwarding class: fcDefault
 No Fragmentation

 Forwarding class: fcSilver
 Fragmentation threshold: 100

 Forwarding class: fcCritical
 Fragmentation threshold: 100
show class-of-service interface

Syntax

show class-of-service interface
<comprehensive | detail> <interface-name>

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
Forwarding class map information added in Junos OS Release 9.4.
Command introduced in Junos OS Release 11.1 for the QFX Series.
Command introduced in Junos OS Release 12.1 for the PTX Series Packet Transport routers.
Command introduced in Junos OS Release 12.2 for the ACX Series Universal Metro routers.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.
Options detail and comprehensive introduced in Junos OS Release 11.4.
Command introduced in Junos OS Release 15.1R3 on MX Series routers for enhanced subscriber management.

Description
Display the logical and physical interface associations for the classifier, rewrite rules, and scheduler map objects.

NOTE: On routing platforms with dual Routing Engines, running this command on the backup Routing Engine, with or without any of the available options, is not supported and produces the following error message:

 error: the class-of-service subsystem is not running

Options
none—Display CoS associations for all physical and logical interfaces.

comprehensive—(M Series, MX Series, and T Series routers) (Optional) Display comprehensive quality-of-service (QoS) information about all physical and logical interfaces.

 If the interface interface-name is a physical interface, the output includes:
• Brief QoS information about the physical interface
• Brief QoS information about the logical interface
• CoS information about the physical interface
• Brief information about filters or policers of the logical interface
• Brief CoS information about the logical interface

If the interface interface-name is a logical interface, the output includes:
• Brief QoS information about the logical interface
• Information about filters or policers for the logical interface
• CoS information about the logical interface

interface-name—(Optional) Display class-of-service (CoS) associations for the specified interface.

none—Display CoS associations for all physical and logical interfaces.

NOTE: ACX5000 routers do not support classification on logical interfaces and therefore do not show CoS associations for logical interfaces with this command.

Required Privilege Level

view

RELATED DOCUMENTATION

| Verifying and Managing Junos OS Enhanced Subscriber Management |

List of Sample Output

show class-of-service interface (Physical) on page 427
show class-of-service interface (Logical) on page 427
show class-of-service interface (Gigabit Ethernet) on page 427
show class-of-service interface (ANCP) on page 428
show class-of-service interface (PPPoE Interface) on page 428
show class-of-service interface (DHCP Interface) on page 428
show class-of-service interface (T4000 Routers with Type 5 FPCs) on page 429
show class-of-service interface detail on page 429
show class-of-service interface comprehensive on page 430
show class-of-service interface (ACX Series Routers) on page 445
Output Fields

Table 74 on page 412 describes the output fields for the `show class-of-service interface` command. Output fields are listed in the approximate order in which they appear.

Table 74: show class-of-service interface Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical interface</td>
<td>Name of a physical interface.</td>
</tr>
<tr>
<td>Index</td>
<td>Index of this interface or the internal index of this object. (Enhanced subscriber management for MX Series routers) Index values for dynamic CoS traffic control profiles and dynamic scheduler maps are larger for enhanced subscriber management than they are for legacy subscriber management.</td>
</tr>
<tr>
<td>Dedicated Queues</td>
<td>Status of dedicated queues configured on an interface. Supported only on Trio MPC/MIC interfaces on MX Series routers. (Enhanced subscriber management for MX-Series routers) This field is not displayed for enhanced subscriber management.</td>
</tr>
<tr>
<td>Maximum usable queues</td>
<td>Number of queues you can configure on the interface.</td>
</tr>
<tr>
<td>Maximum usable queues</td>
<td>Maximum number of queues you can use.</td>
</tr>
<tr>
<td>Total non-default queues created</td>
<td>Number of queues created in addition to the default queues. Supported only on Trio MPC/MIC interfaces on MX Series routers. (Enhanced subscriber management for MX Series routers) This field is not displayed for enhanced subscriber management.</td>
</tr>
<tr>
<td>Rewrite Input IEEE Code-point</td>
<td>(QFX3500 switches only) IEEE 802.1p code point (priority) rewrite value. Incoming traffic from the Fibre Channel (FC) SAN is classified into the forwarding class specified in the native FC interface (NP_Port) fixed classifier and uses the priority specified as the IEEE 802.1p rewrite value.</td>
</tr>
<tr>
<td>Shaping rate</td>
<td>Maximum transmission rate on the physical interface. You can configure the shaping rate on the physical interface, or on the logical interface, but not on both. Therefore, the Shaping rate field is displayed for either the physical interface or the logical interface.</td>
</tr>
</tbody>
</table>
Table 74: show class-of-service interface Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduler map</td>
<td>Name of the output scheduler map associated with this interface. (Enhanced subscriber management for MX Series routers) The name of the dynamic scheduler map object is associated with a generated UID (for example, SMAP-1_UID1002) instead of with a subscriber interface.</td>
</tr>
<tr>
<td>Scheduler map forwarding class sets</td>
<td>(QFX Series only) Name of the output fabric scheduler map associated with a QFabric system Interconnect device interface.</td>
</tr>
<tr>
<td>Input shaping rate</td>
<td>For Gigabit Ethernet IQ2 PICs, maximum transmission rate on the input interface.</td>
</tr>
<tr>
<td>Input scheduler map</td>
<td>For Gigabit Ethernet IQ2 PICs, name of the input scheduler map associated with this interface.</td>
</tr>
<tr>
<td>Chassis scheduler map</td>
<td>Name of the scheduler map associated with the packet forwarding component queues.</td>
</tr>
<tr>
<td>Rewrite</td>
<td>Name and type of the rewrite rules associated with this interface.</td>
</tr>
<tr>
<td>Traffic-control-profile</td>
<td>Name of the associated traffic control profile. (Enhanced subscriber management for MX Series routers) The name of the dynamic traffic control profile object is associated with a generated UID (for example, TC_PROF_100_199_SERIES_UID1006) instead of with a subscriber interface.</td>
</tr>
<tr>
<td>Classifier</td>
<td>Name and type of classifiers associated with this interface.</td>
</tr>
<tr>
<td>Forwarding-class-map</td>
<td>Name of the forwarding map associated with this interface.</td>
</tr>
<tr>
<td>Congestion-notification</td>
<td>(QFX Series and EX4600 switches only) Congestion notification state, enabled or disabled.</td>
</tr>
<tr>
<td>Logical interface</td>
<td>Name of a logical interface.</td>
</tr>
<tr>
<td>Object</td>
<td>Category of an object: Classifier, Fragmentation-map (for LSQ interfaces only), Scheduler-map, Rewrite, Translation Table (for IQE PICs only), or traffic-class-map (for T4000 routers with Type 5 FPCs).</td>
</tr>
<tr>
<td>Name</td>
<td>Name of an object.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of an object: dscp, dscp-ipv6, exp, ieee-802.1, ip, inet-precedence, or ieee-802.1ad (for traffic class map on T4000 routers with Type 5 FPCs).</td>
</tr>
<tr>
<td>Link-level type</td>
<td>Encapsulation on the physical interface.</td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>MTU</td>
<td>MTU size on the physical interface.</td>
</tr>
<tr>
<td>Speed</td>
<td>Speed at which the interface is running.</td>
</tr>
<tr>
<td>Loopback</td>
<td>Whether loopback is enabled and the type of loopback.</td>
</tr>
<tr>
<td>Source filtering</td>
<td>Whether source filtering is enabled or disabled.</td>
</tr>
<tr>
<td>Flow control</td>
<td>Whether flow control is enabled or disabled.</td>
</tr>
<tr>
<td>Auto-negotiation</td>
<td>(Gigabit Ethernet interfaces) Whether autonegotiation is enabled or disabled.</td>
</tr>
<tr>
<td>Remote-fault</td>
<td>(Gigabit Ethernet interfaces) Remote fault status.</td>
</tr>
<tr>
<td></td>
<td>• Online—Autonegotiation is manually configured as online.</td>
</tr>
<tr>
<td></td>
<td>• Offline—Autonegotiation is manually configured as offline.</td>
</tr>
<tr>
<td>Device flags</td>
<td>The Device flags field provides information about the physical device and displays one or more of the following values:</td>
</tr>
<tr>
<td></td>
<td>• Down—Device has been administratively disabled.</td>
</tr>
<tr>
<td></td>
<td>• Hear-Own-Xmit—Device receives its own transmissions.</td>
</tr>
<tr>
<td></td>
<td>• Link-Layer-Down—The link-layer protocol has failed to connect with the remote endpoint.</td>
</tr>
<tr>
<td></td>
<td>• Loopback—Device is in physical loopback.</td>
</tr>
<tr>
<td></td>
<td>• Loop-Detected—The link layer has received frames that it sent, thereby detecting a physical loopback.</td>
</tr>
<tr>
<td></td>
<td>• No-Carrier—On media that support carrier recognition, no carrier is currently detected.</td>
</tr>
<tr>
<td></td>
<td>• No-Multicast—Device does not support multicast traffic.</td>
</tr>
<tr>
<td></td>
<td>• Present—Device is physically present and recognized.</td>
</tr>
<tr>
<td></td>
<td>• Promiscuous—Device is in promiscuous mode and recognizes frames addressed to all physical addresses on the media.</td>
</tr>
<tr>
<td></td>
<td>• Quench—Transmission on the device is quenched because the output buffer is overflowing.</td>
</tr>
<tr>
<td></td>
<td>• Recv-All-Multicasts—Device is in multicast promiscuous mode and therefore provides no multicast filtering.</td>
</tr>
<tr>
<td></td>
<td>• Running—Device is active and enabled.</td>
</tr>
</tbody>
</table>
Table 74: show class-of-service interface Output Fields *(continued)*

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface flags</td>
<td>The Interface flags field provides information about the physical interface and displays one or more of the following values:</td>
</tr>
<tr>
<td></td>
<td>• Admin-Test—Interface is in test mode and some sanity checking, such as loop detection, is disabled.</td>
</tr>
<tr>
<td></td>
<td>• Disabled—Interface is administratively disabled.</td>
</tr>
<tr>
<td></td>
<td>• Down—A hardware failure has occurred.</td>
</tr>
<tr>
<td></td>
<td>• Hardware-Down—Interface is nonfunctional or incorrectly connected.</td>
</tr>
<tr>
<td></td>
<td>• Link-Layer-Down—Interface keepalives have indicated that the link is incomplete.</td>
</tr>
<tr>
<td></td>
<td>• No-Multicast—Interface does not support multicast traffic.</td>
</tr>
<tr>
<td></td>
<td>• No-receive No-transmit—Passive monitor mode is configured on the interface.</td>
</tr>
<tr>
<td></td>
<td>• Point-To-Point—Interface is point-to-point.</td>
</tr>
<tr>
<td></td>
<td>• Pop all MPLS labels from packets of depth—MPLS labels are removed as packets arrive on an interface that has the pop-all-labels statement configured. The depth value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• 1—Takes effect for incoming packets with one label only.</td>
</tr>
<tr>
<td></td>
<td>• 2—Takes effect for incoming packets with two labels only.</td>
</tr>
<tr>
<td></td>
<td>• [1 2]—Takes effect for incoming packets with either one or two labels.</td>
</tr>
<tr>
<td></td>
<td>• Promiscuous—Interface is in promiscuous mode and recognizes frames addressed to all physical addresses.</td>
</tr>
<tr>
<td></td>
<td>• Recv-All-Multicasts—Interface is in multicast promiscuous mode and provides no multicast filtering.</td>
</tr>
<tr>
<td></td>
<td>• SNMP-Traps—SNMP trap notifications are enabled.</td>
</tr>
<tr>
<td></td>
<td>• Up—Interface is enabled and operational.</td>
</tr>
</tbody>
</table>
Table 74: show class-of-service interface Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flags</td>
<td>The Logical interface flags field provides information about the logical interface and displays one or more of the following values:</td>
</tr>
<tr>
<td></td>
<td>• ACFC Encapsulation—Address control field Compression (ACFC) encapsulation is enabled (negotiated successfully with a peer).</td>
</tr>
<tr>
<td></td>
<td>• Device-down—Device has been administratively disabled.</td>
</tr>
<tr>
<td></td>
<td>• Disabled—Interface is administratively disabled.</td>
</tr>
<tr>
<td></td>
<td>• Down—A hardware failure has occurred.</td>
</tr>
<tr>
<td></td>
<td>• Clear-DF-Bit—GRE tunnel or IPsec tunnel is configured to clear the Don't Fragment (DF) bit.</td>
</tr>
<tr>
<td></td>
<td>• Hardware-Down—Interface protocol initialization failed to complete successfully.</td>
</tr>
<tr>
<td></td>
<td>• PFC—Protocol field compression is enabled for the PPP session.</td>
</tr>
<tr>
<td></td>
<td>• Point-To-Point—Interface is point-to-point.</td>
</tr>
<tr>
<td></td>
<td>• SNMP-Traps—SNMP trap notifications are enabled.</td>
</tr>
<tr>
<td></td>
<td>• Up—Interface is enabled and operational.</td>
</tr>
<tr>
<td>Encapsulation</td>
<td>Encapsulation on the logical interface.</td>
</tr>
<tr>
<td>Admin</td>
<td>Administrative state of the interface (Up or Down)</td>
</tr>
<tr>
<td>Link</td>
<td>Status of physical link (Up or Down).</td>
</tr>
<tr>
<td>Proto</td>
<td>Protocol configured on the interface.</td>
</tr>
<tr>
<td>Input Filter</td>
<td>Names of any firewall filters to be evaluated when packets are received on the interface, including any filters attached through activation of dynamic service.</td>
</tr>
<tr>
<td>Output Filter</td>
<td>Names of any firewall filters to be evaluated when packets are transmitted on the interface, including any filters attached through activation of dynamic service.</td>
</tr>
</tbody>
</table>
Table 74: show class-of-service interface Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
</table>
| Link flags | Provides information about the physical link and displays one or more of the following values:
| |
| | • **ACFC**—Address control field compression is configured. The Point-to-Point Protocol (PPP) session negotiates the ACFC option.
| | • **Give-Up**—Link protocol does not continue connection attempts after repeated failures.
| | • **Loose-LCP**—PPP does not use the Link Control Protocol (LCP) to indicate whether the link protocol is operational.
| | • **Loose-LMI**—Frame Relay does not use the Local Management Interface (LMI) to indicate whether the link protocol is operational.
| | • **Loose-NCP**—PPP does not use the Network Control Protocol (NCP) to indicate whether the device is operational.
| | • **Keepalives**—Link protocol keepalives are enabled.
| | • **No-Keepalives**—Link protocol keepalives are disabled.
| | • **PFC**—Protocol field compression is configured. The PPP session negotiates the PFC option.
| Hold-times | Current interface hold-time up and hold-time down, in milliseconds.
| CoS queues | Number of CoS queues configured.
| Last flapped | Date, time, and how long ago the interface went from down to up. The format is Last flapped:
| Statistics last cleared | Number and rate of bytes and packets received and transmitted on the physical interface.
| | • **Input bytes**—Number of bytes received on the interface.
| | • **Output bytes**—Number of bytes transmitted on the interface.
| | • **Input packets**—Number of packets received on the interface.
| | • **Output packets**—Number of packets transmitted on the interface.
| Exclude Overhead Bytes | Exclude the counting of overhead bytes from aggregate queue statistics.
| | • **Disabled**—Default configuration. Includes the counting of overhead bytes in aggregate queue statistics.
| | • **Enabled**—Excludes the counting of overhead bytes from aggregate queue statistics for just the physical interface.
| | • **Enabled for hierarchy**—Excludes the counting of overhead bytes from aggregate queue statistics for the physical interface as well as all child interfaces, including logical interfaces and interface sets.
| IPv6 transit statistics | Number of IPv6 transit bytes and packets received and transmitted on the logical interface if IPv6 statistics tracking is enabled.

Table 74: show class-of-service interface Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input errors</td>
<td>Input errors on the interface. The labels are explained in the following list:</td>
</tr>
<tr>
<td></td>
<td>• Errors—Sum of the incoming frame aborts and FCS errors.</td>
</tr>
<tr>
<td></td>
<td>• Drops—Number of packets dropped by the input queue of the I/O Manager ASIC.</td>
</tr>
<tr>
<td></td>
<td>If the interface is saturated, this number increments once for every packet that</td>
</tr>
<tr>
<td></td>
<td>is dropped by the ASIC's RED mechanism.</td>
</tr>
<tr>
<td></td>
<td>• Framing errors—Number of packets received with an invalid frame checksum (FCS).</td>
</tr>
<tr>
<td></td>
<td>• Runts—Number of frames received that are smaller than the runt threshold.</td>
</tr>
<tr>
<td></td>
<td>• Giants—Number of frames received that are larger than the giant threshold.</td>
</tr>
<tr>
<td></td>
<td>• Bucket Drops—Drops resulting from the traffic load exceeding the interface</td>
</tr>
<tr>
<td></td>
<td>transmit or receive leaky bucket configuration.</td>
</tr>
<tr>
<td></td>
<td>• Policed discards—Number of frames that the incoming packet match code</td>
</tr>
<tr>
<td></td>
<td>discarded because they were not recognized or not of interest. Usually, this</td>
</tr>
<tr>
<td></td>
<td>field reports protocols that Junos OS does not handle.</td>
</tr>
<tr>
<td></td>
<td>• L3 incompletes—Number of incoming packets discarded because they failed</td>
</tr>
<tr>
<td></td>
<td>Layer 3 (usually IPv4) sanity checks of the header. For example, a frame with</td>
</tr>
<tr>
<td></td>
<td>less than 20 bytes of available IP header is discarded. Layer 3 incomplete</td>
</tr>
<tr>
<td></td>
<td>errors can be ignored by configuring the ignore-l3-incompletes statement.</td>
</tr>
<tr>
<td></td>
<td>• L2 channel errors—Number of times the software did not find a valid logical</td>
</tr>
<tr>
<td></td>
<td>interface for an incoming frame.</td>
</tr>
<tr>
<td></td>
<td>• L2 mismatch timeouts—Number of malformed or short packets that caused the</td>
</tr>
<tr>
<td></td>
<td>incoming packet handler to discard the frame as unreadable.</td>
</tr>
<tr>
<td></td>
<td>• HS link CRC errors—Number of errors on the high-speed links between the</td>
</tr>
<tr>
<td></td>
<td>ASICs responsible for handling the router interfaces.</td>
</tr>
<tr>
<td></td>
<td>• HS link FIFO overflows—Number of FIFO overflows on the high-speed links</td>
</tr>
<tr>
<td></td>
<td>between the ASICs responsible for handling the router interfaces.</td>
</tr>
</tbody>
</table>
Table 74: show class-of-service interface Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output errors</td>
<td>Output errors on the interface. The labels are explained in the following list:</td>
</tr>
<tr>
<td>• Carrier transitions—Number of times the interface has gone from down to up. This number does not normally increment quickly, increasing only when the cable is unplugged, the far-end system is powered down and up, or another problem occurs. If the number of carrier transitions increments quickly (perhaps once every 10 seconds), the cable, the far-end system, or the PIC is malfunctioning.</td>
<td></td>
</tr>
<tr>
<td>• Errors—Sum of the outgoing frame aborts and FCS errors.</td>
<td></td>
</tr>
<tr>
<td>• Drops—Number of packets dropped by the output queue of the I/O Manager ASIC. If the interface is saturated, this number increments once for every packet that is dropped by the ASIC's RED mechanism.</td>
<td></td>
</tr>
<tr>
<td>NOTE: Due to accounting space limitations on certain Type 3 FPCs (which are supported in M320 and T640 routers), the Drops field does not always use the correct value for queue 6 or queue 7 for interfaces on 10-port 1-Gigabit Ethernet PICs.</td>
<td></td>
</tr>
<tr>
<td>• Aged packets—Number of packets that remained in shared packet SDRAM so long that the system automatically purged them. The value in this field should never increment. If it does, it is most likely a software bug or possibly malfunctioning hardware.</td>
<td></td>
</tr>
<tr>
<td>• HS link FIFO underflows—Number of FIFO underflows on the high-speed links between the ASICs responsible for handling the router interfaces.</td>
<td></td>
</tr>
<tr>
<td>• MTU errors—Number of packets whose size exceeds the MTU of the interface.</td>
<td></td>
</tr>
<tr>
<td>Egress queues</td>
<td>Total number of egress Maximum usable queues on the specified interface.</td>
</tr>
<tr>
<td>Queue counters</td>
<td>CoS queue number and its associated user-configured forwarding class name.</td>
</tr>
<tr>
<td>• Queued packets—Number of queued packets.</td>
<td></td>
</tr>
<tr>
<td>• Transmitted packets—Number of transmitted packets.</td>
<td></td>
</tr>
<tr>
<td>• Dropped packets—Number of packets dropped by the ASIC's RED mechanism.</td>
<td></td>
</tr>
<tr>
<td>NOTE: Due to accounting space limitations on certain Type 3 FPCs (which are supported in M320 and T640 routers), the Dropped packets field does not always display the correct value for queue 6 or queue 7 for interfaces on 10-port 1-Gigabit Ethernet PICs.</td>
<td></td>
</tr>
<tr>
<td>SONET alarms</td>
<td>(SONET) SONET media-specific alarms and defects that prevent the interface from passing packets. When a defect persists for a certain period, it is promoted to an alarm. Based on the router configuration, an alarm can ring the red or yellow alarm bell on the router or light the red or yellow alarm LED on the craft interface. See these fields for possible alarms and defects: SONET PHY, SONET section, SONET line, and SONET path.</td>
</tr>
<tr>
<td>SONET defects</td>
<td></td>
</tr>
</tbody>
</table>
Table 74: show class-of-service interface Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SONET PHY</td>
<td>Counts of specific SONET errors with detailed information.</td>
</tr>
<tr>
<td></td>
<td>• Seconds—Number of seconds the defect has been active.</td>
</tr>
<tr>
<td></td>
<td>• Count—Number of times that the defect has gone from inactive to active.</td>
</tr>
<tr>
<td></td>
<td>• State—State of the error. A state other than OK indicates a problem.</td>
</tr>
<tr>
<td></td>
<td>The SONET PHY field has the following subfields:</td>
</tr>
<tr>
<td></td>
<td>• PLL Lock—Phase-locked loop</td>
</tr>
<tr>
<td></td>
<td>• PHY Light—Loss of optical signal</td>
</tr>
<tr>
<td>SONET section</td>
<td>Counts of specific SONET errors with detailed information.</td>
</tr>
<tr>
<td></td>
<td>• Seconds—Number of seconds the defect has been active.</td>
</tr>
<tr>
<td></td>
<td>• Count—Number of times that the defect has gone from inactive to active.</td>
</tr>
<tr>
<td></td>
<td>• State—State of the error. A state other than OK indicates a problem.</td>
</tr>
<tr>
<td></td>
<td>The SONET section field has the following subfields:</td>
</tr>
<tr>
<td></td>
<td>• BIP-B1—Bit interleaved parity for SONET section overhead</td>
</tr>
<tr>
<td></td>
<td>• SEF—Severely errored framing</td>
</tr>
<tr>
<td></td>
<td>• LOS—Loss of signal</td>
</tr>
<tr>
<td></td>
<td>• LOF—Loss of frame</td>
</tr>
<tr>
<td></td>
<td>• ES-S—Errored seconds (section)</td>
</tr>
<tr>
<td></td>
<td>• SES-S—Severely errored seconds (section)</td>
</tr>
<tr>
<td></td>
<td>• SEFS-S—Severely errored framing seconds (section)</td>
</tr>
</tbody>
</table>
Table 74: show class-of-service interface Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SONET line</td>
<td>Active alarms and defects, plus counts of specific SONET errors with detailed information.</td>
</tr>
<tr>
<td></td>
<td>• Seconds—Number of seconds the defect has been active.</td>
</tr>
<tr>
<td></td>
<td>• Count—Number of times that the defect has gone from inactive to active.</td>
</tr>
<tr>
<td></td>
<td>• State—State of the error. A state other than OK indicates a problem.</td>
</tr>
<tr>
<td></td>
<td>The SONET line field has the following subfields:</td>
</tr>
<tr>
<td></td>
<td>• BIP-B2—Bit interleaved parity for SONET line overhead</td>
</tr>
<tr>
<td></td>
<td>• REI-L—Remote error indication (near-end line)</td>
</tr>
<tr>
<td></td>
<td>• RDI-L—Remote defect indication (near-end line)</td>
</tr>
<tr>
<td></td>
<td>• AIS-L—Alarm indication signal (near-end line)</td>
</tr>
<tr>
<td></td>
<td>• BERR-SF—Bit error rate fault (signal failure)</td>
</tr>
<tr>
<td></td>
<td>• BERR-SD—Bit error rate defect (signal degradation)</td>
</tr>
<tr>
<td></td>
<td>• ES-L—Errored seconds (near-end line)</td>
</tr>
<tr>
<td></td>
<td>• SES-L—Severely errored seconds (near-end line)</td>
</tr>
<tr>
<td></td>
<td>• UAS-L—Unavailable seconds (near-end line)</td>
</tr>
<tr>
<td></td>
<td>• ES-LFE—Errored seconds (far-end line)</td>
</tr>
<tr>
<td></td>
<td>• SES-LFE—Severely errored seconds (far-end line)</td>
</tr>
<tr>
<td></td>
<td>• UAS-LFE—Unavailable seconds (far-end line)</td>
</tr>
</tbody>
</table>
Table 74: show class-of-service interface Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SONET path</td>
<td>Active alarms and defects, plus counts of specific SONET errors with detailed information.</td>
</tr>
<tr>
<td></td>
<td>• Seconds—Number of seconds the defect has been active.</td>
</tr>
<tr>
<td></td>
<td>• Count—Number of times that the defect has gone from inactive to active.</td>
</tr>
<tr>
<td></td>
<td>• State—State of the error. A state other than OK indicates a problem.</td>
</tr>
<tr>
<td></td>
<td>The SONET path field has the following subfields:</td>
</tr>
<tr>
<td></td>
<td>• BIP-B3—Bit interleaved parity for SONET section overhead</td>
</tr>
<tr>
<td></td>
<td>• REI-P—Remote error indication</td>
</tr>
<tr>
<td></td>
<td>• LOP-P—Loss of pointer (path)</td>
</tr>
<tr>
<td></td>
<td>• AIS-P—Path alarm indication signal</td>
</tr>
<tr>
<td></td>
<td>• RDI-P—Path remote defect indication</td>
</tr>
<tr>
<td></td>
<td>• UNEQ-P—Path unequipped</td>
</tr>
<tr>
<td></td>
<td>• PLM-P—Path payload (signal) label mismatch</td>
</tr>
<tr>
<td></td>
<td>• ES-P—Errored seconds (near-end STS path)</td>
</tr>
<tr>
<td></td>
<td>• SES-P—Severely errored seconds (near-end STS path)</td>
</tr>
<tr>
<td></td>
<td>• UAS-P—Unavailable seconds (near-end STS path)</td>
</tr>
<tr>
<td></td>
<td>• ES-PFE—Errored seconds (far-end STS path)</td>
</tr>
<tr>
<td></td>
<td>• SES-PFE—Severely errored seconds (far-end STS path)</td>
</tr>
<tr>
<td></td>
<td>• UAS-PFE—Unavailable seconds (far-end STS path)</td>
</tr>
<tr>
<td>Received SONET overhead</td>
<td>Values of the received and transmitted SONET overhead:</td>
</tr>
<tr>
<td>Transmitted SONET overhead</td>
<td>• C2—Signal label. Allocated to identify the construction and content of the STS-level SPE and for PDI-P.</td>
</tr>
<tr>
<td></td>
<td>• F1—Section user channel byte. This byte is set aside for the purposes of users.</td>
</tr>
<tr>
<td></td>
<td>• K1 and K2—These bytes are allocated for APS signaling for the protection of the multiplex section.</td>
</tr>
<tr>
<td></td>
<td>• J0—Section trace. This byte is defined for STS-1 number 1 of an STS-N signal. Used to transmit a 1-byte fixed-length string or a 16-byte message so that a receiving terminal in a section can verify its continued connection to the intended transmitter.</td>
</tr>
<tr>
<td></td>
<td>• S1—Synchronization status. The S1 byte is located in the first STS-1 number of an STS-N signal.</td>
</tr>
<tr>
<td></td>
<td>• Z3 and Z4—Allocated for future use.</td>
</tr>
</tbody>
</table>
Table 74: show class-of-service interface Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Received path trace</td>
<td>SONET/SDH interfaces allow path trace bytes to be sent inband across the SONET/SDH link. Juniper Networks and other router manufacturers use these bytes to help diagnose misconfigurations and network errors by setting the transmitted path trace message so that it contains the system hostname and name of the physical interface. The received path trace value is the message received from the router at the other end of the fiber. The transmitted path trace value is the message that this router transmits.</td>
</tr>
<tr>
<td>Transmitted path trace</td>
<td></td>
</tr>
</tbody>
</table>
| HDLC configuration | Information about the HDLC configuration.
• Policing bucket—Configured state of the receiving policer.
• Shaping bucket—Configured state of the transmitting shaper.
• Giant threshold—Giant threshold programmed into the hardware.
• Runt threshold—Runt threshold programmed into the hardware. |
| Packet Forwarding Engine configuration | Information about the configuration of the Packet Forwarding Engine:
• Destination slot—FPC slot number.
• PLP byte—Packet Level Protocol byte. |
| CoS information | Information about the CoS queue for the physical interface.
• CoS transmit queue—Queue number and its associated user-configured forwarding class name.
• Bandwidth %—Percentage of bandwidth allocated to the queue.
• Bandwidth bps—Bandwidth allocated to the queue (in bps).
• Buffer %—Percentage of buffer space allocated to the queue.
• Buffer usec—Amount of buffer space allocated to the queue, in microseconds. This value is nonzero only if the buffer size is configured in terms of time.
• Priority—Queue priority: low or high.
• Limit—Displayed if rate limiting is configured for the queue. Possible values are none and exact. If exact is configured, the queue transmits only up to the configured bandwidth, even if excess bandwidth is available. If none is configured, the queue transmits beyond the configured bandwidth if bandwidth is available. |
| Forwarding classes | Total number of forwarding classes supported on the specified interface. |
| Egress queues | Total number of egress Maximum usable queues on the specified interface. |
| Queue | Queue number. |
| Forwarding classes | Forwarding class name. |
Table 74: show class-of-service interface Output Fields *(continued)*

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queued Packets</td>
<td>Number of packets queued to this queue.</td>
</tr>
<tr>
<td>Queued Bytes</td>
<td>Number of bytes queued to this queue. The byte counts vary by PIC type.</td>
</tr>
<tr>
<td>Transmitted Packets</td>
<td>Number of packets transmitted by this queue. When fragmentation occurs on the egress interface, the first set of packet counters shows the postfragmentation values. The second set of packet counters (displayed under the Packet Forwarding Engine Chassis Queues field) shows the prefragmentation values.</td>
</tr>
<tr>
<td>Transmitted Bytes</td>
<td>Number of bytes transmitted by this queue. The byte counts vary by PIC type.</td>
</tr>
<tr>
<td>Tail-dropped packets</td>
<td>Number of packets dropped because of tail drop.</td>
</tr>
<tr>
<td>RED-dropped packets</td>
<td>Number of packets dropped because of random early detection (RED).</td>
</tr>
<tr>
<td></td>
<td>• (M Series and T Series routers only) On M320 and M120 routers and the T Series routers, the total number of dropped packets is displayed. On all other M Series routers, the output classifies dropped packets into the following categories:</td>
</tr>
<tr>
<td></td>
<td>• Low, non-TCP—Number of low-loss priority non-TCP packets dropped because of RED.</td>
</tr>
<tr>
<td></td>
<td>• Low, TCP—Number of low-loss priority TCP packets dropped because of RED.</td>
</tr>
<tr>
<td></td>
<td>• High, non-TCP—Number of high-loss priority non-TCP packets dropped because of RED.</td>
</tr>
<tr>
<td></td>
<td>• High, TCP—Number of high-loss priority TCP packets dropped because of RED.</td>
</tr>
<tr>
<td></td>
<td>• (MX Series routers with enhanced DPCs, and T Series routers with enhanced FPCs only) The output classifies dropped packets into the following categories:</td>
</tr>
<tr>
<td></td>
<td>• Low—Number of low-loss priority packets dropped because of RED.</td>
</tr>
<tr>
<td></td>
<td>• Medium-low—Number of medium-low loss priority packets dropped because of RED.</td>
</tr>
<tr>
<td></td>
<td>• Medium-high—Number of medium-high loss priority packets dropped because of RED.</td>
</tr>
<tr>
<td></td>
<td>• High—Number of high-loss priority packets dropped because of RED.</td>
</tr>
</tbody>
</table>

NOTE: Due to accounting space limitations on certain Type 3 FPCs (which are supported in M320 and T640 routers), this field does not always display the correct value for queue 6 or queue 7 for interfaces on 10-port 1-Gigabit Ethernet PICs.
Table 74: show class-of-service interface Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
</table>
| RED-dropped bytes | Number of bytes dropped because of RED. The byte counts vary by PIC type.
 - (M Series and T Series routers only) On M320 and M120 routers and the T Series routers, only the total number of dropped bytes is displayed. On all other M Series routers, the output classifies dropped bytes into the following categories:
 - **Low, non-TCP**—Number of low-loss priority non-TCP bytes dropped because of RED.
 - **Low, TCP**—Number of low-loss priority TCP bytes dropped because of RED.
 - **High, non-TCP**—Number of high-loss priority non-TCP bytes dropped because of RED.
 - **High, TCP**—Number of high-loss priority TCP bytes dropped because of RED.

 NOTE: Due to accounting space limitations on certain Type 3 FPCs (which are supported in M320 and T640 routers), this field does not always display the correct value for queue 6 or queue 7 for interfaces on 10-port 1-Gigabit Ethernet PICs. |
| Transmit rate | Configured transmit rate of the scheduler. The rate is a percentage of the total interface bandwidth. |
| Rate Limit | Rate limiting configuration of the queue. Possible values are:
 - **None**—No rate limit.
 - **exact**—Queue transmits at the configured rate. |
| Buffer size | Delay buffer size in the queue. |
| Priority | Scheduling priority configured as low or high. |
| Excess Priority | Priority of the excess bandwidth traffic on a scheduler: low, medium-low, medium-high, high, or none. |
| Drop profiles | Display the assignment of drop profiles.
 - **Loss priority**—Packet loss priority for drop profile assignment.
 - **Protocol**—Transport protocol for drop profile assignment.
 - **Index**—Index of the indicated object. Objects that have indexes in this output include schedulers and drop profiles.
 - **Name**—Name of the drop profile.
 - **Type**—Type of the drop profile: discrete or interpolated.
 - **Fill Level**—Percentage fullness of a queue.
 - **Drop probability**—Drop probability at this fill level. |
<p>| Excess Priority | Priority of the excess bandwidth traffic on a scheduler. |</p>
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
</table>
| **Drop profiles** | Display the assignment of drop profiles.
 - **Loss priority**—Packet loss priority for drop profile assignment.
 - **Protocol**—Transport protocol for drop profile assignment.
 - **Index**—Index of the indicated object. Objects that have indexes in this output include schedulers and drop profiles.
 - **Name**—Name of the drop profile.
 - **Type**—Type of the drop profile: **discrete** or **interpolated**.
 - **Fill Level**—Percentage fullness of a queue.
 - **Drop probability**—Drop probability at this fill level. |
| **Adjustment information** | Display the assignment of shaping-rate adjustments on a scheduler node or queue.
 - **Adjusting application**—Application that is performing the shaping-rate adjustment.
 - The adjusting application can appear as **ancp LS-0**, which is the Junos OS Access Node Control Profile process (**ancpd**) that performs shaping-rate adjustments on schedule nodes.
 - The adjusting application can appear as **DHCP**, which adjusts the shaping-rate and overhead-accounting class-of-service attributes based on DSL Forum VSA conveyed in DHCP option 82, suboption 9 (Vendor Specific Information). The shaping rate is based on the actual-data-rate-downstream attribute. The overhead accounting value is based on the access-loop-encapsulation attribute and specifies whether the access loop uses Ethernet (frame mode) or ATM (cell mode).
 - The adjusting application can also appear as **pppoe**, which adjusts the shaping-rate and overhead-accounting class-of-service attributes on dynamic subscriber interfaces in a broadband access network based on access line parameters in Point-to-Point Protocol over Ethernet (PPPoE) Tags [TR-101]. This feature is supported on MPC/MIC interfaces on MX Series routers. The shaping rate is based on the actual-data-rate-downstream attribute. The overhead accounting value is based on the access-loop-encapsulation attribute and specifies whether the access loop uses Ethernet (frame mode) or ATM (cell mode).
 - **Adjustment type**—Type of adjustment: **absolute** or **delta**.
 - **Configured shaping rate**—Shaping rate configured for the scheduler node or queue.
 - **Adjustment value**—Value of adjusted shaping rate.
 - **Adjustment target**—Level of shaping-rate adjustment performed: **node** or **queue**.
 - **Adjustment overhead-accounting mode**—Configured shaping mode: **frame** or **cell**.
 - **Adjustment overhead bytes**—Number of bytes that the ANCP agent adds to or subtracts from the actual downstream frame overhead before reporting the adjusted values to CoS.
 - **Adjustment target**—Level of shaping-rate adjustment performed: **node** or **queue**.
 - **Adjustment multicast index**—|
Sample Output

show class-of-service interface (Physical)

user@host> show class-of-service interface so-0/2/3

Physical interface: so-0/2/3, Index: 135
Maximum usable queues: 8, Queues in use: 4
Total non-default queues created: 4
 Scheduler map: <default>, Index: 2032638653

Logical interface: fe-0/0/1.0, Index: 68, Dedicated Queues: no
 Shaping rate: 32000

<table>
<thead>
<tr>
<th>Object</th>
<th>Name</th>
<th>Type</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduler-map</td>
<td><default></td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>Rewrite</td>
<td>exp-default</td>
<td>exp</td>
<td>21</td>
</tr>
<tr>
<td>Classifier</td>
<td>exp-default</td>
<td>exp</td>
<td>5</td>
</tr>
<tr>
<td>Classifier</td>
<td>ipprec-compatibility</td>
<td>ip</td>
<td>8</td>
</tr>
<tr>
<td>Forwarding-class-map</td>
<td>exp-default</td>
<td>exp</td>
<td>5</td>
</tr>
</tbody>
</table>

show class-of-service interface (Logical)

user@host> show class-of-service interface so-0/2/3.0

Logical interface: so-0/2/3.0, Index: 68, Dedicated Queues: no
 Shaping rate: 32000

<table>
<thead>
<tr>
<th>Object</th>
<th>Name</th>
<th>Type</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduler-map</td>
<td><default></td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>Rewrite</td>
<td>exp-default</td>
<td>exp</td>
<td>21</td>
</tr>
<tr>
<td>Classifier</td>
<td>exp-default</td>
<td>exp</td>
<td>5</td>
</tr>
<tr>
<td>Classifier</td>
<td>ipprec-compatibility</td>
<td>ip</td>
<td>8</td>
</tr>
<tr>
<td>Forwarding-class-map</td>
<td>exp-default</td>
<td>exp</td>
<td>5</td>
</tr>
</tbody>
</table>

show class-of-service interface (Gigabit Ethernet)

user@host> show class-of-service interface ge-6/2/0

Physical interface: ge-6/2/0, Index: 175
Maximum usable queues: 4, Queues in use: 4
 Scheduler map: <default>, Index: 2
 Input scheduler map: <default>, Index: 3
 Chassis scheduler map: <default-chassis>, Index: 4
show class-of-service interface (ANCP)

user@host> show class-of-service interface pp0.1073741842

Logical interface: pp0.1073741842, Index: 341

<table>
<thead>
<tr>
<th>Object</th>
<th>Name</th>
<th>Type</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic-control-profile</td>
<td>TCP-CVLAN</td>
<td>Output</td>
<td>12408</td>
</tr>
<tr>
<td>Classifier</td>
<td>dscp-ipv6-compatibility</td>
<td>dscp-ipv6</td>
<td>9</td>
</tr>
<tr>
<td>Classifier</td>
<td>ipprec-compatibility</td>
<td>ip</td>
<td>13</td>
</tr>
</tbody>
</table>

Adjusting application: ancp LS-0
Adjustment type: absolute
Configured shaping rate: 4000000
Adjustment value: 11228000
Adjustment overhead-accounting mode: Frame Mode
Adjustment overhead bytes: 50
Adjustment target: node

show class-of-service interface (PPPoE Interface)

user@host> show class-of-service interface pp0.1

Logical interface: pp0.1, Index: 85

<table>
<thead>
<tr>
<th>Object</th>
<th>Name</th>
<th>Type</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic-control-profile</td>
<td>tcp-pppoe.o.pp0.1</td>
<td>Output</td>
<td>2726446535</td>
</tr>
<tr>
<td>Classifier</td>
<td>ipprec-compatibility</td>
<td>ip</td>
<td>13</td>
</tr>
</tbody>
</table>

Adjusting application: PPPoE
Adjustment type: absolute
Adjustment value: 5000000
Adjustment overhead-accounting mode: cell
Adjustment target: node

show class-of-service interface (DHCP Interface)

user@host> show class-of-service interface demux0.1

Logical interface: pp0.1, Index: 85

<table>
<thead>
<tr>
<th>Object</th>
<th>Name</th>
<th>Type</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic-control-profile</td>
<td>tcp-dhcp.o.demux0.1</td>
<td>Output</td>
<td>2726446535</td>
</tr>
<tr>
<td>Classifier</td>
<td>ipprec-compatibility</td>
<td>ip</td>
<td>13</td>
</tr>
</tbody>
</table>

Adjusting application: DHCP
Adjustment type: absolute
Adjustment value: 5000000
Adjustment overhead-accounting mode: cell
Adjustment target: node

show class-of-service interface (T4000 Routers with Type 5 FPCs)

user@host> show class-of-service interface xe-4/0/0

Physical interface: xe-4/0/0, Index: 153
 Maximum usable queues: 8, Queues in use: 4
 Shaping rate: 5000000000 bps
 Scheduler map: <default>, Index: 2
 Congestion-notification: Disabled

 Logical interface: xe-4/0/0.0, Index: 77
 Object Name Type
 Index
 Classifier ipprec-compatibility ip

show class-of-service interface detail

user@host> show class-of-service interface ge-0/3/0 detail

Physical interface: ge-0/3/0, Enabled, Physical link is Up
 Link-level type: Ethernet, MTU: 1518, Speed: 1000mbps, Loopback: Disabled, Source
 fault: Online
 Device flags : Present Running
 Interface flags: SNMP-Traps Internal: 0x4000

 Physical interface: ge-0/3/0, Index: 138
 Maximum usable queues: 4, Queues in use: 5
 Shaping rate: 50000 bps
 Scheduler map: interface-scheduler-map, Index: 58414
 Input shaping rate: 10000 bps
 Input scheduler map: scheduler-map, Index: 15103
 Chassis scheduler map: <default-chassis>, Index: 4
 Congestion-notification: Disabled

 Logical interface ge-0/3/0.0
 Flags: SNMP-Traps 0x4000 VLAN-Tag [0x8100.1] Encapsulation: ENET2
<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin Link</th>
<th>Proto</th>
<th>Input Filter</th>
<th>Output Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/3/0.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mpls</td>
<td></td>
</tr>
</tbody>
</table>

Logical interface: ge-0/3/0.0, Index: 68

<table>
<thead>
<tr>
<th>Object</th>
<th>Name</th>
<th>Type</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rewrite</td>
<td>exp-default</td>
<td>exp</td>
<td>33</td>
</tr>
<tr>
<td>Classifier</td>
<td>exp-default</td>
<td>exp</td>
<td>10</td>
</tr>
<tr>
<td>Classifier</td>
<td>ipprec-compatibility</td>
<td>ip</td>
<td>13</td>
</tr>
</tbody>
</table>

Logical interface ge-0/3/0.1

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin Link</th>
<th>Proto</th>
<th>Input Filter</th>
<th>Output Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/3/0.1</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td></td>
</tr>
</tbody>
</table>

Logical interface: ge-0/3/0.1, Index: 69

<table>
<thead>
<tr>
<th>Object</th>
<th>Name</th>
<th>Type</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classifier</td>
<td>ipprec-compatibility</td>
<td>ip</td>
<td>13</td>
</tr>
</tbody>
</table>

show class-of-service interface comprehensive

`user@host> show class-of-service interface ge-0/3/0 comprehensive`

Physical interface: ge-0/3/0, Enabled, Physical link is Up

Interface index: 138, SNMP ifIndex: 601, Generation: 141

Link-level type: Ethernet, MTU: 1518, Speed: 1000mbps, BPDU Error: None, MAC-REWRITE Error: None, Loopback: Disabled, Source filtering: Disabled, Flow control: Enabled,

Auto-negotiation: Enabled, Remote fault: Online

Device flags : Present Running

Interface flags: SNMP-Traps Internal: 0x4000

CoS queues : 4 supported, 4 maximum usable queues

Schedulers : 256

Hold-times : Up 0 ms, Down 0 ms

Current address: 00:14:f6:f4:b4:5d, Hardware address: 00:14:f6:f4:b4:5d
Last flapped : 2010-09-07 06:35:22 PDT (15:14:42 ago)
Statistics last cleared: Never Exclude Overhead Bytes: Disabled
Traffic statistics:
 Input bytes : 0 0 bps
 Output bytes : 0 0 bps
 Input packets: 0 0 pps
 Output packets: 0 0 pps
IPv6 total statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
Ingress traffic statistics at Packet Forwarding Engine:
 Input bytes : 0 0 bps
 Input packets: 0 0 pps
 Drop bytes : 0 0 bps
 Drop packets: 0 0 pps
Label-switched interface (LSI) traffic statistics:
 Input bytes : 0 0 bps
 Input packets: 0 0 pps
Input errors:
 Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Policed discards: 0, L3 incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0, FIFO errors: 0, Resource errors: 0
Output errors:
 Carrier transitions: 5, Errors: 0, Drops: 0, Collisions: 0, Aged packets: 0, FIFO errors: 0, HS link CRC errors: 0, MTU errors: 0, Resource errors: 0
Ingress queues: 4 supported, 5 in use
Queue counters: Queued packets Transmitted packets Dropped packets
0 af3 0 0 0
1 af2 0 0 0
2 ef2 0 0 0
3 ef1 0 0 0
Egress queues: 4 supported, 5 in use
Queue counters: Queued packets Transmitted packets Dropped packets
0 af3 0 0 0
1 af2 0 0 0
2 ef2 0 0 0
3 ef1 0 0 0
Active alarms : None
Active defects : None
MAC statistics:
 Receive Transmit
 Total octets 0 0
 Total packets 0 0
Unicast packets 0 0
Broadcast packets 0 0
Multicast packets 0 0
CRC/Align errors 0 0
FIFO errors 0 0
MAC control frames 0 0
MAC pause frames 0 0
Oversized frames 0 0
Jabber frames 0 0
Fragment frames 0 0
VLAN tagged frames 0 0
Code violations 0 0
Filter statistics:
 Input packet count 0 0
 Input packet rejects 0 0
 Input DA rejects 0 0
 Input SA rejects 0 0
 Output packet count 0 0
 Output packet pad count 0 0
 Output packet error count 0 0
CAM destination filters: 0, CAM source filters: 0

Auto negotiation information:
 Negotiation status: Complete
 Link partner:
 Link mode: Full-duplex, Flow control: Symmetric/Asymmetric, Remote fault: OK
 Local resolution:
 Flow control: Symmetric, Remote fault: Link OK
Packet Forwarding Engine configuration:
 Destination slot: 0
CoS information:
 Direction : Output
 CoS transmit queue Bandwidth Buffer Priority
Limit % bps % usec
 2 ef2 39 19500 0 120 high
 none
 Direction : Input
 CoS transmit queue Bandwidth Buffer Priority
Limit % bps % usec
 0 af3 30 3000 45 0 low
 none
Physical interface: ge-0/3/0, Enabled, Physical link is Up
Interface index: 138, SNMP ifIndex: 601
Forwarding classes: 16 supported, 5 in use
Ingress queues: 4 supported, 5 in use
Queue: 0, Forwarding classes: af3

<table>
<thead>
<tr>
<th>Queued:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets</td>
<td>0</td>
<td>0 pps</td>
</tr>
<tr>
<td>Bytes</td>
<td>0</td>
<td>0 bps</td>
</tr>
</tbody>
</table>

Transmitted:

Packets	0	0 pps
Bytes	0	0 bps
Tail-dropped packets	Not Available	
RED-dropped packets	0	0 pps
RED-dropped bytes	0	0 bps

Queue: 1, Forwarding classes: af2

<table>
<thead>
<tr>
<th>Queued:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets</td>
<td>0</td>
<td>0 pps</td>
</tr>
<tr>
<td>Bytes</td>
<td>0</td>
<td>0 bps</td>
</tr>
</tbody>
</table>

Transmitted:

Packets	0	0 pps
Bytes	0	0 bps
Tail-dropped packets	Not Available	
RED-dropped packets	0	0 pps
RED-dropped bytes	0	0 bps

Queue: 2, Forwarding classes: ef2

<table>
<thead>
<tr>
<th>Queued:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets</td>
<td>0</td>
<td>0 pps</td>
</tr>
<tr>
<td>Bytes</td>
<td>0</td>
<td>0 bps</td>
</tr>
</tbody>
</table>

Transmitted:

Packets	0	0 pps
Bytes	0	0 bps
Tail-dropped packets	Not Available	
RED-dropped packets	0	0 pps
RED-dropped bytes	0	0 bps

Queue: 3, Forwarding classes: ef1

<table>
<thead>
<tr>
<th>Queued:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets</td>
<td>0</td>
<td>0 pps</td>
</tr>
<tr>
<td>Bytes</td>
<td>0</td>
<td>0 bps</td>
</tr>
</tbody>
</table>

Transmitted:

Packets	0	0 pps
Bytes	0	0 bps
Tail-dropped packets	Not Available	
RED-dropped packets	0	0 pps
RED-dropped bytes	0	0 bps
Forwarding classes: 16 supported, 5 in use
Egress queues: 4 supported, 5 in use
Queue: 0, Forwarding classes: af3

<table>
<thead>
<tr>
<th>Queued:</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets</td>
<td>:</td>
<td>0</td>
<td></td>
<td>0 pps</td>
</tr>
<tr>
<td>Bytes</td>
<td>:</td>
<td>0</td>
<td></td>
<td>0 bps</td>
</tr>
</tbody>
</table>

Transmitted:
Packets	:	0		0 pps
Bytes	:	0		0 bps
Tail-dropped packets	:	Not Available		
RL-dropped packets	:	0		0 pps
RL-dropped bytes	:	0		0 bps
RED-dropped packets	:	0		0 pps
RED-dropped bytes	:	0		0 bps

Queue: 1, Forwarding classes: af2

<table>
<thead>
<tr>
<th>Queued:</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets</td>
<td>:</td>
<td>0</td>
<td></td>
<td>0 pps</td>
</tr>
<tr>
<td>Bytes</td>
<td>:</td>
<td>0</td>
<td></td>
<td>0 bps</td>
</tr>
</tbody>
</table>

Transmitted:
Packets	:	0		0 pps
Bytes	:	0		0 bps
Tail-dropped packets	:	Not Available		
RL-dropped packets	:	0		0 pps
RL-dropped bytes	:	0		0 bps
RED-dropped packets	:	0		0 pps
RED-dropped bytes	:	0		0 bps

Queue: 2, Forwarding classes: ef2

<table>
<thead>
<tr>
<th>Queued:</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets</td>
<td>:</td>
<td>0</td>
<td></td>
<td>0 pps</td>
</tr>
<tr>
<td>Bytes</td>
<td>:</td>
<td>0</td>
<td></td>
<td>0 bps</td>
</tr>
</tbody>
</table>

Transmitted:
Packets	:	0		0 pps
Bytes	:	0		0 bps
Tail-dropped packets	:	Not Available		
RL-dropped packets	:	0		0 pps
RL-dropped bytes	:	0		0 bps
RED-dropped packets	:	0		0 pps
RED-dropped bytes	:	0		0 bps

Queue: 3, Forwarding classes: ef1

<table>
<thead>
<tr>
<th>Queued:</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets</td>
<td>:</td>
<td>0</td>
<td></td>
<td>0 pps</td>
</tr>
<tr>
<td>Bytes</td>
<td>:</td>
<td>0</td>
<td></td>
<td>0 bps</td>
</tr>
</tbody>
</table>

Transmitted:
| Packets | : | 0 | | 0 pps |
Bytes : 0 0 bps
Tail-dropped packets : Not Available
RL-dropped packets : 0 0 pps
RL-dropped bytes : 0 0 bps
RED-dropped packets : 0 0 pps
RED-dropped bytes : 0 0 bps

Packet Forwarding Engine Chassis Queues:
Queues: 4 supported, 5 in use
Queue: 0, Forwarding classes: af3
Queued:
 Packets : 0 0 pps
 Bytes : 0 0 bps
Transmitted:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Tail-dropped packets : 0 0 pps
 RED-dropped packets : Not Available
 RED-dropped bytes : Not Available

Queue: 1, Forwarding classes: af2
Queued:
 Packets : 0 0 pps
 Bytes : 0 0 bps
Transmitted:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Tail-dropped packets : 0 0 pps
 RED-dropped packets : Not Available
 RED-dropped bytes : Not Available

Queue: 2, Forwarding classes: ef2
Queued:
 Packets : 0 0 pps
 Bytes : 0 0 bps
Transmitted:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Tail-dropped packets : 0 0 pps
 RED-dropped packets : Not Available
 RED-dropped bytes : Not Available

Queue: 3, Forwarding classes: ef1
Queued:
 Packets : 108546 0 pps
 Bytes : 12754752 376 bps
Transmitted:
Packets : 108546 0 pps
Bytes : 12754752 376 bps
Tail-dropped packets : 0 0 pps
RED-dropped packets : Not Available
RED-dropped bytes : Not Available

Physical interface: ge-0/3/0, Index: 138
Maximum usable queues: 4, Queues in use: 5
Shaping rate: 50000 bps

Scheduler map: interface-scheduler-map, Index: 58414

Scheduler: ef2, Forwarding class: ef2, Index: 39155
Transmit rate: 39 percent, Rate Limit: none, Buffer size: 120 us, Buffer Limit: none, Priority: high
Excess Priority: unspecified
Drop profiles:
<table>
<thead>
<tr>
<th>Loss priority</th>
<th>Protocol</th>
<th>Index</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>any</td>
<td>1</td>
<td>< default-drop-profile></td>
</tr>
<tr>
<td>Medium low</td>
<td>any</td>
<td>1</td>
<td>< default-drop-profile></td>
</tr>
<tr>
<td>Medium high</td>
<td>any</td>
<td>1</td>
<td>< default-drop-profile></td>
</tr>
<tr>
<td>High</td>
<td>any</td>
<td>1</td>
<td>< default-drop-profile></td>
</tr>
</tbody>
</table>

Drop profile: < default-drop-profile>, Type: discrete, Index: 1
Fill level Drop probability
100 100

Drop profile: < default-drop-profile>, Type: discrete, Index: 1
Fill level Drop probability
100 100

Drop profile: < default-drop-profile>, Type: discrete, Index: 1
Fill level Drop probability
100 100

Drop profile: < default-drop-profile>, Type: discrete, Index: 1
Fill level Drop probability
100 100

Input shaping rate: 10000 bps
Input scheduler map: scheduler-map

Scheduler map: scheduler-map, Index: 15103

Scheduler: af3, Forwarding class: af3, Index: 35058
Transmit rate: 30 percent, Rate Limit: none, Buffer size: 45 percent, Buffer Limit: none, Priority: low
Excess Priority: unspecified
Drop profiles:
Loss priority Protocol Index Name
Low any 40582 green
Medium low any 1 < default-drop-profile>
Medium high any 1 < default-drop-profile>
High any 18928 yellow

Drop profile: green, Type: discrete, Index: 40582
 Fill level Drop probability
 50 0
 100 100

Drop profile: < default-drop-profile>, Type: discrete, Index: 1
 Fill level Drop probability
 100 100

Drop profile: < default-drop-profile>, Type: discrete, Index: 1
 Fill level Drop probability
 100 100

Drop profile: yellow, Type: discrete, Index: 18928
 Fill level Drop probability
 50 0
 100 100

Chassis scheduler map: < default-drop-profile>
Scheduler map: < default-drop-profile>, Index: 4

 Scheduler: < default-drop-profile>, Forwarding class: af3, Index: 25
 Transmit rate: 25 percent, Rate Limit: none, Buffer size: 25 percent, Buffer
 Limit: none, Priority: low
 Excess Priority: low

Drop profiles:

 Loss priority Protocol Index Name
Low any 1 < default-drop-profile>
Medium low any 1 < default-drop-profile>
Medium high any 1 < default-drop-profile>
High any 1 < default-drop-profile>

Drop profile: < default-drop-profile>, Type: discrete, Index: 1
 Fill level Drop probability
 100 100
Scheduler: <default-drop-profile>, Forwarding class: af2, Index: 25
 Transmit rate: 25 percent, Rate Limit: none, Buffer size: 25 percent, Buffer Limit: none, Priority: low
 Excess Priority: low
 Drop profiles:
 Loss priority Protocol Index Name
 Low any 1 <default-drop-profile>
 Medium low any 1 <default-drop-profile>
 Medium high any 1 <default-drop-profile>
 High any 1 <default-drop-profile>

Drop profile: <default-drop-profile>, Type: discrete, Index: 1
 Fill level Drop probability
 100 100

Scheduler: <default-drop-profile>, Forwarding class: ef2, Index: 25
 Transmit rate: 25 percent, Rate Limit: none, Buffer size: 25 percent, Buffer Limit: none, Priority: low
 Excess Priority: low
 Drop profiles:
 Loss priority Protocol Index Name
 Low any 1 <default-drop-profile>
 Medium low any 1 <default-drop-profile>
 Medium high any 1 <default-drop-profile>
 High any 1 <default-drop-profile>

Drop profile: <default-drop-profile>, Type: discrete, Index: 1
 Fill level Drop probability
 100 100

Drop profile: <default-drop-profile>, Type: discrete, Index: 1
 Fill level Drop probability
 100 100

Drop profile: <default-drop-profile>, Type: discrete, Index: 1
 Fill level Drop probability
 100 100

Drop profile: <default-drop-profile>, Type: discrete, Index: 1
 Fill level Drop probability
 100 100

Drop profile: <default-drop-profile>, Type: discrete, Index: 1
 Fill level Drop probability
 100 100

Drop profile: <default-drop-profile>, Type: discrete, Index: 1
 Fill level Drop probability
 100 100

Drop profile: <default-drop-profile>, Type: discrete, Index: 1
 Fill level Drop probability
 100 100

Drop profile: <default-drop-profile>, Type: discrete, Index: 1
 Fill level Drop probability
 100 100

Drop profile: <default-drop-profile>, Type: discrete, Index: 1
 Fill level Drop probability
 100 100
Fill level Drop probability
100 100

Scheduler: <default-drop-profile>, Forwarding class: ef1, Index: 25
Transmit rate: 25 percent, Rate Limit: none, Buffer size: 25 percent, Buffer
Limit: none, Priority: low
Excess Priority: low

Drop profiles:
Loss priority Protocol Index Name
Low any 1 <default-drop-profile>
Medium low any 1 <default-drop-profile>
Medium high any 1 <default-drop-profile>
High any 1 <default-drop-profile>

Drop profile: <default-drop-profile>, Type: discrete, Index: 1
Fill level Drop probability
100 100

Drop profile: <default-drop-profile>, Type: discrete, Index: 1
Fill level Drop probability
100 100

Drop profile: <default-drop-profile>, Type: discrete, Index: 1
Fill level Drop probability
100 100

Drop profile: <default-drop-profile>, Type: discrete, Index: 1
Fill level Drop probability
100 100

Congestion-notification: Disabled

Forwarding class ID Queue Restricted queue Fabric
priority Policing priority
af3 0 0 0 low
normal
af2 1 1 1 low
normal
ef2 2 2 2 high
normal
ef1 3 3 3 high
normal
af1 4 4 0 low
normal

Logical interface ge-0/3/0.0 (Index 68) (SNMP ifIndex 152) (Generation 159)
Flags: SNMP-Traps 0x4000 VLAN-Tag [0x8100.1] Encapsulation: ENET2
Traffic statistics:
Input bytes : 0
Output bytes : 0
Input packets: 0
Output packets: 0

Local statistics:
Input bytes: 0
Output bytes: 0
Input packets: 0
Output packets: 0

Transit statistics:
Input bytes: 0
Output bytes: 0
Input packets: 0
Output packets: 0

Protocol inet, MTU: 1500, Generation: 172, Route table: 0
 Flags: Sendbcast-pkt-to-re
 Input Filters: filter-in-ge-0/3/0.0-i,
 Policer: Input: p1-ge-0/3/0.0-inet-i
Protocol mpls, MTU: 1488, Maximum labels: 3, Generation: 173, Route table: 0
 Flags: Is-Primary
 Output Filters: exp-filter,,,,

Logical interface ge-1/2/0.0 (Index 347) (SNMP ifIndex 638) (Generation 156)
Forwarding class ID Queue Restricted queue Fabric priority Policing priority SPU priority
best-effort 0 0 0 low normal low

Aggregate Forwarding-class statistics per forwarding-class
 Aggregate Forwarding-class statistics:
 Forwarding-class statistics:

Forwarding-class best-effort statistics:
 Input unicast bytes: 0
 Output unicast bytes: 0
 Input unicast packets: 0
 Output unicast packets: 0
 Input multicast bytes: 0
 Output multicast bytes: 0
 Input multicast packets: 0
 Output multicast packets: 0

Forwarding-class expedited-forwarding statistics:
 Input unicast bytes: 0
IPv4 protocol forwarding-class statistics:
 Forwarding-class statistics:
 Forwarding-class best-effort statistics:
 Input unicast bytes: 0
 Output unicast bytes: 0
 Input unicast packets: 0
 Output unicast packets: 0

 Input multicast bytes: 0
 Output multicast bytes: 0
 Input multicast packets: 0
 Output multicast packets: 0

Forwarding-class expedited-forwarding statistics:
 Input unicast bytes: 0
 Output unicast bytes: 0
 Input unicast packets: 0
 Output unicast packets: 0

 Input multicast bytes: 0
 Output multicast bytes: 0
 Input multicast packets: 0
 Output multicast packets: 0

IPv6 protocol forwarding-class statistics:
 Forwarding-class statistics:
 Forwarding-class best-effort statistics:
 Input unicast bytes: 0
 Output unicast bytes: 0
 Input unicast packets: 0
 Output unicast packets: 0

 Input multicast bytes: 0
 Output multicast bytes: 0
 Input multicast packets: 0
 Output multicast packets: 0

Input multicast bytes: 0
Logical interface ge-0/3/0.0 (Index 68) (SNMP ifIndex 152)
Flags: SNMP-Traps 0x4000 VLAN-Tag [0x8100.1] Encapsulation: ENET2
Input packets : 0
Output packets: 0

Interface Admin Link Proto Input Filter Output Filter
ge-0/3/0.0 up up inet filter-in-ge-0/3/0.0-i
 mpls exp-filter

Interface Admin Link Proto Input Policer Output Policer
ge-0/3/0.0 up up
 inet pl-ge-0/3/0.0-inet-i
 mpls

Filter: filter-in-ge-0/3/0.0-i
Counters:
Name Bytes Packets
count-filter-in-ge-0/3/0.0-i 0 0

Filter: exp-filter
Counters:
Name Bytes Packets
count-exp-seven-match 0 0
count-exp-zero-match 0 0

Policers:
Name Packets
pl-ge-0/3/0.0-inet-i 0

Logical interface: ge-0/3/0.0, Index: 68
Rewrite Rule: exp-default

<table>
<thead>
<tr>
<th>Code Point</th>
<th>Forwarding Class</th>
<th>Loss Priority</th>
<th>Code Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>af3</td>
<td>low</td>
<td>000</td>
</tr>
<tr>
<td>001</td>
<td>af3</td>
<td>high</td>
<td>001</td>
</tr>
<tr>
<td>010</td>
<td>af2</td>
<td>low</td>
<td>010</td>
</tr>
<tr>
<td>011</td>
<td>af2</td>
<td>high</td>
<td>011</td>
</tr>
<tr>
<td>100</td>
<td>ef2</td>
<td>low</td>
<td>100</td>
</tr>
<tr>
<td>101</td>
<td>ef2</td>
<td>high</td>
<td>101</td>
</tr>
<tr>
<td>110</td>
<td>ef1</td>
<td>low</td>
<td>110</td>
</tr>
<tr>
<td>111</td>
<td>ef1</td>
<td>high</td>
<td>111</td>
</tr>
</tbody>
</table>

Classifier: exp-default

<table>
<thead>
<tr>
<th>Code Point</th>
<th>Forwarding Class</th>
<th>Loss Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>af3</td>
<td>low</td>
</tr>
<tr>
<td>001</td>
<td>af3</td>
<td>high</td>
</tr>
<tr>
<td>010</td>
<td>af3</td>
<td>low</td>
</tr>
<tr>
<td>011</td>
<td>af3</td>
<td>high</td>
</tr>
<tr>
<td>100</td>
<td>af3</td>
<td>low</td>
</tr>
<tr>
<td>101</td>
<td>af3</td>
<td>high</td>
</tr>
<tr>
<td>110</td>
<td>ef1</td>
<td>low</td>
</tr>
<tr>
<td>111</td>
<td>ef1</td>
<td>high</td>
</tr>
</tbody>
</table>

Classifier: ipprec-compatibility

<table>
<thead>
<tr>
<th>Code Point</th>
<th>Forwarding Class</th>
<th>Loss Priority</th>
<th>ID</th>
<th>Queue</th>
<th>Restricted Queue</th>
<th>Fabric priority</th>
<th>Policing priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>af3</td>
<td>low</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>low</td>
<td>normal</td>
</tr>
<tr>
<td>001</td>
<td>af3</td>
<td>high</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>low</td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>af3</td>
<td>low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>011</td>
<td>af3</td>
<td>high</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>af3</td>
<td>low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>af3</td>
<td>high</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>ef1</td>
<td>low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>ef1</td>
<td>high</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Logical interface ge-0/3/0.1 (Index 69) (SNMP ifIndex 154) (Generation 160)

Flags: SNMP-Traps 0x4000 VLAN-Tag [0x8100.2] Encapsulation: ENET2

Traffic statistics:
- Input bytes : 0
- Output bytes : 0
- Input packets: 0
- Output packets: 0

Local statistics:
- Input bytes : 0
- Output bytes : 0
- Input packets: 0
- Output packets: 0

Transit statistics:
- Input bytes : 0 0 bps
- Output bytes : 0 0 bps
- Input packets: 0 0 pps
- Output packets: 0 0 pps

Protocol inet, MTU: 1500, Generation: 174, Route table: 0

Flags: Sendbcast-pkt-to-re

Logical interface ge-0/3/0.1 (Index 69) (SNMP ifIndex 154)

Flags: SNMP-Traps 0x4000 VLAN-Tag [0x8100.2] Encapsulation: ENET2

Input packets : 0
Output packets: 0

Interface Admin Link Proto Input Filter Output Filter
ge-0/3/0.1 up up mpls

Interface Admin Link Proto Input Policer Output Policer
ge-0/3/0.1 up up

mpls

Logical interface: ge-0/3/0.1, Index: 69

Object Name Type Index
Classifier ipprec-compatibility ip 13
Classifier: ipprec-compatibility, Code point type: inet-precedence, Index: 13

<table>
<thead>
<tr>
<th>Code point</th>
<th>Forwarding class</th>
<th>Loss priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>af3</td>
<td>low</td>
</tr>
<tr>
<td>001</td>
<td>af3</td>
<td>high</td>
</tr>
<tr>
<td>010</td>
<td>af3</td>
<td>low</td>
</tr>
<tr>
<td>011</td>
<td>af3</td>
<td>high</td>
</tr>
<tr>
<td>100</td>
<td>af3</td>
<td>low</td>
</tr>
<tr>
<td>101</td>
<td>af3</td>
<td>high</td>
</tr>
<tr>
<td>110</td>
<td>ef1</td>
<td>low</td>
</tr>
<tr>
<td>111</td>
<td>ef1</td>
<td>high</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Forwarding class</th>
<th>ID</th>
<th>Queue</th>
<th>Restricted queue</th>
<th>Fabric priority</th>
<th>Policing priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>af3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>low</td>
</tr>
<tr>
<td>af2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>low</td>
</tr>
<tr>
<td>ef2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>high</td>
</tr>
<tr>
<td>ef1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>high</td>
</tr>
<tr>
<td>af1</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>low</td>
</tr>
</tbody>
</table>

show class-of-service interface (ACX Series Routers)

```
user@host-g11# show class-of-service interface
```

Physical interface: at-0/0/0, Index: 130
- Maximum usable queues: 4, Queues in use: 4
- Scheduler map: <default>, Index: 2
- Congestion-notification: Disabled

Logical interface: at-0/0/0.0, Index: 69

Logical interface: at-0/0/0.32767, Index: 70

Physical interface: at-0/0/1, Index: 133
- Maximum usable queues: 4, Queues in use: 4
- Scheduler map: <default>, Index: 2
- Congestion-notification: Disabled

Logical interface: at-0/0/1.0, Index: 71
Logical interface: at-0/0/1.32767, Index: 72

Physical interface: ge-0/1/0, Index: 146
Maximum usable queues: 8, Queues in use: 5
 Scheduler map: <default>, Index: 2
 Congestion-notification: Disabled

<table>
<thead>
<tr>
<th>Object</th>
<th>Name</th>
<th>Type</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rewrite</td>
<td>dscp-default</td>
<td>dscp</td>
<td>31</td>
</tr>
<tr>
<td>Classifier</td>
<td>dl</td>
<td>dscp</td>
<td>11331</td>
</tr>
<tr>
<td>Classifier</td>
<td>ci</td>
<td>ieee8021p</td>
<td>583</td>
</tr>
</tbody>
</table>

Logical interface: ge-0/1/0.0, Index: 73

Object Name Type Index
Rewrite custom-exp exp (mpls-any) 46413

Logical interface: ge-0/1/0.1, Index: 74

Logical interface: ge-0/1/0.32767, Index: 75

Physical interface: ge-0/1/1, Index: 147
Maximum usable queues: 8, Queues in use: 5
 Scheduler map: <default>, Index: 2
 Congestion-notification: Disabled

Object Name Type Index
Classifier | ipprec-compatibility | ip | 13 |

Logical interface: ge-0/1/1.0, Index: 76

Physical interface: ge-0/1/2, Index: 148
Maximum usable queues: 8, Queues in use: 5
 Scheduler map: <default>, Index: 2
 Congestion-notification: Disabled

Object Name Type Index
Rewrite ri ieee8021p (outer) 35392
Classifier | ci ieee8021p 583

Physical interface: ge-0/1/3, Index: 149
Maximum usable queues: 8, Queues in use: 5
 Scheduler map: <default>, Index: 2
 Congestion-notification: Disabled

Object Name Type Index
Classifier | ipprec-compatibility | ip | 13 |
<table>
<thead>
<tr>
<th>Logical interface: ge-0/1/3.0, Index: 77</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object</td>
</tr>
<tr>
<td>Rewrite</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical interface: ge-0/1/4, Index: 150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum usable queues: 8, Queues in use: 5</td>
</tr>
<tr>
<td>Scheduler map: <default>, Index: 2</td>
</tr>
<tr>
<td>Congestion-notification: Disabled</td>
</tr>
</tbody>
</table>

| Object | Name | Type | Index |
| Classifier | ipprec-compatibility | ip | 13 |

<table>
<thead>
<tr>
<th>Physical interface: ge-0/1/5, Index: 151</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum usable queues: 8, Queues in use: 5</td>
</tr>
<tr>
<td>Scheduler map: <default>, Index: 2</td>
</tr>
<tr>
<td>Congestion-notification: Disabled</td>
</tr>
</tbody>
</table>

| Object | Name | Type | Index |
| Classifier | ipprec-compatibility | ip | 13 |

<table>
<thead>
<tr>
<th>Physical interface: ge-0/1/6, Index: 152</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum usable queues: 8, Queues in use: 5</td>
</tr>
<tr>
<td>Scheduler map: <default>, Index: 2</td>
</tr>
<tr>
<td>Congestion-notification: Disabled</td>
</tr>
</tbody>
</table>

| Object | Name | Type | Index |
| Classifier | ipprec-compatibility | ip | 13 |

<table>
<thead>
<tr>
<th>Physical interface: ge-0/1/7, Index: 153</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum usable queues: 8, Queues in use: 5</td>
</tr>
<tr>
<td>Scheduler map: <default>, Index: 2</td>
</tr>
<tr>
<td>Congestion-notification: Disabled</td>
</tr>
</tbody>
</table>

| Object | Name | Type | Index |
| Classifier | d1 | dscp | 11331 |

<table>
<thead>
<tr>
<th>Physical interface: ge-0/2/0, Index: 154</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum usable queues: 8, Queues in use: 5</td>
</tr>
<tr>
<td>Scheduler map: <default>, Index: 2</td>
</tr>
<tr>
<td>Congestion-notification: Disabled</td>
</tr>
</tbody>
</table>

| Object | Name | Type | Index |
| Classifier | ipprec-compatibility | ip | 13 |

<table>
<thead>
<tr>
<th>Physical interface: ge-0/2/1, Index: 155</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum usable queues: 8, Queues in use: 5</td>
</tr>
<tr>
<td>Scheduler map: <default>, Index: 2</td>
</tr>
<tr>
<td>Congestion-notification: Disabled</td>
</tr>
</tbody>
</table>

| Object | Name | Type | Index |
show class-of-service interface (PPPoE Subscriber Interface for Enhanced Subscriber Management)

user@host> show class-of-service interface pp0.3221225474

Logical interface: pp0.3221225475, Index: 3221225475

Object Name Type Index
Traffic-control-profile TC_PROF_100_199_SERIES_UID1006 Output 4294967312
Scheduler-map SMAP-1_UID1002 Output 4294967327
Rewrite-Output ieee-rewrite ieee8021p 60432
Rewrite-Output rule1 ip 50463

Adjusting application: PPPoE IA tags
Adjustment type: absolute
Configured shaping rate: 11000000
Adjustment value: 5000000
Adjustment target: node
Adjusting application: ucac
 Adjustment type: delta
 Configured shaping rate: 5000000
 Adjustment value: 100000
 Adjustment target: node
show class-of-service loss-priority-rewrite

Syntax

```
show class-of-service loss-priority-rewrite
  <name name>
  <type frame-relay-de>
```

Release Information
Command introduced in Junos OS Release 11.4.

Description
Display the mapping of the code-point value to the loss priority rewrite rule.

Options
none—Display all loss priority rewrite maps.

name—(Optional) Display the specified loss priority rewrite.

frame-relay-de—(Optional) Display the Frame Relay discard eligibility code-point information.

Required Privilege Level
view

RELATED DOCUMENTATION

```
frame-relay-de
```

List of Sample Output
show class-of-service loss-priority-rewrite on page 451

Output Fields
This table describes the output fields for the show class-of-service loss-priority-rewrite command. Output fields are listed in the approximate order in which they appear.

Table 75: show class-of-service loss-priority-rewrite Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss-priority-rewrite</td>
<td>Name of the loss priority rewrite.</td>
</tr>
<tr>
<td>Code point type</td>
<td>Type: frame-relay-de.</td>
</tr>
<tr>
<td>Index</td>
<td>Internal index.</td>
</tr>
</tbody>
</table>
Table 75: show class-of-service loss-priority-rewrite Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss priority</td>
<td>Loss priority of low, medium-low, medium-high, or high.</td>
</tr>
<tr>
<td>Code point</td>
<td>Code-point value.</td>
</tr>
</tbody>
</table>

Sample Output

show class-of-service loss-priority-rewrite

```
user@host> show class-of-service loss-priority-rewrite
```

Loss-priority-rewrite: frame-relay-de-default, Code point type: frame-relay-de,
Index: 38

<table>
<thead>
<tr>
<th>Loss priority</th>
<th>Code point</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td>0</td>
</tr>
<tr>
<td>high</td>
<td>1</td>
</tr>
<tr>
<td>medium-low</td>
<td>0</td>
</tr>
<tr>
<td>medium-high</td>
<td>1</td>
</tr>
</tbody>
</table>
show class-of-service l2tp-session

Syntax

```
show class-of-service l2tp-session session-id
```

Release Information

Command introduced in Junos OS Release 8.2.

Description

Display CoS objects associated with an L2TP session on M7i, M10i, and M120 routers.

Options

`session-id`—L2TP session number for which you want to display a summary of CoS attributes.

Required Privilege Level

`view`

List of Sample Output

`show class-of-service l2tp-session on page 453`

Output Fields

Table 76 on page 452 lists the output fields for the `show class-of-service l2tp-session` command. Output fields are listed in the approximate order in which they appear.

Table 76: show class-of-service l2tp-session Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2TP Session Username</td>
<td>Username associated with the L2TP session.</td>
</tr>
<tr>
<td>Index</td>
<td>Session index identification number.</td>
</tr>
<tr>
<td>Physical interface</td>
<td>Physical interface on which the tunnel session is established.</td>
</tr>
<tr>
<td>Index</td>
<td>Index ID associated with the physical interface on which the tunnel session is established.</td>
</tr>
<tr>
<td>Queues supported</td>
<td>Number of scheduler queues supported for the L2TP session.</td>
</tr>
<tr>
<td>Queues in use</td>
<td>Number of scheduler queues active on the L2TP session.</td>
</tr>
<tr>
<td>Scheduler map</td>
<td>Scheduler map name associated with the session.</td>
</tr>
<tr>
<td>Index</td>
<td>Scheduler map index number associated with the session.</td>
</tr>
</tbody>
</table>
Table 76: show class-of-service l2tp-session Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaping rate</td>
<td>Maximum bandwidth configured for the session. Each active queue on the session receives a maximum of the configured amount of absolute bandwidth or the configured percentage of bandwidth, even if more bandwidth is available.</td>
</tr>
</tbody>
</table>
show class-of-service policy-map

Syntax

```
show class-of-service policy-map
<policy-map-name>
<type (configured | reserved)>
```

Release Information
Command introduced in Junos OS Release 16.1.

Description
(MPCs on MX Series devices only) Display class-of-service (CoS) policy map information.

Options
- **policy-map-name**—(Optional) Enter the name of a policy map to show only the information for that policy map. Otherwise, information for all policy maps is displayed.
- **type**—(Optional) Display information on different types of policy maps.
 - **configured**—Display user configured policy maps.
 - **reserved**—Display reserved policy map name-to-ID mapping.

Required Privilege Level
view

RELATED DOCUMENTATION
- policy-map
- Assigning Rewrite Rules on a Per-Customer Basis Using Policy Maps Overview
- Configuring Policy Maps to Assign Rewrite Rules on a Per-Customer Basis

List of Sample Output
show class-of-service policy-map on page 455

Output Fields
Table 77 on page 455 describes the output fields for the show class-of-service policy-map command. Output fields are listed in the approximate order in which they appear.
Table 77: show class-of-service policy-map Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>The type of packet marking to rewrite.</td>
</tr>
<tr>
<td>Code Point</td>
<td>The code point the packet marking should be rewritten to.</td>
</tr>
<tr>
<td>Option</td>
<td>The type of the traffic the packet marking should be rewritten for.</td>
</tr>
</tbody>
</table>

Sample Output

show class-of-service policy-map

user@host> show class-of-service policy-map

Policy-map: P-1, Index: 1

<table>
<thead>
<tr>
<th>Type</th>
<th>Code Point</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>inet-precedence</td>
<td>110</td>
<td>(proto-ip)</td>
</tr>
<tr>
<td>inet-precedence</td>
<td>110</td>
<td>(proto-mpls)</td>
</tr>
<tr>
<td>dscp-ipv6</td>
<td>101010</td>
<td>(proto-ip)</td>
</tr>
<tr>
<td>dscp-ipv6</td>
<td>101010</td>
<td>(proto-mpls)</td>
</tr>
<tr>
<td>exp</td>
<td>110</td>
<td>(all-label)</td>
</tr>
<tr>
<td>exp</td>
<td>111</td>
<td>(outer-label)</td>
</tr>
<tr>
<td>ieee-802.1ad</td>
<td>0110</td>
<td>(outer-and-inner)</td>
</tr>
</tbody>
</table>
show class-of-service routing-instance

Syntax

```
show class-of-service routing-instance
<routing-instance-name>
```

Release Information

Command introduced before Junos OS Release 7.4.

Description

Display mapping of class of service (CoS) objects to routing instances.

Options

`routing-instance-name`—(Optional) Name of a routing instance.

Required Privilege Level

view

List of Sample Output

`show class-of-service routing-instance on page 457`

Output Fields

Table 78 on page 456 describes the output fields for the `show class-of-service routing-instance` command. Output fields are listed in the approximate order in which they appear.

Table 78: show class-of-service routing-instance Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>Internal index.</td>
</tr>
<tr>
<td>Name</td>
<td>Name of an object.</td>
</tr>
<tr>
<td>Object</td>
<td>Category of an object: Classifier.</td>
</tr>
<tr>
<td>Routing instance</td>
<td>Name of a routing instance.</td>
</tr>
<tr>
<td>Type</td>
<td>Type: exp.</td>
</tr>
</tbody>
</table>
Sample Output

show class-of-service routing-instance

user@host> show class-of-service routing-instance

Routing Instance : vpn1
<table>
<thead>
<tr>
<th>Object</th>
<th>Name</th>
<th>Type</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classifier</td>
<td>exp-default</td>
<td>exp</td>
<td>8</td>
</tr>
</tbody>
</table>

Routing Instance : vpn2
<table>
<thead>
<tr>
<th>Object</th>
<th>Name</th>
<th>Type</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classifier</td>
<td>test2</td>
<td>exp</td>
<td>57507</td>
</tr>
</tbody>
</table>

show class-of-service scheduler-hierarchy interface

Syntax

```
show class-of-service scheduler-hierarchy interface interface-name <detail>
```

Release Information

Command introduced in Junos OS Release 13.3 for MX Series Routers. Support for up to four hierarchy levels added in Junos OS Release 16.1.

NOTE: Before Junos OS R19.2, the shaping rate would incorrectly display as 90% of the guaranteed rate.

Description

For MPC/MIC interfaces only, display the scheduler hierarchy as well as the shaping rate, guaranteed rate, priorities, and queue weight information for each forwarding class at each hierarchy level.

Options

- **detail**—(Optional) Display scheduler hierarchies based on the interface set.
- **interface-name**—Display information about a specific interface.

Required Privilege Level

view

RELATED DOCUMENTATION

- **hierarchical-scheduler (Subscriber Interfaces on MX Series Routers)**

List of Sample Output

show class-of-service scheduler-hierarchy interface on page 459

Output Fields

Table 79 on page 458 describes the output fields for the `show class-of-service scheduler-hierarchy interface` command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>Interface name</td>
</tr>
</tbody>
</table>
Table 79: show class-of-service scheduler-hierarchy interface Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>resource</td>
<td>Traffic resource associated with the logical interface</td>
</tr>
<tr>
<td>shaping-rate</td>
<td>Shaping rate in bits per second</td>
</tr>
<tr>
<td>guaranteed rate</td>
<td>Guaranteed rate in bits per second</td>
</tr>
<tr>
<td>guaranteed priority</td>
<td>Queue priority in the guaranteed region (high, low, or none)</td>
</tr>
<tr>
<td>excess priority</td>
<td>Queue priority in the excess region (high, low, or none)</td>
</tr>
<tr>
<td>queue weight</td>
<td>Queue weight for excess CoS weighted round-robin</td>
</tr>
<tr>
<td>excess weight</td>
<td>Interface unit per priority weights for excess weighted round-robin</td>
</tr>
</tbody>
</table>

Sample Output

show class-of-service scheduler-hierarchy interface

user@host> show class-of-service scheduler-hierarchy interface xe-1/0/0

<table>
<thead>
<tr>
<th>Interface/ resource name</th>
<th>shaping rate kbits</th>
<th>guaranteed rate kbits</th>
<th>guaranteed priority high/low</th>
<th>excess weight</th>
<th>queue weight</th>
<th>excess weight high/low</th>
</tr>
</thead>
<tbody>
<tr>
<td>xe-1/0/0</td>
<td>12000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><<< L1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xe-1/0/0 RTP</td>
<td>12000</td>
<td>0</td>
<td>Low/low</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>best-effort</td>
<td>12000</td>
<td>0</td>
<td>Low/low</td>
<td>950</td>
<td></td>
<td></td>
</tr>
<tr>
<td>network-control</td>
<td>12000</td>
<td>0</td>
<td>Low/low</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ifset1</td>
<td>12000</td>
<td>0</td>
<td>Low/low</td>
<td>500</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td><<< L2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ifset1 RTP</td>
<td>12000</td>
<td>0</td>
<td>Low/low</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>bel</td>
<td>720</td>
<td>0</td>
<td>Low/low</td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ncl</td>
<td>12000</td>
<td>0</td>
<td>Low/low</td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>demux0.96</td>
<td>3000</td>
<td>0</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td><<< L3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>demux0.96 RTP</td>
<td>3000</td>
<td>0</td>
<td></td>
<td>500</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>be1</td>
<td>1000</td>
<td>0</td>
<td>Low</td>
<td>Low</td>
<td>250</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>ncl</td>
<td>3000</td>
<td>0</td>
<td>Low</td>
<td>Low</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>pp0.81</td>
<td>2000</td>
<td>0</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<<< L4

<table>
<thead>
<tr>
<th></th>
<th>be1</th>
<th>1000</th>
<th>0</th>
<th>Low</th>
<th>Low</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ncl</td>
<td>2000</td>
<td>0</td>
<td>Low</td>
<td>Low</td>
<td>250</td>
</tr>
</tbody>
</table>
show class-of-service traffic-class-map

Syntax

```
show class-of-service traffic-class-map
  <name traffic-class-map-name>
  <type (dscp | exp | ieee-802.1 | ieee-802.1ad | inet-precedence)>
```

Release Information
Command introduced in Junos OS Release 14.2 for T4000 routers with Type 5 FPCs.
Command introduced in Junos OS Release 17.2 for MX Routers with MPCs.

Description
For each traffic class map, display the mapping of the code point value to the input traffic class.

Options
none—Display all the mappings.
name name—(Optional) Display the named traffic class map.
type dscp—(Optional) Display all traffic class maps of the Differentiated Services code point (DSCP) type.
type exp—(Optional) Display all traffic class maps of the MPLS EXP type.
type ieee-802.1—(Optional) Display all traffic class maps of the IEEE 802.1 type.
type ieee-802.1ad—(Optional) Display all traffic class maps of the IEEE 802.1ad type.
type inet-precedence—(Optional) Display all traffic class maps of the IPv4 precedence type.

Required Privilege Level
view

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>traffic-class-map</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Ingress Oversubscription at the PFE</td>
</tr>
<tr>
<td>Configuring Traffic Class Maps to Manage Ingress Oversubscription</td>
</tr>
<tr>
<td>Example: Configuring Traffic Class Maps</td>
</tr>
</tbody>
</table>

List of Sample Output
show class-of-service traffic-class-map on page 462
Output Fields

Table 60 on page 380 describes the output fields for the `show class-of-service traffic-class-map` command. Output fields are listed in the approximate order in which they appear.

Table 80: show class-of-service traffic-class-map Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic-class-map</td>
<td>Name of the traffic class map.</td>
</tr>
<tr>
<td>Code point type</td>
<td>Type of the traffic class map: <code>exp</code>, <code>dscp</code>, <code>ieee-802.1</code>, <code>ieee-802.1ad</code>, or <code>inet-precedence</code>.</td>
</tr>
<tr>
<td>Index</td>
<td>Internal index of the traffic class map.</td>
</tr>
<tr>
<td>Code point</td>
<td>Code point value used for classification.</td>
</tr>
<tr>
<td>Traffic class</td>
<td>Classification of a packet affecting the forwarding, scheduling, and marking policies applied as the packet transits the router.</td>
</tr>
</tbody>
</table>

Sample Output

`show class-of-service traffic-class-map`

`user@host> show class-of-service traffic-class-map`

```
Traffic-class-map: inet-precedence, Code-point type: inet-precedence, Index: 44231

<table>
<thead>
<tr>
<th>Code point</th>
<th>Traffic class</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>real-time</td>
</tr>
<tr>
<td>001</td>
<td>real-time</td>
</tr>
<tr>
<td>010</td>
<td>network-control</td>
</tr>
<tr>
<td>011</td>
<td>network-control</td>
</tr>
<tr>
<td>100</td>
<td>best-effort</td>
</tr>
<tr>
<td>101</td>
<td>best-effort</td>
</tr>
</tbody>
</table>
```


show class-of-service translation-table

Syntax

```
show class-of-service translation-table
<name translation-table-name> |
<type (to-dscp-from-dscp | to-dscp-ipv6-from-dscp-ipv6 | to-exp-from-exp |
    to-inet-precedence-from-inet-precedence)>  
```

Release Information
Command introduced in Junos OS Release 9.3 for IQE PICs.

Description
Display the mapping of class-of-service (CoS) translation table code points to corresponding bit patterns.

Options
- **none**—Display translation table code points for all translation tables.
- **name**—(Optional) Display information for the named translation table.
- **type**—(Optional) Display information for a certain translation table type:
 - **to-dscp-from-dscp**—Display DSCP translation table information.
 - **to-dscp-ipv6-from-dscp-ipv6**—Display DSCP IPv6 translation table information.
 - **to-exp-from-exp**—Display MPLS EXP translation table information.
 - **to-inet-precedence-from-inet-precedence**—Display Internet precedence translation table information.

Required Privilege Level
view

List of Sample Output
- show class-of-service translation-table on page 464
- show class-of-service translation-table name exp-trans-table on page 466
- show class-of-service translation-table type to-dscp-ipv6-from-dscp-ipv6 on page 466

Output Fields
Table 81 on page 464 describes the output fields for the **show class-of-service translation-table** command. Output fields are listed in the approximate order in which they appear.
Table 81: show class-of-service translation-table Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation Table</td>
<td>Name of the translation table.</td>
</tr>
<tr>
<td>Translation table type</td>
<td>Type of the translation table.</td>
</tr>
<tr>
<td>Index</td>
<td>Internal index number of the translation table.</td>
</tr>
<tr>
<td>From Code Point</td>
<td>Value of code point received.</td>
</tr>
<tr>
<td>To Code Point</td>
<td>Value of translated code point.</td>
</tr>
</tbody>
</table>

Sample Output

show class-of-service translation-table

user@host> show class-of-service translation-table

Translation Table: inet-trans-table, Translation table type: inet-to-inet, Index: 61075
From Code point To Code Point
000 101
001 111
010 101
011 111
100 101
101 101
110 001
111 000

Translation Table: dscp-trans-table, Translation table type: dscp-to-dscp, Index: 6761
From Code point To Code Point
0000000 000111
0000001 000111
0000010 000111
0000011 000111
0000100 000111
0000101 000111
0000110 000111
0000111 111000

464
001000	000111
001001	000111
001010	000111
001011	000111
001100	000111
001101	000111
001110	000111
001111	000111
010000	000111
010001	000111
010010	000111
010011	000111
010100	000111
010101	000111
010110	000111
010111	000111
011000	000111
011001	000111
011010	000111
011011	000111
011100	000111
011101	000111
011110	000111
011111	000111
100000	000111
100001	000111
100010	000111
100011	000111
100100	000111
100101	000111
100110	000111
100111	111000
101000	000111
101001	000111
101010	000111
101011	000111
101100	000111
101101	000111
101110	000111
101111	000111
110000	000111
110001	000111
110010	000111
110011	000111
show class-of-service translation-table name exp-trans-table

user@host> show class-of-service translation-table name exp-trans-table

Translation Table: exp-trans-table, Translation table type: exp-to-exp, Index: 9048

<table>
<thead>
<tr>
<th>From Code point</th>
<th>To Code Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>101</td>
</tr>
<tr>
<td>001</td>
<td>111</td>
</tr>
<tr>
<td>010</td>
<td>101</td>
</tr>
<tr>
<td>011</td>
<td>111</td>
</tr>
<tr>
<td>100</td>
<td>101</td>
</tr>
<tr>
<td>101</td>
<td>101</td>
</tr>
<tr>
<td>110</td>
<td>001</td>
</tr>
<tr>
<td>111</td>
<td>000</td>
</tr>
</tbody>
</table>

show class-of-service translation-table type to-dscp-ipv6-from-dscp-ipv6

user@host> show class-of-service translation-table type to-dscp-ipv6-from-dscp-ipv6

Translation Table: dscp-ipv6-trans-table, Translation table type: dscp-ipv6-to-dscp-ipv6, Index: 64704

<table>
<thead>
<tr>
<th>From Code point</th>
<th>To Code Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000000</td>
<td>0001111</td>
</tr>
<tr>
<td>0000001</td>
<td>0001111</td>
</tr>
<tr>
<td>0000010</td>
<td>0001111</td>
</tr>
<tr>
<td>0000011</td>
<td>0001111</td>
</tr>
<tr>
<td>0001000</td>
<td>0001111</td>
</tr>
<tr>
<td>0001011</td>
<td>0001111</td>
</tr>
<tr>
<td>Binary</td>
<td>Decimal</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>110010</td>
<td>000111</td>
</tr>
<tr>
<td>110011</td>
<td>000111</td>
</tr>
<tr>
<td>110100</td>
<td>000111</td>
</tr>
<tr>
<td>110101</td>
<td>000111</td>
</tr>
<tr>
<td>110110</td>
<td>000111</td>
</tr>
<tr>
<td>110111</td>
<td>000111</td>
</tr>
<tr>
<td>111000</td>
<td>000111</td>
</tr>
<tr>
<td>111001</td>
<td>000111</td>
</tr>
<tr>
<td>111010</td>
<td>000111</td>
</tr>
<tr>
<td>111011</td>
<td>000111</td>
</tr>
<tr>
<td>111100</td>
<td>000111</td>
</tr>
<tr>
<td>111101</td>
<td>000111</td>
</tr>
<tr>
<td>111110</td>
<td>000001</td>
</tr>
<tr>
<td>111111</td>
<td>000000</td>
</tr>
</tbody>
</table>
show interfaces forwarding-class-counters

Syntax

show interfaces forwarding-class-counters interface-name <comprehensive>

Release Information
Command introduced in Junos OS 14.1 for MX Series routers.

Description
Display interface accounting information by forwarding class for IPv4, IPv6, MPLS, Layer 2, and Other traffic.

Options
comprehensive—(Optional) Display forwarding-class-counters per traffic family for all logical interfaces under the physical interface along with other quality-of-service information.

Additional Information
For physical interface-level statistics, if none of the logical interfaces have any of the traffic families configured on them, the forwarding class statistics for that family are still displayed with a value of 0.

For physical interface-level statistics, in case of Layer 2 families such as ccc, tcc, or vpls, the Layer2 keyword is displayed because it is possible that different Layer 2 families are configured on the logical interface.

For logical interface-level statistics, the output displays statistics only for families that are configured on that logical interface. The statistics under Other family are still displayed because these are packets that are not classified as belonging to any family.

In the case of Layer 2 families such as ccc, tcc, or vpls configured on the logical interface, the actual family name is displayed in the output.

Statistics include input and output byte and packets and corresponding rates.

Required Privilege Level
view

RELATED DOCUMENTATION

forwarding-class-accounting
Class of Service User Guide (Routers and EX9200 Switches)

List of Sample Output
show interfaces forwarding-class-counters interface-name on page 470
Output Fields

Table 82 on page 470 lists the output fields for the `show interfaces forwarding-class-counters` command. Output fields are listed in the approximate order in which they appear.

Table 82: show interfaces forwarding-class-counters Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input bytes</td>
<td>A count of received bytes that match the forwarding class.</td>
</tr>
<tr>
<td>Output bytes</td>
<td>A count of transmitted bytes that match the forwarding class.</td>
</tr>
<tr>
<td>Input packets</td>
<td>A count of received packets that match the forwarding class.</td>
</tr>
<tr>
<td>Output packets</td>
<td>A count of transmitted packets that match the forwarding class.</td>
</tr>
</tbody>
</table>

Sample Output

`show interfaces forwarding-class-counters interface-name`

```
user@host>  show interfaces forwarding-class-counters ge-4/2/1

user@host>  show interfaces forwarding-class-counters ge-4/2/1

Physical interface ge-4/2/1 (Index 228) (SNMP ifIndex 870)

Aggregate Forwarding-class statistics :
   Forwarding-class statistics : best-effort
   Input bytes :              0 0 bps
   output bytes :             0 0 bps
   Input packets :            0 0 pps
   output packets :           0 0 pps

   Forwarding-class statistics : network-control
   Input bytes :              0 0 bps
   output bytes :             0 0 bps
   Input packets :            0 0 pps
   output packets :           0 0 pps

IPv4 Forwarding-class statistics :
   Forwarding-class statistics : best-effort
   Input bytes :              0 0 bps
   output bytes :             0 0 bps
   Input packets :            0 0 pps
   output packets :           0 0 pps
```
Forwarding-class statistics: expedited-forwarding
Input bytes: 0 0 bps
output bytes: 0 0 bps
Input packets: 0 0 pps
output packets: 0 0 pps

Forwarding-class statistics: assured-forwarding
Input bytes: 0 0 bps
output bytes: 0 0 bps
Input packets: 0 0 pps
output packets: 0 0 pps

Forwarding-class statistics: network-control
Input bytes: 0 0 bps
output bytes: 0 0 bps
Input packets: 0 0 pps
output packets: 0 0 pps

IPv6 Forwarding-class statistics:
Forwarding-class statistics: best-effort
Input bytes: 0 0 bps
output bytes: 0 0 bps
Input packets: 0 0 pps
output packets: 0 0 pps

Forwarding-class statistics: expedited-forwarding
Input bytes: 0 0 bps
output bytes: 0 0 bps
Input packets: 0 0 pps
output packets: 0 0 pps

Forwarding-class statistics: assured-forwarding
Input bytes: 0 0 bps
output bytes: 0 0 bps
Input packets: 0 0 pps
output packets: 0 0 pps

Forwarding-class statistics: network-control
Input bytes: 0 0 bps
output bytes: 0 0 bps
Input packets: 0 0 pps
output packets: 0 0 pps

MPLS Forwarding-class statistics:
Forwarding-class statistics: best-effort
Input bytes: 0 0 bps
output bytes: 0 0 bps
Input packets: 0 0 pps
output packets: 0 0 pps
<table>
<thead>
<tr>
<th>Forwarding-class statistics</th>
<th>Input bytes</th>
<th>output bytes</th>
<th>Input packets</th>
<th>output packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>expedited-forwarding</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>assured-forwarding</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>network-control</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>best-effort</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Layer2 Forwarding-class statistics

<table>
<thead>
<tr>
<th>Forwarding-class statistics</th>
<th>Input bytes</th>
<th>output bytes</th>
<th>Input packets</th>
<th>output packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>best-effort</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>expedited-forwarding</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>assured-forwarding</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>network-control</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Other Forwarding-class statistics

<table>
<thead>
<tr>
<th>Forwarding-class statistics</th>
<th>Input bytes</th>
<th>output bytes</th>
<th>Input packets</th>
<th>output packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>best-effort</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Forwarding-class statistics: expedited-forwarding
Input bytes : 0 0 bps
output bytes : 0 0 bps
Input packets : 0 0 pps
output packets : 0 0 pps

Forwarding-class statistics: assured-forwarding
Input bytes : 0 0 bps
output bytes : 0 0 bps
Input packets : 0 0 pps
output packets : 0 0 pps

Forwarding-class statistics: network-control
Input bytes : 0 0 bps
output bytes : 0 0 bps
Input packets : 0 0 pps
output packets : 0 0 pps

Logical interface ge-4/2/1.0 (Index 347) (SNMP ifIndex 1032)
Forwarding-class accounting parameters:
Aggregate Forwarding-class statistics:
 Forwarding-class statistics: best-effort
Input bytes : 0 0 bps
output bytes : 0 0 bps
Input packets : 0 0 pps
output packets : 0 0 pps

 Forwarding-class statistics: expedited-forwarding
Input bytes : 0 0 bps
output bytes : 0 0 bps
Input packets : 0 0 pps
output packets : 0 0 pps

 Forwarding-class statistics: assured-forwarding
Input bytes : 0 0 bps
output bytes : 0 0 bps
Input packets : 0 0 pps
output packets : 0 0 pps

 Forwarding-class statistics: network-control
Input bytes : 0 0 bps
output bytes : 0 0 bps
Input packets : 0 0 pps
output packets : 0 0 pps

ccc Forwarding-class statistics:
Forwarding-class statistics: best-effort
Input bytes : 0 0 bps
output bytes : 0 0 bps
Input packets : 0 0 pps
output packets : 0 0 pps
Forwarding-class statistics : expedited-forwarding
Input bytes : 0 0 bps
output bytes : 0 0 bps
Input packets : 0 0 pps
output packets : 0 0 pps
Forwarding-class statistics : assured-forwarding
Input bytes : 0 0 bps
output bytes : 0 0 bps
Input packets : 0 0 pps
output packets : 0 0 pps
Forwarding-class statistics : network-control
Input bytes : 0 0 bps
output bytes : 0 0 bps
Input packets : 0 0 pps
output packets : 0 0 pps
Other Forwarding-class statistics :
Forwarding-class statistics : best-effort
Input bytes : 0 0 bps
output bytes : 0 0 bps
Input packets : 0 0 pps
output packets : 0 0 pps
Forwarding-class statistics : expedited-forwarding
Input bytes : 0 0 bps
output bytes : 0 0 bps
Input packets : 0 0 pps
output packets : 0 0 pps
Forwarding-class statistics : assured-forwarding
Input bytes : 0 0 bps
output bytes : 0 0 bps
Input packets : 0 0 pps
output packets : 0 0 pps
Forwarding-class statistics : network-control
Input bytes : 0 0 bps
output bytes : 0 0 bps
Input packets : 0 0 pps
output packets : 0 0 pps
show interfaces voq

Syntax

show interfaces voq interface-name
<forwarding-class forwarding-class-name>
<non-zero>

Syntax (Junos OS Evolved)

show interfaces voq interface-name
<forwarding-class forwarding-class-name>
<non-zero>
<source-fpc source-fpc-number>

Release Information

Command introduced in Junos OS Release 14.1 for the PTX Series Routers
Command introduced in Junos OS Release 15.1X53-D20 for QFX10000 switches.

Description

Display the random early detection (RED) drop statistics from all ingress Packet Forwarding Engines associated with the specified physical egress interface. In the VOQ architecture, egress output queues (shallow buffers) buffer data in virtual queues on ingress Packet Forwarding Engines. In cases of congestion, you can use this command to identify which ingress Packet Forwarding Engine is the source of RED-dropped packets contributing to congestion.

NOTE: On the PTX Series routers and QFX10000 switches, these statistics include tail-dropped packets.

Options

interface interface-name—Display the ingress VOQ RED drop statistics for the specified egress interface.

forwarding-class forwarding-class-name—Display VOQ RED drop statistics for a specified forwarding class.

non-zero—Display only non-zero VOQ RED drop statistics counters.

source-fpc source-fpc-number—Display VOQ RED drop statistics for the specified source FPC.

Additional Information

• On PTX Series routers, you can display VOQ statistics for only the WAN physical interface.
• VOQ statistics for aggregated physical interfaces are not supported. Statistics for an aggregated interface are the summation of the queue statistics of the child links of that aggregated interface. You can use the `show interfaces queue` command to identify the child link which is experiencing congestion and then view the VOQ statistics on the respective child link using the `show interfaces voq` command.

For information on virtual output queueing on PTX routers, see *Understanding Virtual Output Queues on PTX Series Packet Transport Routers*. For information on virtual output queueing on QFX10000 switches, see *Understanding CoS Virtual Output Queues (VOQs) on QFX10000 Switches*.

Required Privilege Level

- `view`

RELATED DOCUMENTATION

- *Understanding Virtual Output Queues on PTX Series Packet Transport Routers*
- *Understanding CoS Virtual Output Queues (VOQs) on QFX10000 Switches*

List of Sample Output

- `show interfaces voq (For a Specific Physical Interface) (PTX Series Routers)` on page 477
- `show interfaces voq (For a Specific Physical Interface) (QFX10000 Switches)` on page 484
- `show interfaces voq et-7/0/0 (For a Specific Forwarding Class)` on page 486
- `show interfaces voq et-5/0/12 (For a Specific Source FPC)` on page 488
- `show interfaces voq et-5/0/12 (For a Specific Forwarding Class and Source FPC)` on page 490
- `show interfaces voq et-7/0/0 (Non-Zero)` on page 490
- `show interfaces voq et-7/0/0 (For a Specific Forwarding Class and Non-Zero)` on page 491

Output Fields

Table 83 on page 476 lists the output fields for the `show interfaces queue` command. Output fields are listed in the approximate order in which they appear.

Table 83: show interfaces voq Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical interface</td>
<td>Name of the physical interface.</td>
</tr>
<tr>
<td>Enabled</td>
<td>State of the interface. Possible values are described in the "Enabled Field" section under Common Output Fields Description.</td>
</tr>
<tr>
<td>Interface index</td>
<td>Physical interface's index number, which reflects its initialization sequence.</td>
</tr>
<tr>
<td>SNMP ifIndex</td>
<td>SNMP index number for the interface.</td>
</tr>
</tbody>
</table>
Table 83: show interfaces voq Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue</td>
<td>Egress queue number.</td>
</tr>
<tr>
<td>Forwarding classes</td>
<td>Forwarding class name.</td>
</tr>
<tr>
<td>FPC number</td>
<td>Number of the Flexible PIC Concentrator (FPC) located on ingress.</td>
</tr>
<tr>
<td>PFE</td>
<td>Number of the Packet Forwarding Engine providing virtual output queues on the ingress.</td>
</tr>
<tr>
<td>RED-dropped packets</td>
<td>Number of packets per second (pps) dropped because of random early detection (RED).</td>
</tr>
<tr>
<td>NOTE: On the PTX Series routers, these statistics include tail-dropped packets.</td>
<td></td>
</tr>
<tr>
<td>RED-dropped bytes</td>
<td>Number of bytes per second dropped because of RED. The byte counts vary by interface hardware.</td>
</tr>
<tr>
<td>NOTE: On the PTX Series routers, these statistics include tail-dropped packets.</td>
<td></td>
</tr>
</tbody>
</table>

Sample Output

de interfaces voq (For a Specific Physical Interface) (PTX Series Routers)

The following example shows ingress RED-dropped statistics for the egress Ethernet interface configured on port 0 of Physical Interface Card (PIC) 0, located on the FPC in slot 7.

The sample output below shows that the cause of the congestion is ingress Packet Forwarding Engine PFE 0, which resides on FPC number 4, as denoted by the count of RED-dropped packets and RED-dropped bytes for egress queue 0, forwarding classes best-effort and egress queue 3, forwarding class network control.

user@host> show interfaces voq et-7/0/0

Physical interface: et-7/0/0, Enabled, Physical link is Up
 Interface index: 155, SNMP ifIndex: 699

Queue: 0, Forwarding classes: best-effort
FPC number: 1	PFE: 0	RED-dropped packets : 0	0 pps	RED-dropped bytes : 0	0 bps
PFE: 1	RED-dropped packets : 0	0 pps	RED-dropped bytes : 0	0 bps	
PFE: 2	RED-dropped packets : 0	0 pps	RED-dropped bytes : 0	0 bps	
PFE: 3	RED-dropped packets : 0	0 pps	RED-dropped bytes : 0	0 bps	

FPC number: 4	PFE: 0	RED-dropped packets : 19969426	2323178 pps	RED-dropped bytes : 2196636860	2044397464 bps
PFE: 1	RED-dropped packets : 0	0 pps	RED-dropped bytes : 0	0 bps	
PFE: 2	RED-dropped packets : 0	0 pps	RED-dropped bytes : 0	0 bps	
PFE: 3	RED-dropped packets : 0	0 pps	RED-dropped bytes : 0	0 bps	

<p>| FPC number: 6 | PFE: 0 | RED-dropped packets : 19969424 | 2321205 pps | RED-dropped bytes : 2196636640 | 2042660808 bps |
| PFE: 1 | RED-dropped packets : 0 | 0 pps | RED-dropped bytes : 0 | 0 bps |
| PFE: 2 | RED-dropped packets : 0 | 0 pps | RED-dropped bytes : 0 | 0 bps |
| PFE: 3 | RED-dropped packets : 0 | 0 pps | RED-dropped bytes : 0 | 0 bps |
| PFE: 4 | RED-dropped packets : 0 | 0 pps | RED-dropped bytes : 0 | 0 bps |</p>
<table>
<thead>
<tr>
<th>PFE</th>
<th>RED-dropped packets</th>
<th>RED-dropped bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>0 pps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0 bps</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0 pps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0 bps</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0 pps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0 bps</td>
</tr>
</tbody>
</table>

FPC number: 7

<table>
<thead>
<tr>
<th>PFE</th>
<th>RED-dropped packets</th>
<th>RED-dropped bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0 pps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0 bps</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0 pps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0 bps</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0 pps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0 bps</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0 pps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0 bps</td>
</tr>
</tbody>
</table>

Queue: 1, Forwarding classes: expedited-forwarding

<table>
<thead>
<tr>
<th>PFC number: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFE: 0</td>
</tr>
<tr>
<td>RED-dropped packets</td>
</tr>
<tr>
<td>RED-dropped bytes</td>
</tr>
<tr>
<td>PFE: 1</td>
</tr>
<tr>
<td>RED-dropped packets</td>
</tr>
<tr>
<td>RED-dropped bytes</td>
</tr>
<tr>
<td>PFE: 2</td>
</tr>
<tr>
<td>RED-dropped packets</td>
</tr>
<tr>
<td>RED-dropped bytes</td>
</tr>
<tr>
<td>PFE: 3</td>
</tr>
<tr>
<td>RED-dropped packets</td>
</tr>
<tr>
<td>RED-dropped bytes</td>
</tr>
</tbody>
</table>

FPC number: 4

<p>| PFE: 0 |
| RED-dropped packets | 0 |
| RED-dropped bytes | 0 pps |</p>
<table>
<thead>
<tr>
<th>PFE</th>
<th>RED-dropped packets</th>
<th>RED-dropped bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0 pps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0 bps</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0 pps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0 bps</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0 pps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0 bps</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0 pps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0 bps</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0 pps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0 bps</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0 pps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0 bps</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0 pps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0 bps</td>
</tr>
</tbody>
</table>

FPC number: 6

<table>
<thead>
<tr>
<th>PFE</th>
<th>RED-dropped packets</th>
<th>RED-dropped bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0 pps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0 bps</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0 pps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0 bps</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0 pps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0 bps</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0 pps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0 bps</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0 pps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0 bps</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0 pps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0 bps</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0 pps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0 bps</td>
</tr>
</tbody>
</table>

FPC number: 7

<table>
<thead>
<tr>
<th>PFE</th>
<th>RED-dropped packets</th>
<th>RED-dropped bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0 pps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0 bps</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0 pps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0 bps</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0 pps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0 bps</td>
</tr>
</tbody>
</table>
Queue: 2, Forwarding classes: assured-forwarding

FPC number: 1
 PFE: 0
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
 PFE: 1
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
 PFE: 2
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
 PFE: 3
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps

FPC number: 4
 PFE: 0
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
 PFE: 1
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
 PFE: 2
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
 PFE: 3
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps

FPC number: 6
 PFE: 0
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
 PFE: 1
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
 PFE: 2
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
<table>
<thead>
<tr>
<th>Queue: 3, Forwarding classes: network-control</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>FPC number: 7</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PFE: 0</td>
<td></td>
</tr>
<tr>
<td>RED-dropped packets : 0</td>
<td>0 pps</td>
</tr>
<tr>
<td>RED-dropped bytes : 0</td>
<td>0 bps</td>
</tr>
<tr>
<td>PFE: 1</td>
<td></td>
</tr>
<tr>
<td>RED-dropped packets : 0</td>
<td>0 pps</td>
</tr>
<tr>
<td>RED-dropped bytes : 0</td>
<td>0 bps</td>
</tr>
<tr>
<td>PFE: 2</td>
<td></td>
</tr>
<tr>
<td>RED-dropped packets : 0</td>
<td>0 pps</td>
</tr>
<tr>
<td>RED-dropped bytes : 0</td>
<td>0 bps</td>
</tr>
<tr>
<td>PFE: 3</td>
<td></td>
</tr>
<tr>
<td>RED-dropped packets : 0</td>
<td>0 pps</td>
</tr>
<tr>
<td>RED-dropped bytes : 0</td>
<td>0 bps</td>
</tr>
</tbody>
</table>

Queue: 3, Forwarding classes: network-control
PFE: 3
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps

FPC number: 4
PFE: 0
 RED-dropped packets : 16338670 1900314 pps
 RED-dropped bytes : 1797253700 1672276976 bps
PFE: 1
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
PFE: 2
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
PFE: 3
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps

FPC number: 6
PFE: 0
 RED-dropped packets : 16338698 1899163 pps
 RED-dropped bytes : 1797256780 1671263512 bps
PFE: 1
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
PFE: 2
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
PFE: 3
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
PFE: 4
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
PFE: 5
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
PFE: 6
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
PFE: 7
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
show interfaces voq (For a Specific Physical Interface) (QFX10000 Switches)

The sample output below shows congestion on ingress PFE 1 on FPC number 0, and on ingress PFE 2 on FPC number 1, as denoted by the count of RED-dropped packets and RED-dropped bytes for best-effort egress queue 0.

user@host> show interfaces voq et-1/0/0

Physical interface: et-1/0/0, Enabled, Physical link is Up
 Interface index: 659, SNMP ifIndex: 539

Queue: 0, Forwarding classes: best-effort

FPC number: 0
 PFE: 0
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
 PFE: 1
 RED-dropped packets : 411063248 16891870 pps
 RED-dropped bytes : 52616095744 17297275600 bps
 PFE: 2
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps

FPC number: 1
 PFE: 0
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
 PFE: 1
 RED-dropped packets : 0 0 pps
<table>
<thead>
<tr>
<th>Queue: 3, Forwarding classes: fcoe</th>
</tr>
</thead>
</table>

FPC number: 0

<table>
<thead>
<tr>
<th>PFE: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED-dropped packets: 0 0 pps</td>
</tr>
<tr>
<td>RED-dropped bytes: 0 0 bps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PFE: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED-dropped packets: 0 0 pps</td>
</tr>
<tr>
<td>RED-dropped bytes: 0 0 bps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PFE: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED-dropped packets: 0 0 pps</td>
</tr>
<tr>
<td>RED-dropped bytes: 0 0 bps</td>
</tr>
</tbody>
</table>

FPC number: 1

<table>
<thead>
<tr>
<th>PFE: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED-dropped packets: 0 0 pps</td>
</tr>
<tr>
<td>RED-dropped bytes: 0 0 bps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PFE: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED-dropped packets: 0 0 pps</td>
</tr>
<tr>
<td>RED-dropped bytes: 0 0 bps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PFE: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED-dropped packets: 0 0 pps</td>
</tr>
<tr>
<td>RED-dropped bytes: 0 0 bps</td>
</tr>
</tbody>
</table>

Queue: 4, Forwarding classes: no-loss

FPC number: 0

<table>
<thead>
<tr>
<th>PFE: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED-dropped packets: 0 0 pps</td>
</tr>
<tr>
<td>RED-dropped bytes: 0 0 bps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PFE: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED-dropped packets: 0 0 pps</td>
</tr>
<tr>
<td>RED-dropped bytes: 0 0 bps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PFE: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED-dropped packets: 0 0 pps</td>
</tr>
<tr>
<td>RED-dropped bytes: 0 0 bps</td>
</tr>
</tbody>
</table>

FPC number: 1

<table>
<thead>
<tr>
<th>PFE: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED-dropped packets: 0 0 pps</td>
</tr>
<tr>
<td>RED-dropped bytes: 0 0 bps</td>
</tr>
<tr>
<td>Queue: 7, Forwarding classes: network-control</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>FPC number: 0</td>
</tr>
<tr>
<td>PFE: 0</td>
</tr>
<tr>
<td>RED-dropped packets : 0</td>
</tr>
<tr>
<td>RED-dropped bytes : 0</td>
</tr>
<tr>
<td>PFE: 1</td>
</tr>
<tr>
<td>RED-dropped packets : 0</td>
</tr>
<tr>
<td>RED-dropped bytes : 0</td>
</tr>
<tr>
<td>PFE: 2</td>
</tr>
<tr>
<td>RED-dropped packets : 0</td>
</tr>
<tr>
<td>RED-dropped bytes : 0</td>
</tr>
</tbody>
</table>

| FPC number: 1 |
| PFE: 0 |
| RED-dropped packets : 0 |
| RED-dropped bytes : 0 |
| PFE: 1 |
| RED-dropped packets : 0 |
| RED-dropped bytes : 0 |
| PFE: 2 |
| RED-dropped packets : 0 |
| RED-dropped bytes : 0 |

show interfaces voq et-7/0/0 (For a Specific Forwarding Class)

```plaintext
user@host>  show interfaces voq et-7/0/0 forwarding-class best-effort
```

Physical interface: et-7/0/0, Enabled, Physical link is Up

- Interface index: 155, SNMP ifIndex: 699

Queue: 0, Forwarding classes: best-effort

- FPC number: 1
- PFE: 0
<table>
<thead>
<tr>
<th>PFE</th>
<th>RED-dropped packets</th>
<th>RED-dropped bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FPC number: 4

<table>
<thead>
<tr>
<th>PFE</th>
<th>RED-dropped packets</th>
<th>RED-dropped bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FPC number: 6

<table>
<thead>
<tr>
<th>PFE</th>
<th>RED-dropped packets</th>
<th>RED-dropped bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PFE: 0

<table>
<thead>
<tr>
<th>RED-dropped packets</th>
<th>RED-dropped bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>66604786</td>
<td>7326526460</td>
</tr>
<tr>
<td>2321519 pps</td>
<td>2042936776 bps</td>
</tr>
</tbody>
</table>

PFE: 1

<table>
<thead>
<tr>
<th>RED-dropped packets</th>
<th>RED-dropped bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

PFE: 2

<table>
<thead>
<tr>
<th>RED-dropped packets</th>
<th>RED-dropped bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

PFE: 3

<table>
<thead>
<tr>
<th>RED-dropped packets</th>
<th>RED-dropped bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

PFE: 4

<table>
<thead>
<tr>
<th>RED-dropped packets</th>
<th>RED-dropped bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

PFE: 5

<table>
<thead>
<tr>
<th>RED-dropped packets</th>
<th>RED-dropped bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
show interfaces voq et-5/0/12 (For a Specific Source FPC)

user@host> show interfaces voq et-5/0/12 source-fpc 0

Physical interface: et-5/0/12, Enabled, Physical link is Up

 Interface index: 166, SNMP ifIndex: 1104

 Queue: 0, Forwarding classes: best-effort

 FPC number: 0

 PFE: 0
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
 PFE: 1
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
 PFE: 2
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
 PFE: 3
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
Queue: 1, Forwarding classes: expedited-forwarding

FPC number: 0
 PFE: 0
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
 PFE: 1
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
 PFE: 2
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
 PFE: 3
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps

Queue: 2, Forwarding classes: assured-forwarding

FPC number: 0
 PFE: 0
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
 PFE: 1
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
 PFE: 2
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
 PFE: 3
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps

Queue: 3, Forwarding classes: network-control

FPC number: 0
 PFE: 0
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
 PFE: 1
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
 PFE: 2
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
show interfaces voq et-5/0/12 (For a Specific Forwarding Class and Source FPC)
user@host> show interfaces voq et-5/0/12 forwarding-class best-effort source-fpc 5

Physical interface: et-5/0/12, Enabled, Physical link is Up
 Interface index: 166, SNMP ifIndex: 1104

Queue: 0, Forwarding classes: best-effort

FPC number: 5
 PFE: 0
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
 PFE: 1
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
 PFE: 2
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
 PFE: 3
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
 PFE: 4
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
 PFE: 5
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
 PFE: 6
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
 PFE: 7
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps

show interfaces voq et-7/0/0 (Non-Zero)
user@host> show interfaces voq et-7/0/0 non-zero
Physical interface: et-7/0/0, Enabled, Physical link is Up
 Interface index: 155, SNMP ifIndex: 699

Queue: 0, Forwarding classes: best-effort

 FPC number: 4
 PFE: 0
 RED-dropped packets : 95862238 2301586 pps
 RED-dropped bytes : 10544846180 2025396264 bps

 FPC number: 6
 PFE: 0
 RED-dropped packets : 95866639 2322569 pps
 RED-dropped bytes : 10545330290 2043860728 bps

Queue: 3, Forwarding classes: network-control

 FPC number: 4
 PFE: 0
 RED-dropped packets : 78433066 1899727 pps
 RED-dropped bytes : 8627637260 1671760384 bps

 FPC number: 6
 PFE: 0
 RED-dropped packets : 78436704 1900628 pps
 RED-dropped bytes : 8628037440 1672553432 bps

show interfaces voq et-7/0/0 (For a Specific Forwarding Class and Non-Zero)
user@host show interfaces voq et-7/0/0 forwarding-class best-effort non-zero

Physical interface: et-7/0/0, Enabled, Physical link is Up
 Interface index: 155, SNMP ifIndex: 699

Queue: 0, Forwarding classes: best-effort

 FPC number: 4
 PFE: 0
 RED-dropped packets : 119540012 2322319 pps
 RED-dropped bytes : 13149400120 2043640784 bps

 FPC number: 6
<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFE: 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RED-dropped packets</td>
<td>119540049</td>
<td>2322988 pps</td>
</tr>
<tr>
<td>RED-dropped bytes</td>
<td>13149405390</td>
<td>2044229744 bps</td>
</tr>
</tbody>
</table>