Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc. in the United States and other countries. All other trademarks, service marks, registered marks, or registered service marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change, modify, transfer, or otherwise revise this publication without notice.

Junos® OS Chassis Cluster User Guide for SRX Series Devices
Copyright © 2020 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License Agreement (“EULA”) posted at https://support.juniper.net/support/eula/. By downloading, installing or using such software, you agree to the terms and conditions of that EULA.
Table of Contents

About the Documentation | xvi

Documentation and Release Notes | xvi
Using the Examples in This Manual | xvi
 - Merging a Full Example | xvii
 - Merging a Snippet | xviii
Documentation Conventions | xviii
Documentation Feedback | xxi
Requesting Technical Support | xxi
 - Self-Help Online Tools and Resources | xxii
 - Creating a Service Request with JTAC | xxii

Overview

Chassis Cluster Overview | 24

- Chassis Cluster Overview | 24
 - Benefits of Chassis Cluster | 24
 - Chassis Cluster Functionality | 25
 - Chassis Cluster Modes | 25
 - How Chassis Clustering Works? | 25
 - IPv6 Clustering Support | 26
- Chassis Cluster Limitations | 26

Chassis Cluster Features Supported on SRX Series Devices | 29

- Supported Features on Standalone and Chassis Cluster | 29

Setting Up a Chassis Cluster

SRX Series Chassis Cluster Configuration Overview | 35

Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming | 41

- Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming for SRX300, SRX320, SRX340, SRX345, SRX380, and SRX1500 Devices | 42
- Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming for SRX4600 Devices | 45
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming for SRX4100 and SRX4200 Devices</td>
<td>46</td>
</tr>
<tr>
<td>Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming for SRX5800, SRX5600, and SRX5400 Devices</td>
<td>48</td>
</tr>
<tr>
<td>FPC Slot Numbering in SRX Series Device Cards</td>
<td>50</td>
</tr>
<tr>
<td>Preparing Your Equipment for Chassis Cluster Formation</td>
<td>51</td>
</tr>
<tr>
<td>Connecting SRX Series Devices to Create a Chassis Cluster</td>
<td>55</td>
</tr>
<tr>
<td>Example: Setting the Node ID and Cluster ID for Security Devices in a Chassis Cluster</td>
<td>60</td>
</tr>
<tr>
<td>Chassis Cluster Management Interfaces</td>
<td>63</td>
</tr>
<tr>
<td>Understanding Management Interface on an Active Chassis Cluster</td>
<td>64</td>
</tr>
<tr>
<td>Example: Configuring the Chassis Cluster Management Interface</td>
<td>64</td>
</tr>
<tr>
<td>Chassis Cluster Fabric Interfaces</td>
<td>72</td>
</tr>
<tr>
<td>Understanding Chassis Cluster Fabric Interfaces</td>
<td>73</td>
</tr>
<tr>
<td>Supported Fabric Interface Types for SRX Series Devices (SRX300 Series, SRX1500, SRX4100/SRX4200, SRX4600, and SRX5000 Series)</td>
<td>74</td>
</tr>
<tr>
<td>Jumbo Frame Support</td>
<td>74</td>
</tr>
<tr>
<td>Understanding Fabric Interfaces on SRX5000 Line Devices for IOC2 and IOC3</td>
<td>75</td>
</tr>
<tr>
<td>Understanding Session RTOs</td>
<td>75</td>
</tr>
<tr>
<td>Understanding Data Forwarding</td>
<td>76</td>
</tr>
<tr>
<td>Understanding Fabric Data Link Failure and Recovery</td>
<td>77</td>
</tr>
<tr>
<td>Example: Configuring the Chassis Cluster Fabric Interfaces</td>
<td>78</td>
</tr>
<tr>
<td>Verifying Chassis Cluster Data Plane Interfaces</td>
<td>80</td>
</tr>
<tr>
<td>Viewing Chassis Cluster Data Plane Statistics</td>
<td>81</td>
</tr>
<tr>
<td>Clearing Chassis Cluster Data Plane Statistics</td>
<td>82</td>
</tr>
<tr>
<td>Chassis Cluster Control Plane Interfaces</td>
<td>83</td>
</tr>
<tr>
<td>Understanding Chassis Cluster Control Plane and Control Links</td>
<td>84</td>
</tr>
<tr>
<td>Understanding Chassis Cluster Control Links</td>
<td>84</td>
</tr>
<tr>
<td>Example: Configuring Chassis Cluster Control Ports</td>
<td>86</td>
</tr>
<tr>
<td>Verifying Chassis Cluster Control Plane Statistics</td>
<td>89</td>
</tr>
<tr>
<td>Clearing Chassis Cluster Control Plane Statistics</td>
<td>90</td>
</tr>
</tbody>
</table>
Chassis Cluster Redundancy Groups | 91
Understanding Chassis Cluster Redundancy Groups | 91
 Understanding Chassis Cluster Redundancy Group 0: Routing Engines | 92
 Understanding Chassis Cluster Redundancy Groups 1 Through 128 | 93
Example: Configuring Chassis Cluster Redundancy Groups | 95

Chassis Cluster Redundant Ethernet Interfaces | 99
Understanding Chassis Cluster Redundant Ethernet Interfaces | 99
Example: Configuring Chassis Cluster Redundant Ethernet Interfaces | 102
Example: Configuring Chassis Cluster Redundant Ethernet Interfaces on SRX4600 | 109

Configuring Chassis Clustering on an SRX Series Devices | 116
Example: Configuring Chassis Clustering on an SRX Series Devices | 117
Viewing a Chassis Cluster Configuration | 132
Viewing Chassis Cluster Statistics | 132
Clearing Chassis Cluster Statistics | 135
Understanding Automatic Chassis Cluster Synchronization Between Primary and Secondary Nodes | 135
Verifying Chassis Cluster Configuration Synchronization Status | 136

Example: Enabling Eight-Queue Class of Service on Redundant Ethernet Interfaces on SRX Series Devices in a Chassis Cluster | 138

Conditional Route Advertisement over Redundant Ethernet Interfaces on SRX Series Devices in a Chassis Cluster | 148
Understanding Conditional Route Advertising in a Chassis Cluster | 149
Example: Configuring Conditional Route Advertising in a Chassis Cluster | 149
Configuring Redundancy and Failover in a Chassis Cluster

Chassis Cluster Dual Control Links | 155

- Understanding Chassis Cluster Dual Control Links | 155
- Benefits of Dual Control Links | 155
- Dual Control Links Functionality Requirements | 156

- Connecting Dual Control Links for SRX Series Devices in a Chassis Cluster | 157

- Upgrading the Second Routing Engine When Using Chassis Cluster Dual Control Links on SRX5600 and SRX5800 Devices | 158

- Example: Configuring Chassis Cluster Control Ports for Dual Control Links | 160

Chassis Cluster Dual Fabric Links | 163

- Understanding Chassis Cluster Dual Fabric Links | 163

- Example: Configuring the Chassis Cluster Dual Fabric Links with Matching Slots and Ports | 164

- Example: Configuring Chassis Cluster Dual Fabric Links with Different Slots and Ports | 167

Monitoring of Global-Level Objects in a Chassis Cluster | 170

- Understanding SPU Monitoring | 171

- Understanding flowd Monitoring | 172

- Understanding Cold-Sync Monitoring | 172

- Understanding Cold-Sync Monitoring with SPU Replacement or Expansion | 173

Monitoring Chassis Cluster Interfaces | 174

- Understanding Chassis Cluster Redundancy Group Interface Monitoring | 175

- Benefits of Monitoring Chassis Cluster Redundancy Group Interfaces | 175

- Example: Configuring Chassis Cluster Redundancy Group Interface Monitoring | 176

Monitoring IP Addresses on a Chassis Cluster | 213

- IP Monitoring Overview | 213

- Benefits of Monitoring IP Addresses in a Chassis Cluster | 215

- Understanding Chassis Cluster Redundancy Group IP Address Monitoring | 215

- Example: Configuring Chassis Cluster Redundancy Group IP Address Monitoring | 218

- Example: Configuring IP Monitoring on SRX5000 Line Devices for IOC2 and IOC3 | 222
Configuring Static CAK on the Control Port of SRX4600 Device in Chassis Cluster | 428
Verifying MACSEC Configuration | 429
Understanding SCTP Behavior in Chassis Cluster | 434
Example: Encrypting Messages Between Two Nodes in a Chassis Cluster | 434
Upgrading or Disabling a Chassis Cluster
Upgrading Individual Devices in a Chassis Cluster Separately | 438
Upgrading Devices in a Chassis Cluster Using ICU | 438
Upgrading Both Devices in a Chassis Cluster Using ICU | 439
Upgrading ICU Using a Build Available Locally on a Primary Node in a Chassis Cluster | 440
Upgrading ICU Using a Build Available on an FTP Server | 441
Aborting an Upgrade in a Chassis Cluster During an ICU | 441
Upgrading a Chassis Cluster Using In-Service Software Upgrade | 443
Understanding ISSU for a Chassis Cluster | 443
ISSU System Requirements | 446
Upgrading Both Devices in a Chassis Cluster Using ISSU | 447
Rolling Back Devices in a Chassis Cluster After an ISSU | 450
Enabling an Automatic Chassis Cluster Node Failback After an ISSU | 450
Understanding Log Error Messages for Troubleshooting ISSU-Related Problems | 450
Chassisd Process Errors | 451
Understanding Common Error Handling for ISSU | 451
ISSU Support-Related Errors | 454
Initial Validation Checks Failure | 455
Installation-Related Errors | 456
Redundancy Group Failover Errors | 457
Kernel State Synchronization Errors | 457
Managing Chassis Cluster ISSU-Related Problems | 458
Viewing ISSU Progress | 458
Stopping ISSU Process if it Halts During an Upgrade | 459
Recovering the Node in Case of a Failed ISSU | 459
Disabling a Chassis Cluster | 461
Troubleshooting

Troubleshooting a Control Link Failure in an SRX Chassis Cluster | 464

Troubleshooting a Fabric Link Failure in an SRX Chassis Cluster | 466

Troubleshooting a Redundancy Group that Does Not Fail Over in an SRX Chassis Cluster | 468

Troubleshooting an SRX Chassis Cluster with One Node in the Primary State and the Other Node in the Disabled State | 473

Troubleshooting an SRX Chassis Cluster with One Node in the Primary State and the Other Node in the Lost State | 477

Troubleshooting an SRX Chassis Cluster with One Node in the Hold State and the Other Node in the Lost State | 480

Data Collection for Customer Support | 482

Configuration Statements and Operational Commands

Configuration Statements | 485

aggregated-devices | 487
apply-groups (Chassis Cluster) | 489
arp-detect | 490
arp-throttle | 492
authentication-key | 494
authentication-type | 496
cak | 498
cnk | 499
cluster (Chassis) | 500
configuration-synchronize (Chassis Cluster) | 503
connectivity-association | 504
connectivity-association (MACsec Interfaces) | 506
control-link-recovery | 507
control-ports | 508
exclude-protocol | 510
fabric-options | 512
gigether-options (Chassis Cluster) | 514
<table>
<thead>
<tr>
<th>Feature</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>global-threshold</td>
<td>516</td>
</tr>
<tr>
<td>global-weight</td>
<td>517</td>
</tr>
<tr>
<td>gratuitous-arp-count</td>
<td>518</td>
</tr>
<tr>
<td>heartbeat-interval</td>
<td>519</td>
</tr>
<tr>
<td>heartbeat-threshold</td>
<td>521</td>
</tr>
<tr>
<td>hold-down-interval</td>
<td>522</td>
</tr>
<tr>
<td>include-sci</td>
<td>523</td>
</tr>
<tr>
<td>interface (Chassis Cluster)</td>
<td>524</td>
</tr>
<tr>
<td>interfaces (MACsec)</td>
<td>525</td>
</tr>
<tr>
<td>interface-monitor</td>
<td>526</td>
</tr>
<tr>
<td>internal (Security IPsec)</td>
<td>528</td>
</tr>
<tr>
<td>ip-monitoring</td>
<td>530</td>
</tr>
<tr>
<td>key-server-priority (MACsec)</td>
<td>532</td>
</tr>
<tr>
<td>lACP (Interfaces)</td>
<td>533</td>
</tr>
<tr>
<td>link-protection (Chassis Cluster)</td>
<td>534</td>
</tr>
<tr>
<td>macsec</td>
<td>535</td>
</tr>
<tr>
<td>mka</td>
<td>537</td>
</tr>
<tr>
<td>must-secure</td>
<td>538</td>
</tr>
<tr>
<td>network-management</td>
<td>539</td>
</tr>
<tr>
<td>no-encryption (MACsec)</td>
<td>540</td>
</tr>
<tr>
<td>node (Chassis Cluster Redundancy Group)</td>
<td>541</td>
</tr>
<tr>
<td>nTP</td>
<td>543</td>
</tr>
<tr>
<td>nTP threshold</td>
<td>549</td>
</tr>
<tr>
<td>offset</td>
<td>551</td>
</tr>
<tr>
<td>preempt (Chassis Cluster)</td>
<td>553</td>
</tr>
<tr>
<td>pre-shared-key</td>
<td>555</td>
</tr>
<tr>
<td>priority (Protocols VRRP)</td>
<td>556</td>
</tr>
<tr>
<td>redundancy-group (Chassis Cluster)</td>
<td>558</td>
</tr>
<tr>
<td>redundant-ether-options</td>
<td>560</td>
</tr>
<tr>
<td>redundant-parent (Interfaces)</td>
<td>562</td>
</tr>
<tr>
<td>redundant-pseudo-interface-options</td>
<td>563</td>
</tr>
<tr>
<td>replay-protect</td>
<td>564</td>
</tr>
<tr>
<td>replay-window-size</td>
<td>566</td>
</tr>
<tr>
<td>reth-count (Chassis Cluster)</td>
<td>568</td>
</tr>
</tbody>
</table>
retry-count (Chassis Cluster) | 569
retry-interval (Chassis Cluster) | 570
route-active-on | 571
security-mode | 572
traceoptions (Chassis Cluster) | 574
transmit-interval (MACsec) | 576
use-active-child-mac-on-reth | 577
use-actual-mac-on-physical-interfaces | 578
virtual-address | 579
vrrp-group | 580
weight | 584

Operational Commands | 585

clear chassis cluster control-plane statistics | 587
clear chassis cluster data-plane statistics | 588
clear chassis cluster failover-count | 589
clear chassis cluster ip-monitoring failure-count | 591
clear chassis cluster ip-monitoring failure-count ip-address | 592
clear chassis cluster statistics | 594
request chassis cb | 595
request chassis cluster configuration-synchronize | 597
request chassis cluster failover node | 598
request chassis cluster failover redundancy-group | 600
request chassis cluster failover reset | 602
request chassis fpc | 603
request chassis cluster in-service-upgrade abort (ISSU) | 605
request security internal-security-association refresh | 606
request system scripts add | 608
request system reboot (SRX Series) | 612
request system software in-service-upgrade (Maintenance) | 614
request system software rollback (SRX Series) | 618
set chassis cluster disable reboot | 619
set chassis cluster cluster-id node node-number reboot | 620
show chassis cluster control-plane statistics | 622
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show chassis cluster data-plane interfaces</td>
<td>625</td>
</tr>
<tr>
<td>show chassis cluster data-plane statistics</td>
<td>627</td>
</tr>
<tr>
<td>show chassis cluster ethernet-switching interfaces</td>
<td>630</td>
</tr>
<tr>
<td>show chassis cluster ethernet-switching status</td>
<td>632</td>
</tr>
<tr>
<td>show chassis cluster information</td>
<td>635</td>
</tr>
<tr>
<td>show chassis cluster information configuration-synchronization</td>
<td>641</td>
</tr>
<tr>
<td>show chassis cluster information issu</td>
<td>644</td>
</tr>
<tr>
<td>show chassis cluster interfaces</td>
<td>646</td>
</tr>
<tr>
<td>show chassis cluster ip-monitoring status redundancy-group</td>
<td>652</td>
</tr>
<tr>
<td>show chassis cluster statistics</td>
<td>656</td>
</tr>
<tr>
<td>show chassis cluster status</td>
<td>662</td>
</tr>
<tr>
<td>show chassis environment (Security)</td>
<td>666</td>
</tr>
<tr>
<td>show chassis environment cb</td>
<td>673</td>
</tr>
<tr>
<td>show chassis ethernet-switch</td>
<td>677</td>
</tr>
<tr>
<td>show chassis fabric plane</td>
<td>683</td>
</tr>
<tr>
<td>show chassis fabric plane-location</td>
<td>691</td>
</tr>
<tr>
<td>show chassis fabric summary</td>
<td>693</td>
</tr>
<tr>
<td>show chassis hardware (View)</td>
<td>696</td>
</tr>
<tr>
<td>show chassis routing-engine (View)</td>
<td>717</td>
</tr>
<tr>
<td>show chassis temperature-thresholds</td>
<td>723</td>
</tr>
<tr>
<td>show configuration chassis cluster traceoptions</td>
<td>726</td>
</tr>
<tr>
<td>show interfaces (SRX Series)</td>
<td>728</td>
</tr>
<tr>
<td>set date ntp</td>
<td>770</td>
</tr>
<tr>
<td>show system ntp threshold</td>
<td>772</td>
</tr>
<tr>
<td>show security macsec connections</td>
<td>774</td>
</tr>
<tr>
<td>show security macsec statistics (SRX Series Devices)</td>
<td>776</td>
</tr>
<tr>
<td>show security mka statistics</td>
<td>781</td>
</tr>
<tr>
<td>show security mka sessions (SRX Series Device</td>
<td>784</td>
</tr>
<tr>
<td>show security internal-security-association</td>
<td>787</td>
</tr>
<tr>
<td>show system license (View)</td>
<td>789</td>
</tr>
<tr>
<td>show vrrp</td>
<td>793</td>
</tr>
</tbody>
</table>
Chassis Cluster Support on SRX100, SRX210, SRX220, SRX240, SRX550M, SRX650 and SRX1400 Devices

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX Series Chassis Cluster Configuration Overview</td>
<td>807</td>
</tr>
<tr>
<td>Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming for SRX550M Devices</td>
<td>808</td>
</tr>
<tr>
<td>Flow and Processing</td>
<td>809</td>
</tr>
<tr>
<td>Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming for SRX100, SRX210, SRX220, SRX240, SRX550M, and SRX650</td>
<td>810</td>
</tr>
<tr>
<td>Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming for SRX3600, SRX3400, and SRX1400</td>
<td>815</td>
</tr>
<tr>
<td>Supported Fabric Interface Types for SRX Series Devices (SRX210, SRX240, SRX220, SRX100, SRX550M and SRX650 Devices)</td>
<td>820</td>
</tr>
<tr>
<td>Redundant Ethernet Interfaces</td>
<td>820</td>
</tr>
<tr>
<td>Control Links</td>
<td>822</td>
</tr>
<tr>
<td>ISSU System Requirements for SRX1400, SRX3400 and SRX3600</td>
<td>824</td>
</tr>
</tbody>
</table>
Use this guide to configure and operate the SRX Series devices in chassis cluster mode, where a pair of devices are connected and configured to operate as a single node, providing device, interface, and service level redundancy.

Documentation and Release Notes

To obtain the most current version of all Juniper Networks® technical documentation, see the product documentation page on the Juniper Networks website at https://www.juniper.net/documentation/.

If the information in the latest release notes differs from the information in the documentation, follow the product Release Notes.

Juniper Networks Books publishes books by Juniper Networks engineers and subject matter experts. These books go beyond the technical documentation to explore the nuances of network architecture, deployment, and administration. The current list can be viewed at https://www.juniper.net/books.

Using the Examples in This Manual

If you want to use the examples in this manual, you can use the `load merge` or the `load merge relative` command. These commands cause the software to merge the incoming configuration into the current candidate configuration. The example does not become active until you commit the candidate configuration.

If the example configuration contains the top level of the hierarchy (or multiple hierarchies), the example is a **full example**. In this case, use the `load merge` command.
If the example configuration does not start at the top level of the hierarchy, the example is a snippet. In this case, use the `load merge relative` command. These procedures are described in the following sections.

Merging a Full Example

To merge a full example, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration example into a text file, save the file with a name, and copy the file to a directory on your routing platform.

 For example, copy the following configuration to a file and name the file `ex-script.conf`. Copy the `ex-script.conf` file to the `/var/tmp` directory on your routing platform.

   ```
   system {
     scripts {
       commit {
         file ex-script.xsl;
       }
     }
   }

   interfaces {
     fxp0 {
       disable;
       unit 0 {
         family inet {
           address 10.0.0.1/24;
         }
       }
     }
   }
   ```

2. Merge the contents of the file into your routing platform configuration by issuing the `load merge` configuration mode command:

   ```
   [edit]
   user@host# load merge /var/tmp/ex-script.conf
   load complete
   ```
Merging a Snippet

To merge a snippet, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration snippet into a text file, save the file with a name, and copy the file to a directory on your routing platform.

 For example, copy the following snippet to a file and name the file `ex-script-snippet.conf`. Copy the `ex-script-snippet.conf` file to the `/var/tmp` directory on your routing platform.

   ```
   commit {
       file ex-script-snippet.xsl;
   }
   ```

2. Move to the hierarchy level that is relevant for this snippet by issuing the following configuration mode command:

   ```
   [edit]
   user@host# edit system scripts
   [edit system scripts]
   ```

3. Merge the contents of the file into your routing platform configuration by issuing the `load merge relative` configuration mode command:

   ```
   [edit system scripts]
   user@host# load merge relative /var/tmp/ex-script-snippet.conf
   load complete
   ```

 For more information about the `load` command, see CLI Explorer.

Documentation Conventions

Table 1 on page xix defines notice icons used in this guide.
Table 1: Notice Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Meaning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>🔄</td>
<td>Informational note</td>
<td>Indicates important features or instructions.</td>
</tr>
<tr>
<td>⚠️</td>
<td>Caution</td>
<td>Indicates a situation that might result in loss of data or hardware damage.</td>
</tr>
<tr>
<td>⚠️</td>
<td>Warning</td>
<td>Alerts you to the risk of personal injury or death.</td>
</tr>
<tr>
<td>⚠️</td>
<td>Laser warning</td>
<td>Alerts you to the risk of personal injury from a laser.</td>
</tr>
<tr>
<td>💡</td>
<td>Tip</td>
<td>Indicates helpful information.</td>
</tr>
<tr>
<td>💡</td>
<td>Best practice</td>
<td>Alerts you to a recommended use or implementation.</td>
</tr>
</tbody>
</table>

Table 2 on page xix defines the text and syntax conventions used in this guide.

Table 2: Text and Syntax Conventions

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold text like this</td>
<td>Represents text that you type.</td>
<td>To enter configuration mode, type the <code>configure</code> command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>user@host> <code>configure</code></td>
</tr>
<tr>
<td>Fixed-width text like this</td>
<td>Represents output that appears on the terminal screen.</td>
<td>user@host> <code>show chassis alarms</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No alarms currently active</td>
</tr>
<tr>
<td>Italic text like this</td>
<td></td>
<td><code>A policy term</code> is a named structure that defines match conditions and actions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>Junos OS CLI User Guide</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>RFC 1997, BGP Communities Attribute</code></td>
</tr>
</tbody>
</table>
Table 2: Text and Syntax Conventions *(continued)*

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italic text like this</td>
<td>Represents variables (options for which you substitute a value) in commands or configuration statements.</td>
<td>Configure the machine’s domain name:
 [edit]
 root@# set system domain-name domain-name</td>
</tr>
<tr>
<td>Text like this</td>
<td>Represents names of configuration statements, commands, files, and directories; configuration hierarchy levels; or labels on routing platform components.</td>
<td>• To configure a stub area, include the stub statement at the [edit protocols ospf area area-id] hierarchy level.
 • The console port is labeled CONSOLE.</td>
</tr>
<tr>
<td><> (angle brackets)</td>
<td>Encloses optional keywords or variables.</td>
<td>stub <default-metric metric>;</td>
</tr>
<tr>
<td></td>
<td>(pipe symbol)</td>
<td>Indicates a choice between the mutually exclusive keywords or variables on either side of the symbol. The set of choices is often enclosed in parentheses for clarity.</td>
</tr>
<tr>
<td># (pound sign)</td>
<td>Indicates a comment specified on the same line as the configuration statement to which it applies.</td>
<td>rsvp [# Required for dynamic MPLS only</td>
</tr>
<tr>
<td>[] (square brackets)</td>
<td>Encloses a variable for which you can substitute one or more values.</td>
<td>community name members [community-ids]</td>
</tr>
<tr>
<td>Indention and braces ({ })</td>
<td>Identifies a level in the configuration hierarchy.</td>
<td>[edit] routing-options { static { route default { nexthop address; retain; } } }</td>
</tr>
<tr>
<td>; (semicolon)</td>
<td>Identifies a leaf statement at a configuration hierarchy level.</td>
<td></td>
</tr>
</tbody>
</table>

GUI Conventions
Table 2: Text and Syntax Conventions (continued)

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold text like this</td>
<td>Represents graphical user interface (GUI) items you click or select.</td>
<td>• In the Logical Interfaces box, select All Interfaces.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• To cancel the configuration, click Cancel.</td>
</tr>
<tr>
<td>> (bold right angle bracket)</td>
<td>Separates levels in a hierarchy of menu selections.</td>
<td>In the configuration editor hierarchy, select Protocols->Ospf.</td>
</tr>
</tbody>
</table>

Documentation Feedback

We encourage you to provide feedback so that we can improve our documentation. You can use either of the following methods:

- Online feedback system—Click TechLibrary Feedback, on the lower right of any page on the Juniper Networks TechLibrary site, and do one of the following:
 - Click the thumbs-up icon if the information on the page was helpful to you.
 - Click the thumbs-down icon if the information on the page was not helpful to you or if you have suggestions for improvement, and use the pop-up form to provide feedback.

- E-mail—Send your comments to techpubs-comments@juniper.net. Include the document or topic name, URL or page number, and software version (if applicable).

Requesting Technical Support

Technical product support is available through the Juniper Networks Technical Assistance Center (JTAC). If you are a customer with an active Juniper Care or Partner Support Services support contract, or are
covered under warranty, and need post-sales technical support, you can access our tools and resources online or open a case with JTAC.

- Product warranties—For product warranty information, visit https://www.juniper.net/support/warranty/.
- JTAC hours of operation—The JTAC centers have resources available 24 hours a day, 7 days a week, 365 days a year.

Self-Help Online Tools and Resources

For quick and easy problem resolution, Juniper Networks has designed an online self-service portal called the Customer Support Center (CSC) that provides you with the following features:

- Find CSC offerings: https://www.juniper.net/customers/support/
- Search for known bugs: https://prsearch.juniper.net/
- Find product documentation: https://www.juniper.net/documentation/
- Find solutions and answer questions using our Knowledge Base: https://kb.juniper.net/
- Download the latest versions of software and review release notes: https://www.juniper.net/customers/csc/software/
- Search technical bulletins for relevant hardware and software notifications: https://kb.juniper.net/InfoCenter/
- Join and participate in the Juniper Networks Community Forum: https://www.juniper.net/company/communities/
- Create a service request online: https://myjuniper.juniper.net

To verify service entitlement by product serial number, use our Serial Number Entitlement (SNE) Tool: https://entitlementsearch.juniper.net/entitlementsearch/

Creating a Service Request with JTAC

You can create a service request with JTAC on the Web or by telephone.

- Visit https://myjuniper.juniper.net.
- Call 1-888-314-JTAC (1-888-314-5822 toll-free in the USA, Canada, and Mexico).

For international or direct-dial options in countries without toll-free numbers, see https://support.juniper.net/support/requesting-support/.
Overview

Chassis Cluster Overview | 24
Chassis Cluster Features Supported on SRX Series Devices | 29
A chassis cluster provides high availability on SRX Series devices where two devices operate as a single device. Chassis cluster includes the synchronization of configuration files and the dynamic runtime session states between the SRX Series devices, which are part of chassis cluster setup.

Chassis Cluster Overview

The Junos OS provides high availability on SRX Series device by using chassis clustering. SRX Series Services Gateways can be configured to operate in cluster mode, where a pair of devices can be connected together and configured to operate like a single node, providing device, interface, and service level redundancy.

For SRX Series devices, which act as stateful firewalls, it is important to preserve the state of the traffic between two devices. In a chassis cluster setup, in the event of failure, session persistence is required so that the established sessions are not dropped even if the failed device was forwarding traffic.

When configured as a chassis cluster, the two nodes back up each other, with one node acting as the primary device and the other as the secondary device, ensuring stateful failover of processes and services in the event of system or hardware failure. If the primary device fails, the secondary device takes over the processing of traffic. The cluster nodes are connected together with two links called control link and fabric link and devices in a chassis cluster synchronize the configuration, kernel, and PFE session states across the cluster to facilitate high availability, failover of stateful services, and load balancing.

This feature requires a license. To understand more about Chassis Cluster License, see, Understanding Chassis Cluster Licensing Requirements, Installing Licenses on the SRX Series Devices in a Chassis Cluster and Verifying Licenses on an SRX Series Device in a Chassis Cluster. Please refer to the Juniper Licensing Guide for general information about License Management. Please refer to the product Data Sheets at SRX Series Services Gateways for details, or contact your Juniper Account Team or Juniper Partner.

Benefits of Chassis Cluster

• Prevents single device failure that results in a loss of connectivity.
• Provides high availability between devices when connecting branch and remote site links to larger corporate offices. By leveraging the chassis cluster feature, enterprises can ensure connectivity in the event of device or link failure.

Chassis Cluster Functionality

Chassis cluster functionality includes:

• Resilient system architecture, with a single active control plane for the entire cluster and multiple Packet Forwarding Engines. This architecture presents a single device view of the cluster.
• Synchronization of configuration and dynamic runtime states between nodes within a cluster.
• Monitoring of physical interfaces, and failover if the failure parameters cross a configured threshold.

Chassis Cluster Modes

A chassis cluster can be configured in an active/active or active/passive mode.

• Active/passive mode: In active/passive mode, transit traffic passes through the primary node while the backup node is used only in the event of a failure. When a failure occurs, the backup device becomes master and takes over all forwarding tasks.
• Active/active mode: In active/active mode, has transit traffic passing through both nodes of the cluster all of the time.

How Chassis Clustering Works?

The control ports on the respective nodes are connected to form a control plane that synchronizes configuration and kernel state to facilitate the high availability of interfaces and services.

The data plane on the respective nodes is connected over the fabric ports to form a unified data plane.

When creating a chassis cluster, the control ports on the respective nodes are connected to form a control plane that synchronizes the configuration and kernel state to facilitate the high availability of interfaces and services.

Similarly, the data plane on the respective nodes is connected over the fabric ports to form a unified data plane.

The fabric link allows for the management of cross-node flow processing and for the management of session redundancy.

The control plane software operates in active or backup mode. When configured as a chassis cluster, the two nodes back up each other, with one node acting as the primary device and the other as the secondary
device, ensuring stateful failover of processes and services in the event of system or hardware failure. If the primary device fails, the secondary device takes over processing of traffic.

The data plane software operates in active/active mode. In a chassis cluster, session information is updated as traffic traverses either device, and this information is transmitted between the nodes over the fabric link to guarantee that established sessions are not dropped when a failover occurs. In active/active mode, it is possible for traffic to ingress the cluster on one node and egress from the other node. When a device joins a cluster, it becomes a node of that cluster. With the exception of unique node settings and management IP addresses, nodes in a cluster share the same configuration.

At any given instant, a cluster can be in one of the following states: hold, primary, secondary-hold, secondary, ineligible, and disabled. A state transition can be triggered because of any event, such as interface monitoring, SPU monitoring, failures, and manual failovers.

IPv6 Clustering Support

SRX Series devices running IP version 6 (IPv6) can be deployed in active/active (failover) chassis cluster configurations in addition to the existing support of active/passive (failover) chassis cluster configurations. An interface can be configured with an IPv4 address, IPv6 address, or both. Address book entries can include any combination of IPv4 addresses, IPv6 addresses, and Domain Name System (DNS) names.

Chassis cluster supports Generic Routing Encapsulation (GRE) tunnels used to route encapsulated IPv4/IPv6 traffic by means of an internal interface, gr-0/0/0. This interface is created by Junos OS at system bootup and is used only for processing GRE tunnels. See the Interfaces User Guide for Security Devices.

Chassis Cluster Limitations

The SRX Series devices have the following chassis cluster limitations:

Chassis Cluster

- Group VPN is not supported.
- On all SRX Series devices in a chassis cluster, flow monitoring for version 5 and version 8 is supported. However, flow monitoring for version 9 is not supported.
- When an SRX Series device is operating in chassis cluster mode and encounter any IA-chip access issue in an SPC or a I/O Card (IOC), a minor FPC alarm is activated to trigger redundancy group failover.
- On SRX5400, SRX5600, and SRX5800 devices, screen statistics data can be gathered on the primary device only.
- On SRX4600, SRX5400, SRX5600, and SRX5800 devices, in large chassis cluster configurations, if more than 1000 logical interfaces are used, the cluster heartbeat timers are recommended to be increased from the default wait time before triggering failover. In a full-capacity implementation, we recommend
increasing the wait to 8 seconds by modifying heartbeat-threshold and heartbeat-interval values in the [edit chassis cluster] hierarchy.

The product of the heartbeat-threshold and heartbeat-interval values defines the time before failover. The default values (heartbeat-threshold of 3 beats and heartbeat-interval of 1000 milliseconds) produce a wait time of 3 seconds.

To change the wait time, modify the option values so that the product equals the desired setting. For example, setting the heartbeat-threshold to 8 and maintaining the default value for the heartbeat-interval (1000 milliseconds) yields a wait time of 8 seconds. Likewise, setting the heartbeat-threshold to 4 and the heartbeat-interval to 2000 milliseconds also yields a wait time of 8 seconds.

- On SRX5400, SRX5600, and SRX5800 devices, eight-queue configurations are not reflected on the chassis cluster interface.

Flow and Processing

- If you use packet capture on reth interfaces, two files are created, one for ingress packets and the other for egress packets based on the reth interface name. These files can be merged outside of the device using tools such as Wireshark or Mergcap.

- If you use port mirroring on reth interfaces, the reth interface cannot be configured as the output interface. You must use a physical interface as the output interface. If you configure the reth interface as an output interface using the set forwarding-options port-mirroring family inet output command, the following error message is displayed.

Port-mirroring configuration error.

Interface type in reth1.0 is not valid for port-mirroring or next-hop-group config

- When an SRX Series device is operating in chassis cluster mode and encounter any IA-chip (IA-chip is part of Juniper SPC1 and IOC1. It has direct impact on SPC1/IOC1 control plane) access issue in an SPC or a I/O Card (IOC), a minor FPC alarm is activated to trigger redundancy group failover.

- On SRX Series devices in a chassis cluster, when two logical systems are configured, the scaling limit crosses 13,000, which is very close to the standard scaling limit of 15,000, and a convergence time of 5 minutes results. This issue occurs because multicast route learning takes more time when the number of routes is increased.

- On SRX4600, SRX5400, SRX5600, and SRX5800 devices in a chassis cluster, if the primary node running the LACP process (lacpd) undergoes a graceful or ungraceful restart, the lacpd on the new primary node might take a few seconds to start or reset interfaces and state machines to recover unexpected synchronous results. Also, during failover, when the system is processing traffic packets or internal high-priority packets (deleting sessions or reestablishing tasks), medium-priority LACP packets from the peer (switch) are pushed off in the waiting queues, causing further delay.

Flowd monitoring is supported on SRX300, SRX320, SRX340, SRX345, SRX380, and SRX1500 devices.
Installation and Upgrade

- For SRX300, SRX320, SRX340, SRX345, and SRX380 devices, the `reboot` parameter is not available, because the devices in a cluster are automatically rebooted following an in-band cluster upgrade (ICU).

Interfaces

- On the lsq-0/0/0 interface, Link services MLPPP, MLFR, and CRTP are not supported.
- On the lt-0/0/0 interface, CoS for RPM is not supported.
- The 3G dialer interface is not supported.
- Queuing on the ae interface is not supported.

Layer 2 Switching

- On SRX Series device failover, access points on the Layer 2 switch reboot and all wireless clients lose connectivity for 4 to 6 minutes.

MIBs

- The Chassis Cluster MIB is not supported.

Monitoring

- The maximum number of monitoring IPs that can be configured per cluster is 64 for SRX300, SRX320, SRX340, SRX345, SRX380, and SRX1500 devices.
- On SRX300, SRX320, SRX340, SRX345, SRX380, and SRX1500 devices, logs cannot be sent to NSM when logging is configured in the stream mode. Logs cannot be sent because the security log does not support configuration of the source IP address for the fxp0 interface and the security log destination in stream mode cannot be routed through the fxp0 interface. This implies that you cannot configure the security log server in the same subnet as the fxp0 interface and route the log server through the fxp0 interface.

IPv6

- Redundancy group IP address monitoring is not supported for IPv6 destinations.

GPRS

- On SRX5400, SRX5600, and SRX5800 devices, an APN or an IMSI filter must be limited to 600 for each GTP profile. The number of filters is directly proportional to the number of IMSI prefix entries. For example, if one APN is configured with two IMSI prefix entries, then the number of filters is two.

MIBs

- The Chassis Cluster MIB is not supported.

Starting with Junos OS Release 12.1X45-D10 and later, sampling features such as flow monitoring, packet capture, and port mirroring are supported on reth interfaces.
Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1X45</td>
<td>Starting with Junos OS Release 12.1X45-D10 and later, sampling features such as flow monitoring, packet capture, and port mirroring are supported on reth interfaces.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Related Documentation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX Series Chassis Cluster Configuration Overview</td>
<td>35</td>
</tr>
<tr>
<td>Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming</td>
<td>41</td>
</tr>
<tr>
<td>Example: Configuring Chassis Clustering on an SRX Series Devices</td>
<td>117</td>
</tr>
</tbody>
</table>

Chassis Cluster Features Supported on SRX Series Devices

To determine if a feature is supported by a specific platform or Junos OS release, refer to Feature Explorer.

Supported Features on Standalone and Chassis Cluster

All features are supported in both chassis cluster and standalone mode on the same platform, except what is indicated in the below table.

Table 3 on page 30 lists the features that are not supported in standalone or chassis cluster.
<table>
<thead>
<tr>
<th>Category</th>
<th>Features</th>
<th>Standalone</th>
<th>Chassis cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet Link Aggregation</td>
<td>LACP (port priority) Layer 3 Mode</td>
<td>Yes</td>
<td>Not supported in Active/Backup and Active/Active modes.</td>
</tr>
<tr>
<td></td>
<td>LACP (port priority) Layer 2 Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>J-Flow</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ping MPLS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnostics Tools</td>
<td>Promiscuous mode on Ethernet interface</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Ethernet Interfaces</td>
<td>Chassis cluster SPC insert</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IEEE 802.3af/802.3at support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chassis Management</td>
<td>Simple filters</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>End-to-end packet debugging</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Express Path support</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Host bound fragmented traffic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Packet-based processing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selective stateless packet-based services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPRS</td>
<td>GPRS (transparent mode and route mode)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Multicast VPN</td>
<td>Basic multicast features in C-instance</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multicast VPN membership discovery with BGP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2MP LSP support</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2MP OAM to P2MP LSP ping</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reliable multicast VPN routing information exchange</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Features Not Supported in Standalone or Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Yes/No</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTPv2</td>
<td></td>
</tr>
<tr>
<td>IMSI prefix and APN filtering</td>
<td>Yes</td>
</tr>
<tr>
<td>Message-length filtering</td>
<td></td>
</tr>
<tr>
<td>Message-rate limiting</td>
<td></td>
</tr>
<tr>
<td>Message-type filtering</td>
<td></td>
</tr>
<tr>
<td>Packet sanity check</td>
<td></td>
</tr>
<tr>
<td>Policy-based inspection</td>
<td></td>
</tr>
<tr>
<td>Restart GTPv2 path</td>
<td></td>
</tr>
<tr>
<td>Sequence-number and GTP-U validation</td>
<td></td>
</tr>
<tr>
<td>Stateful inspection</td>
<td></td>
</tr>
<tr>
<td>Traffic logging</td>
<td></td>
</tr>
<tr>
<td>Tunnel cleanup</td>
<td></td>
</tr>
<tr>
<td>IDP</td>
<td></td>
</tr>
<tr>
<td>Cryptographic key handling</td>
<td>Yes</td>
</tr>
<tr>
<td>DSCP marking</td>
<td></td>
</tr>
<tr>
<td>IDP class-of-service action</td>
<td></td>
</tr>
<tr>
<td>IDP inline tap mode</td>
<td></td>
</tr>
<tr>
<td>IDP SSL inspection</td>
<td></td>
</tr>
<tr>
<td>Jumbo frames</td>
<td></td>
</tr>
<tr>
<td>Performance and capacity tuning for IDP</td>
<td></td>
</tr>
<tr>
<td>Layer 2 Mode</td>
<td></td>
</tr>
<tr>
<td>Q-in-Q tunneling</td>
<td>Yes</td>
</tr>
<tr>
<td>SNMP v1,v2,v3</td>
<td></td>
</tr>
<tr>
<td>Stateless Firewall Filters</td>
<td></td>
</tr>
<tr>
<td>Stateless firewall filters(ACLs)</td>
<td>Yes</td>
</tr>
<tr>
<td>Transparent Mode</td>
<td></td>
</tr>
<tr>
<td>Bridge domain</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 3: Features Not Supported in Standalone or Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>UTM</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antivirus–Express</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antivirus–Full</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stateful active/active cluster mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Web filtering–Websense redirect</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not supported in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Active/Backup Failover</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Active/Active Failover modes.</td>
<td></td>
</tr>
<tr>
<td>User Interfaces</td>
<td>J-Web user interface</td>
<td>Yes</td>
</tr>
<tr>
<td>Junos XML protocol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Session and Resource Control (SRC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>application</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upgrading and Rebooting</td>
<td>ISSU</td>
<td>No</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Chassis Cluster Overview | 24
Setting Up a Chassis Cluster

SRX Series Chassis Cluster Configuration Overview | 35
Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming | 41
Preparing Your Equipment for Chassis Cluster Formation | 51
Connecting SRX Series Devices to Create a Chassis Cluster | 55
Example: Setting the Node ID and Cluster ID for Security Devices in a Chassis Cluster | 60
Chassis Cluster Management Interfaces | 63
Chassis Cluster Fabric Interfaces | 72
Chassis Cluster Control Plane Interfaces | 83
Chassis Cluster Redundancy Groups | 91
Chassis Cluster Redundant Ethernet Interfaces | 99
Configuring Chassis Clustering on an SRX Series Devices | 116
Example: Enabling Eight-Queue Class of Service on Redundant Ethernet Interfaces on SRX Series Devices in a Chassis Cluster | 138
SRX Series Chassis Cluster Configuration Overview

Following are the prerequisites for configuring a chassis cluster:

- On SRX300, SRX320, SRX340, SRX345, and SRX380, any existing configurations associated with interfaces that transform to the fxp0 management port and the control port should be removed. For more information, see “Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming” on page 41.

- Confirm that hardware and software are the same on both devices.

- Confirm that license keys are the same on both devices.

- For SRX300, SRX320, SRX340, SRX345, and SRX380 chassis clusters, the placement and type of GPIMs, XGPIMs, XPIMs, and Mini-PIMs (as applicable) must match in the two devices.

- For SRX5000 line chassis clusters, the placement and type of SPCs must match in the two devices.
Figure 1 on page 36 shows a chassis cluster flow diagram for SRX300, SRX320, SRX340, SRX345, SRX380, SRX1500, and SRX4600 devices.

Figure 1: Chassis Cluster Flow Diagram (SRX300, SRX320, SRX340, SRX345, SRX380, SRX1500, and SRX4600 Devices)

Figure 2: Chassis Cluster Flow Diagram (SRX5800, SRX5600, SRX5400 Devices)
Start

Device A/Node 0
- Physically connect fabric and control links between Device A and Device B
- Connect to Device A console port
- Configure control ports
 - Applicable only to SRX3000 line of devices
- Configure cluster ID and node ID
- Reboot Device A

Device B/Node 1
- Connect to Device B console port
- Configure control ports
 - Applicable only to SRX3000 line of devices
- Configure cluster ID and node ID
- Reboot Device B

The two nodes will operate as one device
- Configure fabric interfaces
- Set up hostnames and management IP addresses
- Configure redundancy groups
- Configure routed interfaces
- Verify and commit
End
This section provides an overview of the basic steps to create an SRX Series chassis cluster. To create an SRX Series chassis cluster:

1. Prepare the SRX Series devices to be used in the chassis cluster. For more information, see "Preparing Your Equipment for Chassis Cluster Formation" on page 51.

2. Physically connect a pair of the same kind of supported SRX Series devices together. For more information, see "Connecting SRX Series Devices to Create a Chassis Cluster" on page 55.
 a. Create the fabric link between two nodes in a cluster by connecting any pair of Ethernet interfaces. For most SRX Series devices, the only requirement is that both interfaces be Gigabit Ethernet interfaces (or 10-Gigabit Ethernet interfaces).
 When using dual fabric link functionality, connect the two pairs of Ethernet interfaces that you will use on each device. See "Understanding Chassis Cluster Dual Fabric Links" on page 163.
 b. Configure the control ports (SRX5000 line only). See “Example: Configuring Chassis Cluster Control Ports” on page 86.

3. Connect the first device to be initialized in the cluster to the console port. This is the node (node 0) that forms the cluster and use CLI operational mode commands to enable clustering:
 a. Identify the cluster by giving it the cluster ID.
 b. Identify the node by giving it its own node ID and then reboot the system.
 For connection instructions, see the Getting Started Guide for your device.

4. Connect to the console port on the other device (node 1) and use CLI operational mode commands to enable clustering:
 a. Identify the cluster that the device is joining by setting the same cluster ID you set on the first node.
 b. Identify the node by giving it its own node ID and then reboot the system.

5. Configure the management interfaces on the cluster. See "Example: Configuring the Chassis Cluster Management Interface" on page 64.

6. Configure the cluster with the CLI. See the following topics:
 a. Example: Configuring the Number of Redundant Ethernet Interfaces in a Chassis Cluster
 b. Example: Configuring the Chassis Cluster Fabric Interfaces on page 78
 c. Example: Configuring Chassis Cluster Redundancy Groups on page 95
 d. Example: Configuring Chassis Cluster Redundancy Group Interface Monitoring on page 176
 e. Example: Configuring Chassis Clustering on an SRX Series Devices on page 117

8. (Optional) Configure conditional route advertisement over redundant Ethernet interfaces. See "Understanding Conditional Route Advertising in a Chassis Cluster" on page 149.

If two nodes are connected in cluster, one node is elected as primary mode and its Routing Engine is running as master. The Routing Engine in secondary node running as slave. All FPCs in the cluster, regardless in primary node or secondary node, connect to the master Routing Engine. The FPCs on secondary node connect to master Routing Engine through the HA control link. If the cluster has two masters, IOC receives a message from a different master and reboot itself to recover from this error state.

To prevent the IOC card from rebooting, secondary node has to be powered off before connecting into the cluster.

To preserve the traffic on primary while connecting the secondary node into cluster, it is recommended to configure cluster mode on node 1 and power down before connecting it to the cluster to avoid any impact to the primary. The reason here is that control networks are different for a HA cluster or a single node system. When the control ports are connected, these two join the same network and they exchange messages.

This section provides an overview of the basic steps to restore the backup node after a failure when there is a running primary node:

1. Connect to the console port on the other device (node 1) and use CLI operational mode commands to enable clustering:
 a. Identify the cluster that the device is joining by setting the same cluster ID you set on the first node.
 b. Identify the node by giving it its own node ID and then reboot the system.

 See "Example: Setting the Node ID and Cluster ID for Security Devices in a Chassis Cluster" on page 60. For connection instructions, see the Getting Started Guide for your device

2. Power off the secondary node.

3. Connect the HA control ports between two nodes.

4. Power on the secondary node.

5. The cluster is re-formed and the session is synced to the secondary node.
• When using dual fabric link functionality, connect the two pairs of Ethernet interfaces that you will use on each device. See “Understanding Chassis Cluster Dual Fabric Links” on page 163.

• When using dual control link functionality (SRX5600 and SRX5800 devices only), connect the two pairs of control ports that you will use on each device.

See “Connecting Dual Control Links for SRX Series Devices in a Chassis Cluster” on page 157.

For SRX5600 and SRX5800 devices, control ports must be on corresponding slots in the two devices. Table 4 on page 40 shows the slot numbering offsets:

Table 4: Slot Numbering Offsets

<table>
<thead>
<tr>
<th>Device</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX5800</td>
<td>12 (for example, fpc3 and fpc15)</td>
</tr>
<tr>
<td>SRX5600</td>
<td>6 (for example, fpc3 and fpc9)</td>
</tr>
<tr>
<td>SRX5400</td>
<td>3 (for example, fpc3 and fpc6)</td>
</tr>
<tr>
<td>SRX4600</td>
<td>7 (for example, fpc1 and fpc8)</td>
</tr>
</tbody>
</table>

• On SRX3400 and SRX3600 devices, the control ports are dedicated Gigabit Ethernet ports.

• On SRX4600 devices, the control ports and fabric ports are dedicated 10-Gigabit Ethernet ports.

RELATED DOCUMENTATION

| Chassis Cluster Overview | 24 |
Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming

See the hardware documentation for your particular model (SRX Series Services Gateways) for details about SRX Series devices. See Interfaces User Guide for Security Devices for a full discussion of interface naming conventions.

After the devices are connected as a cluster, the slot numbering on one device changes and thus the interface numbering will change. The slot number for each slot in both nodes is determined using the following formula:

\[\text{cluster slot number} = (\text{node ID} \times \text{maximum slots per node}) + \text{local slot number} \]

In chassis cluster mode, the interfaces on the secondary node are renumbered internally.

This topic describes the slot numbering and physical port and logical interface naming conventions for SRX Series devices in a chassis cluster and includes following sections:
Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming for SRX300, SRX320, SRX340, SRX345, SRX380, and SRX1500 Devices

For SRX340 and SRX345 devices, the fxp0 interface is a dedicated port. For SRX300 and SRX320 devices, after you enable chassis clustering and reboot the system, the built-in interface named ge-0/0/0 is repurposed as the management interface and is automatically renamed fxp0.

For SRX300, SRX320, SRX340, SRX345, and SRX380 devices, after you enable chassis clustering and reboot the system, the built-in interface named ge-0/0/1 is repurposed as the control interface and is automatically renamed fxp1.

SRX1500 devices have 16 GE interfaces and 4 XE ports.

Table 5 on page 42 shows the slot numbering, as well as the physical port and logical interface numbering, for both of the SRX Series devices that become node 0 and node 1 of the chassis cluster after the cluster is formed.

Table 5: Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming

<table>
<thead>
<tr>
<th>Model</th>
<th>Chassis</th>
<th>Maximum Slots Per Node</th>
<th>Slot Numbering in a Cluster</th>
<th>Management Physical Port/Logical Interface</th>
<th>Control Physical Port/Logical Interface</th>
<th>Fabric Physical Port/Logical Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX1500</td>
<td>Node 0</td>
<td>1</td>
<td>0</td>
<td>fxp0</td>
<td>Dedicated Control port</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>em0</td>
<td>fab0</td>
</tr>
<tr>
<td></td>
<td>Node 1</td>
<td>7</td>
<td>7</td>
<td>fxp0</td>
<td>Dedicated Control port</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>em0</td>
<td>fab1</td>
</tr>
<tr>
<td>SRX340, SRX345, and SRX380</td>
<td>Node 0</td>
<td>5 (PIM slots)</td>
<td>0—4</td>
<td>fxp0</td>
<td>ge-0/0/1</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>fxp1</td>
</tr>
<tr>
<td></td>
<td>Node 1</td>
<td>5—9</td>
<td>5—9</td>
<td>fxp0</td>
<td>ge-5/0/1</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>fxp1</td>
</tr>
</tbody>
</table>
Table 5: Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming (continued)

<table>
<thead>
<tr>
<th>Model</th>
<th>Chassis</th>
<th>Maximum Slots Per Node</th>
<th>Slot Numbering in a Cluster</th>
<th>Management Physical Port/Logical Interface</th>
<th>Control Physical Port/Logical Interface</th>
<th>Fabric Physical Port/Logical Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX320</td>
<td>Node 0</td>
<td>3 (PIM slots)</td>
<td>0–2</td>
<td>ge-0/0/0</td>
<td>ge-0/0/1</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>fxp1</td>
<td>fab0</td>
</tr>
<tr>
<td></td>
<td>Node 1</td>
<td>3–5</td>
<td></td>
<td>ge-3/0/0</td>
<td>ge-3/0/1</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>fxp1</td>
<td>fab1</td>
</tr>
<tr>
<td>SRX300</td>
<td>Node 0</td>
<td>1 (PIM slot)</td>
<td>0</td>
<td>ge-0/0/0</td>
<td>ge-0/0/1</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>fxp1</td>
<td>fab0</td>
</tr>
<tr>
<td></td>
<td>Node 1</td>
<td>1</td>
<td></td>
<td>ge-1/0/0</td>
<td>ge-1/0/1</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>fxp1</td>
<td>fab1</td>
</tr>
</tbody>
</table>

After you enable chassis clustering, the two chassis joined together cease to exist as individuals and now represent a single system. As a single system, the cluster now has twice as many slots. (See Figure 3 on page 43, Figure 4 on page 44, Figure 5 on page 44, Figure 6 on page 44, and Figure 8 on page 44.)
Figure 4: Slot Numbering in SRX320 Chassis Cluster

Figure 5: Slot Numbering in SRX340 Chassis Cluster

Figure 6: Slot Numbering in SRX345 Chassis Cluster

Figure 7: Slot Numbering in SRX380 Chassis Cluster

Figure 8: Slot Numbering in SRX1500 Chassis Cluster
Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming for SRX4600 Devices

The SRX4600 devices use dedicated HA control and fabric ports.

Table 6 on page 45 and Table 7 on page 45 show the slot numbering, as well as the physical port and logical interface numbering, for both of the SRX Series devices that become node 0 and node 1 of the chassis cluster after the cluster is formed.

Table 6: Chassis Cluster Slot Numbering, and Physical Port and Logical Interface Naming for SRX4600 Devices

<table>
<thead>
<tr>
<th>Model</th>
<th>Chassis Cluster</th>
<th>Maximum Slots Per Node</th>
<th>Slot Numbering in a Cluster</th>
<th>Management Physical Port/Logical Interface</th>
<th>Control Physical Port/Logical Interface</th>
<th>Fabric Physical Port/Logical Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX4600</td>
<td>Node 0</td>
<td>1</td>
<td>0-6</td>
<td>fxp0</td>
<td>Dual (redundant) MACsec-enabled HA control ports (10GbE) are xe-0/0/0/0 and xe-0/0/0/1</td>
<td>Dual (redundant) MACsec-enabled HA fabric ports (10GbE) Dual Fabric ports with macsec enabled are xe-0/0/2 and xe-0/0/3</td>
</tr>
<tr>
<td></td>
<td>Node 1</td>
<td></td>
<td>7-13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7: Chassis Cluster Interface Renumbering for SRX4600

<table>
<thead>
<tr>
<th>Device</th>
<th>Renumbering Constant</th>
<th>Node 0 Interface Name</th>
<th>Node 1 Interface Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX4600</td>
<td>7</td>
<td>xe-1/0/0</td>
<td>xe-8/0/0</td>
</tr>
</tbody>
</table>

Table 8: Chassis Cluster Fabric Interface Details for SRX4600

<table>
<thead>
<tr>
<th>Interfaces</th>
<th>Used as Fabric Port?</th>
<th>Supports Z-Mode Traffic?</th>
<th>Supports MACsec?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedicated fabric ports</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>8X10-Gigabit Ethernet Interface SFPP ports</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>4X40-Gigabit Ethernet Interface QSFP28 ports</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>4x10-Gigabit Ethernet Interface SFPP ports</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 8: Chassis Cluster Fabric Interface Details for SRX4600 (continued)

<table>
<thead>
<tr>
<th>Interfaces</th>
<th>Used as Fabric Port?</th>
<th>Supports Z-Mode Traffic?</th>
<th>Supports MACsec?</th>
</tr>
</thead>
<tbody>
<tr>
<td>2X100-Gigabit Ethernet Interface QSFP28 slots</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Mix and match of fabric ports are not supported. That is, you cannot use one 10-Gigabit Ethernet interface and one 40-Gigabit Ethernet interface for fabric links configuration. Dedicated fabric link supports only 10-Gigabit Ethernet Interface.

Figure 9 on page 46 shows the slot numbering for both of the SRX Series devices that become node 0 and node 1 of the chassis cluster after the cluster is formed.

Figure 9: Slot Numbering in SRX4600 Chassis Cluster

Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming for SRX4100 and SRX4200 Devices

The SRX4100 and SRX4200 devices use two 1-Gigabit Ethernet/10-Gigabit Ethernet ports, labeled as CTL and FAB as control port and fabric port respectively.

Supported fabric interface types for SRX4100 and SRX4200 devices are 10-Gigabit Ethernet (xe) (10-Gigabit Ethernet Interface SFP+ slots).

Table 9 on page 47 shows the slot numbering, as well as the physical port and logical interface numbering, for both of the SRX Series devices that become node 0 and node 1 of the chassis cluster after the cluster is formed.
Table 9: Chassis Cluster Slot Numbering, and Physical Port and Logical Interface Naming for SRX4100 and SRX4200 Devices

<table>
<thead>
<tr>
<th>Model</th>
<th>Chassis Cluster</th>
<th>Maximum Slots Per Node</th>
<th>Slot Numbering in a Cluster</th>
<th>Management Physical Port/Logical Interface</th>
<th>Control Physical Port/Logical Interface</th>
<th>Fabric Physical Port/Logical Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX4100</td>
<td>Node 0</td>
<td>1</td>
<td>0</td>
<td>fxp0</td>
<td>Dedicated control port, em0</td>
<td>Dedicated fabric port, any Ethernet port (for dual fabric-link), fab0</td>
</tr>
<tr>
<td></td>
<td>Node 1</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>Dedicated fabric port, and any Ethernet port (for dual fabric-link), fab1</td>
</tr>
<tr>
<td>SRX4200</td>
<td>Node 0</td>
<td>1</td>
<td>0</td>
<td>fxp0</td>
<td>Dedicated control port,em0</td>
<td>Dedicated fabric port, any Ethernet port (for dual fabric-link), fab0</td>
</tr>
<tr>
<td></td>
<td>Node 1</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>Dedicated fabric port, and any Ethernet port (for dual fabric-link), fab1</td>
</tr>
</tbody>
</table>

Figure 10 on page 47 and **Figure 11 on page 47** shows the slot numbering for both of the SRX Series devices that become node 0 and node 1 of the chassis cluster after the cluster is formed.

Figure 10: Slot Numbering in SRX4100 Chassis Cluster

![Figure 10: Slot Numbering in SRX4100 Chassis Cluster](image)

Figure 11: Slot Numbering in SRX4200 Chassis Cluster

![Figure 11: Slot Numbering in SRX4200 Chassis Cluster](image)
The node 1 renumbers its interfaces by adding the total number of system FPCs to the original FPC number of the interface. For example, see Table 10 on page 48 for interface renumbering on the SRX Series devices (SRX4100 and SRX4200).

Table 10: Chassis Cluster Interface Renumbering for SRX4100 and SRX4200

<table>
<thead>
<tr>
<th>Device</th>
<th>Renumbering Constant</th>
<th>Node 0 Interface Name</th>
<th>Node 1 Interface Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX4100</td>
<td>7</td>
<td>xe-0/0/0</td>
<td>xe-7/0/0</td>
</tr>
<tr>
<td>SRX4200</td>
<td>7</td>
<td>xe-0/0/1</td>
<td>xe-7/0/1</td>
</tr>
</tbody>
</table>

On SRX4100 and SRX4200 devices, when the system comes up as chassis cluster, the xe-0/0/8 and xe-7/0/8 interfaces are automatically set as fabric interfaces links. You can set up another pair of fabric interfaces using any pair of 10-Gigabit interfaces to serve as the fabric between nodes. Note that, the automatically created fabric interfaces cannot be deleted. However, you can delete the second pair of fabric interfaces (manually configured interfaces).

Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming for SRX5800, SRX5600, and SRX5400 Devices

For chassis clustering, all SRX Series devices have a built-in management interface named fxp0. For most SRX Series devices, the fxp0 interface is a dedicated port.

For the SRX5000 line, control interfaces are configured on SPCs.

Table 11 on page 49 shows the slot numbering, as well as the physical port and logical interface numbering, for both of the SRX Series devices that become node 0 and node 1 of the chassis cluster after the cluster is formed.
<table>
<thead>
<tr>
<th>Model</th>
<th>Chassis Cluster</th>
<th>Maximum Slots Per Node</th>
<th>Slot Numbering in a Cluster</th>
<th>Management Physical Port/Logical Interface</th>
<th>Control Physical Port/Logical Interface</th>
<th>Fabric Physical Port/Logical Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX5800</td>
<td>Node 0</td>
<td>12 (FPC slots)</td>
<td>0–11</td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Control port on an SPC</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>em0</td>
<td>fab0</td>
</tr>
<tr>
<td></td>
<td>Node 1</td>
<td>12–23</td>
<td></td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Control port on an SPC</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>em0</td>
<td>fab1</td>
</tr>
<tr>
<td>SRX5600</td>
<td>Node 0</td>
<td>6 (FPC slots)</td>
<td>0–5</td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Control port on an SPC</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>em0</td>
<td>fab0</td>
</tr>
<tr>
<td></td>
<td>Node 1</td>
<td>6–11</td>
<td></td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Control port on an SPC</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>em0</td>
<td>fab1</td>
</tr>
<tr>
<td>SRX5400</td>
<td>Node 0</td>
<td>3 (FPC slots)</td>
<td>0–2</td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Control port on an SPC</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>em0</td>
<td>fab0</td>
</tr>
<tr>
<td></td>
<td>Node 1</td>
<td>3–5</td>
<td></td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Control port on an SPC</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>em0</td>
<td>fab1</td>
</tr>
</tbody>
</table>

After you enable chassis clustering, the two chassis joined together cease to exist as individuals and now represent a single system. As a single system, the cluster now has twice as many slots. (See Figure 12 on page 50.)
SRX5600 and SRX5800 devices have Flex I/O Cards (Flex IOCs) that have two slots to accept the following port modules:

- SRX-IOC-4XGE-XFP 4-Port XFP
- SRX-IOC-16GE-TX16-Port RJ-45
- SRX-IOC-16GE-SFP 16-Port SFP

You can use these port modules to add from 4 to 16 Ethernet ports to your SRX Series device. Port numbering for these modules is:

\[
\text{slot}/\text{port module}/\text{port}
\]

where slot is the number of the slot in the device in which the Flex IOC is installed; port module is 0 for the upper slot in the Flex IOC or 1 for the lower slot when the card is vertical, as in an SRX5800 device; and port is the number of the port on the port module. When the card is horizontal, as in an SRX5400 or SRX5600 device, port module is 0 for the left-hand slot or 1 for the right-hand slot.

SRX5400 devices support only SRX5K-MPC cards. The SRX5K-MPC cards also have two slots to accept the following port modules:
• SRX-MIC-10XG-SFPP 10-port-SFP+ (xe)
• SRX-MIC-20GE-SFP 20-port SFP (ge)
• SRX-MIC-1X100G-CFP 1-port CFP (et)
• SRX-MIC-2X40G-QSFP 2-port QSFP (et)

See the hardware guide for your specific SRX Series model (SRX Series Services Gateways).

RELATED DOCUMENTATION

| Example: Configuring Chassis Clustering on an SRX Series Devices | 117

Preparing Your Equipment for Chassis Cluster Formation

To form a chassis cluster, a pair of the same kind of supported SRX Series devices is combined to act as a single system that enforces the same overall security. SRX Series devices must meet the following requirements to be included in a chassis clusters.

To form a chassis cluster, a pair of the same kind of supported SRX Series devices is combined to act as a single system that enforces the same overall security.

• The network node redundancy is achieved by grouping a pair of the same kind of supported SRX Series devices into a cluster.
• SRX Series devices must be the same model.
• Junos OS requirements: Both the devices must be running the same Junos OS version
• Licensing requirements: Licenses are unique to each device and cannot be shared between the devices. Both devices (which are going to form chassis cluster) must have the identical features and license keys enabled or installed them. If both devices do not have an identical set of licenses, then after a failover, that particular licensed feature might not work or the configuration might not synchronize in chassis cluster formation.
• All services processing cards (SPCs), network processing cards (NPCs), and input/output cards (IOCs) on applicable SRX Series devices must have the same slot placement and must be of same type. Example:
 • For SRX5400, SRX5600 and SRX5800 chassis clusters, the placement and the type of services processing cards (SPC, SPC2, SRX5K-SPC3), and input/output cards (IOC1, IOC2, IOC3, IOC4) must match in two devices. Only SCB4 is not supported on SRX5400. All other components are supported on SRX5400.
- For SRX3400 and SRX3600 chassis clusters, the placement and the type of SPCs, input/output cards (IOCs, NPIOCs), and network processing cards (NPCs) must match in two devices.

You can use the `show chassis hardware` command to identify the type of the card.

Following example shows the placement and the type of cards used in a chassis cluster setup:

```bash
user@host> show chassis hardware
node0:

Hardware inventory:

<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td></td>
<td>JN1267B0FAGA</td>
<td></td>
<td>SRX5800</td>
</tr>
<tr>
<td>Midplane</td>
<td>REV 42</td>
<td>760-063937</td>
<td>ACRL3065</td>
<td>Enhanced SRX5800 Backplane</td>
</tr>
<tr>
<td>FPM Board</td>
<td>REV 05</td>
<td>760-061272</td>
<td>CAHE4860</td>
<td>Front Panel Display</td>
</tr>
<tr>
<td>PDM</td>
<td>Rev 01</td>
<td>740-063049</td>
<td>QCS2209509D</td>
<td>Power Distribution Module</td>
</tr>
<tr>
<td>PEM 0</td>
<td>Rev 04</td>
<td>740-034724</td>
<td>QCS171002016</td>
<td>PS 4.1kW; 200-240V AC in</td>
</tr>
<tr>
<td>PEM 1</td>
<td>Rev 11</td>
<td>740-027760</td>
<td>QCS1825N07S</td>
<td>PS 4.1kW; 200-240V AC in</td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td>REV 01</td>
<td>750-095568</td>
<td>CALK8884</td>
<td>SRX5k RE-2000x6</td>
</tr>
<tr>
<td>Routing Engine 1</td>
<td>REV 01</td>
<td>750-095568</td>
<td>CADZ9076</td>
<td>SRX5k RE-2000x6</td>
</tr>
<tr>
<td>CB 0</td>
<td>REV 26</td>
<td>750-031391</td>
<td>CALV3002</td>
<td>SRX5k SCB4</td>
</tr>
<tr>
<td>CB 1</td>
<td>REV 26</td>
<td>750-031391</td>
<td>CALV3009</td>
<td>SRX5k SCB4</td>
</tr>
<tr>
<td>FPC 2</td>
<td>REV 28</td>
<td>750-073435</td>
<td>CALS4630</td>
<td>SPC3</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SRX5k vCPP Broadwell</td>
</tr>
<tr>
<td>PIC 0</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Cp-Flow</td>
</tr>
<tr>
<td>PIC 1</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>FPC 3</td>
<td>REV 17</td>
<td>750-044175</td>
<td>CABEL7777</td>
<td>SRX5k SPC II</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SRX5k DPC PPC</td>
</tr>
<tr>
<td>PIC 0</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 1</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 2</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 3</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>FPC 4</td>
<td>REV 08</td>
<td>750-061262</td>
<td>CAFD8147</td>
<td>SRX5k IOC II</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td>REV 02</td>
<td>711-061263</td>
<td>CAFV7488</td>
</tr>
<tr>
<td>MIC 0</td>
<td></td>
<td>750-055732</td>
<td>CAFV9369</td>
<td>20x 1GE(LAN) SFP</td>
</tr>
<tr>
<td>PIC 0</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>10x 1GE(LAN) SFP</td>
</tr>
<tr>
<td>Xcvr 0</td>
<td>REV 02</td>
<td>740-011613</td>
<td>PNBlGJR</td>
<td>SFP-SX</td>
</tr>
<tr>
<td>PIC 1</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>10x 1GE(LAN) SFP</td>
</tr>
<tr>
<td>FPC 5</td>
<td>REV 10</td>
<td>750-062242</td>
<td>CAXX2328</td>
<td>SRX5k IOC3 2CGE+4XGE</td>
</tr>
<tr>
<td>PIC 0</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>2x 10GE SFP+</td>
</tr>
<tr>
<td>Xcvr 0</td>
<td>REV 01</td>
<td>740-021308</td>
<td>ANA07RE</td>
<td>SFP+-10G-SR</td>
</tr>
<tr>
<td>Xcvr 1</td>
<td>REV 01</td>
<td>740-031980</td>
<td>AQF08BJ</td>
<td>SFP+-10G-SR</td>
</tr>
<tr>
<td>PIC 1</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>1x 100GE CFP2</td>
</tr>
</tbody>
</table>
## Hardware inventory:

<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td></td>
<td></td>
<td></td>
<td>SRX5800</td>
</tr>
<tr>
<td>Midplane</td>
<td>REV 42</td>
<td>760-063937</td>
<td>ACRL3068</td>
<td>Enhanced SRX5800 Backplane</td>
</tr>
<tr>
<td>FPM Board</td>
<td>REV 05</td>
<td>760-061272</td>
<td>CAJX9988</td>
<td>Front Panel Display</td>
</tr>
<tr>
<td>PDM</td>
<td>Rev 01</td>
<td>740-063049</td>
<td>QCS2209507A</td>
<td>Power Distribution Module</td>
</tr>
<tr>
<td>PEM 0 in</td>
<td>Rev 11</td>
<td>740-027760</td>
<td>QCS1822N0EY</td>
<td>PS 4.1kW; 200-240V AC in</td>
</tr>
<tr>
<td>PEM 1 in</td>
<td>Rev 03</td>
<td>740-034724</td>
<td>QCS17020203F</td>
<td>PS 4.1kW; 200-240V AC in</td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td>REV 01</td>
<td>750-095568</td>
<td>CALK8904</td>
<td>SRX5k RE-2000x6</td>
</tr>
<tr>
<td>Routing Engine 1</td>
<td>REV 01</td>
<td>750-095568</td>
<td>CAD29076</td>
<td>SRX5k RE-2000x6</td>
</tr>
<tr>
<td>CB</td>
<td>REV 26</td>
<td>750-031391</td>
<td>CALV3010</td>
<td>SRX5k SCB4</td>
</tr>
<tr>
<td>CB</td>
<td>REV 26</td>
<td>750-031391</td>
<td>CALV3000</td>
<td>SRX5k SCB4</td>
</tr>
<tr>
<td>FPC 2 in</td>
<td>REV 28</td>
<td>750-073435</td>
<td>CAK29620</td>
<td>SPC3</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td></td>
<td></td>
<td>SRX5k vCPP Broadwell</td>
</tr>
<tr>
<td>PIC 0 in</td>
<td></td>
<td></td>
<td></td>
<td>SPU Cp-Flow</td>
</tr>
<tr>
<td>PIC 1 in</td>
<td></td>
<td></td>
<td></td>
<td>SPU Flow</td>
</tr>
<tr>
<td>CPU</td>
<td>REV 18</td>
<td>750-054877</td>
<td>CACH4082</td>
<td>SRX5k SPC II</td>
</tr>
<tr>
<td>PIC 0 in</td>
<td></td>
<td></td>
<td></td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 1 in</td>
<td></td>
<td></td>
<td></td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 2 in</td>
<td></td>
<td></td>
<td></td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 3 in</td>
<td></td>
<td></td>
<td></td>
<td>SPU Flow</td>
</tr>
<tr>
<td>FPC 4 in</td>
<td>REV 08</td>
<td>750-061262</td>
<td>CAFD8165</td>
<td>SRX5k IOC II</td>
</tr>
<tr>
<td>CPU</td>
<td>REV 02</td>
<td>711-061263</td>
<td>CAFV7507</td>
<td>SRX5k MPC PMB</td>
</tr>
</tbody>
</table>
• SRX1500—Has dedicated slots for each kind of card that cannot be interchanged.

• SRX4600—Has dedicated slots for each kind of card that cannot be interchanged.

• SRX300, SRX320, SRX340, SRX345, and SRX380—Although the devices must be of the same type, they can contain different Physical Interface Modules (PIMs).

• The control ports on the respective nodes are connected to form a control plane that synchronizes the configuration and kernel state to facilitate the high availability of interfaces and services.

• The data plane on the respective nodes is connected over the fabric ports to form a unified data plane. The fabric link allows for the management of cross-node flow processing and for the management of session redundancy.

RELATED DOCUMENTATION

Chassis Cluster Overview | 24
Understanding Chassis Cluster Fabric Interfaces | 73
Connecting SRX Series Devices to Create a Chassis Cluster

An SRX Series chassis cluster is created by physically connecting two identical cluster-supported SRX Series devices together using a pair of the same type of Ethernet connections. The connection is made for both a control link and a fabric (data) link between the two devices.

Control links in a chassis cluster are made using specific ports.

The interface value changes with the cluster offset value. Based on the cluster index, the interface is named as type-fpc/pic/port. For example, ge-1/0/1, where 1 is cluster index and the FPC number. You must use the following ports to form the control link on the following SRX Series devices:

- For SRX300 devices, connect the ge-0/0/1 on node 0 to the ge-1/0/1 on node 1.
- For SRX320 devices, connect the ge-0/0/1 on node 0 to the ge-3/0/1 on node 1.
- For SRX340, SRX345, and SRX380 devices, connect the ge-0/0/1 on node 0 to the ge-5/0/1 on node 1.
- For SRX1500 devices, connect the HA control port on node 0 to the HA control port on node 1

To establish a fabric link:

- For SRX300 and SRX320 devices, connect any interface except ge-0/0/0 and ge-0/0/1.
- For SRX340 and SRX345 devices, connect any interface except fpx0 and ge-0/0/1.

Figure 13 on page 55, Figure 14 on page 56, Figure 15 on page 56, Figure 16 on page 56, and Figure 18 on page 57 show pairs of SRX Series devices with the fabric links and control links connected.

Figure 13: Connecting SRX300 Devices in a Chassis Cluster
Figure 14: Connecting SRX320 Devices in a Chassis Cluster

Figure 15: Connecting SRX340 Devices in a Chassis Cluster

Figure 16: Connecting SRX345 Devices in a Chassis Cluster

Figure 17: Connecting SRX380 Devices in a Chassis Cluster
For SRX1500 devices, the connection that serves as the control link must be between the built-in control ports on each device.

You can connect two control links (SRX4600, SRX5000 and SRX3000 lines only) and two fabric links between the two devices in the cluster to reduce the chance of control link and fabric link failure. See "Understanding Chassis Cluster Dual Control Links" on page 155 and "Understanding Chassis Cluster Dual Fabric Links" on page 163.

Figure 19 on page 57, Figure 20 on page 57 and Figure 21 on page 58 show pairs of SRX Series devices with the fabric links and control links connected.
Figure 21: Connecting SRX4200 Devices in a Chassis Cluster

![Diagram of SRX4200 devices in a chassis cluster.]

Figure 22 on page 58, Figure 23 on page 59, and Figure 24 on page 59 show pairs of SRX Series devices with the fabric links and control links connected.

Figure 22: Connecting SRX5800 Devices in a Chassis Cluster

![Diagram of SRX5800 devices in a chassis cluster.]

Control port FPC 3, port 0
Fabric link

Control port FPC 15, port 0
Fiber-optic cable

Fabric link
SRX5000 line devices do not have built-in ports, so the control link for these gateways must be the control ports on their Services Processing Cards (SPCs) with a slot numbering offset of 3 for SRX5400, offset of 6 for SRX5600 devices and 12 for SRX5800 devices.

When you connect a single control link on SRX5000 line devices, the control link ports are a one-to-one mapping with the Routing Engine slot. If your Routing Engine is in slot 0, you must use control port 0 to link the Routing Engines.

When a SPC is the control plane as well as hosting the control port, this creates a single point of failure. If the SPC goes down on the primary node, the node is automatically rebooted to avoid split brain.

Dual control links are not supported on an SRX5400 device due to the limited number of slots.
When a device joins a cluster, it becomes a node of that cluster. With the exception of unique node settings and management IP addresses, nodes in a cluster share the same configuration.

- A cluster is identified by a **cluster ID** (**cluster-id**) specified as a number from 1 through 255. Setting a cluster ID to 0 is equivalent to disabling a cluster. A cluster ID greater than 15 can only be set when the fabric and control link interfaces are connected back-to-back.

The following message is displayed when you try to set a cluster ID greater than 15, and when fabric and control link interfaces are not connected back-to-back or are not connected on separated private VLANs:

```
{primary:node1}
user@host> set chassis cluster cluster-id 254 node 1 reboot
```

For cluster-ids greater than 15 and when deploying more than one cluster in a single Layer 2 BROADCAST domain, it is mandatory that fabric and control links are either connected back-to-back or are connected on separate private VLANs.

- A cluster node is identified by a **node ID** (**node**) specified as a number from 0 through 1.
This example shows how to set the chassis cluster node ID and chassis cluster ID, which you must configure after connecting two devices together. A chassis cluster ID identifies the cluster to which the devices belong, and a chassis cluster node ID identifies a unique node within the cluster. After wiring the two devices together, you use CLI operational mode commands to enable chassis clustering by assigning a cluster ID and node ID on each chassis in the cluster. The cluster ID is the same on both nodes.

## Requirements

Before you begin, ensure that you can connect to each device through the console port.

Ensure that the devices are running the same version of the Junos operating system (Junos OS) and the security devices are of same model.

The factory-default configuration of an SRX Series device includes the configuration of the interfaces on the device. Therefore, before enabling chassis clustering on the device, you must remove any existing configuration associated with those interfaces that will be transformed into the control and fabric interfaces. See "Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming" on page 41 for more information.

## Overview

The system uses the chassis cluster ID and chassis cluster node ID to apply the correct configuration for each node (for example, when you use the apply-groups command to configure the chassis cluster management interface). The chassis cluster ID and node ID statements are written to the EPROM, and the statements take effect when the system is rebooted.

In this example, you configure a chassis cluster ID of 1. You also configure a chassis cluster node ID of 0 for the first node, which allows redundancy groups to be primary on this node when priority settings for both nodes are the same, and a chassis cluster node ID of 1 for the other node.

Chassis cluster supports automatic synchronization of configurations. When a secondary node joins a primary node and a chassis cluster is formed, the primary node configuration is automatically copied and applied to the secondary node. See "Understanding Automatic Chassis Cluster Synchronization Between Primary and Secondary Nodes" on page 135.

## Configuration

**Step-by-Step Procedure**
To specify the chassis cluster node ID and cluster ID, you need to set two devices to cluster mode and reboot the devices. You must enter the following operational mode commands on both devices:

1. Connect to the first device through the console port.

   ```
 user@host> set chassis cluster cluster-id 1 node 0 reboot
 Successfully enabled chassis cluster. Going to reboot now.
   ```

2. Connect to the second device through the console port.

   ```
 user@host> set chassis cluster cluster-id 1 node 1 reboot
 Successfully enabled chassis cluster. Going to reboot now.
   ```

For SRX5400, SRX5600 and SRX5800 devices, you must configure the control ports before the cluster is formed.

To do this, you connect to the console port on the primary device, give it a node ID, and identify the cluster it will belong to, and then reboot the system. You then connect the console port to the other device, give it a node ID, and assign it the same cluster ID you gave to the first node, and then reboot the system. In both instances, you can cause the system to boot automatically by including the `reboot` parameter in the CLI command line. (For further explanation of primary and secondary nodes, see “Understanding Chassis Cluster Redundancy Groups” on page 91.)

### Verification

#### Verifying Chassis Cluster Status

**Purpose**

Verify the status of a chassis cluster.

**Action**

From operational mode, enter the `show chassis cluster status` command.

```
{primary:node0}[edit]

user@host> show chassis cluster status

Cluster ID: 1
```
<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>100</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>1</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node0</td>
<td>0</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>0</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

**Meaning**

The sample output shows that devices in the chassis cluster are communicating properly, with one device functioning as the primary node and the other as the secondary node.

**RELATED DOCUMENTATION**

- [SRX Series Chassis Cluster Configuration Overview](#) | 35
- [Example: Configuring the Chassis Cluster Management Interface](#) | 64
- [Example: Configuring the Number of Redundant Ethernet Interfaces in a Chassis Cluster](#)

**Chassis Cluster Management Interfaces**

**IN THIS SECTION**

- Understanding Management Interface on an Active Chassis Cluster | 64
- Example: Configuring the Chassis Cluster Management Interface | 64

On SRX Series devices in a chassis cluster, management interfaces allow out-of-band network access and network management to each node in the cluster. For more information, see the following topics:
Understanding Management Interface on an Active Chassis Cluster

Most of SRX Series devices contain an fxp0 interface. The fxp0 interfaces function like standard management interfaces on SRX Series devices and allow network access to each node in the cluster.

Management interfaces are the primary interfaces for accessing the device remotely. Typically, a management interface is not connected to the in-band network, but is connected instead to the device's internal network. Through a management interface you can access the device over the network using utilities such as ssh and telnet and configure the device from anywhere, regardless of its physical location. SNMP can use the management interface to gather statistics from the device. A management interface enables authorized users and management systems connect to the device over the network.

Some SRX Series devices have a dedicated management port on the front panel. For other types of platforms, you can configure a management interface on one of the network interfaces. This interface can be dedicated to management or shared with other traffic. Before users can access the management interface, you must configure it. Information required to set up the management interface includes its IP address and prefix. In many types of Junos OS devices (or recommended configurations), it is not possible to route traffic between the management interface and the other ports. Therefore, you must select an IP address in a separate (logical) network, with a separate prefix (netmask).

For most SRX Series chassis clusters, the fxp0 interface is a dedicated port. SRX340 and SRX345 devices contain an fxp0 interface. SRX300 and SRX320 devices do not have a dedicated port for fxp0. The fxp0 interface is repurposed from a built-in interface. The fxp0 interface is created when the system reboots the devices after you designate one node as the primary device and the other as the secondary device.

We recommend giving each node in a chassis cluster a unique IP address for the fxp0 interface of each node. This practice allows independent node management.

Example: Configuring the Chassis Cluster Management Interface

This example shows how to provide network management access to a chassis cluster.
Requirements

Before you begin, set the chassis cluster node ID and cluster ID. See “Example: Setting the Chassis Cluster Node ID and Cluster ID” on page 60.

Overview

You must assign a unique IP address to each node in the cluster to provide network management access. This configuration is not replicated across the two nodes.

If you try to access the nodes in a cluster over the network before you configure the fxp0 interface, you will lose access to the cluster.

In this example, you configure the following information for IPv4:

- Node 0 name—node0-router
- IP address assigned to node 0—10.1.1.1/24
- Node 1 name—node1-router
- IP address assigned to node 1—10.1.1.2/24

In this example, you configure the following information for IPv6:

- Node 0 name—node0-router
- IP address assigned to node 0—2001:db8:1::2/32
- Node 1 name—node1-router
- IP address assigned to node 1—2001:db8:1::3/32

Configuration

Configuring the Chassis Cluster Management Interface with IPv4 Addresses

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

To configure a chassis cluster management interface for IPv4:

```
{primary:node0}[edit]
user@host#
set groups node0 system host-name node0-router
set groups node0 interfaces fxp0 unit 0 family inet address 10.1.1.1/24
```
Step-by-Step Procedure
To configure a chassis cluster management interface for IPv4:

1. Configure the name of node 0 and assign an IP address.

   ```
 [primary:node0][edit]
 user@host# set groups node0 system host-name node0-router
 user@host# set groups node0 interfaces fxp0 unit 0 family inet address 10.1.1.1/24
   ```

2. Configure the name of node 1 and assign an IP address.

   ```
 [primary:node0][edit]
 user@host# set groups node1 system host-name node1-router
 user@host# set groups node1 interfaces fxp0 unit 0 family inet address 10.1.1.2/24
   ```

3. Apply the groups configuration to the nodes.

   ```
 [primary:node0][edit]
 user@host# set apply-groups "${node}"
   ```

4. If you are done configuring the device, commit the configuration.

   ```
 [primary:node0][edit]
 user@host# commit
   ```

Results
From configuration mode, confirm your configuration by entering the `show groups` and `show apply-groups` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[primary:node0][edit]
user@host# show groups
node0 {
 system {
 host-name node0-router;
 }
}
user@host# show apply-groups

Last changed: 2010-09-16 11:08:29 UTC
apply-groups "${node}";

If you are done configuring the device, enter **commit** from configuration mode.

Verifying the Chassis Cluster Management Interface Configuration (IPv4 Addresses)

Purpose
Verify the chassis cluster management interface configuration.

Action
To verify the configuration is working properly, enter the `show interfaces terse`, `show configuration groups node node0 interfaces` and `show configuration groups node node1 interfaces` commands.

```
{primary:node0} [edit]

user@host> show interfaces terse | match fxp0

fxp0                  up    up
fxp0.0                 up    up   inet     10.1.1.1/24

{primary:node0} [edit]

user@host> show configuration groups node0 interfaces

fxp0 {  
  unit 0 {  
      family inet {  
          address 10.1.1.1/24;  
      }  
  }  
}

{primary:node0} [edit]

user@host> show configuration groups node1 interfaces

fxp0 {  
  unit 0 {  
      family inet {  
          address 10.1.1.2/24;  
      }  
  }  
}
```

Meaning

The output displays the management interface information with their status.
Configuring the Chassis Cluster Management Interface with IPv6 Addresses

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

To configure a chassis cluster management interface for IPv6:

```plaintext
[primary:node0][edit]
user@host# set groups node0 system host-name node0-router
set groups node0 interfaces fxp0 unit 0 family inet6 address 2001:db8:1::2/32
set groups node1 system host-name node1-router
set groups node1 interfaces fxp0 unit 0 family inet6 address 2001:db8:1::3/32
```

Step-by-Step Procedure
To configure a chassis cluster management interface for IPv6:

1. Configure the name of node 0 and assign an IP address.

```plaintext
[primary:node0][edit]
user@host# set groups node0 system host-name node0-router
user@host# set groups node0 interfaces fxp0 unit 0 family inet6 address 2001:db8:1::2/32
```

2. Configure the name of node 1 and assign an IP address.

```plaintext
[primary:node0][edit]
user@host# set groups node1 system host-name node1-router
user@host# set groups node1 interfaces fxp0 unit 0 family inet6 address 2001:db8:1::3/32
```

3. If you are done configuring the device, commit the configuration.

```plaintext
[primary:node0][edit]
user@host# commit
```

Results
From configuration mode, confirm your configuration by entering the `show groups` and `show apply-groups` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.
user@host# show groups

node0 {
 system {
 host-name node0-router;
 }
 interfaces {
 fxp0 {
 unit 0 {
 family inet6 {
 address 2001:db8:1::2/32;
 }
 }
 }
 }
}

node1 {
 system {
 host-name node1-router;
 }
 interfaces {
 fxp0 {
 unit 0 {
 family inet6 {
 address 2001:db8:1::3/32;
 }
 }
 }
 }
}

{primary:node0}[edit]

user@host# show apply-groups

Last changed: 2010-09-16 11:08:29 UTC

apply-groups "${node}";

If you are done configuring the device, enter commit from configuration mode.
Verification

Verifying the Chassis Cluster Management Interface Configuration (IPV6 Addresses)

Purpose
Verify the chassis cluster management interface configuration.

Action
To verify the configuration is working properly, enter the `show interfaces terse` and `show configuration groups node0 interfaces` commands.

```
{primary:node0} [edit]

user@host> show interfaces terse | match fxp0

fxp0        up   up
fxp0.0      up   up   inet   2001:db8:1::2/32

{primary:node0} [edit]

user@host> show configuration groups node0 interfaces

fxp0 {
    unit 0 {
        family inet {
            address 2001:db8:1::2/32;
        }
    }
}

{primary:node0} [edit]

user@host> show configuration groups node1 interfaces

fxp0 {
    unit 0 {
        family inet {
            address 2001:db8:1::3/32;
        }
    }
}
Meaning
The output displays the management interface information with their status.

SEE ALSO

Example: Configuring Chassis Clustering on an SRX Series Devices | 117

RELATED DOCUMENTATION

Chassis Cluster Fabric Interfaces | 72
Chassis Cluster Control Plane Interfaces | 83

Chassis Cluster Fabric Interfaces

IN THIS SECTION

- Understanding Chassis Cluster Fabric Interfaces | 73
- Example: Configuring the Chassis Cluster Fabric Interfaces | 78
- Verifying Chassis Cluster Data Plane Interfaces | 80
- Viewing Chassis Cluster Data Plane Statistics | 81
- Clearing Chassis Cluster Data Plane Statistics | 82

SRX Series devices in a chassis cluster use the fabric (fab) interface for session synchronization and forward traffic between the two chassis. The fabric link is a physical connection between two Ethernet interfaces on the same LAN. Both interfaces must be the same media type. For more information, see the following topics:
Understanding Chassis Cluster Fabric Interfaces

The fabric is a physical connection between two nodes of a cluster and is formed by connecting a pair of Ethernet interfaces back-to-back (one from each node).

Unlike for the control link, whose interfaces are determined by the system, you specify the physical interfaces to be used for the fabric data link in the configuration.

The fabric is the data link between the nodes and is used to forward traffic between the chassis. Traffic arriving on a node that needs to be processed on the other is forwarded over the fabric data link. Similarly, traffic processed on a node that needs to exit through an interface on the other node is forwarded over the fabric.

The data link is referred to as the fabric interface. It is used by the cluster's Packet Forwarding Engines to transmit transit traffic and to synchronize the data plane software's dynamic runtime state. The fabric provides for synchronization of session state objects created by operations such as authentication, Network Address Translation (NAT), Application Layer Gateways (ALGs), and IP Security (IPsec) sessions.

When the system creates the fabric interface, the software assigns it an internally derived IP address to be used for packet transmission.

CAUTION: After fabric interfaces have been configured on a chassis cluster, removing the fabric configuration on either node will cause the redundancy group 0 (RG0) secondary node to move to a disabled state. (Resetting a device to the factory default configuration removes the fabric configuration and thereby causes the RG0 secondary node to move to a disabled state.) After the fabric configuration is committed, do not reset either device to the factory default configuration.
Supported Fabric Interface Types for SRX Series Devices (SRX300 Series, SRX1500, SRX4100/SRX4200, SRX4600, and SRX5000 Series)

For SRX Series chassis clusters, the fabric link can be any pair of Ethernet interfaces spanning the cluster; the fabric link can be any pair of Gigabit Ethernet interface. Examples:

- For SRX300, SRX320, SRX340, and SRX345 devices, the fabric link can be any pair of Gigabit Ethernet interfaces. For SRX380 devices, the fabric link can be any pair of Gigabit Ethernet interfaces or any pair of 10-Gigabit Ethernet interface.

- For SRX1500, the fabric link can be any pair of Ethernet interfaces spanning the cluster; the fabric link can be any pair of Gigabit Ethernet interface or any pair of 10-Gigabit Ethernet interface.

- Supported fabric interface types for SRX4100 and SRX4200 devices are 10-Gigabit Ethernet (xe) (10-Gigabit Ethernet Interface SFP+ slots).

- Supported fabric interface types for SRX4600 devices are 40-Gigabit Ethernet (et) (40-Gigabit Ethernet Interface QSFP slots) and 10-Gigabit Ethernet (xe).

- Supported fabric interface types supported for SRX5000 line devices are:
  - Fast Ethernet
  - Gigabit Ethernet
  - 10-Gigabit Ethernet
  - 40-Gigabit Ethernet
  - 100-Gigabit Ethernet

  Starting in Junos OS Release 12.1X46-D10 and Junos OS Release 17.3R1, 100-Gigabit Ethernet interface is supported on SRX5000 line devices.

  Starting in Junos OS Release 19.3R1, the SRX5K-IOC4-10G and SRX5K-IOC4-MRAT are supported along with SRX5K-SPC3 on the SRX5000 series devices. SRX5K-IOC4-10G MPIC supports MACsec.

For details about port and interface usage for management, control, and fabric links, see "Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming" on page 41.

Jumbo Frame Support

The fabric data link does not support fragmentation. To accommodate this state, jumbo frame support is enabled by default on the link with an maximum transmission unit (MTU) size of 9014 bytes (9000 bytes of payload + 14 bytes for the Ethernet header) on SRX Series devices. To ensure the traffic that transits the data link does not exceed this size, we recommend that no other interfaces exceed the fabric data link's MTU size.
Understanding Fabric Interfaces on SRX5000 Line Devices for IOC2 and IOC3

Starting with Junos OS Release 15.1X49-D10, the SRX5K-MPC3-100G10G (IOC3) and the SRX5K-MPC3-40G10G (IOC3) are introduced.

The SRX5K-MPC (IOC2) is a Modular Port Concentrator (MPC) that is supported on the SRX5400, SRX5600, and SRX5800. This interface card accepts Modular Interface Cards (MICs), which add Ethernet ports to your services gateway to provide the physical connections to various network media types. The MPCs and MICs support fabric links for chassis clusters. The SRX5K-MPC provides 10-Gigabit Ethernet (with 10x10GE MIC), 40-Gigabit Ethernet, 100-Gigabit Ethernet, and 20x1G Ethernet ports as fabric ports. On SRX5400 devices, only SRX5K-MPCs (IOC2) are supported.

The SRX5K-MPC3-100G10G (IOC3) and the SRX5K-MPC3-40G10G (IOC3) are Modular Port Concentrators (MPCs) that are supported on the SRX5400, SRX5600, and SRX5800. These interface cards accept Modular Interface Cards (MICs), which add Ethernet ports to your services gateway to provide the physical connections to various network media types. The MPCs and MICs support fabric links for chassis clusters.

The two types of IOC3 Modular Port Concentrators (MPCs), which have different built-in MICs, are the 24x10GE + 6x40GE MPC and the 2x100GE + 4x10GE MPC.

Due to power and thermal constraints, all four PICs on the 24x10GE + 6x40GE cannot be powered on. A maximum of two PICs can be powered on at the same time.

Use the `set chassis fpc <slot> pic <pic> power off` command to choose the PICs you want to power on.

On SRX5400, SRX5600, and SRX5800 devices in a chassis cluster, when the PICs containing fabric links on the SRX5K-MPC3-40G10G (IOC3) are powered off to turn on alternate PICs, always ensure that:

- The new fabric links are configured on the new PICs that are turned on. At least one fabric link must be present and online to ensure minimal RTO loss.
- The chassis cluster is in active-passive mode to ensure minimal RTO loss, once alternate links are brought online.
- If no alternate fabric links are configured on the PICs that are turned on, RTO synchronous communication between the two nodes stops and the chassis cluster session state will not back up, because the fabric link is missing. You can view the CLI output for this scenario indicating a bad chassis cluster state by using the `show chassis cluster interfaces` command.

Understanding Session RTOs

The data plane software, which operates in active/active mode, manages flow processing and session state redundancy and processes transit traffic. All packets belonging to a particular session are processed on the same node to ensure that the same security treatment is applied to them. The system identifies the node on which a session is active and forwards its packets to that node for processing. (After a packet is
processed, the Packet Forwarding Engine transmits the packet to the node on which its egress interface exists if that node is not the local one.)

To provide for session (or flow) redundancy, the data plane software synchronizes its state by sending special payload packets called runtime objects (RTOs) from one node to the other across the fabric data link. By transmitting information about a session between the nodes, RTOs ensure the consistency and stability of sessions if a failover were to occur, and thus they enable the system to continue to process traffic belonging to existing sessions. To ensure that session information is always synchronized between the two nodes, the data plane software gives RTOs transmission priority over transit traffic.

The data plane software creates RTOs for UDP and TCP sessions and tracks state changes. It also synchronizes traffic for IPv4 pass-through protocols such as Generic Routing Encapsulation (GRE) and IPsec.

RTOs for synchronizing a session include:

- Session creation RTOs on the first packet
- Session deletion and age-out RTOs
- Change-related RTOs, including:
  - TCP state changes
  - Timeout synchronization request and response messages
  - RTOs for creating and deleting temporary openings in the firewall (pinholes) and child session pinholes

### Understanding Data Forwarding

For Junos OS, flow processing occurs on a single node on which the session for that flow was established and is active. This approach ensures that the same security measures are applied to all packets belonging to a session.

A chassis cluster can receive traffic on an interface on one node and send it out to an interface on the other node. (In active/active mode, the ingress interface for traffic might exist on one node and its egress interface on the other.)

This traversal is required in the following situations:

- When packets are processed on one node, but need to be forwarded out an egress interface on the other node
- When packets arrive on an interface on one node, but must be processed on the other node

If the ingress and egress interfaces for a packet are on one node, but the packet must be processed on the other node because its session was established there, it must traverse the data link twice. This can be the case for some complex media sessions, such as voice-over-IP (VoIP) sessions.
Understanding Fabric Data Link Failure and Recovery

Intrusion Detection and Prevention (IDP) services do not support failover. For this reason, IDP services are not applied for sessions that were present prior to the failover. IDP services are applied for new sessions created on the new primary node.

The fabric data link is vital to the chassis cluster. If the link is unavailable, traffic forwarding and RTO synchronization are affected, which can result in loss of traffic and unpredictable system behavior.

To eliminate this possibility, Junos OS uses fabric monitoring to check whether the fabric link, or the two fabric links in the case of a dual fabric link configuration, are alive by periodically transmitting probes over the fabric links. If Junos OS detects fabric faults, RG1+ status of the secondary node changes to ineligible. It determines that a fabric fault has occurred if a fabric probe is not received but the fabric interface is active. To recover from this state, both the fabric links need to come back to online state and should start exchanging probes. As soon as this happens, all the FPCs on the previously ineligible node will be reset. They then come to online state and rejoin the cluster.

If you make any changes to the configuration while the secondary node is disabled, execute the commit command to synchronize the configuration after you reboot the node. If you did not make configuration changes, the configuration file remains synchronized with that of the primary node.

Starting with Junos OS Release 12.1X47-D10 and Junos OS Release 17.3R1, the fabric monitoring feature is enabled by default on SRX5800, SRX5600, and SRX5400 devices.

Starting with Junos OS Release 12.1X47-D10 and Junos OS Release 17.3R1, recovery of the fabric link and synchronization take place automatically.

When both the primary and secondary nodes are healthy (that is, there are no failures) and the fabric link goes down, RG1+ redundancy group(s) on the secondary node becomes ineligible. When one of the nodes is unhealthy (that is, there is a failure), RG1+ redundancy group(s) on this node (either the primary or secondary node) becomes ineligible. When both nodes are unhealthy and the fabric link goes down, RG1+ redundancy group(s) on the secondary node becomes ineligible. When the fabric link comes up, the node on which RG1+ became ineligible performs a cold synchronization on all Services Processing Units and transitions to active standby.

- If RG0 is primary on an unhealthy node, then RG0 will fail over from an unhealthy to a healthy node. For example, if node 0 is primary for RG0+ and node 0 becomes unhealthy, then RG1+ on node 0 will transition to ineligible after 66 seconds of a fabric link failure and RG0+ fails over to node 1, which is the healthy node.
- Only RG1+ transitions to an ineligible state. RG0 continues to be in either a primary or secondary state.

Use the show chassis cluster interfaces CLI command to verify the status of the fabric link.

SEE ALSO
Example: Configuring the Chassis Cluster Fabric Interfaces

This example shows how to configure the chassis cluster fabric. The fabric is the back-to-back data connection between the nodes in a cluster. Traffic on one node that needs to be processed on the other node or to exit through an interface on the other node passes over the fabric. Session state information also passes over the fabric.

Requirements

Before you begin, set the chassis cluster ID and chassis cluster node ID. See "Example: Setting the Node ID and Cluster ID for Security Devices in a Chassis Cluster" on page 60.

Overview

In most SRX Series devices in a chassis cluster, you can configure any pair of Gigabit Ethernet interfaces or any pair of 10-Gigabit interfaces to serve as the fabric between nodes.

You cannot configure filters, policies, or services on the fabric interface. Fragmentation is not supported on the fabric link. The maximum MTU size for fabric interfaces is 9014 bytes and the maximum MTU size for other interfaces is 8900 bytes. Jumbo frame support on the member links is enabled by default.

This example illustrates how to configure the fabric link.

Only the same type of interfaces can be configured as fabric children, and you must configure an equal number of child links for fab0 and fab1.
If you are connecting each of the fabric links through a switch, you must enable the jumbo frame feature on the corresponding switch ports. If both of the fabric links are connected through the same switch, the RTO-and-probes pair must be in one virtual LAN (VLAN) and the data pair must be in another VLAN. Here too, the jumbo frame feature must be enabled on the corresponding switch ports.

**Configuration**

**CLI Quick Configuration**

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter **commit** from configuration mode.

```
{primary:node0}[edit]
 set interfaces fab0 fabric-options member-interfaces ge-0/0/1
 set interfaces fab1 fabric-options member-interfaces ge-7/0/1
```

**Step-by-Step Procedure**

To configure the chassis cluster fabric:

- Specify the fabric interfaces.

```
{primary:node0}[edit]
 user@host# set interfaces fab0 fabric-options member-interfaces ge-0/0/1
{primary:node0}[edit]
 user@host# set interfaces fab1 fabric-options member-interfaces ge-7/0/1
```

**Results**

From configuration mode, confirm your configuration by entering the **show interfaces** command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For brevity, this **show** command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).
If you are done configuring the device, enter `commit` from configuration mode.

**Verification**

**Verifying the Chassis Cluster Fabric**

**Purpose**
Verify the chassis cluster fabric.

**Action**
From operational mode, enter the `show interfaces terse | match fab` command.

```
user@host> show interfaces terse | match fab
```

```
ge-0/0/1.0 up up aenetc fab0.0
ge-7/0/1.0 up up aenetc fab1.0
fab0 up up
fab0.0 up up inet 30.17.0.200/24
fab1 up up
fab1.0 up up inet 30.18.0.200/24
```

**Verifying Chassis Cluster Data Plane Interfaces**

**Purpose**
Display chassis cluster data plane interface status.

**Action**
From the CLI, enter the `show chassis cluster data-plane interfaces` command:

{primary:node1}

user@host> **show chassis cluster data-plane interfaces**

<table>
<thead>
<tr>
<th>fab0:</th>
<th>Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ge-2/1/9</td>
<td>up</td>
</tr>
<tr>
<td></td>
<td>ge-2/2/5</td>
<td>up</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>fab1:</th>
<th>Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ge-8/1/9</td>
<td>up</td>
</tr>
<tr>
<td></td>
<td>ge-8/2/5</td>
<td>up</td>
</tr>
</tbody>
</table>

---

**Viewing Chassis Cluster Data Plane Statistics**

**Purpose**
Display chassis cluster data plane statistics.

**Action**
From the CLI, enter the `show chassis cluster data-plane statistics` command:

{primary:node1}

user@host> **show chassis cluster data-plane statistics**

<table>
<thead>
<tr>
<th>Services Synchronized:</th>
<th>RTOs sent</th>
<th>RTOs received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation context</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource manager</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session close</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gate create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPSec VPN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Firewall user authentication</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MGCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H323 ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SIP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPTP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RTSP ALG</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

### Clearing Chassis Cluster Data Plane Statistics

To clear displayed chassis cluster data plane statistics, enter the `clear chassis cluster data-plane statistics` command from the CLI:

```
{primary:node1}

user@host> clear chassis cluster data-plane statistics

Cleared data-plane statistics
```

### SEE ALSO

- Configuring Chassis Clustering on an SRX Series Devices | 116
### Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.3R1</td>
<td>Starting in Junos OS Release 19.3R1, the SRX5K-IOC4-10G and SRX5K-IOC4-MRAT are supported along with SRX5K-SPC3 on the SRX5000 series devices. SRX5K-IOC4-10G MPIC supports MACsec.</td>
</tr>
<tr>
<td>15.1X49-D10</td>
<td>Starting with Junos OS Release 15.1X49-D10, the SRX5K-MPC3-100G10G (IOC3) and the SRX5K-MPC3-40G10G (IOC3) are introduced.</td>
</tr>
<tr>
<td>12.1X47</td>
<td>Starting with Junos OS Release 12.1X47-D10 and Junos OS Release 17.3R1, the fabric monitoring feature is enabled by default on SRX5800, SRX5600, and SRX5400 devices.</td>
</tr>
<tr>
<td>12.1X47</td>
<td>Starting with Junos OS Release 12.1X47-D10 and Junos OS Release 17.3R1, recovery of the fabric link and synchronization take place automatically.</td>
</tr>
<tr>
<td>12.1X46</td>
<td>Starting in Junos OS Release 12.1X46-D10 and Junos OS Release 17.3R1, 100-Gigabit Ethernet interface is supported on SRX5000 line devices.</td>
</tr>
</tbody>
</table>

### RELATED DOCUMENTATION

- SRX Series Chassis Cluster Configuration Overview | 35
- Example: Configuring Chassis Clustering on an SRX Series Devices | 117

### Chassis Cluster Control Plane Interfaces

### IN THIS SECTION

- Understanding Chassis Cluster Control Plane and Control Links | 84
- Example: Configuring Chassis Cluster Control Ports | 86
- Verifying Chassis Cluster Control Plane Statistics | 89
- Clearing Chassis Cluster Control Plane Statistics | 90
SRX Series devices in a chassis cluster use the control plane to synchronize the kernel state between the two Routing Engines. The control interfaces provide the link between the two nodes in the cluster, which are used for by devices’ control planes communicate for the session state, the configuration file, and liveliness signals across the nodes.

**Understanding Chassis Cluster Control Plane and Control Links**

The control plane software, which operates in active or backup mode, is an integral part of Junos OS that is active on the primary node of a cluster. It achieves redundancy by communicating state, configuration, and other information to the inactive Routing Engine on the secondary node. If the master Routing Engine fails, the secondary one is ready to assume control.

The control plane software:

- Runs on the Routing Engine and oversees the entire chassis cluster system, including interfaces on both nodes
- Manages system and data plane resources, including the Packet Forwarding Engine (PFE) on each node
- Synchronizes the configuration over the control link
- Establishes and maintains sessions, including authentication, authorization, and accounting (AAA) functions
- Manages application-specific signaling protocols
- Establishes and maintains management sessions, such as Telnet connections
- Handles asymmetric routing
- Manages routing state, Address Resolution Protocol (ARP) processing, and Dynamic Host Configuration Protocol (DHCP) processing

Information from the control plane software follows two paths:

- On the primary node (where the Routing Engine is active), control information flows from the Routing Engine to the local Packet Forwarding Engine.
- Control information flows across the control link to the secondary node’s Routing Engine and Packet Forwarding Engine.

The control plane software running on the master Routing Engine maintains state for the entire cluster, and only processes running on its node can update state information. The master Routing Engine synchronizes state for the secondary node and also processes all host traffic.

**Understanding Chassis Cluster Control Links**

The control interfaces provide the control link between the two nodes in the cluster and are used for routing updates and for control plane signal traffic, such as heartbeat and threshold information that...
triggers node failover. The control link is also used to synchronize the configuration between the nodes. When you submit configuration statements to the cluster, the configuration is automatically synchronized over the control link.

The control link relies on a proprietary protocol to transmit session state, configuration, and liveness signals across the nodes.

Starting in Junos OS Release 19.3R1, the SRX5K-RE3-128G is supported along with SRX5K-SPC3 on the SRX5000 series devices. The control interfaces ixlv0 and igb0 are used to configure SRX5K-RE3-128G. Control links control the communication between the control, and data plane and the heartbeat messages.

NOTE: For a single control link in a chassis cluster, the same control port should be used for the control link connection and for configuration on both nodes. For example, if port 0 is configured as a control port on node 0, then port 0 should be configured as a control port on node 1 with a cable connection between the two ports. For dual control links, control port 0 on node 0 should be connected to control port 0 on node 1 and control port 1 should be connected to control port 1 on node 1. Cross connections, that is, connecting port 0 on one node to port 1 on the other node and vice versa, do not work.

The existing control link access is enhanced to prevent hackers from logging into the system without authentication through the control link with Telnet access disabled. Chassis cluster control link supports an optional encrypted security feature that you can configure and activate. Using IPsec for internal communication between devices, the configuration information that passes through the chassis cluster link from the primary node to the secondary node is encrypted. Without the internal IPsec key, an attacker cannot gain privilege access or observe traffic. To enable this feature, run the set security ipsec internal security-association manual encryption ike-ha-link-encryption enable configuration command. You must reboot both the nodes for active this configuration.

Encryption on HA control link using IPsec in supported on, SRX4600, SRX5000 line devices, and on vSRX platforms.

When the cluster is running with the key configured already, then you can make any changes to the key without rebooting the device. In this case, you will have to change the key only on one node. But, when iked encryption is configured and whenever any configuration is changed under internal SA hierarchy, you must reboot both the nodes. The configured IKE HA link encryption algorithm can be verified in the output of show security internal-security-association
Control ports supported on SRX Series devices are:

- By default, all control ports are disabled on SRX5400, SRX5600, and SRX5800 devices. Each SPC in a device has two control ports, and each device can have multiple SPCs plugged into it. To set up the control link in a chassis cluster with SRX5600 or SRX5800 devices, you connect and configure the control ports that you use on each device (fpc<n> and fpc<n>), and then initialize the device in cluster mode.

- For SRX4600 devices, dedicated chassis cluster (HA) control ports and fabric ports are available. No control link configuration is needed for SRX4600 devices; however, you need to configure fabric link explicitly for chassis cluster deployments. If you want to configure 1-Gigabit Ethernet interfaces for the control ports, you must explicitly set the speed using the operational CLI command statement, `set chassis cluster control-port speed 1g`. See `speed (Chassis Cluster)` for more details.

- For SRX4100 and SRX4200 devices, there are dedicated chassis cluster (HA) control ports available. No control link configuration is needed for SRX4100 and SRX4200 devices. For more information about all SRX4100 and SRX4200 ports including dedicated control and fabric link ports, see "Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming" on page 41.

For SRX4100 and SRX4200 devices, when devices are not in cluster mode, dedicated HA ports cannot be used as revenue ports or traffic ports.

- SRX1500 devices use the dedicated control port.

- For SRX300, SRX320, SRX340, SRX345, SRX380 devices, the control link uses the ge-0/0/1 interface.

For details about port and interface usage for management, control, and fabric links, see “Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming” on page 41.

---

### Example: Configuring Chassis Cluster Control Ports

This example shows how to configure chassis cluster control ports on SRX5400, SRX5600, and SRX5800 devices. You need to configure the control ports that you will use on each device to set up the control link.
Requirements

Before you begin:

- Understand chassis cluster control links. See "Understanding Chassis Cluster Control Plane and Control Links" on page 84.

- Physically connect the control ports on the devices. See "Connecting SRX Series Devices to Create a Chassis Cluster" on page 55.

Overview

By default, all control ports on SRX5400, SRX5600, and SRX5800 devices are disabled. After connecting the control ports, configuring the control ports, and establishing the chassis cluster, the control link is set up.

This example configures control ports with the following FPCs and ports as the control link:

- FPC 4, port 0
- FPC 10, port 0

Configuration

CLI Quick Configuration

To quickly configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
{primary:node0}[edit]
 set chassis cluster control-ports fpc 4 port 0
 set chassis cluster control-ports fpc 10 port 0

{primary:node1}[edit]
 set chassis cluster control-ports fpc 4 port 0
 set chassis cluster control-ports fpc 10 port 0
```

Step-by-Step Procedure

To configure control ports for use as the control link for the chassis cluster:

- Specify the control ports.

```
{primary:node0}[edit]
user@host# set chassis cluster control-ports fpc 4 port 0
```
Results
From configuration mode, confirm your configuration by entering the `show chassis cluster` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For brevity, this `show` command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).

If you are done configuring the device, enter `commit` from configuration mode.

Verification

Verifying the Chassis Cluster Status

Purpose
Verify the chassis cluster status.

Action
From operational mode, enter the `show chassis cluster status` command.

```
user@host> show chassis cluster status
```

<table>
<thead>
<tr>
<th>Cluster ID: 1</th>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
</table>

{primary:node0}[edit]
user@host# set chassis cluster control-ports fpc 10 port 0
{primary:node1}[edit]
user@host# set chassis cluster control-ports fpc 4 port 0
user@host# set chassis cluster control-ports fpc 10 port 0
Redundancy group: 0, Failover count: 1

node0           100         primary   no       no
node1           1           secondary no       no

Redundancy group: 1, Failover count: 1

node0           0           primary   no       no
node1           0           secondary no       no

Meaning
Use the `show chassis cluster status` command to confirm that the devices in the chassis cluster are communicating with each other. The chassis cluster is functioning properly, as one device is the primary node and the other is the secondary node.

SEE ALSO

- Connecting SRX Series Devices to Create a Chassis Cluster | 55
- Chassis Cluster Dual Control Links | 155

Verifying Chassis Cluster Control Plane Statistics

Purpose
Display chassis cluster control plane statistics.

Action
From the CLI, enter the `show chassis cluster control-plane statistics` command:

```
{primary:node1}
```

```
user@host> show chassis cluster control-plane statistics
```

Control link statistics:

```
Control link 0:
 Heartbeat packets sent: 124
 Heartbeat packets received: 125
```

Fabric link statistics:

```
Child link 0
```
Probes sent: 124
Probes received: 125

{primary:node1}

user@host>  show chassis cluster control-plane statistics

Control link statistics:
  Control link 0:
  Heartbeat packets sent: 258698
  Heartbeat packets received: 258693
  Control link 1:
  Heartbeat packets sent: 258698
  Heartbeat packets received: 258693

Fabric link statistics:
  Child link 0
  Probes sent: 258690
  Probes received: 258690
  Child link 1
  Probes sent: 258505
  Probes received: 258505

SEE ALSO

| Configuring Chassis Clustering on an SRX Series Devices | 116 |

**Clearing Chassis Cluster Control Plane Statistics**

To clear displayed chassis cluster control plane statistics, enter the clear chassis cluster control-plane statistics command from the CLI:

{primary:node1}

user@host>  clear chassis cluster control-plane statistics

Cleared control-plane statistics
Starting in Junos OS Release 19.3R1, the SRX5K-RE3-128G is supported along with SRX5K-SPC3 on the SRX5000 series devices. The control interfaces ixlv0 and igb0 are used to configure SRX5K-RE3-128G. Control links control the communication between the control, and data plane and the heartbeat messages.

**RELATED DOCUMENTATION**

- Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming | 41
- Example: Configuring Chassis Clustering on an SRX Series Devices | 117

**Chassis Cluster Redundancy Groups**

A redundancy group (RG) includes and manages a collection of objects on both nodes of a cluster. An RG is primary on one node and backup on the other node at any given time. For more information, see the following topics:

**Understanding Chassis Cluster Redundancy Groups**

Chassis clustering provides high availability of interfaces and services through redundancy groups and primacy within groups.

A redundancy group is an abstract construct that includes and manages a collection of objects. A redundancy group contains objects on both nodes. A redundancy group is primary on one node and backup on the
other at any time. When a redundancy group is said to be primary on a node, its objects on that node are active.

Redundancy groups are independent units of failover. Each redundancy group fails over from one node to the other independent of other redundancy groups. When a redundancy group fails over, all its objects fail over together.

Three things determine the primacy of a redundancy group: the priority configured for the node, the node ID (in case of tied priorities), and the order in which the node comes up. If a lower priority node comes up first, then it will assume the primacy for a redundancy group (and will stay as primary if preempt is not enabled). If preempt is added to a redundancy group configuration, the device with the higher priority in the group can initiate a failover to become master. By default, preemption is disabled. For more information on preemption, see preempt (Chassis Cluster).

A chassis cluster can include many redundancy groups, some of which might be primary on one node and some of which might be primary on the other. Alternatively, all redundancy groups can be primary on a single node. One redundancy group's primacy does not affect another redundancy group's primacy. You can create up to 128 redundancy groups.

The maximum number of redundancy groups is equal to the number of redundant Ethernet interfaces that you configure.

You can configure redundancy groups to suit your deployment. You configure a redundancy group to be primary on one node and backup on the other node. You specify the node on which the group is primary by setting priorities for both nodes within a redundancy group configuration. The node with the higher priority takes precedence, and the redundancy group's objects on it are active.

If a redundancy group is configured so that both nodes have the same priority, the node with the lowest node ID number always takes precedence, and the redundancy group is primary on it. In a two-node cluster, node 0 always takes precedence in a priority tie.

Understanding Chassis Cluster Redundancy Group 0: Routing Engines

When you initialize a device in chassis cluster mode, the system creates a redundancy group referred to as redundancy group 0. Redundancy group 0 manages the primacy and failover between the Routing Engines on each node of the cluster. As is the case for all redundancy groups, redundancy group 0 can be primary on only one node at a time. The node on which redundancy group 0 is primary determines which Routing Engine is active in the cluster. A node is considered the primary node of the cluster if its Routing Engine is the active one.

The redundancy group 0 configuration specifies the priority for each node. The following priority scheme determines redundancy group 0 primacy. Note that the three-second value is the interval if the default heartbeat-threshold and heartbeat-interval values are used.

- The node that comes up first (at least three seconds prior to the other node) is the primary node.
If both nodes come up at the same time (or within three seconds of each other):
  • The node with the higher configured priority is the primary node.
  • If there is a tie (either because the same value was configured or because default settings were used), the node with the lower node ID (node 0) is the primary node.

The previous priority scheme applies to redundancy groups x (redundancy groups numbered 1 through 128) as well, provided preempt is not configured. (See "Example: Configuring Chassis Cluster Redundancy Groups" on page 95.)

You cannot enable preemption for redundancy group 0. If you want to change the primary node for redundancy group 0, you must do a manual failover.

Be cautious and judicious in your use of redundancy group 0 manual failovers. A redundancy group 0 failover implies a Routing Engine failover, in which case all processes running on the primary node are killed and then spawned on the new master Routing Engine. This failover could result in loss of state, such as routing state, and degrade performance by introducing system churn.

Understanding Chassis Cluster Redundancy Groups 1 Through 128

You can configure one or more redundancy groups numbered 1 through 128, referred to as redundancy group x. The maximum number of redundancy groups is equal to the number of redundant Ethernet interfaces that you configure (see "Maximum Number of Redundant Ethernet Interfaces Allowed (SRX4100, SRX4200, SRX4600, SRX5400, SRX5600, SRX5800, SRX300, SRX320, SRX340, SRX345, SRX380, and SRX1500)" on page 100). Each redundancy group x acts as an independent unit of failover and is primary on only one node at a time.

Each redundancy group x contains one or more redundant Ethernet interfaces. A redundant Ethernet interface is a pseudo interface that contains at minimum a pair of physical Gigabit Ethernet interfaces or a pair of Fast Ethernet interfaces. If a redundancy group is active on node 0, then the child links of all the associated redundant Ethernet interfaces on node 0 are active. If the redundancy group fails over to node 1, then the child links of all redundant Ethernet interfaces on node 1 become active.

The following priority scheme determines redundancy group x primacy, provided preempt is not configured. If preempt is configured, the node with the higher priority is the primary node. Note that the three-second value is the interval if the default heartbeat-threshold and heartbeat-interval values are used.

  • The node that comes up first (at least three seconds prior to the other node) is the primary node.
  • If both nodes come up at the same time (or within three seconds of each other):
    • The node with the higher configured priority is the primary node.
    • If there is a tie (either because the same value was configured or because default settings were used), the node with the lower node ID (node 0) is the primary node.
On SRX Series chassis clusters, you can configure multiple redundancy groups to load-share traffic across the cluster. For example, you can configure some redundancy groups x to be primary on one node and some redundancy groups x to be primary on the other node. You can also configure a redundancy group x in a one-to-one relationship with a single redundant Ethernet interface to control which interface traffic flows through.

The traffic for a redundancy group is processed on the node where the redundancy group is active. Because more than one redundancy group can be configured, it is possible that the traffic from some redundancy groups is processed on one node while the traffic for other redundancy groups is processed on the other node (depending on where the redundancy group is active). Multiple redundancy groups make it possible for traffic to arrive over an ingress interface of one redundancy group and over an egress interface that belongs to another redundancy group. In this situation, the ingress and egress interfaces might not be active on the same node. When this happens, the traffic is forwarded over the fabric link to the appropriate node.

When you configure a redundancy group x, you must specify a priority for each node to determine the node on which the redundancy group x is primary. The node with the higher priority is selected as primary. The primacy of a redundancy group x can fail over from one node to the other. When a redundancy group x fails over to the other node, its redundant Ethernet interfaces on that node are active and their interfaces are passing traffic.

Table 12 on page 94 gives an example of redundancy group x in an SRX Series chassis cluster and indicates the node on which the group is primary. It shows the redundant Ethernet interfaces and their interfaces configured for redundancy group x.

Some devices have both Gigabit Ethernet ports and Fast Ethernet ports.

Table 12: Example of Redundancy Groups in a Chassis Cluster

<table>
<thead>
<tr>
<th>Group</th>
<th>Primary</th>
<th>Priority</th>
<th>Objects</th>
<th>Interface (Node 0)</th>
<th>Interface (Node 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redundancy group 0</td>
<td>Node 0</td>
<td>Node 0: 254</td>
<td>Routing Engine on node 0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Node 1: 2</td>
<td>Node 1: 2</td>
<td>Routing Engine on node 1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Redundancy group 1</td>
<td>Node 0</td>
<td>Node 0: 254</td>
<td>Redundant Ethernet interface 0</td>
<td>ge-1/0/0</td>
<td>ge-5/0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ge-1/3/0</td>
<td>ge-5/3/0</td>
</tr>
</tbody>
</table>
### Table 12: Example of Redundancy Groups in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Group</th>
<th>Primary</th>
<th>Priority</th>
<th>Objects</th>
<th>Interface (Node 0)</th>
<th>Interface (Node 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redundancy group 2</td>
<td>Node 1</td>
<td>Node 0: 2</td>
<td>Redundant Ethernet interface 2</td>
<td>ge-2/0/0</td>
<td>ge-6/0/0</td>
</tr>
<tr>
<td></td>
<td>Node 1: 254</td>
<td></td>
<td>Redundant Ethernet interface 3</td>
<td>ge-2/3/0</td>
<td>ge-6/3/0</td>
</tr>
<tr>
<td>Redundancy group 3</td>
<td>Node 0</td>
<td>Node 0: 254</td>
<td>Redundant Ethernet interface 4</td>
<td>ge-3/0/0</td>
<td>ge-7/0/0</td>
</tr>
<tr>
<td></td>
<td>Node 1: 2</td>
<td></td>
<td>Redundant Ethernet interface 5</td>
<td>ge-3/3/0</td>
<td>ge-7/3/0</td>
</tr>
</tbody>
</table>

As the example for a chassis cluster in Table 12 on page 94 shows:

- The Routing Engine on node 0 is active because redundancy group 0 is primary on node 0. (The Routing Engine on node 1 is passive, serving as backup.)
- Redundancy group 1 is primary on node 0. Interfaces ge-1/0/0 and ge-1/3/0 belonging to redundant Ethernet interface 0 and redundant Ethernet interface 1 are active and handling traffic.
- Redundancy group 2 is primary on node 1. Interfaces ge-6/0/0 and ge-6/3/0 belonging to redundant Ethernet interface 2 and redundant Ethernet interface 3 are active and handling traffic.
- Redundancy group 3 is primary on node 0. Interfaces ge-3/0/0 and ge-3/3/0 belonging to redundant Ethernet interface 4 and redundant Ethernet interface 5 are active and handling traffic.

---

### Example: Configuring Chassis Cluster Redundancy Groups

#### IN THIS SECTION
- Requirements | 96
- Overview | 96
- Configuration | 96
- Verification | 98
This example shows how to configure a chassis cluster redundancy group.

Requirements

Before you begin:

1. Set the chassis cluster node ID and cluster ID. See "Example: Setting the Chassis Cluster Node ID and Cluster ID" on page 60.

2. Configure the chassis cluster management interface. See "Example: Configuring the Chassis Cluster Management Interface" on page 64.

3. Configure the chassis cluster fabric. See "Example: Configuring the Chassis Cluster Fabric Interfaces" on page 78.

Overview

A chassis cluster redundancy group is an abstract entity that includes and manages a collection of objects. Each redundancy group acts as an independent unit of failover and is primary on only one node at a time.

In this example, you create two chassis cluster redundancy groups, 0 and 1:

- 0—Node 0 is assigned a priority of 100, and node 1 is assigned a priority of 1.
- 1—Node 0 is assigned a priority of 100, and node 1 is assigned a priority of 1.

The preempt option is enabled, and the number of gratuitous ARP requests that an interface can send to notify other network devices of its presence after the redundancy group it belongs to has failed over is 4.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
[edit]
 set chassis cluster redundancy-group 0 node 0 priority 100
 set chassis cluster redundancy-group 0 node 1 priority 1
 set chassis cluster redundancy-group 1 node 0 priority 100
 set chassis cluster redundancy-group 1 node 1 priority 1
 set chassis cluster redundancy-group 1 preempt
 set chassis cluster redundancy-group 1 gratuitous-arp-count 4
```
Step-by-Step Procedure

To configure a chassis cluster redundancy group:

1. Specify a redundancy group's priority for primacy on each node of the cluster. The higher number takes precedence.

   ```
 {primary:node0}[edit]
 user@host# set chassis cluster redundancy-group 0 node 0 priority 100
 user@host# set chassis cluster redundancy-group 0 node 1 priority 1
 user@host# set chassis cluster redundancy-group 1 node 0 priority 100
 user@host# set chassis cluster redundancy-group 1 node 1 priority 1
   ```

2. Configure the node with the higher priority to preempt the device with the lower priority and become primary for the redundancy group.

   ```
 {primary:node0}[edit]
 user@host# set chassis cluster redundancy-group 1 preempt
   ```

   You cannot enable preemption for redundancy group 0. If you want to change the primary node for redundancy group 0, you must do a manual failover.

3. Specify the number of gratuitous ARP requests that an interface can send to notify other network devices of its presence after the redundancy group it belongs to has failed over.

   ```
 {primary:node0}[edit]
 user@host# set chassis cluster redundancy-group 1 gratuitous-arp-count 4
   ```

Results

From configuration mode, confirm your configuration by entering the `show chassis cluster status redundancy-group` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
{primary:node0}[edit]
user@host# show chassis cluster
chassis {
 cluster {
 redundancy-group 0 {
 node 0 priority 100;
 node 1 priority 1;
 }
 redundancy-group 1 {
```
If you are done configuring the device, enter **commit** from configuration mode.

**Verification**

**Verifying Chassis Cluster Redundancy Group Status**

**Purpose**
Verify the status of a chassis cluster redundancy group.

**Action**
From operational mode, enter the `show chassis cluster status redundancy-group` command.

```plaintext
{primary:node0}

user@host> **show chassis cluster status redundancy-group** 1
```

<table>
<thead>
<tr>
<th>Cluster ID: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Redundancy group: 1 , Failover count: 1</td>
</tr>
<tr>
<td>node0</td>
</tr>
<tr>
<td>node1</td>
</tr>
</tbody>
</table>
Chassis Cluster Redundant Ethernet Interfaces

A redundant Ethernet (reth) interface is a pseudo-interface that includes a physical interface from each node of a cluster. A reth interface of the active node is responsible for passing the traffic in a chassis cluster setup. For more information, see the following topics:

Understanding Chassis Cluster Redundant Ethernet Interfaces

A redundant Ethernet interface is a pseudo-interface that includes at minimum one physical interface from each node of the cluster.

For SRX300, SRX320, SRX340, SRX345, SRX380, SRX1500, SRX4100, and SRX4200 devices, the total number of logical interfaces that you can configure across all the redundant Ethernet (reth) interfaces in a chassis cluster deployment is 1024.

For SRX5800, SRX5600, SRX5400, and SRX4600 devices, the total number of logical interfaces that you can configure across all the redundant Ethernet (reth) interfaces in a chassis cluster deployment is 4096.

Starting with Junos OS Release 12.1X45-D10 and later, sampling features such as flow monitoring, packet capture, and port mirroring are supported on reth interfaces.

A redundant Ethernet interface must contain, at minimum, a pair of Fast Ethernet interfaces or a pair of Gigabit Ethernet interfaces that are referred to as child interfaces of the redundant Ethernet interface (the redundant parent). If two or more child interfaces from each node are assigned to the redundant Ethernet interface, a redundant Ethernet interface link aggregation group can be formed. A single redundant Ethernet interface might include a Fast Ethernet interface from node 0 and a Fast Ethernet interface from node 1 or a Gigabit Ethernet interface from node 0 and a Gigabit Ethernet interface from node 1.

On SRX5600, and SRX5800 devices, interfaces such as 10-Gigabit Ethernet (xe), 40-Gigabit Ethernet, and 100-Gigabit Ethernet can be redundant Ethernet (reth) interfaces.

A redundant Ethernet interface is referred to as a reth in configuration commands.
A redundant Ethernet interface's child interface is associated with the redundant Ethernet interface as part of the child interface configuration. The redundant Ethernet interface child interface inherits most of its configuration from its parent.

The maximum number of redundant Ethernet interfaces that you can configure varies, depending on the device type you are using, as shown in Table 13 on page 100. The number of redundant Ethernet interfaces configured determines the number of redundancy groups that can be configured in the SRX devices.

Table 13: Maximum Number of Redundant Ethernet Interfaces Allowed (SRX4100, SRX4200, SRX4600, SRX5400, SRX5600, SRX5800, SRX300, SRX320, SRX340, SRX345, SRX380, and SRX1500)

<table>
<thead>
<tr>
<th>Device</th>
<th>Maximum Number of reth Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX4600</td>
<td>128</td>
</tr>
<tr>
<td>SRX4100, SRX4200</td>
<td>128</td>
</tr>
<tr>
<td>SRX5400, SRX5600, SRX5800</td>
<td>128</td>
</tr>
<tr>
<td>SRX300, SRX320, SRX340, SRX345, SRX380</td>
<td>128</td>
</tr>
<tr>
<td>SRX1500</td>
<td>128</td>
</tr>
</tbody>
</table>

You can enable promiscuous mode on redundant Ethernet interfaces. When promiscuous mode is enabled on a Layer 3 Ethernet interface, all packets received on the interface are sent to the central point or Services Processing Unit (SPU), regardless of the destination MAC address of the packet. If you enable promiscuous mode on a redundant Ethernet interface, promiscuous mode is then enabled on any child physical interfaces.

To enable promiscuous mode on a redundant Ethernet interface, use the promiscuous-mode statement at the [edit interfaces] hierarchy.

A redundant Ethernet interface inherits its failover properties from the redundancy group x that it belongs to. A redundant Ethernet interface remains active as long as its primary child interface is available or active. For example, if reth0 is associated with redundancy group 1 and redundancy group 1 is active on node 0, then reth0 is up as long as the node 0 child of reth0 is up.

Point-to-Point Protocol over Ethernet (PPPoE) over redundant Ethernet (reth) interface is supported on SRX300, SRX320, SRX340, SRX345, and SRX380 devices in chassis cluster mode. This feature allows an existing PPPoE session to continue without starting a new PPPoE session in the event of a failover.
On SRX300, SRX320, SRX340, SRX345, and SRX380 devices, the number of child interfaces is restricted to 16 on the reth interface (eight per node).

When using SRX Series devices in chassis cluster mode, it is not recommended to configure any local interfaces (or combination of local interfaces) along with redundant Ethernet interfaces.

For example:

The following configuration of chassis cluster with redundant Ethernet interfaces in which interfaces are configured as local interfaces:

```plaintext
ge-2/0/2 {
 unit 0 {
 family inet {
 address 1.1.1.1/24;
 }
 }
}
```

The following configuration of chassis cluster redundant Ethernet interfaces, in which interfaces are configured as part of redundant Ethernet interfaces, is supported:

```plaintext
interfaces {
 ge-2/0/2 {
 gigether-options {
 redundant-parent reth2;
 }
 }
 reth2 {
 redundant-ether-options {
 redundancy-group 1;
 }
 unit 0 {
 family inet {
 address 1.1.1.1/24;
 }
 }
 }
}
```

You can enable promiscuous mode on redundant Ethernet interfaces. When promiscuous mode is enabled on a Layer 3 Ethernet interface, all packets received on the interface are sent to the central point or Services Processing Unit (SPU), regardless of the destination MAC address of the packet. If you enable promiscuous mode on a redundant Ethernet interface, promiscuous mode is then enabled on any child physical interfaces.
To enable promiscuous mode on a redundant Ethernet interface, use the `promiscuous-mode` statement at the `[edit interfaces] hierarchy.

SEE ALSO

| Understanding Link Aggregation Groups in a Chassis Cluster | 252 |

### Example: Configuring Chassis Cluster Redundant Ethernet Interfaces

This example shows how to configure chassis cluster redundant Ethernet interfaces. A redundant Ethernet interface is a pseudointerface that contains two or more physical interfaces, with at least one from each node of the cluster.

### Requirements

Before you begin:

- Understand how to set the chassis cluster node ID and cluster ID. See “Example: Setting the Chassis Cluster Node ID and Cluster ID” on page 60.
- Set the number of redundant Ethernet interfaces.
- Understand how to set the chassis cluster fabric. See “Example: Configuring the Chassis Cluster Fabric Interfaces” on page 78.
- Understand how to set the chassis cluster node redundancy groups. See “Example: Configuring Chassis Cluster Redundancy Groups” on page 95.
Overview

After physical interfaces have been assigned to the redundant Ethernet interface, you set the configuration that pertains to them at the level of the redundant Ethernet interface, and each of the child interfaces inherits the configuration.

If multiple child interfaces are present, then the speed of all the child interfaces must be the same.

A redundant Ethernet interface is referred to as a reth in configuration commands.

You can enable promiscuous mode on redundant Ethernet interfaces. When promiscuous mode is enabled on a Layer 3 Ethernet interface, all packets received on the interface are sent to the central point or Services Processing Unit regardless of the destination MAC address of the packet. If you enable promiscuous mode on a redundant Ethernet interface, promiscuous mode is then enabled on any child physical interfaces.

To enable promiscuous mode on a redundant Ethernet interface, use the promiscuous-mode statement at the [edit interfaces] hierarchy.

Configuration

Configuring Chassis Cluster Redundant Ethernet Interfaces for IPv4 Addresses

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
[primary:node0][edit]
 set interfaces ge-0/0/0 gigether-options redundant-parent reth1
 set interfaces ge-7/0/0 gigether-options redundant-parent reth1
 set interfaces fe-1/0/0 fast-ether-options redundant-parent reth2
 set interfaces fe-8/0/0 fast-ether-options redundant-parent reth2
 set interfaces reth1 redundant-ether-options redundancy-group 1
 set interfaces reth1 unit 0 family inet mtu 1500
 set interfaces reth1 unit 0 family inet address 10.1.1.3/24
 set security zones security-zone Trust interfaces reth1.0
```

Step-by-Step Procedure

To configure redundant Ethernet interfaces for IPv4:

1. Bind redundant child physical interfaces to reth1.

```
[primary:node0][edit]
user@host# set interfaces ge-0/0/0 gigether-options redundant-parent reth1
```
2. Bind redundant child physical interfaces to reth2.

   ```
 [primary:node0][edit]
 user@host# set interfaces ge-7/0/0 gigether-options redundant-parent reth1
 user@host# set interfaces fe-1/0/0 fast-ether-options redundant-parent reth2
 user@host# set interfaces fe-8/0/0 fast-ether-options redundant-parent reth2
   ```

3. Add reth1 to redundancy group 1.

   ```
 [primary:node0][edit]
 user@host# set interfaces reth1 redundant-ether-options redundancy-group 1
   ```

4. Set the MTU size.

   ```
 [primary:node0][edit]
 user@host# set interfaces reth1 unit 0 family inet mtu 1500
   ```

   The maximum transmission unit (MTU) set on the reth interface can be different from the MTU on the child interface.

5. Assign an IP address to reth1.

   ```
 [primary:node0][edit]
 user@host# set interfaces reth1 unit 0 family inet address 10.1.1.3/24
   ```

6. Associate reth1.0 to the trust security zone.

   ```
 [primary:node0][edit]
 user@host# set security zones security-zone Trust interfaces reth1.0
   ```

**Configuring Chassis Cluster Redundant Ethernet Interfaces for IPv6 Addresses**

**CLI Quick Configuration**

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.
Step-by-Step Procedure

To configure redundant Ethernet interfaces for IPv6:

1. Bind redundant child physical interfaces to reth1.

   ```
 [primary:node0][edit]
 user@host# set interfaces ge-0/0/0 gigether-options redundant-parent reth1
 user@host# set interfaces ge-7/0/0 gigether-options redundant-parent reth1
   ```

2. Bind redundant child physical interfaces to reth2.

   ```
 [primary:node0][edit]
 user@host# set interfaces fe-1/0/0 fast-ether-options redundant-parent reth2
 user@host# set interfaces fe-8/0/0 fast-ether-options redundant-parent reth2
   ```

3. Add reth2 to redundancy group 1.

   ```
 [primary:node0][edit]
 user@host# set interfaces reth2 redundant-ether-options redundancy-group 1
   ```

4. Set the MTU size.

   ```
 [primary:node0][edit]
 user@host# set interfaces reth2 unit 0 family inet6 mtu 1500
   ```

5. Assign an IP address to reth2.

   ```
 [primary:node0][edit]
 user@host# set interfaces reth2 unit 0 family inet6 address 2010:2010:201::2/64
   ```
6. Associate reth2.0 to the trust security zone.

```
{primary:node0}[edit]
user@host# set security zones security-zone Trust interfaces reth2.0
```

**Step-by-Step Procedure**

To set the number of redundant Ethernet interfaces for a chassis cluster:

1. Specify the number of redundant Ethernet interfaces:

```
{primary:node0}[edit]
user@host# set chassis cluster reth-count 2
```

**Results**

From configuration mode, confirm your configuration by entering the `show interfaces` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For brevity, this `show` command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).
If you are done configuring the device, enter `commit` from configuration mode.

Verification

**IN THIS SECTION**

- Verifying Chassis Cluster Redundant Ethernet Interfaces  | 108
- Verifying Chassis Cluster Control Links  | 108

Confirm that the configuration is working properly.
Verifying Chassis Cluster Redundant Ethernet Interfaces

Purpose
Verify the configuration of the chassis cluster redundant Ethernet interfaces.

Action
From operational mode, enter the `show interfaces terse | match reth1` command:

{primary:node0}

```
user@host> show interfaces terse | match reth1

ge-0/0/0.0 up up aenet --> reth1.0
ge-7/0/0.0 up up aenet --> reth1.0
reth1 up up
reth1.0 up up inet 10.1.1.3/24
```

Verifying Chassis Cluster Control Links

Purpose
Verify information about the control interface in a chassis cluster configuration.

Action
From operational mode, enter the `show chassis cluster interfaces` command:

{primary:node0}

```
user@host> show chassis cluster interfaces

Control link status: Up

Control interfaces:

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Monitored-Status</th>
<th>Internal-SA</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>em0</td>
<td>Up</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>1</td>
<td>em1</td>
<td>Up</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Fabric link status: Up

Fabric interfaces:

<table>
<thead>
<tr>
<th>Name</th>
<th>Child-interface</th>
<th>Status (Physical/Monitored)</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>fab0</td>
<td>xe-3/0/6</td>
<td>Up / Up</td>
<td>Enabled</td>
</tr>
<tr>
<td>fab0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Redundant-ethernet Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>reth0</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>reth1</td>
<td>Up</td>
<td>1</td>
</tr>
</tbody>
</table>

Requirements

Before you begin:

- Understand how to set the chassis cluster node ID and cluster ID. See “Example: Setting the Chassis Cluster Node ID and Cluster ID” on page 60.
- Understand how to set the chassis cluster node redundancy groups. See “Example: Configuring Chassis Cluster Redundancy Groups” on page 95.

This example shows how to configure child links or physical links on SRX4600 device in chassis cluster mode.

Example: Configuring Chassis Cluster Redundant Ethernet Interfaces on SRX4600
Overview

You can configure up to eight number of child links for a reth bundle on SRX4600 devices per chassis.

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```plaintext
[primary:node0][edit]
set interfaces xe-1/0/0:0 gigether-options redundant-parent reth0
set interfaces xe-1/0/0:1 gigether-options redundant-parent reth0
set interfaces xe-1/0/0:2 gigether-options redundant-parent reth0
set interfaces xe-1/0/0:3 gigether-options redundant-parent reth0
set interfaces xe-1/0/1:0 gigether-options redundant-parent reth0
set interfaces xe-1/0/1:1 gigether-options redundant-parent reth0
set interfaces xe-1/0/1:2 gigether-options redundant-parent reth0
set interfaces xe-1/0/1:3 gigether-options redundant-parent reth0
set interfaces xe-1/1/0 gigether-options redundant-parent reth1
set interfaces xe-1/1/1 gigether-options redundant-parent reth1
set interfaces reth0 redundant-ether-options redundancy-group 1
set interfaces reth0 unit 0 family inet address 192.0.2.1/24
set interfaces reth1 redundant-ether-options redundancy-group 1
set interfaces reth1 redundant-ether-options lacp active
set interfaces reth1 unit 0 family inet address 198.51.100.1/24
set security zones security-zone Trust-zone interfaces reth0.0
set security zones security-zone Untrust-zone interfaces reth1.0
set chassis cluster reth-count 10
```

Configuring redundant Ethernet interfaces

Step-by-Step Procedure
To configure redundant Ethernet interfaces:

1. Bind eight redundant child physical interfaces to reth0.

```plaintext
[primary:node0][edit]
user@host# set interfaces xe-1/0/0:0 gigether-options redundant-parent reth0
user@host# set interfaces xe-1/0/0:1 gigether-options redundant-parent reth0
user@host# set interfaces xe-1/0/0:2 gigether-options redundant-parent reth0
user@host# set interfaces xe-1/0/0:3 gigether-options redundant-parent reth0
user@host# set interfaces xe-1/0/1:0 gigether-options redundant-parent reth0
```
2. Bind redundant child physical interfaces to reth1.

 {primary:node0}[edit]
 user@host# set interfaces xe-1/1/0 gigether-options redundant-parent reth1
 user@host# set interfaces xe-1/1/1 gigether-options redundant-parent reth1

3. Specify the number of redundant Ethernet interfaces:

 {primary:node0}[edit]
 user@host# set chassis cluster reth-count 10

4. Add reth0 to redundancy group 1.

 {primary:node0}[edit]
 user@host# set interfaces reth0 redundant-ether-options redundancy-group 1

5. Assign an IP address to reth0.

 {primary:node0}[edit]
 user@host# set interfaces reth0 unit 0 family inet address 192.0.2.1/24

6. Add reth1 to redundancy group 1.

 {primary:node0}[edit]
 user@host# set interfaces reth1 redundant-ether-options redundancy-group 1
 user@host# set interfaces reth1 redundant-ether-options lacp active

7. Assign an IP address to reth1.

 {primary:node0}[edit]
 user@host# set interfaces reth1 unit 0 family inet address 198.51.100.1/24

8. Associate reth0.0 to the trust security zone.
9. Associate reth1.0 to untrust security zone.

```
{primary:node0}[edit]
user@host# set security zones security-zone Untrust-zone interfaces reth1.0
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For brevity, this `show` command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).
xe-1/0/1:1 {
gigether-options {
 redundant-parent reth0;
}
}
xe-1/0/1:2 {
gigether-options {
 redundant-parent reth0;
}
}
xe-1/0/1:3 {
gigether-options {
 redundant-parent reth0;
}
}
xe-1/1/0 {
gigether-options {
 redundant-parent reth1;
}
}
xe-1/1/1 {
gigether-options {
 redundant-parent reth1;
}
}
reth0 {
 redundant-ether-options {
 redundancy-group 1;
 }
 unit 0 {
 family inet {
 address 192.0.2.1/24;
 }
 }
}
reth1 {
 redundant-ether-options {
 redundancy-group 1;
 lacp {
 active;
 }
 }
}
If you are done configuring the device, enter **commit** from configuration mode.

Verification

IN THIS SECTION

- Verify Chassis Cluster Redundant Ethernet Interfaces | 114
- Verifying Chassis Cluster Control Links | 115

Confirm that the configuration is working properly.

Verify Chassis Cluster Redundant Ethernet Interfaces

Purpose

Verify the configuration of the chassis cluster redundant Ethernet interfaces on SRX4600 device.

Action

From operational mode, enter the **show interfaces terse | match reth0** command:

```bash
{primary:node0}

user@host> show interfaces terse | match reth0

xe-1/0/0:0.0  up  down aenet  --> reth0.0
xe-1/0/0:1.0  up  down aenet  --> reth0.0
xe-1/0/0:2.0  up  down aenet  --> reth0.0
xe-1/0/0:3.0  up  down aenet  --> reth0.0
xe-1/0/1:0.0  up  down aenet  --> reth0.0
xe-1/0/1:1.0  up  down aenet  --> reth0.0
xe-1/0/1:2.0  up  down aenet  --> reth0.0
xe-1/0/1:3.0  up  down aenet  --> reth0.0
reth0  up  down
reth0.0  up  down inet  192.0.2.1/24
```
Meaning
You can view the maximum number of configured child link interfaces of a reth bundle from four to eight in one chassis.

Verifying Chassis Cluster Control Links

Purpose
Verify information about the control interface in a chassis cluster configuration.

Action
From operational mode, enter the `show chassis cluster interfaces` command:

```
{primary:node0}
user@host> show chassis cluster interfaces
```

Control link status: Down

Control interfaces:

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Monitored-Status</th>
<th>Internal-SA</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>em0</td>
<td>Down</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>1</td>
<td>em1</td>
<td>Down</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Fabric link status: Down

Fabric interfaces:

<table>
<thead>
<tr>
<th>Name</th>
<th>Child-interface</th>
<th>Status</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>fab0</td>
<td>xe-0/0/2</td>
<td>Up / Down</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Redundant-ethernet Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>reth0</td>
<td>Down</td>
<td>1</td>
</tr>
<tr>
<td>reth1</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>reth2</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth3</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth4</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth5</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth6</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth7</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth8</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth9</td>
<td>Down</td>
<td>Not configured</td>
</tr>
</tbody>
</table>
SRX Series Services gateways can be configured to operate in cluster mode, where a pair of devices can be connected together and configured to operate like a single device to provide high availability. When configured as a chassis cluster, the two nodes back up each other, with one node acting as the primary
device and the other as the secondary device, ensuring stateful failover of processes and services in the event of system or hardware failure. If the primary device fails, the secondary device takes over processing of traffic. For more information, see the following topics:

Example: Configuring Chassis Clustering on an SRX Series Devices

This example shows how to set up chassis clustering on an SRX Series device (using SRX1500 as example).

Requirements

Before you begin:

- Physically connect the two devices and ensure that they are the same models. For example, on the SRX1500 Services Gateway, connect the dedicated control ports on node 0 and node 1.
 - For SRX300, SRX320, SRX340, SRX345, and SRX380 devices, connect ge-0/0/1 on node 0 to ge-0/0/1 on node 1.
- Set the two devices to cluster mode and reboot the devices. You must enter the following operational mode commands on both devices, for example:
 - On node 0:
    ```
    user@host> set chassis cluster cluster-id 1 node 0 reboot
    ```
 - On node 1:
    ```
    user@host> set chassis cluster cluster-id 1 node 1 reboot
    ```

The cluster-id is the same on both devices, but the node ID must be different because one device is node 0 and the other device is node 1. The range for the cluster-id is 0 through 255 and setting it to 0 is equivalent to disabling cluster mode.
After clustering occurs, continuing with the SRX1500 Services Gateway example, the ge-0/0/0 interface on node 1 changes to ge-7/0/0.

After clustering occurs,

- For SRX300 devices, the ge-0/0/1 interface on node 1 changes to ge-1/0/1.
- For SRX320 devices, the ge-0/0/1 interface on node 1 changes to ge-3/0/1.
- For SRX340 and SRX345 devices, the ge-0/0/1 interface on node 1 changes to ge-5/0/1.

After the reboot, the following interfaces are assigned and repurposed to form a cluster:

- For SRX300 and SRX320 devices, ge-0/0/0 becomes fxp0 and is used for individual management of the chassis cluster.
- SRX340 and SRX345 devices contain a dedicated port fxp0.
- For all SRX300, SRX320, SRX340, SRX345, and SRX380 devices, ge-0/0/1 becomes fxp1 and is used as the control link within the chassis cluster.
- The other interfaces are also renamed on the secondary device.

See “Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming” on page 41 for complete mapping of the SRX Series devices.

From this point forward, configuration of the cluster is synchronized between the node members and the two separate devices function as one device.

Overview

This example shows how to set up chassis clustering on an SRX Series device using the SRX1500 device as example.

The node 1 renumbers its interfaces by adding the total number of system FPCs to the original FPC number of the interface. See Table 14 on page 118 for interface renumbering on the SRX Series device.

<table>
<thead>
<tr>
<th>SRX Series Services Gateway</th>
<th>Renumbering Constant</th>
<th>Node 0 Interface Name</th>
<th>Node 1 Interface Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX300</td>
<td>1</td>
<td>ge-0/0/0</td>
<td>ge-1/0/0</td>
</tr>
<tr>
<td>SRX320</td>
<td>3</td>
<td>ge-0/0/0</td>
<td>ge-3/0/0</td>
</tr>
<tr>
<td>SRX340</td>
<td>5</td>
<td>ge-0/0/0</td>
<td>ge-5/0/0</td>
</tr>
<tr>
<td>SRX345</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRX380</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 14: SRX Series Services Gateways Interface Renumbering (continued)

<table>
<thead>
<tr>
<th>SRX Series Services Gateway</th>
<th>Renumbering Constant</th>
<th>Node 0 Interface Name</th>
<th>Node 1 Interface Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX1500</td>
<td>7</td>
<td>ge-0/0/0</td>
<td>ge-7/0/0</td>
</tr>
</tbody>
</table>

After clustering is enabled, the system creates f xp0, f xp1, and em0 interfaces. Depending on the device, the f xp0, f xp1, and em0 interfaces that are mapped to a physical interface are not user defined. However, the fab interface is user defined.

Figure 25 on page 119 shows the topology used in this example.

Figure 25: SRX Series Devices (SRX1500) In Chassis Cluster

Configuration

CLI Quick Configuration

To quickly configure a chassis cluster on an SRX1500 Services Gateway, copy the following commands and paste them into the CLI:

On {primary:node0}

```
[edit]
set groups node0 system host-name srx1500-1
```
set groups node0 interfaces fxp0 unit 0 family inet address 192.16.35.46/24
set groups node1 system host-names rx1500-2
set groups node1 interfaces fxp0 unit 0 family inet address 192.16.35.47/24
set groups node0 system backup-router <backup next-hop from fxp0> destination <management network/mask>
set groups node1 system backup-router <backup next-hop from fxp0> destination <management network/mask>
set apply-groups "${node}"
set interfaces fab0 fabric-options member-interfaces ge-0/0/1
set interfaces fab1 fabric-options member-interfaces ge-7/0/1
set chassis cluster redundancy-group 0 node 0 priority 100
set chassis cluster redundancy-group 0 node 1 priority 1
set chassis cluster redundancy-group 1 node 0 priority 100
set chassis cluster redundancy-group 1 node 1 priority 1
set chassis cluster redundancy-group 1 interface-monitor ge-0/0/5 weight 255
set chassis cluster redundancy-group 1 interface-monitor ge-0/0/4 weight 255
set chassis cluster redundancy-group 1 interface-monitor ge-7/0/5 weight 255
set chassis cluster redundancy-group 1 interface-monitor ge-7/0/4 weight 255
set chassis cluster reth-count 2
set interfaces ge-0/0/5 gigether-options redundant-parent reth1
set interfaces ge-7/0/5 gigether-options redundant-parent reth1
set interfaces reth1 redundant-ether-options redundancy-group 1
set interfaces reth1 unit 0 family inet address 203.0.113.233/24
set interfaces ge-0/0/4 gigether-options redundant-parent reth0
set interfaces ge-7/0/4 gigether-options redundant-parent reth0
set interfaces reth0 redundant-ether-options redundancy-group 1
set interfaces reth0 unit 0 family inet address 198.51.100.1/24
set security zones security-zone Untrust interfaces reth1.0
set security zones security-zone Trust interfaces reth0.0

If you are configuring SRX300, SRX320, SRX340, SRX345, and SRX380 devices, see Table 15 on page 120 for command and interface settings for your device and substitute these commands into your CLI.

Table 15: SRX Series Services Gateways Interface Settings

<table>
<thead>
<tr>
<th>Command</th>
<th>SRX300</th>
<th>SRX320</th>
<th>SRX340</th>
<th>SRX345</th>
<th>SRX380</th>
</tr>
</thead>
<tbody>
<tr>
<td>set interfaces fab0 fabric-options member-interfaces</td>
<td>ge-0/0/2</td>
<td>ge-0/0/2</td>
<td>ge-0/0/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>set interfaces fab1 fabric-options member-interfaces</td>
<td>ge-1/0/2</td>
<td>ge-3/0/2</td>
<td>ge-5/0/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command</td>
<td>SRX300</td>
<td>SRX320</td>
<td>SRX340</td>
<td>SRX345</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>set chassis cluster redundancy-group 1</td>
<td>ge-0/0/3 weight 255</td>
<td>ge-0/0/3 weight 255</td>
<td>ge-0/0/3 weight 255</td>
<td>ge-0/0/3 weight 255</td>
<td></td>
</tr>
<tr>
<td>interface-monitor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set chassis cluster redundancy-group 1</td>
<td>ge-0/0/4 weight 255</td>
<td>ge-0/0/4 weight 255</td>
<td>ge-0/0/4 weight 255</td>
<td>ge-0/0/4 weight 255</td>
<td></td>
</tr>
<tr>
<td>interface-monitor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set chassis cluster redundancy-group 1</td>
<td>ge-1/0/3 weight 255</td>
<td>ge-3/0/3 weight 255</td>
<td>ge-5/0/3 weight 255</td>
<td>ge-5/0/4 weight 255</td>
<td></td>
</tr>
<tr>
<td>interface-monitor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set chassis cluster redundancy-group 1</td>
<td>ge-1/0/4 weight 255</td>
<td>ge-3/0/4 weight 255</td>
<td>ge-5/0/4 weight 255</td>
<td>ge-5/0/4 weight 255</td>
<td></td>
</tr>
<tr>
<td>interface-monitor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set interfaces</td>
<td>ge-0/0/3 gigether-options redundant-parent reth0</td>
<td>ge-0/0/3 gigether-options redundant-parent reth0</td>
<td>ge-0/0/3 gigether-options redundant-parent reth0</td>
<td>ge-0/0/3 gigether-options redundant-parent reth0</td>
<td></td>
</tr>
<tr>
<td>set interfaces</td>
<td>ge-0/0/4 gigether-options redundant-parent reth1</td>
<td>ge-0/0/4 gigether-options redundant-parent reth1</td>
<td>ge-0/0/4 gigether-options redundant-parent reth1</td>
<td>ge-0/0/4 gigether-options redundant-parent reth1</td>
<td></td>
</tr>
<tr>
<td>set interfaces</td>
<td>ge-1/0/3 gigether-options redundant-parent reth0</td>
<td>ge-3/0/3 gigether-options redundant-parent reth0</td>
<td>ge-5/0/3 gigether-options redundant-parent reth0</td>
<td>ge-5/0/3 gigether-options redundant-parent reth0</td>
<td></td>
</tr>
<tr>
<td>set interfaces</td>
<td>ge-1/0/4 gigether-options redundant-parent reth1</td>
<td>ge-3/0/4 gigether-options redundant-parent reth1</td>
<td>ge-5/0/4 gigether-options redundant-parent reth1</td>
<td>ge-5/0/4 gigether-options redundant-parent reth1</td>
<td></td>
</tr>
</tbody>
</table>

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure a chassis cluster on an SRX Series device:

Perform Steps 1 through 5 on the primary device (node 0). They are automatically copied over to the secondary device (node 1) when you execute a **commit** command. The configurations are synchronized because the control link and fab link interfaces are activated. To verify the configurations, use the **show interface terse** command and review the output.

1. Set up hostnames and management IP addresses for each device using configuration groups. These configurations are specific to each device and are unique to its specific node.

   ```
   user@host# set groups node0 system host-names rx1500-1
   user@host# set groups node0 interfaces fxp0 unit 0 family inet address 192.16.35.46/24
   user@host# set groups node1 system host-names rx1500-2
   user@host# set groups node1 interfaces fxp0 unit 0 family inet address 192.16.35.47/24
   ```

 Set the default route and backup router for each node.

   ```
   user@host# set groups node0 system backup-router <backup next-hop from fxp0> destination <management network/mask>
   user@host# set groups node1 system backup-router <backup next-hop from fxp0> destination <management network/mask>
   ```

 Set the **apply-group** command so that the individual configurations for each node set by the previous commands are applied only to that node.

   ```
   user@host# set apply-groups "$[node]"
   ```

2. Define the interfaces used for the fab connection (data plane links for RTO sync) by using physical ports ge-0/0/1 from each node. These interfaces must be connected back-to-back, or through a Layer 2 infrastructure.

   ```
   user@host# set interfaces fab0 fabric-options member-interfaces ge-0/0/1
   user@host# set interfaces fab1 fabric-options member-interfaces ge-7/0/1
   ```

3. Set up redundancy group 0 for the Routing Engine failover properties, and set up redundancy group 1 (all interfaces are in one redundancy group in this example) to define the failover properties for the redundant Ethernet interfaces.

   ```
   user@host# set chassis cluster redundancy-group 0 node 0 priority 100
   ```
4. Set up interface monitoring to monitor the health of the interfaces and trigger redundancy group failover.

We do not recommend Interface monitoring for redundancy group 0 because it causes the control plane to switch from one node to another node in case interface flap occurs.

```
user@host# set chassis cluster redundancy-group 0 node 1 priority 1
user@host# set chassis cluster redundancy-group 1 node 0 priority 100
user@host# set chassis cluster redundancy-group 1 node 1 priority 1
```

```
user@host# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/5 weight 255
user@host# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/4 weight 255
user@host# set chassis cluster redundancy-group 1 interface-monitor ge-7/0/5 weight 255
user@host# set chassis cluster redundancy-group 1 interface-monitor ge-7/0/4 weight 255
```

Interface failover only occurs after the weight reaches 0.

5. Set up the redundant Ethernet (reth) interfaces and assign the redundant interface to a zone.

```
user@host# set chassis cluster reth-count 2
user@host# set interfaces ge-0/0/5 gigether-options redundant-parent reth1
user@host# set interfaces ge-7/0/5 gigether-options redundant-parent reth1
user@host# set interfaces reth1 redundant-ether-options redundancy-group 1
user@host# set interfaces reth1 unit 0 family inet address 203.0.113.233/24
user@host# set interfaces ge-0/0/4 gigether-options redundant-parent reth0
user@host# set interfaces ge-7/0/4 gigether-options redundant-parent reth0
user@host# set interfaces reth0 redundant-ether-options redundancy-group 1
user@host# set interfaces reth0 unit 0 family inet address 198.51.100.1/24
user@host# set security zones security-zone Untrust interfaces reth1.0
user@host# set security zones security-zone Trust interfaces reth0.0
```

Results

From operational mode, confirm your configuration by entering the `show configuration` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For brevity, this `show` command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).

```
> show configuration
```
version x.xx.x;
groups {
 node0 {
 system {
 host-name SRX1500-1;
 backup-router 10.100.22.1 destination 66.129.243.0/24;
 }
 interfaces {
 fxp0 {
 unit 0 {
 family inet {
 address 192.16.35.46/24;
 }
 }
 }
 }
 }
 node1 {
 system {
 host-name SRX1500-2;
 backup-router 10.100.21.1 destination 66.129.243.0/24; }
 interfaces {
 fxp0 {
 unit 0 {
 family inet {
 address 192.16.35.47/24;
 }
 }
 }
 }
 }
}
apply-groups "${node}";
chassis {
 cluster {
 reth-count 2;
 redundancy-group 0 {
 node 0 priority 100;
 node 1 priority 1;
 }
 redundancy-group 1 {
 node 0 priority 100;
 node 1 priority 1;
 }
 }
}
ge-0/0/5 weight 255;
ge-0/0/4 weight 255;
ge-7/0/5 weight 255;
ge-7/0/4 weight 255;
}
}
}
}
}
}
}
}
interfaces {

ge-0/0/5 {

gigether-options {
 redundant-parent reth1;
}
unit 0 {
 family inet {
 address 203.0.113.233/24;
 }
}
}

ge-0/0/4 {

gigether-options {
 redundant-parent reth0;
}
}

ge-7/0/5 {

gigether-options {
 redundant-parent reth1;
}
}
}
ge-7/0/4 {

gigether-options {
 redundant-parent reth0;
}
}
}
fab0 {

fabric-options {
 member-interfaces {
 ge-0/0/1;
 }
}
}
fab1 {

fabric-options {
 member-interfaces {

ge-7/0/1;

}
}

reth0 {
redundant-ether-options {
redundancy-group 1;
}
unit 0 {
family inet {
address 198.51.100.1/24;
}
}
}

reth1 {
redundant-ether-options {
redundancy-group 1;
}
unit 0 {
family inet {
address 203.0.113.233/24;
}
}
}
}

...
security {
zones {
security-zone Untrust {
interfaces {
reth1.0;
}
}
security-zone Trust {
interfaces {
reth0.0;
}
}
}
policies {
from-zone Trust to-zone Untrust {
policy 1 {
match {
source-address any;
If you are done configuring the device, enter `commit` from configuration mode.

Verification

IN THIS SECTION

- Verifying Chassis Cluster Status | 127
- Verifying Chassis Cluster Interfaces | 128
- Verifying Chassis Cluster Statistics | 128
- Verifying Chassis Cluster Control Plane Statistics | 129
- Verifying Chassis Cluster Data Plane Statistics | 130
- Verifying Chassis Cluster Redundancy Group Status | 131
- Troubleshooting with Logs | 131

Confirm that the configuration is working properly.

Verifying Chassis Cluster Status

Purpose
Verify the chassis cluster status, failover status, and redundancy group information.

Action
From operational mode, enter the `show chassis cluster status` command.

```
{primary:node0}
```

```
user@host# show chassis cluster status
```
Cluster ID: 1

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>100</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>1</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Redundancy group: 0, Failover count: 1

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>0</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>0</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Redundancy group: 1, Failover count: 1

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>0</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>0</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Verifying Chassis Cluster Interfaces

Purpose
Verify information about chassis cluster interfaces.

Action
From operational mode, enter the `show chassis cluster interfaces` command.

{primary:node0}

user@host> show chassis cluster interfaces

Control link name: em0

Redundant-ethernet Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>reth0</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>reth1</td>
<td>Up</td>
<td>1</td>
</tr>
</tbody>
</table>

Interface Monitoring:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Weight</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-7/0/5</td>
<td>255</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-7/0/4</td>
<td>255</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-0/0/5</td>
<td>255</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-0/0/4</td>
<td>255</td>
<td>Up</td>
<td>1</td>
</tr>
</tbody>
</table>

Verifying Chassis Cluster Statistics

Purpose
Verify information about the statistics of the different objects being synchronized, the fabric and control interface hellos, and the status of the monitored interfaces in the cluster.
Action

From operational mode, enter the `show chassis cluster statistics` command.

```
{primary:node0}
user@host> show chassis cluster statistics
```

Control link statistics:

Control link 0:
- Heartbeat packets sent: 2276
- Heartbeat packets received: 2280
- Heartbeat packets errors: 0

Fabric link statistics:

Child link 0
- Probes sent: 2272
- Probes received: 597

Services Synchronized:

<table>
<thead>
<tr>
<th>Service name</th>
<th>RTOs sent</th>
<th>RTOs received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation context</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource manager</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Session create</td>
<td>161</td>
<td>0</td>
</tr>
<tr>
<td>Session close</td>
<td>148</td>
<td>0</td>
</tr>
<tr>
<td>Session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gate create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPSec VPN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Firewall user authentication</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MGCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H323 ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SIP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPTP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RPC ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RTSP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RAS ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC address learning</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GPRS GTP</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Verifying Chassis Cluster Control Plane Statistics

Purpose
Verify information about chassis cluster control plane statistics (heartbeats sent and received) and the fabric link statistics (probes sent and received).

Action

From operational mode, enter the `show chassis cluster control-plane statistics` command.

{primary:node0}

user@host> `show chassis cluster control-plane statistics`

Control link statistics:
 Control link 0:
 Heartbeat packets sent: 2294
 Heartbeat packets received: 2298
 Heartbeat packets errors: 0

Fabric link statistics:
 Child link 0
 Probes sent: 2290
 Probes received: 615

Verifying Chassis Cluster Data Plane Statistics

Purpose

Verify information about the number of RTOs sent and received for services.

Action

From operational mode, enter the `show chassis cluster data-plane statistics` command.

{primary:node0}

user@host> `show chassis cluster data-plane statistics`

Services Synchronized:

<table>
<thead>
<tr>
<th>Service name</th>
<th>RTOs sent</th>
<th>RTOs received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation context</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource manager</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Session create</td>
<td>161</td>
<td>0</td>
</tr>
<tr>
<td>Session close</td>
<td>148</td>
<td>0</td>
</tr>
<tr>
<td>Session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gate create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Verifying Chassis Cluster Redundancy Group Status

Purpose
Verify the state and priority of both nodes in a cluster and information about whether the primary node has been preempted or whether there has been a manual failover.

Action
From operational mode, enter the `chassis cluster status redundancy-group` command.

```
{primary:node0}
user@host> show chassis cluster status redundancy-group 1
```

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>100</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>50</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Troubleshooting with Logs

Purpose
Use these logs to identify any chassis cluster issues. You should run these logs on both nodes.

Action
From operational mode, enter these `show log` commands.

```
user@host> show log jsrpdl
```
user@host> show log chassisd
user@host> show log messages
user@host> show log dcd
user@host> show traceoptions

SEE ALSO

Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming | 41

Viewing a Chassis Cluster Configuration

Purpose
Display chassis cluster verification options.

Action
From the CLI, enter the `show chassis cluster ?` command:

```
{primary:node1}
```

user@host> show chassis cluster ?

Possible completions:
- interfaces: Display chassis-cluster interfaces
- statistics: Display chassis-cluster traffic statistics
- status: Display chassis-cluster status

Viewing Chassis Cluster Statistics

Purpose
Display information about chassis cluster services and interfaces.

Action
From the CLI, enter the `show chassis cluster statistics` command:

```
{primary:node1}
user@host> show chassis cluster statistics
```

Control link statistics:

- Control link 0:
 - Heartbeat packets sent: 798
 - Heartbeat packets received: 784

Fabric link statistics:

- Child link 0
 - Probes sent: 793
 - Probes received: 0

Services Synchronized:

<table>
<thead>
<tr>
<th>Service name</th>
<th>RTOs sent</th>
<th>RTOs received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation context</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource manager</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session close</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gate create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPSec VPN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Firewall user authentication</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MGCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H323 ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SIP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPTP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RTSP ALG</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

```
{primary:node1}
user@host> show chassis cluster statistics
```

Control link statistics:

- Control link 0:
 - Heartbeat packets sent: 258689
 - Heartbeat packets received: 258684
Control link 1:
Heartbeat packets sent: 258689
Heartbeat packets received: 258684

Fabric link statistics:
Child link 0
Probes sent: 258681
Probes received: 258681
Child link 1
Probes sent: 258501
Probes received: 258501

Services Synchronized:

<table>
<thead>
<tr>
<th>Service name</th>
<th>RTOs sent</th>
<th>RTOs received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation context</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource manager</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session create</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Session close</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gate create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPSec VPN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Firewall user authentication</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MGCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H323 ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SIP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPTP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RPC ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RTSP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RAS ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC address learning</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GPRS GTP</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

{primary:node1}

user@host> **show chassis cluster statistics**

Control link statistics:
Control link 0:
Heartbeat packets sent: 82371
Heartbeat packets received: 82371
Clearing Chassis Cluster Statistics

To clear displayed information about chassis cluster services and interfaces, enter the `clear chassis cluster statistics` command from the CLI:

{primary:nodel}

```
user@host> clear chassis cluster statistics
```

Cleared control-plane statistics
Cleared data-plane statistics

Understanding Automatic Chassis Cluster Synchronization Between Primary and Secondary Nodes

When you set up an SRX Series chassis cluster, the SRX Series devices must be identical, including their configuration. The chassis cluster synchronization feature automatically synchronizes the configuration from the primary node to the secondary node when the secondary joins the primary as a cluster. By eliminating the manual work needed to ensure the same configurations on each node in the cluster, this feature reduces expenses.

If you want to disable automatic chassis cluster synchronization between the primary and secondary nodes, you can do so by entering the `set chassis cluster configuration-synchronize no-secondary-bootup-auto` command in configuration mode.

At any time, to reenable automatic chassis cluster synchronization, use the `delete chassis cluster configuration-synchronize no-secondary-bootup-auto` command in configuration mode.

To see whether the automatic chassis cluster synchronization is enabled or not, and to see the status of the synchronization, enter the `show chassis cluster information configuration-synchronization` operational command.
Either the entire configuration from the primary node is applied successfully to the secondary node, or the secondary node retains its original configuration. There is no partial synchronization.

If you create a cluster with cluster IDs greater than 16, and then decide to roll back to a previous release image that does not support extended cluster IDs, the system comes up as standalone.

If you have a cluster set up and running with an earlier release of Junos OS, you can upgrade to Junos OS Release 12.1X45-D10 and re-create a cluster with cluster IDs greater than 16. However, if for any reason you decide to revert to the previous version of Junos OS that did not support extended cluster IDs, the system comes up with standalone devices after you reboot. However, if the cluster ID set is less than 16 and you roll back to a previous release, the system will come back with the previous setup.

SEE ALSO

- NTP Time Synchronization on SRX Series Devices

Verifying Chassis Cluster Configuration Synchronization Status

Purpose
Display the configuration synchronization status of a chassis "Understanding Automatic Chassis Cluster Synchronization Between Primary and Secondary Nodes" on page 135.

Action
From the CLI, enter the `show chassis cluster information configuration-synchronization` command:

```
{primary:node0}
```

```
user@host> show chassis cluster information configuration-synchronization
```

```
node0:
-----------------------------------------------

Configuration Synchronization:
  Status:
    Activation status: Enabled
    Last sync operation: Auto-Sync
    Last sync result: Not needed
    Last sync mgd messages:

  Events:
```


node1:

Configuration Synchronization:
Status:
 Activation status: Enabled
 Last sync operation: Auto-Sync
 Last sync result: Succeeded
 Last sync mgd messages:
 mgd: rcp: /config/juniper.conf: No such file or directory
 mgd: commit complete

Events:
 Mar 5 01:49:40.664 : Auto-Sync: Succeeded. Attempt: 1

SEE ALSO

 show chassis cluster information configuration-synchronization | 641

RELATED DOCUMENTATION

 Preparing Your Equipment for Chassis Cluster Formation | 51
 Connecting SRX Series Devices to Create a Chassis Cluster | 55
 SRX Series Chassis Cluster Configuration Overview | 35
Example: Enabling Eight-Queue Class of Service on Redundant Ethernet Interfaces on SRX Series Devices in a Chassis Cluster

This example shows how to enable eight-queue CoS on redundant Ethernet interfaces on SRX Series devices in a chassis cluster. This example is applicable to SRX5800, SRX5600, SRX5400, SRX4200, and SRX4100. The eight-queue CoS is also supported on redundant Ethernet interfaces for branch SRX devices in a chassis cluster. The SRX Series for the branch support eight queues, but only four queues are enabled by default.

Requirements

This example uses the following hardware and software components:

- Two SRX5600 Service Gateways in a chassis cluster
- Junos OS Release 11.4R4 or later for SRX Series Services Gateways
Before you begin:

- Understand chassis cluster configuration. See "Example: Configuring an Active/Passive Chassis Cluster on SRX5800 Devices" on page 312.
- Understand chassis cluster redundant interface configuration. See “Example: Configuring Chassis Cluster Redundant Ethernet Interfaces” on page 102.

Overview

The SRX Series devices support eight queues, but only four queues are enabled by default. Use the `set chassis fpc x pic y max-queues-per-interface 8` command to enable eight queues explicitly at the chassis level. The values of x and y depends on the location of the IOC and the PIC number where the interface is located on the device on which CoS needs to be implemented. To find the IOC location use the `show chassis fpc pic-status` or `show chassis hardware` commands.

You must restart the chassis control for the configuration to take effect.

On SRX Series devices, eight QoS queues are supported per ae interface.

Figure 26 on page 140 shows how to configure eight-queue CoS on redundant Ethernet interfaces on SRX Series devices in a chassis cluster.
Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set chassis fpc 5 pic 1 max-queues-per-interface 8
set chassis fpc 5 pic 1 max-queues-per-interface 8
set chassis cluster reth-count 2
set chassis cluster control-ports fpc 4 port 0
set chassis cluster control-ports fpc 10 port 0
set chassis cluster redundancy-group 0 node 0 priority 254
set chassis cluster redundancy-group 0 node 1 priority 1
set chassis cluster redundancy-group 1 node 0 priority 200
set chassis cluster redundancy-group 1 node 1 priority 100
set interfaces ge-5/1/14 gigether-options redundant-parent reth0
set interfaces ge-5/1/15 gigether-options redundant-parent reth1
```
set interfaces ge-11/1/14 gigether-options redundant-parent reth0
set interfaces ge-11/1/15 gigether-options redundant-parent reth1
set interfaces reth0 vlan-tagging
set interfaces reth0 redundant-ether-options redundancy-group 1
set interfaces reth0 unit 0 vlan-id 1350
set interfaces reth0 unit 0 family inet address 192.0.2.1/24
set interfaces reth1 hierarchical-scheduler
set interfaces reth1 vlan-tagging
set interfaces reth1 redundant-ether-options redundancy-group 2
set interfaces reth1 unit 0 vlan-id 1351
set interfaces reth1 unit 0 family inet address 192.0.2.2/24
set interfaces reth1 unit 1 vlan-id 1352
set interfaces reth1 unit 1 family inet address 192.0.2.3/24
set interfaces reth1 unit 2 vlan-id 1353
set interfaces reth1 unit 2 family inet address 192.0.2.4/24
set interfaces reth1 unit 3 vlan-id 1354
set interfaces reth1 unit 3 family inet address 192.0.2.5/24
set class-of-service classifiers inet-precedence inet_prec_4 forwarding-class q0 loss-priority low code-points 000
set class-of-service classifiers inet-precedence inet_prec_4 forwarding-class q2 loss-priority low code-points 010
set class-of-service classifiers inet-precedence inet_prec_4 forwarding-class q3 loss-priority low code-points 011
set class-of-service classifiers inet-precedence inet_prec_4 forwarding-class q1 loss-priority low code-points 001
set class-of-service classifiers inet-precedence inet_prec_4 forwarding-class q4 loss-priority low code-points 100
set class-of-service classifiers inet-precedence inet_prec_4 forwarding-class q5 loss-priority low code-points 101
set class-of-service classifiers inet-precedence inet_prec_4 forwarding-class q6 loss-priority low code-points 110
set class-of-service classifiers inet-precedence inet_prec_4 forwarding-class q7 loss-priority low code-points 111
set class-of-service forwarding-classes queue 0 q0
set class-of-service forwarding-classes queue 1 q1
set class-of-service forwarding-classes queue 2 q2
set class-of-service forwarding-classes queue 3 q3
set class-of-service forwarding-classes queue 4 q4
set class-of-service forwarding-classes queue 5 q5
set class-of-service forwarding-classes queue 6 q6
set class-of-service forwarding-classes queue 7 q7
set class-of-service traffic-control-profiles 1 scheduler-map sched_map
set class-of-service traffic-control-profiles 1 shaping-rate 200m
set class-of-service interfaces reth0 unit 0 classifiers inet-precedence inet_prec_4
set class-of-service interfaces reth1 unit 0 output-traffic-control-profile 1
set class-of-service scheduler-maps sched_map forwarding-class q0 scheduler S0
set class-of-service scheduler-maps sched_map forwarding-class q1 scheduler S1
set class-of-service scheduler-maps sched_map forwarding-class q2 scheduler S2
set class-of-service scheduler-maps sched_map forwarding-class q3 scheduler S3
set class-of-service scheduler-maps sched_map forwarding-class q4 scheduler S4
set class-of-service scheduler-maps sched_map forwarding-class q5 scheduler S5
set class-of-service scheduler-maps sched_map forwarding-class q6 scheduler S6
set class-of-service scheduler-maps sched_map forwarding-class q7 scheduler S7
set class-of-service schedulers S0 transmit-rate percent 20
set class-of-service schedulers S1 transmit-rate percent 5
set class-of-service schedulers S2 transmit-rate percent 5
set class-of-service schedulers S3 transmit-rate percent 10
set class-of-service schedulers S4 transmit-rate percent 10
set class-of-service schedulers S5 transmit-rate percent 10
set class-of-service schedulers S6 transmit-rate percent 10
set class-of-service schedulers S7 transmit-rate percent 30

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To enable eight-queue CoS on redundant Ethernet interfaces:

1. Configure a maximum of eight queues on the interfaces on Node 0 and Node 1.

 ![Code Example]
   ```
   [edit chassis]
   user@host# set fpc 5 pic 1 max-queues-per-interface 8
   ```

 In addition to configuring eight queues at the [edit chassis] hierarchy level, the configuration at the [edit class-of-service] hierarchy level must support eight queues per interface.

2. Specify the number of redundant Ethernet interfaces.

 ![Code Example]
   ```
   [edit chassis cluster]
   user@host# set reth-count 2
   ```

3. Configure the control ports.

 ![Code Example]
   ```
   [edit chassis cluster]
   user@host# set control-ports fpc 4 port 0
   user@host# set control-ports fpc 10 port 0
   ```
4. Configure redundancy groups.

```
[edit chassis cluster]
user@host# set redundancy-group 0 node 0 priority 254
user@host# set redundancy-group 0 node 1 priority 1
user@host# set redundancy-group 1 node 0 priority 200
user@host# set redundancy-group 1 node 1 priority 100
```

5. Configure the redundant Ethernet interfaces.

```
[edit interfaces]
user@host# set ge-5/1/14 gigether-options redundant-parent reth0
user@host# set ge-11/1/14 gigether-options redundant-parent reth0
user@host# set ge-5/1/15 gigether-options redundant-parent reth1
user@host# set ge-11/1/15 gigether-options redundant-parent reth1
user@host# set reth0 redundant-ether-options redundancy-group 1
user@host# set reth0 vlan-tagging
user@host# set reth0 unit 0 vlan-id 1350
user@host# set reth0 unit 0 family inet address 192.0.2.1/24
user@host# set reth1 hierarchical-scheduler
user@host# set reth1 vlan-tagging
user@host# set reth1 redundant-ether-options redundancy-group 2
user@host# set reth1 unit 0 vlan-id 1351
user@host# set reth1 unit 0 family inet address 192.0.2.2/24
user@host# set reth1 unit 1 vlan-id 1352
user@host# set reth1 unit 1 family inet address 192.0.2.3/24
user@host# set reth1 unit 2 vlan-id 1353
user@host# set reth1 unit 2 family inet address 192.0.2.4/24
user@host# set reth1 unit 3 vlan-id 1354
user@host# set reth1 unit 3 family inet address 192.0.2.5/24
```

6. Define a classifier and apply it to a logical interface.

```
[edit class-of-service]
user@host# set classifiers inet-precedence inet_prec_4 forwarding-class q0 loss-priority low code-points 000
user@host# set classifiers inet-precedence inet_prec_4 forwarding-class q2 loss-priority low code-points 010
user@host# set classifiers inet-precedence inet_prec_4 forwarding-class q3 loss-priority low code-points 011
user@host# set classifiers inet-precedence inet_prec_4 forwarding-class q1 loss-priority low code-points 001
```
7. Map forwarding classes to CoS queues.

[edit class-of-service]
user@host# set forwarding-classes queue 0 q0
user@host# set forwarding-classes queue 1 q1
user@host# set forwarding-classes queue 2 q2
user@host# set forwarding-classes queue 3 q3
user@host# set forwarding-classes queue 4 q4
user@host# set forwarding-classes queue 5 q5
user@host# set forwarding-classes queue 6 q6
user@host# set forwarding-classes queue 7 q7

8. Configure traffic control profiles.

[edit class-of-service]
user@host# set traffic-control-profiles 1 scheduler-map sched_map
user@host# set traffic-control-profiles 1 shaping-rate 200m

[edit class-of-service]
user@host# set interfaces reth0 unit 0 classifiers inet-precedence inet_prec_4

10. Apply a traffic scheduling profile to the interface.

[edit class-of-service]
user@host# set interfaces reth1 unit 0 output-traffic-control-profile 1

11. Configure the CoS schedulers.
[edit class-of-service]
user@host# set scheduler-maps sched_map forwarding-class q0 scheduler S0
user@host# set scheduler-maps sched_map forwarding-class q1 scheduler S1
user@host# set scheduler-maps sched_map forwarding-class q2 scheduler S2
user@host# set scheduler-maps sched_map forwarding-class q3 scheduler S3
user@host# set scheduler-maps sched_map forwarding-class q4 scheduler S4
user@host# set scheduler-maps sched_map forwarding-class q5 scheduler S5
user@host# set scheduler-maps sched_map forwarding-class q6 scheduler S6
user@host# set scheduler-maps sched_map forwarding-class q7 scheduler S7
user@host# set schedulers S0 transmit-rate percent 20
user@host# set schedulers S1 transmit-rate percent 5
user@host# set schedulers S2 transmit-rate percent 5
user@host# set schedulers S3 transmit-rate percent 10
user@host# set schedulers S4 transmit-rate percent 10
user@host# set schedulers S5 transmit-rate percent 10
user@host# set schedulers S6 transmit-rate percent 10
user@host# set schedulers S7 transmit-rate percent 30

Results
From configuration mode, confirm your configuration by entering the `show class-of-service` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For brevity, this `show` command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).
loss-priority low code-points 100;
}
forwarding-class q5 {
 loss-priority low code-points 101;
}
forwarding-class q6 {
 loss-priority low code-points 110;
}
forwarding-class q7 {
 loss-priority low code-points 111;
}
}
}
forwarding-classes {
queue 0 q0;
queue 1 q1;
queue 2 q2;
queue 3 q3;
queue 4 q4;
queue 5 q5;
queue 6 q6;
queue 7 q7;
}
traffic-control-profiles {
 1 {
 scheduler-map sched_map;
 shaping-rate 200m;
 }
}
}
interfaces {
reth0 {
 unit 0 {
 classifiers {
 inet-precedence inet_prec_4;
 }
 }
}
reth1 {
 unit 0 {
 output-traffic-control-profile 1;
 }
}
}
scheduler-maps {
sched_map {
 schedulers {
 S0 {
 transmit-rate percent 20;
 }
 S1 {
 transmit-rate percent 5;
 }
 S2 {
 transmit-rate percent 5;
 }
 S3 {
 transmit-rate percent 10;
 }
 S4 {
 transmit-rate percent 10;
 }
 S5 {
 transmit-rate percent 10;
 }
 S6 {
 transmit-rate percent 10;
 }
 S7 {
 transmit-rate percent 30;
 }
 }
}

If you are done configuring the device, enter commit from configuration mode.

To restart chassis control, enter restart chassis-control command from operational mode.

When you execute the restart chassis-control command all the FRU cards on the box are reset, thus impacting traffic. Changing the number of queues must be executed during a scheduled downtime. It takes 5-10 minutes for the cards to come online after the restart chassis-control command is executed.
Verification

Verifying the Eight-Queue COS Configuration

Purpose
Verify that eight-queue CoS is enabled properly.

Action
From the operational mode, enter the following commands:

• show interfaces ge-5/1/14 extensive
• show interfaces queue ge-5/1/14
• show class-of-service forwarding-class
• show class-of-service interface ge-5/1/14

RELATED DOCUMENTATION

| SRX Series Chassis Cluster Configuration Overview | 35 |
| Chassis Cluster Redundant Ethernet Interfaces | 99 |

Conditional Route Advertisement over Redundant Ethernet Interfaces on SRX Series Devices in a Chassis Cluster

IN THIS SECTION

- Understanding Conditional Route Advertising in a Chassis Cluster | 149
- Example: Configuring Conditional Route Advertising in a Chassis Cluster | 149

Conditional route advertising allows you to add criteria on route advertisements before they are installed in the route table or advertised to peers and neighbors. The goal of conditional route advertisement in a
chassis cluster is to ensure that incoming traffic from the upstream network arrives on the node that is on the currently active redundant Ethernet interface. For more information, see the following topics:

Understanding Conditional Route Advertising in a Chassis Cluster

Route advertisement over redundant Ethernet interfaces in a chassis cluster is complicated by the fact that the active node in the cluster can change dynamically. Conditional route advertisement enables you to advertise routes in such a way that incoming traffic from the core network is attracted to the Border Gateway Protocol (BGP) interface that exists on the same node as the currently active redundant Ethernet interface. In this way, traffic is processed by the active node and does not traverse the fabric interface between nodes. You do this by manipulating the BGP attribute at the time routes are advertised by BGP.

The goal of conditional route advertisement in a chassis cluster is to ensure that incoming traffic from the upstream network arrives on the node that is on the currently active redundant Ethernet interface. To understand how this works, keep in mind that in a chassis cluster, each node has its own set of interfaces.

Example: Configuring Conditional Route Advertising in a Chassis Cluster

This example shows how to configure conditional route advertising in a chassis cluster to ensure that incoming traffic from the upstream network arrives on the node that is on the currently active redundant Ethernet interface.
Requirements

Before you begin, understand conditional route advertising in a chassis cluster. See “Understanding Conditional Route Advertising in a Chassis Cluster” on page 149.

Overview

As illustrated in Figure 27 on page 151, routing prefixes learned from the redundant Ethernet interface through the IGP are advertised toward the network core using BGP. Two BGP sessions are maintained, one from interface ge-0/0/0 and one from ge-1/0/0 for BGP multihoming. All routing prefixes are advertised on both sessions. Thus, for a route advertised by BGP, learned over a redundant Ethernet interface, if the active redundant Ethernet interface is on the same node as the BGP session, you advertise the route with a "good" BGP attribute.
To achieve this behavior, you apply a policy to BGP before exporting routes. An additional term in the policy match condition determines the current active redundant Ethernet interface child interface of the next hop before making the routing decision. When the active status of a child redundant Ethernet interface changes, BGP reevaluates the export policy for all routes affected.

The condition statement in this configuration works as follows. The command states that any routes evaluated against this condition will pass only if:

- The routes have a redundant Ethernet interface as their next-hop interface.
• The current child interface of the redundant Ethernet interface is active at node 0 (as specified by the `route-active-on node0` keyword).

```
[primary:node0][edit]
user@host# set policy-options condition reth-nh-active-on-0 route-active-on node0
```

Note that a route might have multiple equal-cost next hops, and those next hops might be redundant Ethernet interfaces, regular interfaces, or a combination of both. The route still satisfies the requirement that it has a redundant Ethernet interface as its next hop.

If you use the BGP export policy set for node 0 in the previous example command, only OSPF routes that satisfy the following requirements will be advertised through the session:

• The OSPF routes have a redundant Ethernet interface as their next hop.
• The current child interface of the redundant Ethernet interface is currently active at node 0.

You must also create and apply a separate policy statement for the other BGP session by using this same process.

In addition to the BGP MED attribute, you can define additional BGP attributes, such as origin-code, as-path, and community.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.

```
{primary:node0}[edit]
  set policy-options policy-statement reth-nh-active-on-0 term ospf-on-0 from protocol ospf
  set policy-options policy-statement reth-nh-active-on-0 term ospf-on-0 from condition reth-nh-active-on-0
  set policy-options policy-statement reth-nh-active-on-0 term ospf-on-0 then metric 10
  set policy-options policy-statement reth-nh-active-on-0 term ospf-on-0 then accept
  set policy-options condition reth-nh-active-on-0 route-active-on node0
```

Step-by-Step Procedure

To configure conditional route advertising:

• Create the export policies with the created condition using the `condition` statement.

```
{primary:node0}[edit]
user@host# set policy-options policy-statement reth-nh-active-on-0 term ospf-on-0 from protocol ospf
```
{primary:node0}[edit]
user@host# set policy-options policy-statement reth-nh-active-on-0 term ospf-on-0 from condition reth-nh-active-on-0
{primary:node0}[edit]
user@host# set policy-options policy-statement reth-nh-active-on-0 term ospf-on-0 then metric 10
{primary:node0}[edit]
user@host# set policy-options policy-statement reth-nh-active-on-0 term ospf-on-0 then accept
{primary:node0}[edit]
user@host# set policy-options condition reth-nh-active-on-0 route-active-on node0

Results

From configuration mode, confirm your configuration by entering the `show policy-options` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

{primary:node0}[edit]
user@host# show policy-options
policy-statement reth-nh-active-on-0 {
 term ospf-on-0 {
 from {
 protocol ospf;
 condition reth-nh-active-on-0;
 }
 then {
 metric 10;
 accept;
 }
 }
}condition reth-nh-active-on-0 route-active-on node0;

If you are done configuring the device, enter `commit` from configuration mode.

SEE ALSO

- Understanding Conditional Route Advertising in a Chassis Cluster | 149
- Viewing a Chassis Cluster Configuration | 132
- Viewing Chassis Cluster Statistics | 132
Configuring Redundancy and Failover in a Chassis Cluster

3

CHAPTER

Chassis Cluster Dual Control Links | 155
Chassis Cluster Dual Fabric Links | 163
Monitoring of Global-Level Objects in a Chassis Cluster | 170
Monitoring Chassis Cluster Interfaces | 174
Monitoring IP Addresses on a Chassis Cluster | 213
Configuring Cluster Failover Parameters | 231
Understanding Chassis Cluster Resiliency | 236
Chassis Cluster Redundancy Group Failover | 237
Chassis Cluster Dual Control Links

IN THIS SECTION

- Understanding Chassis Cluster Dual Control Links | 155
- Connecting Dual Control Links for SRX Series Devices in a Chassis Cluster | 157
- Upgrading the Second Routing Engine When Using Chassis Cluster Dual Control Links on SRX5600 and SRX5800 Devices | 158
- Example: Configuring Chassis Cluster Control Ports for Dual Control Links | 160

Dual control links provide a redundant link for control traffic. For more information, see the following topics:

Understanding Chassis Cluster Dual Control Links

The control link connects two SRX Series devices together and it is responsible for sending high-availability control data between the two SRX Series devices including heartbeats and configuration synchronization. If this link goes down, the secondary SRX Series is disabled from the cluster. In dual control links, two pairs of control link interfaces are connected between each device in a cluster. Having two control links helps to avoid a possible single point of failure. Dual control links, provide a redundant link for control traffic. Unlike dual fabric links, only one control link is used at any one time.

Dual control links are supported for the SRX4600, SRX5600 and SRX5800 Services Gateways.

For the SRX5400 Services Gateways, dual control is not supported due to limited slots.

Dual control link functionality is not supported on SRX4100 and SRX4200 devices.

Benefits of Dual Control Links

- Provides a redundant link for control traffic. In the link-level redundancy, if one link fails, the other can take over and restore traffic forwarding that had been previously sent over the failed link.
- Prevents the possibility of single point of failure.
Dual Control Links Functionality Requirements

For the SRX5600 and SRX5800 Services Gateways, dual control link functionality requires a second Routing Engine, as well as a second Switch Control Board (SCB) to house the Routing Engine, to be installed on each device in the cluster. The purpose of the second Routing Engine is only to initialize the switch on the SCB.

NOTE: For the SRX5000 line, the second Routing Engine must be running Junos OS Release 10.0 or later.

The second Routing Engine, to be installed on SRX5000 line devices only, does not provide backup functionality. It does not need to be upgraded, even when there is a software upgrade of the master Routing Engine on the same node. Note the following conditions:

- You cannot run the CLI or enter configuration mode on the second Routing Engine.
- You do not need to set the chassis ID and cluster ID on the second Routing Engine.
- You need only a console connection to the second Routing Engine. (A console connection is not needed unless you want to check that the second Routing Engine booted up or to upgrade a software image.)
- You cannot log in to the second Routing Engine from the master Routing Engine.

As long as the first Routing Engine is installed (even if it is rebooting or failing), the second Routing Engine cannot take over the chassis mastership; that is, it cannot control all the hardware on the chassis.

Be cautious and judicious in your use of redundancy group 0 manual failovers. A redundancy group 0 failover implies a Routing Engine (RE) failover, in which case all processes running on the primary node are killed and then spawned on the new master Routing Engine (RE). This failover could result in loss of state, such as routing state, and degrade performance by introducing system churn.

For the SRX3000 line, dual control link functionality requires an SRX Clustering Module (SCM) to be installed on each device in the cluster. Although the SCM fits in the Routing Engine slot, it is not a Routing Engine. SRX3000 line devices do not support a second Routing Engine. The purpose of the SCM is to initialize the second control link.

SEE ALSO

Chassis Cluster Control Plane Interfaces | 83
Connecting Dual Control Links for SRX Series Devices in a Chassis Cluster

For SRX5600 and SRX5800 devices, you can connect two control links between the two devices, effectively reducing the chance of control link failure.

Dual control links are not supported on SRX5400 due to the limited number of slots.

For SRX5600 and SRX5800 devices, connect two pairs of the same type of Ethernet ports. For each device, you can use ports on the same Services Processing Card (SPC), but we recommend that they be on two different SPCs to provide high availability. Figure 28 on page 157 shows a pair of SRX5800 devices with dual control links connected. In this example, control port 0 and control port 1 are connected on different SPCs.

Figure 28: Connecting Dual Control Links (SRX5800 Devices)

For SRX5600 and SRX5800 devices, you must connect control port 0 on one node to control port 0 on the other node and, likewise, control port 1 to control port 1. If you connect control port 0 to control port 1, the nodes cannot receive heartbeat packets across the control links.

SEE ALSO

Connecting SRX Series Devices to Create a Chassis Cluster | 55
Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming | 41
Upgrading the Second Routing Engine When Using Chassis Cluster Dual Control Links on SRX5600 and SRX5800 Devices

For SRX5600 and SRX5800 devices, a second Routing Engine is required for each device in a cluster if you are using dual control links. The second Routing Engine does not provide backup functionality; its purpose is only to initialize the switch on the Switch Control Board (SCB). The second Routing Engine must be running Junos OS Release 12.1X47-D35, 12.3X48-D30, 15.1X49-D40 or later. For more information, see knowledge base article KB30371.

On SRX5600 and SRX5800 devices, starting from Junos OS Release 15.1X49-D70 and Junos OS Release 17.3R1, you can use the `show chassis hardware` command to see the serial number and the hardware version details of the second Routing Engine. To use this functionality, ensure that the second Routing Engine is running Junos OS Release 15.1X49-D70 and later releases or Junos OS Release 17.3R1 or later releases.

For the SRX5400 Services Gateways, dual control is not supported due to limited slots.

Because you cannot run the CLI or enter configuration mode on the second Routing Engine, you cannot upgrade the Junos OS image with the usual upgrade commands. Instead, use the master Routing Engine to create a bootable USB storage device, which you can then use to install a software image on the second Routing Engine.

To upgrade the software image on the second Routing Engine:

1. Use FTP to copy the installation media into the `/var/tmp` directory of the master Routing Engine.

2. Insert a USB storage device into the USB port on the master Routing Engine.

3. In the UNIX shell, navigate to the `/var/tmp` directory:

   ```
   start shell
   cd /var/tmp
   ```

4. Log in as root or superuser:

   ```
   su [enter]
   password: [enter SU password]
   ```

5. Issue the following command:

   ```
   dd if=installMedia of=/dev/externalDrive bs=1m
   ```
where

- **externalDrive**—Refers to the removable media name. For example, the removable media name on an SRX5000 line device is da0 for both Routing Engines.

- **installMedia**—Refers to the installation media downloaded into the `/var/tmp` directory. For example, `install-media-srx5000-10.1R1-domestic.img`.

The following code example can be used to write the image that you copied to the master Routing Engine in step 1 onto the USB storage device:

```
dd if=install-media-srx5000-10.1R1-domestic.img of=/dev/da0 bs=1m
```

6. Log out as root or superuser:

```
exit
```

7. After the software image is written to the USB storage device, remove the device and insert it into the USB port on the second Routing Engine.

8. Move the console connection from the master Routing Engine to the second Routing Engine, if you do not already have a connection.

9. Reboot the second Routing Engine. Issue the following command (for Junos OS Release 15.1X49-D65 and earlier):

```
# reboot
```

Starting with Junos OS Release 15.1X49-D70, issue the following command:

```
login : root
root % reboot
```

- When the following system output appears, press y:

```
WARNING: The installation will erase the contents of your disks.
Do you wish to continue (y/n)?
```

- When the following system output appears, remove the USB storage device and press Enter:
Example: Configuring Chassis Cluster Control Ports for Dual Control Links

This example shows how to configure chassis cluster control ports for use as dual control links on SRX5600, and SRX5800 devices. You need to configure the control ports that you will use on each device to set up the control links.

Dual control links are not supported on an SRX5400 device due to the limited number of slots.

Requirements

Before you begin:

- Understand chassis cluster control links. See "Understanding Chassis Cluster Control Plane and Control Links" on page 84.
- Physically connect the control ports on the devices. See "Connecting SRX Series Devices to Create a Chassis Cluster" on page 55.

Overview

By default, all control ports on SRX5600 and SRX5800 devices are disabled. After connecting the control ports, configuring the control ports, and establishing the chassis cluster, the control links are set up.

This example configures control ports with the following FPCs and ports as the dual control links:

- FPC 4, port 0
- FPC 10, port 0
• FPC 6, port 1
• FPC 12, port 1

Configuration

CLI Quick Configuration
To quickly configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
{primary:node0}[edit]
  set chassis cluster control-ports fpc 4 port 0
  set chassis cluster control-ports fpc 10 port 0
  set chassis cluster control-ports fpc 6 port 1
  set chassis cluster control-ports fpc 12 port 1
```

Step-by-Step Procedure
To configure control ports for use as dual control links for the chassis cluster:

• Specify the control ports.

```
{primary:node0}[edit]
  user@host# set chassis cluster control-ports fpc 4 port 0
{primary:node0}[edit]
  user@host# set chassis cluster control-ports fpc 10 port 0
{primary:node0}[edit]
  user@host# set chassis cluster control-ports fpc 6 port 1
{primary:node0}[edit]
  user@host# set chassis cluster control-ports fpc 12 port 1
```

Results
From configuration mode, confirm your configuration by entering the show chassis cluster command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For brevity, this show command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).
control-ports {
 fpc 4 port 0;
 fpc 6 port 1;
 fpc 10 port 0;
 fpc 12 port 1;
}

If you are done configuring the device, enter `commit` from configuration mode.

Verification

Verifying the Chassis Cluster Status

Purpose
Verify the chassis cluster status.

Action
From operational mode, enter the `show chassis cluster status` command.

```
{primary:node0}
user@host> show chassis cluster status
```

<table>
<thead>
<tr>
<th>Cluster ID: 1</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redundancy group: 0 , Failover count: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>node0</td>
<td>100</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>1</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Redundancy group: 1 , Failover count: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>node0</td>
<td>0</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>0</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Meaning
Use the `show chassis cluster status` command to confirm that the devices in the chassis cluster are communicating with each other. The chassis cluster is functioning properly, as one device is the primary node and the other is the secondary node.
Chassis Cluster Dual Fabric Links

Dual fabric links remove single point of failure in a chassis cluster setup. If one fabric link fails and one remains functional, all sessions are maintained between the two nodes and the chassis cluster status is preserved. For more information, see the following topics:

Understanding Chassis Cluster Dual Fabric Links

You can connect two fabric links between each device in a cluster, which provides a redundant fabric link between the members of a cluster. Having two fabric links helps to avoid a possible single point of failure.

When you use dual fabric links, the RTOs and probes are sent on one link and the fabric-forwarded and flow-forwarded packets are sent on the other link. If one fabric link fails, the other fabric link handles the RTOs and probes, as well as the data forwarding. The system selects the physical interface with the lowest slot, PIC, or port number on each node for the RTOs and probes.

For all SRX Series devices, you can connect two fabric links between two devices, effectively reducing the chance of a fabric link failure.

In most SRX Series devices in a chassis cluster, you can configure any pair of Gigabit Ethernet interfaces or any pair of 10-Gigabit interfaces to serve as the fabric between nodes.

For dual fabric links, both of the child interface types should be the same type. For example, both should be Gigabit Ethernet interfaces or 10-Gigabit interfaces.
SRX300, SRX320, SRX340, SRX345, and SRX380 devices support Gigabit Ethernet interfaces only.

SEE ALSO

| Understanding Chassis Cluster Fabric Interfaces | 73 |

Example: Configuring the Chassis Cluster Dual Fabric Links with Matching Slots and Ports

This example shows how to configure the chassis cluster fabric with dual fabric links with matching slots and ports. The fabric is the back-to-back data connection between the nodes in a cluster. Traffic on one node that needs to be processed on the other node or to exit through an interface on the other node passes over the fabric. Session state information also passes over the fabric.

Requirements

Before you begin, set the chassis cluster ID and chassis cluster node ID. See "Example: Setting the Chassis Cluster Node ID and Cluster ID" on page 60.

Overview

In most SRX Series devices in a chassis cluster, you can configure any pair of Gigabit Ethernet interfaces or any pair of 10-Gigabit interfaces to serve as the fabric between nodes.

You cannot configure filters, policies, or services on the fabric interface. Fragmentation is not supported on the fabric link. The MTU size is 8980 bytes. We recommend that no interface in the cluster exceed this MTU size. Jumbo frame support on the member links is enabled by default.
This example illustrates how to configure the fabric link with dual fabric links with matching slots and ports on each node.

A typical configuration is where the dual fabric links are formed with matching slots/ports on each node. That is, `ge-3/0/0` on node 0 and `ge-10/0/0` on node 1 match, as do `ge-0/0/0` on node 0 and `ge-7/0/0` on node 1 (the FPC slot offset is 7).

Only the same type of interfaces can be configured as fabric children, and you must configure an equal number of child links for `fab0` and `fab1`.

If you are connecting each of the fabric links through a switch, you must enable the jumbo frame feature on the corresponding switch ports. If both of the fabric links are connected through the same switch, the RTO-and-probes pair must be in one virtual LAN (VLAN) and the data pair must be in another VLAN. Here, too, the jumbo frame feature must be enabled on the corresponding switch ports.

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the `edit` hierarchy level, and then enter `commit` from configuration mode.

```
{primary:node0}[edit]
set interfaces fab0 fabric-options member-interfaces ge-0/0/0
set interfaces fab0 fabric-options member-interfaces ge-3/0/0
set interfaces fab1 fabric-options member-interfaces ge-7/0/0
set interfaces fab1 fabric-options member-interfaces ge-10/0/0
```

Step-by-Step Procedure
To configure the chassis cluster fabric with dual fabric links with matching slots and ports on each node:

- Specify the fabric interfaces.

```
{primary:node0}[edit]
user@host# set interfaces fab0 fabric-options member-interfaces ge-0/0/0
user@host# set interfaces fab0 fabric-options member-interfaces ge-3/0/0
user@host# set interfaces fab1 fabric-options member-interfaces ge-7/0/0
user@host# set interfaces fab1 fabric-options member-interfaces ge-10/0/0
```

Results
From configuration mode, confirm your configuration by entering the `show interfaces` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.
For brevity, this `show` command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).

```python
{primary:node0}[edit]
user@host# show interfaces
...
fab0 {
    fabric-options {
        member-interfaces {
            ge-0/0/0;
            ge-3/0/0;
        }
    }
}
}
}
}
}

fab1 {
    fabric-options {
        member-interfaces {
            ge-7/0/0;
            ge-10/0/0;
        }
    }
}
}
}
}
```

If you are done configuring the device, enter `commit` from configuration mode.

Verification

Verifying the Chassis Cluster Fabric

Purpose

Verify the chassis cluster fabric.

Action

From operational mode, enter the `show interfaces terse | match fab` command.

```bash
{primary:node0}

user@host> show interfaces terse | match fab
```

```diff
<table>
<thead>
<tr>
<th></th>
<th>Status</th>
<th>State</th>
<th>Type</th>
<th>Connected To</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/0.0</td>
<td>up</td>
<td>up</td>
<td>aenet</td>
<td>--&gt; fab0.0</td>
</tr>
<tr>
<td>ge-3/0/0.0</td>
<td>up</td>
<td>up</td>
<td>aenet</td>
<td>--&gt; fab0.0</td>
</tr>
<tr>
<td>ge-7/0/0.0</td>
<td>up</td>
<td>up</td>
<td>aenet</td>
<td>--&gt; fab1.0</td>
</tr>
<tr>
<td>ge-10/0/0.0</td>
<td>up</td>
<td>up</td>
<td>aenet</td>
<td>--&gt; fab1.0</td>
</tr>
</tbody>
</table>
```
This example shows how to configure the chassis cluster fabric with dual fabric links with different slots and ports. The fabric is the back-to-back data connection between the nodes in a cluster. Traffic on one node that needs to be processed on the other node or to exit through an interface on the other node passes over the fabric. Session state information also passes over the fabric.

Requirements

Before you begin, set the chassis cluster ID and chassis cluster node ID. See "Example: Setting the Chassis Cluster Node ID and Cluster ID" on page 60.
Overview

In most SRX Series devices in a chassis cluster, you can configure any pair of Gigabit Ethernet interfaces or any pair of 10-Gigabit interfaces to serve as the fabric between nodes.

You cannot configure filters, policies, or services on the fabric interface. Fragmentation is not supported on the fabric link.

The maximum transmission unit (MTU) size supported is 9014. We recommend that no interface in the cluster exceed this MTU size. Jumbo frame support on the member links is enabled by default.

This example illustrates how to configure the fabric link with dual fabric links with different slots and ports on each node.

Make sure you physically connect the RTO-and-probes link to the RTO-and-probes link on the other node. Likewise, make sure you physically connect the data link to the data link on the other node.

That is, physically connect the following two pairs:

- The node 0 RTO-and-probes link ge-2/1/9 to the node 1 RTO-and-probes link ge-11/0/0
- The node 0 data link ge-2/2/5 to the node 1 data link ge-11/3/0

Only the same type of interfaces can be configured as fabric children, and you must configure an equal number of child links for fab0 and fab1.

If you are connecting each of the fabric links through a switch, you must enable the jumbo frame feature on the corresponding switch ports. If both of the fabric links are connected through the same switch, the RTO-and-probes pair must be in one virtual LAN (VLAN) and the data pair must be in another VLAN. Here too, the jumbo frame feature must be enabled on the corresponding switch ports.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
[primary:node0][edit]
  set interfaces fab0 fabric-options member-interfaces ge-2/1/9
  set interfaces fab0 fabric-options member-interfaces ge-2/2/5
  set interfaces fab1 fabric-options member-interfaces ge-11/0/0
  set interfaces fab1 fabric-options member-interfaces ge-11/3/0
```

Step-by-Step Procedure
To configure the chassis cluster fabric with dual fabric links with different slots and ports on each node:

- Specify the fabric interfaces.

```bash
{primary:node0}[edit]
user@host# set interfaces fab0 fabric-options member-interfaces ge-2/1/9
user@host# set interfaces fab0 fabric-options member-interfaces ge-2/2/5
user@host# set interfaces fab1 fabric-options member-interfaces ge-11/0/0
user@host# set interfaces fab1 fabric-options member-interfaces ge-11/3/0
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For brevity, this `show` command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).

```bash
{primary:node0}[edit]
user@host# show interfaces
...
fab0 {  
  fabric-options {  
    member-interfaces {  
      ge-2/1/9;  
      ge-2/2/5;  
    }  
  }  
}  
}  
}  
fab1 {  
  fabric-options {  
    member-interfaces {  
      ge-11/0/0;  
      ge-11/3/0;  
    }  
  }  
}  
}  
```

If you are done configuring the device, enter **commit** from configuration mode.
Verification

Verifying the Chassis Cluster Fabric

Purpose
Verify the chassis cluster fabric.

Action
From operational mode, enter the `show interfaces terse | match fab` command.

```
{primary:node0}
user@host> show interfaces terse | match fab
ge-2/1/9.0       up   up   aenet   --> fab0.0
ge-2/2/5.0       up   up   aenet   --> fab0.0
ge-11/0/0.0      up   up   aenet   --> fab1.0
ge-11/3/0.0      up   up   aenet   --> fab1.0
fab0             up   up   inet    30.17.0.200/24
fab0.0           up   up   inet    30.17.0.200/24
fab1             up   up   inet    30.18.0.200/24
fab1.0           up   up   inet    30.18.0.200/24
```

RELATED DOCUMENTATION

| Connecting SRX Series Devices to Create a Chassis Cluster | 55 |
| SRX Series Chassis Cluster Configuration Overview | 35 |

Monitoring of Global-Level Objects in a Chassis Cluster

IN THIS SECTION

- Understanding SPU Monitoring | 171
- Understanding flowd Monitoring | 172
- Understanding Cold-Sync Monitoring | 172
There are various types of objects to monitor as you work with devices configured as chassis clusters, including global-level objects and objects that are specific to redundancy groups. This section describes the monitoring of global-level objects.

The SRX5000 lines have one or more Services Processing Units (SPUs) that run on a Services Processing Card (SPC). All flow-based services run on the SPU. Other SRX Series devices have a flow-based forwarding process, *flowd*, which forwards packets through the device.

Understanding SPU Monitoring

SPU monitoring tracks the health of the SPUs and of the central point (CP). The chassis manager on each SPC monitors the SPUs and the central point, and also maintains the heartbeat with the Routing Engine chassisd. In this hierarchical monitoring system, chassisd is the center for hardware failure detection. SPU monitoring is enabled by default.

SPU monitoring is supported on SRX4600 and SRX5000 line devices.

Persistent SPU and central point failure on a node is deemed a catastrophic Packet Forwarding Engine (PFE) failure. In this case, the node's PFE is disabled in the cluster by reducing the priorities of redundancy groups x to 0.

- A central point failure triggers failover to the secondary node. The failed node's PFE, which includes all SPCs and all I/O cards (IOCs), is automatically restarted. If the secondary central point has failed as well, the cluster is unable to come up because there is no primary device. Only the data plane (redundancy group x) is failed over.

- A single, failed SPU causes failover of redundancy group x to the secondary node. All IOCs and SPCs on the failed node are restarted and redundancy group x is failed over to the secondary node. Failover to the secondary node is automatic without the need for user intervention. When the failed (former) primary node has its failing component restored, failback is determined by the preempt configuration for the redundancy group x. The interval for dead SPU detection is 30 seconds.

On SRX5400, SRX5600, and SRX5800 SPCs, the Routing Engine monitors the health of the chassis manager. The chassis manager sends a heartbeat message to the Routing Engine chassisd every second. When the Routing Engine chassisd detects a heartbeat loss, it initiates a power cycle for the entire SPC. If multiple recoveries fail within a certain timeframe, the Routing Engine powers off the SPC to prevent it from affecting the entire system.

This event triggers an alarm, indicating that a new field-replaceable unit (FRU) is needed.
The following list describes the limitations for inserting an SPC on SRX5400, SRX5600, and SRX5800 devices in chassis cluster mode:

- The chassis cluster must be in active/passive mode before and during the SPC insert procedure.
- A different number of SPCs cannot be inserted in two different nodes.
- A new SPC must be inserted in a slot that is higher than the central point slot. The existing combo central point cannot be changed to a full central point after the new SPC is inserted.
- During an SPC insert procedure, the IKE and IPsec configurations cannot be modified.
- An SPC is not hot-insertable. Before inserting an SPC, the device must be taken offline. After inserting an SPC, the device must be rebooted.
- Users cannot specify the SPU and the IKE instance to anchor a tunnel.
- After a new SPC is inserted, the existing tunnels cannot use the processing power of the new SPC and redistribute it to the new SPC.

Understanding flowd Monitoring

Flowd monitoring tracks the health of the flowd process. Flowd monitoring is enabled by default.

Persistent flowd failure on a node is deemed a catastrophic Packet Forwarding Engine (PFE) failure. In this case, the node's PFE is disabled in the cluster by reducing the priorities of redundancy groups x to 0.

A failed flowd process causes failover of redundancy group x to the secondary node. Failover to the secondary node is automatic without the need for user intervention. When the failed (former) primary node has its failing component restored, failback is determined by the preempt configuration for the redundancy group x.

During SPC and flowd monitoring failures on a local node, the data plane redundancy group RG1+ fails over to the other node that is in a good state. However, the control plane RG0 does not fail over and remains primary on the same node as it was before the failure.

Understanding Cold-Sync Monitoring

The process of synchronizing the data plane runtime objects (RTOs) on the startup of the SPUs or flowd is called cold sync. When all the RTOs are synchronized, the cold-sync process is complete, and the SPU or flowd on the node is ready to take over for the primary node, if needed. The process of monitoring the cold-sync state of all the SPUs or flowd on a node is called cold-sync monitoring. Keep in mind that when preempt is enabled, cold-sync monitoring prevents the node from taking over the mastership until the
cold-sync process is completed for the SPUs or flowd on the node. Cold-sync monitoring is enabled by default.

When the node is rebooted, or when the SPUs or flowd come back up from failure, the priority for all the redundancy groups 1+ is 0. When an SPU or flowd comes up, it tries to start the cold-sync process with its mirror SPU or flowd on the other node.

If this is the only node in the cluster, the priorities for all the redundancy groups 1+ stay at 0 until a new node joins the cluster. Although the priority is at 0, the device can still receive and send traffic over its interfaces. A priority of 0 implies that it cannot fail over in case of a failure. When a new node joins the cluster, all the SPUs or flowd, as they come up, will start the cold-sync process with the mirror SPUs or flowd of the existing node.

When the SPU or flowd of a node that is already up detects the cold-sync request from the SPU or flowd of the peer node, it posts a message to the system indicating that the cold-sync process is complete. The SPUs or flowd of the newly joined node posts a similar message. However, they post this message only after all the RTOs are learned and cold-sync is complete. On receipt of completion messages from all the SPUs or flowd, the priority for redundancy groups 1+ moves to the configured priority on each node if there are no other failures of monitored components, such as interfaces. This action ensures that the existing primary node for redundancy 1+ groups always moves to the configured priority first. The node joining the cluster later moves to its configured priorities only after all its SPUs or flowd have completed their cold-sync process. This action in turn guarantees that the newly added node is ready with all the RTOs before it takes over mastership.

Understanding Cold-Sync Monitoring with SPU Replacement or Expansion

If your SRX5600 or SRX5800 Services Gateway is part of a chassis cluster, when you replace a Services Processing Card (SPC) with a SPC2 or an SPC3 on the device, you must fail over all redundancy groups to one node.

For SRX5400 devices, SPC2 and SPC3 are supported.

The following events take place during this scenario:

- When the SPC2 is installed on a node (for example, on node 1, the secondary node), node 1 is shut down so the SPC2 can be installed.

- Once node 1 is powered up and rejoins the cluster, the number of SPUs on node 1 will be higher than the number of SPUs on node 0, the primary node. Now, one node (node 0) still has an old SPC while the other node has the new SPC2; SPC2s have four SPUs per card, and the older SPCs have two SPUs per card.

The cold-sync process is based on node 0 total SPU number. Once those SPUs in node 1 corresponding to node 0 SPUs have completed the cold-sync, the node 1 will declare cold-sync completed. Since the additional SPUs in node 1 do not have the corresponding node 0 SPUs, there is nothing to be synchronized and failover from node 0 to node 1 does not cause any issue.
SPU monitoring functionality monitors all SPUs and reports if there are any SPU failure.

For example assume that both nodes originally have 2 existing SPCs and you have replaced both SPCs with SPC2 on node 1. Now we have 4 SPUs in node 0 and 8 SPUs in node 1. The SPU monitoring function monitors the 4 SPUs on node 0 and 8 SPUs on node 1. If any of those 8 SPUs failed in node 1, the SPU monitoring will still report to the Juniper Services Redundancy Protocol (jsrpd) process that there is an SPU failure. The jsrpd process controls chassis clustering.

- Once node 1 is ready to failover, you can initiate all redundancy group failover manually to node 1. Node 0 will be shut down to replace its SPC with the SPC2. After the replacement, node 0 and node 1 will have exactly the same hardware setup.

Once node 0 is powered up and rejoins the cluster, the system will operate as a normal chassis cluster.

Starting from Junos OS Release 15.1X49-D120, when the cold-sync process is still in progress on SRX Series device in chassis cluster, and if the control link is down, a delay (of 30 seconds) is expected before the node takes transition from the secondary state to the primary state.

RELATED DOCUMENTATION

Understanding Chassis Cluster Redundancy Group Interface Monitoring	175
Example: Configuring Chassis Cluster Redundancy Group Interface Monitoring	176
Understanding Chassis Cluster Redundancy Group IP Address Monitoring	215
Example: Configuring Chassis Cluster Redundancy Group IP Address Monitoring	218

Monitoring Chassis Cluster Interfaces

IN THIS SECTION

- Understanding Chassis Cluster Redundancy Group Interface Monitoring | 175
- Example: Configuring Chassis Cluster Redundancy Group Interface Monitoring | 176

Interface monitoring monitors the state of an interface by checking if the interface is in an up or down state. When one or more monitored interfaces fail, the redundancy group fails over to the other node in the cluster. For more information, see the following topics:
Understanding Chassis Cluster Redundancy Group Interface Monitoring

For a redundancy group to automatically failover to another node, its interfaces must be monitored. When you configure a redundancy group, you can specify a set of interfaces that the redundancy group is to monitor for status (or “health”) to determine whether the interface is up or down. A monitored interface can be a child interface of any of its redundant Ethernet interfaces. When you configure an interface for a redundancy group to monitor, you give it a weight.

Every redundancy group has a threshold tolerance value initially set to 255. When an interface monitored by a redundancy group becomes unavailable, its weight is subtracted from the redundancy group's threshold. When a redundancy group's threshold reaches 0, it fails over to the other node. For example, if redundancy group 1 was primary on node 0, on the threshold-crossing event, redundancy group 1 becomes primary on node 1. In this case, all the child interfaces of redundancy group 1's redundant Ethernet interfaces begin handling traffic.

To check the interface weight, use the following commands:

- `show chassis cluster information`
- `show chassis cluster interfaces`

We do not recommend configuring data plane modules such as interface monitoring and IP monitoring on redundancy group 0 (RGO) for SRX Series devices in a chassis cluster.

Be cautious and judicious in your use of redundancy group 0 manual failovers. A redundancy group 0 failover implies a Routing Engine (RE) failover, in which case all processes running on the primary node are killed and then spawned on the new master Routing Engine (RE). This failover could result in loss of state, such as routing state, and degrade performance by introducing system churn.

A redundancy group failover occurs because the cumulative weight of the redundancy group’s monitored interfaces has brought its threshold value to 0. When the monitored interfaces of a redundancy group on both nodes reach their thresholds at the same time, the redundancy group is primary on the node with the lower node ID, in this case node 0.

- If you want to dampen the failovers occurring because of interface monitoring failures, use the `hold-down-interval` statement.
- If a failover occurs on redundancy group 0 (RGO), the interface monitoring on the RGO secondary is disabled for 30 seconds. This prevents failover of other redundancy groups along with RGO failover.

Benefits of Monitoring Chassis Cluster Redundancy Group Interfaces

- Helps to determine the status of a specific interface in a chassis cluster setup by a specific redundancy group.
- Enables automatic failover of an interface to another node if the interface is down.
Example: Configuring Chassis Cluster Redundancy Group Interface Monitoring

This example shows how to specify that an interface be monitored by a specific redundancy group for automatic failover to another node. You assign a weight to the interface to be monitored also shows how to verify the process of the remaining threshold of a monitoring interface by configuring two interfaces from each node and mapping them to redundancy groups.

Requirements

Before you begin, create a redundancy group. See "Example: Configuring Chassis Cluster Redundancy Groups" on page 95.

Overview

To retrieve the remaining redundancy group threshold after a monitoring interface is down, you can configure your system to monitor the health of the interfaces belonging to a redundancy group. When you assign a weight to an interface to be monitored, the system monitors the interface for availability. If a physical interface fails, the weight is deducted from the corresponding redundancy group’s threshold. Every redundancy group has a threshold of 255. If the threshold hits 0, a failover is triggered, even if the redundancy group is in manual failover mode and the preempt option is not enabled.

In this example, you check the process of the remaining threshold of a monitoring interface by configuring two interfaces from each node and mapping them to redundancy group 1 (RG1), each with different weights. You use 130 and 140 for node 0 interfaces and 150 and 120 for node 1 interfaces. You configure
one interface from each node and map the interfaces to redundancy group 2 (RG2), each with default weight of 255.

Figure 29 on page 177 illustrates the network topology used in this example.

Figure 29: SRX Series Chassis Cluster Interface Monitoring Topology Example

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the edit hierarchy level, and then enter commit from configuration mode.

```
set chassis cluster reth-count 3
set chassis cluster redundancy-group 0 node 0 priority 254
set chassis cluster redundancy-group 0 node 1 priority 1
set chassis cluster redundancy-group 1 node 0 priority 200
set chassis cluster redundancy-group 1 node 1 priority 100
set chassis cluster redundancy-group 1 interface-monitor ge-0/0/1 weight 130
set chassis cluster redundancy-group 1 interface-monitor ge-0/0/2 weight 140
set chassis cluster redundancy-group 1 interface-monitor ge-8/0/1 weight 150
set chassis cluster redundancy-group 1 interface-monitor ge-8/0/2 weight 120
set chassis cluster redundancy-group 2 node 0 priority 200
set chassis cluster redundancy-group 2 node 1 priority 100
set chassis cluster redundancy-group 2 interface-monitor ge-0/0/3 weight 255
set chassis cluster redundancy-group 2 interface-monitor ge-8/0/3 weight 255
```
Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the Junos OS CLI User Guide.

To configure chassis cluster interface monitoring:

1. Specify the number of redundant Ethernet interfaces.

   ```
   [edit chassis cluster]
   user@host# set reth-count 3
   ```

2. Set up redundancy group 0 for the Routing Engine failover properties, and set up RG1 and RG2 (all interfaces are in one redundancy group in this example) to define the failover properties for the redundant Ethernet interfaces.

   ```
   [edit chassis cluster]
   user@host# set redundancy-group 0 node 0 priority 254
   user@host# set redundancy-group 0 node 1 priority 1
   user@host# set redundancy-group 1 node 0 priority 200
   user@host# set redundancy-group 1 node 1 priority 100
   user@host# set redundancy-group 2 node 0 priority 200
   user@host# set redundancy-group 2 node 1 priority 100
   ```

3. Set up interface monitoring to monitor the health of the interfaces and trigger redundancy group failover.

 We do not recommend interface monitoring for RG0, because it causes the control plane to switch from one node to another node in case interface flap occurs.
Interface failover only occurs after the weight reaches zero.

4. Set up the redundant Ethernet (reth) interfaces and assign them to a zone.

Results
From configuration mode, confirm your configuration by entering the `show chassis` and `show interfaces` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.
interface-monitor {
 ge-0/0/1 weight 130;
 ge-0/0/2 weight 140;
 ge-8/0/1 weight 150;
 ge-8/0/2 weight 120;
}
}
redundancy-group 2 {
 node 0 priority 200;
 node 1 priority 100;
 interface-monitor {
 ge-0/0/3 weight 255;
 ge-8/0/3 weight 255;
 }
}
}
[edit]
user@host# show interfaces
ge-0/0/1 {
 gigether-options {
 redundant-parent reth0;
 }
}
ge-0/0/2 {
 gigether-options {
 redundant-parent reth1;
 }
}
ge-0/0/3 {
 gigether-options {
 redundant-parent reth2;
 }
}
ge-8/0/1 {
 gigether-options {
 redundant-parent reth0;
 }
}
ge-8/0/2 {
 gigether-options {
 redundant-parent reth1;
 }
}
ge-8/0/3 {
If you are done configuring the device, enter commit from configuration mode.

Verification

IN THIS SECTION

- Verifying Chassis Cluster Status | 183
- Verifying Chassis Cluster Interfaces | 184
The following sections walk you through the process of verifying and (in some cases) troubleshooting the interface status. The process shows you how to check the status of each interface in the redundancy group, check them again after they have been disabled, and looks for details about each interface, until you have circled through all interfaces in the redundancy group.

In this example, you verify the process of the remaining threshold of a monitoring interface by configuring two interfaces from each node and mapping them to RG1, each with different weights. You use 130 and
140 for node 0 interfaces and 150 and 120 for node 1 interfaces. You configure one interface from each node and map the interfaces to RG2, each with the default weight of 255.

Verifying Chassis Cluster Status

Purpose
Verify the chassis cluster status, failover status, and redundancy group information.

Action
From operational mode, enter the `show chassis cluster status` command.

```
user@host> show chassis cluster status
```

<table>
<thead>
<tr>
<th>Monitor Failure codes:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>Cold Sync monitoring</td>
</tr>
<tr>
<td>GR</td>
<td>GRES monitoring</td>
</tr>
<tr>
<td>IF</td>
<td>Interface monitoring</td>
</tr>
<tr>
<td>LB</td>
<td>Loopback monitoring</td>
</tr>
<tr>
<td>NH</td>
<td>Nexthop monitoring</td>
</tr>
<tr>
<td>SP</td>
<td>SPU monitoring</td>
</tr>
<tr>
<td>CF</td>
<td>Config Sync monitoring</td>
</tr>
<tr>
<td>FL</td>
<td>Fabric Connection monitoring</td>
</tr>
<tr>
<td>HW</td>
<td>Hardware monitoring</td>
</tr>
<tr>
<td>IP</td>
<td>IP monitoring</td>
</tr>
<tr>
<td>MB</td>
<td>Mbuf monitoring</td>
</tr>
<tr>
<td>NP</td>
<td>NPC monitoring</td>
</tr>
<tr>
<td>SM</td>
<td>Schedule monitoring</td>
</tr>
</tbody>
</table>

Cluster ID: 2

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual</th>
<th>Monitor-failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>254</td>
<td>primary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
<tr>
<td>node1</td>
<td>1</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
</tbody>
</table>

Redundancy group: 1, Failover count: 1

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual</th>
<th>Monitor-failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>200</td>
<td>primary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
<tr>
<td>node1</td>
<td>100</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
</tbody>
</table>

Redundancy group: 2, Failover count: 1

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual</th>
<th>Monitor-failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>200</td>
<td>primary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
<tr>
<td>node1</td>
<td>100</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
</tbody>
</table>

Meaning
Use the `show chassis cluster status` command to confirm that devices in the chassis cluster are communicating properly, with one device functioning as the primary node and the other as the secondary node.
Verifying Chassis Cluster Interfaces

Purpose
Verify information about the statistics of the different objects being synchronized, the fabric and control interface hellos, and the status of the monitoring interfaces in the cluster.

Action
From operational mode, enter the `show chassis cluster interfaces` command.

{primary:node0}

user@host> **show chassis cluster interfaces**

<table>
<thead>
<tr>
<th>Control link status: Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control interfaces:</td>
</tr>
<tr>
<td>Index</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fabric link status: Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric interfaces:</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>fab0</td>
</tr>
<tr>
<td>fab0</td>
</tr>
<tr>
<td>fab1</td>
</tr>
<tr>
<td>fab1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Redundant-ethernet Information:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>reth0</td>
</tr>
<tr>
<td>reth1</td>
</tr>
<tr>
<td>reth2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Redundant-pseudo-interface Information:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>lo0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interface Monitoring:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>ge-8/0/2</td>
</tr>
<tr>
<td>ge-8/0/1</td>
</tr>
<tr>
<td>ge-0/0/2</td>
</tr>
</tbody>
</table>
Meaning
The sample output confirms that monitoring interfaces are up and that the weight of each interface being monitored is displayed correctly as configured. These values do not change if the interface goes up or down. The weights only change for the redundant group and can be viewed when you use the `show chassis cluster information` command.

Verifying Chassis Cluster Information

Purpose
Verify information about the statistics of the different objects being synchronized, the fabric and control interface hellos, and the status of the monitoring interfaces in the cluster.

Action
From operational mode, enter the `show chassis cluster information` command.

```
{primary:node0}

user@host> show chassis cluster information
```

```
node0:
---------------------------------------------------------------------------------------------------------------------
Redundancy Group Information:

Redundancy Group 0 , Current State: primary, Weight: 255

Time          From     To             Reason
Feb 24 22:56:27 hold secondary Hold timer expired
Feb 24 22:56:34 secondary primary Better priority (254/1)

Redundancy Group 1 , Current State: primary, Weight: 255

Time          From     To             Reason
Feb 24 23:16:12 hold secondary Hold timer expired
Feb 24 23:16:12 secondary primary Remote yield (0/0)

Redundancy Group 2 , Current State: primary, Weight: 255

```

```
```
Chassis cluster LED information:
 Current LED color: Green
 Last LED change reason: No failures

Redundancy Group Information:

<table>
<thead>
<tr>
<th>Redundancy Group</th>
<th>Current State</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>secondary</td>
<td>255</td>
</tr>
<tr>
<td>1</td>
<td>secondary</td>
<td>255</td>
</tr>
<tr>
<td>2</td>
<td>secondary</td>
<td>255</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 22:56:34</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Feb 24 23:16:10</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Feb 24 23:16:10</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
</tbody>
</table>

Chassis cluster LED information:
 Current LED color: Green
 Last LED change reason: No failures

Meaning
The sample output confirms that node 0 and node 1 are healthy, and the green LED on the device indicates that there are no failures. Also, the default weight of the redundancy group (255) is displayed. The default weight is deducted whenever an interface mapped to the corresponding redundancy group goes down.

Refer to subsequent verification sections to see how the redundancy group value varies when a monitoring interface goes down or comes up.

Verifying Interface ge-0/0/1 Status After Disabling Interface ge-0/0/1 of RG1 in Node 0 with a Weight of 130

Purpose
Verify that the interface ge-0/0/1 is disabled on node 0.
Action
From configuration mode, enter the **set interface ge-0/0/1 disable** command.

```
{primary:node0}
user@host# set interface ge-0/0/1 disable
user@host# commit
```

```
node0:
configuration check succeeds
node1:
commit complete
node0:
commit complete
```

```
{primary:node0}
user@host# show interfaces ge-0/0/1
```

```
disable;
gigether-options {
    redundant-parent reth0;
}
```

Meaning
The sample output confirms that interface ge-0/0/1 is disabled.

Verifying Chassis Cluster Status After Disabling Interface ge-0/0/1 of RG1 in Node 0 with a Weight of 130

Purpose
Verify the chassis cluster status, failover status, and redundancy group information.

Action
From operational mode, enter the **show chassis cluster status** command.

```
{primary:node0}
user@host> show chassis cluster status
```

```
Monitor Failure codes:
    CS  Cold Sync monitoring    FL  Fabric Connection monitoring
```
Meaning

Use the `show chassis cluster status` command to confirm that devices in the chassis cluster are communicating properly, with one device functioning as the primary node and the other as the secondary node.

Verifying Chassis Cluster Interfaces After Disabling Interface ge-0/0/1 of RG1 in Node 0 with a Weight of 130

Purpose

Verify information about the statistics of the different objects being synchronized, the fabric and control interface hellos, and the status of the monitoring interfaces in the cluster.

Action

From operational mode, enter the `show chassis cluster interfaces` command.

```
{primary:node0}

user@host> show chassis cluster interfaces
```

Control link status: Up

Control interfaces:
Fabric link status: Up

Fabric interfaces:

<table>
<thead>
<tr>
<th>Name</th>
<th>Child-interface</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>fab0 ge-0/0/0</td>
<td>Up / Up</td>
<td></td>
</tr>
<tr>
<td>fab1 ge-8/0/0</td>
<td>Up / Up</td>
<td></td>
</tr>
</tbody>
</table>

Redundant-ethernet Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>reth0</td>
<td>Down</td>
<td>1</td>
</tr>
<tr>
<td>reth1</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>reth2</td>
<td>Up</td>
<td>2</td>
</tr>
</tbody>
</table>

Redundant-pseudo-interface Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0</td>
<td>Up</td>
<td>0</td>
</tr>
</tbody>
</table>

Interface Monitoring:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Weight</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-8/0/2</td>
<td>120</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-8/0/1</td>
<td>150</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-0/0/2</td>
<td>140</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-0/0/1</td>
<td>130</td>
<td>Down</td>
<td>1</td>
</tr>
<tr>
<td>ge-8/0/3</td>
<td>255</td>
<td>Up</td>
<td>2</td>
</tr>
<tr>
<td>ge-0/0/3</td>
<td>255</td>
<td>Up</td>
<td>2</td>
</tr>
</tbody>
</table>

Meaning

The sample output confirms that monitoring interface ge-0/0/1 is down.

Verifying Chassis Cluster Information After Disabling Interface ge-0/0/1 of RG1 in Node 0 with a Weight of 130

Purpose

Verify information about the statistics of the different objects being synchronized, the fabric and control interface hellos, and the status of the monitoring interfaces in the cluster.

Action
From operational mode, enter the `show chassis cluster information` command.

```plaintext
{primary:node0}

user@host> show chassis cluster information

node0:

Redundancy Group Information:

### Redundancy Group 0, Current State: primary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 22:56:27</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Feb 24 22:56:34</td>
<td>secondary</td>
<td>primary</td>
<td>Better priority (254/1)</td>
</tr>
</tbody>
</table>

### Redundancy Group 1, Current State: primary, Weight: 125

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 23:16:12</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Feb 24 23:16:12</td>
<td>secondary</td>
<td>primary</td>
<td>Remote yield (0/0)</td>
</tr>
</tbody>
</table>

### Redundancy Group 2, Current State: primary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 23:16:12</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Feb 24 23:16:13</td>
<td>secondary</td>
<td>primary</td>
<td>Remote yield (0/0)</td>
</tr>
</tbody>
</table>

Chassis cluster LED information:
- Current LED color: Green
- Last LED change reason: No failures

Failure Information:

Interface Monitoring Failure Information:
- Redundancy Group 1, Monitoring status: Unhealthy
  - ge-0/0/1 Down

node1:

Redundancy Group Information:

Redundancy Group 0, Current State: secondary, Weight: 255
Meaning
The sample output confirms that in node 0, the RG1 weight is reduced to 125 (that is, 255 minus 130) because monitoring interface ge-0/0/1 (weight of 130) went down. The monitoring status is unhealthy, the device LED is amber, and the interface status of ge-0/0/1 is down.

If interface ge-0/0/1 is brought back up, the weight of RG1 in node 0 becomes 255. Conversely, if interface ge-0/0/2 is also disabled, the weight of RG1 in node 0 becomes 0 or less (in this example, 125 minus 140 = -15) and triggers failover, as indicated in the next verification section.

Verifying Interface ge-0/0/2 Is Disabled

Purpose
Verify that interface ge-0/0/2 is disabled on node 0.

Action
From configuration mode, enter the set interface ge-0/0/2 disable command.

{primary:node0}

user@host# set interface ge-0/0/2 disable

user@host# commit

node0:
configuration check succeeds
node1:
commit complete
node0:
commit complete

{primary:node0}

user@host#  show interfaces ge-0/0/2

disable;
gigether-options {
    redundant-parent reth1;
}

Meaning
The sample output confirms that interface ge-0/0/2 is disabled.

Verifying Chassis Cluster Status After Disabling Interface ge-0/0/2

Purpose
Verify the chassis cluster status, failover status, and redundancy group information.

Action
From operational mode, enter the show chassis cluster status command.

{primary:node0}

user@host>  show chassis cluster status

Monitor Failure codes:
    CS  Cold Sync monitoring        FL  Fabric Connection monitoring
    GR  GRES monitoring             HW  Hardware monitoring
    IF  Interface monitoring        IP  IP monitoring
    LB  Loopback monitoring         MB  Mbuf monitoring
    NH  Nexthop monitoring          NP  NPC monitoring
    SP  SPU monitoring              SM  Schedule monitoring
    CF  Config Sync monitoring

Cluster ID:  2
Node       Priority Status      Preempt Manual  Monitor-failsures
Meaning

Use the `show chassis cluster status` command to confirm that devices in the chassis cluster are communicating properly, with one device functioning as the primary node and the other as the secondary node. On RG1, you see interface failure, because both interfaces mapped to RG1 on node 0 failed during interface monitoring.

**Verifying Chassis Cluster Interfaces After Disabling Interface ge-0/0/2**

**Purpose**

Verify information about chassis cluster interfaces.

**Action**

From operational mode, enter the `show chassis cluster interfaces` command.

```
{primary:node0}
```

```
user@host> show chassis cluster interfaces
```

**Control link status: Up**

**Control interfaces:**

```
Index Interface Monitored-Status Internal-SA
0 em0 Up Disabled
1 em1 Down Disabled
```

**Fabric link status: Up**

**Fabric interfaces:**

```
Name Child-interface Status
(f Physical/Monitored)
fab0 ge-0/0/0 Up / Up
```
Meaning

The sample output confirms that monitoring interfaces ge-0/0/1 and ge-0/0/2 are down.

Verifying Chassis Cluster Information After Disabling Interface ge-0/0/2

Purpose

Verify information about the statistics of the different objects being synchronized, the fabric and control interface hellos, and the status of the monitoring interfaces in the cluster.

Action

From operational mode, enter the show chassis cluster information command.

{primary:node0}

user@host> show chassis cluster information

node0:
-----------------------------------------------------------------------------------
Redundancy Group Information:
Redundancy Group 0, Current State: primary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 22:56:27</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Feb 24 22:56:34</td>
<td>secondary</td>
<td>primary</td>
<td>Better priority (254/1)</td>
</tr>
</tbody>
</table>

Redundancy Group 1, Current State: secondary, Weight: -15

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 23:16:12</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Feb 24 23:16:13</td>
<td>secondary</td>
<td>primary</td>
<td>Remote yield (0/0)</td>
</tr>
<tr>
<td>Feb 24 23:31:36</td>
<td>primary</td>
<td>secondary-hold</td>
<td>Monitor failed: IF</td>
</tr>
<tr>
<td>Feb 24 23:31:37</td>
<td>secondary-hold</td>
<td>secondary</td>
<td>Ready to become secondary</td>
</tr>
</tbody>
</table>

Redundancy Group 2, Current State: primary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 23:16:12</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Feb 24 23:16:13</td>
<td>secondary</td>
<td>primary</td>
<td>Remote yield (0/0)</td>
</tr>
</tbody>
</table>

Chassis cluster LED information:
- Current LED color: Amber
- Last LED change reason: Monitored objects are down

Failure Information:

Interface Monitoring Failure Information:
- Redundancy Group 1, Monitoring status: Failed

<table>
<thead>
<tr>
<th>Interface</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/2</td>
<td>Down</td>
</tr>
<tr>
<td>ge-0/0/1</td>
<td>Down</td>
</tr>
</tbody>
</table>

node1:

Redundancy Group Information:

Redundancy Group 0, Current State: secondary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 22:56:34</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
</tbody>
</table>

Redundancy Group 1, Current State: primary, Weight: 255
Meaning
The sample output confirms that in node 0, monitoring interfaces ge-0/0/1 and ge-0/0/2 are down. The weight of RG1 on node 0 reached zero value, which triggered RG1 failover during use of the `show chassis cluster status` command.

For RG2, the default weight of 255 is set for redundant Ethernet interface 2 (reth2). When interface monitoring is required, we recommend that you use the default weight when you do not have backup links like those in RG1. That is, if interface ge-0/0/3 is disabled, it immediately triggers failover because the weight becomes 0 (255 minus 225), as indicated in the next verification section.

**Verifying Interface Status After Disabling ge-0/0/3**

**Purpose**
Verify that interface ge-0/0/3 is disabled on node 0.

**Action**
From configuration mode, enter the `set interface ge-0/0/3 disable` command.

```
{primary:node0}
user@host# set interface ge-0/0/3 disable
user@host# commit
```

node0:
configuration check succeeds
node1:
commit complete
node0:
commit complete

{primary:node0}

user@host# show interfaces ge-0/0/3

disable;
gigether-options {
    redundant-parent reth2;
}

Meaning
The sample output confirms that interface ge-0/0/3 is disabled.

Verifying Chassis Cluster Status After Disabling Interface ge-0/0/3

Purpose
Verify the chassis cluster status, failover status, and redundancy group information.

Action
From operational mode, enter the show chassis cluster status command.

{primary:node0}

user@host> show chassis cluster status

Monitor Failure codes:
    CS  Cold Sync monitoring    FL  Fabric Connection monitoring
    GR  GRES monitoring        HW  Hardware monitoring
    IF  Interface monitoring    IP  IP monitoring
    LB  Loopback monitoring    MB  Mbuf monitoring
    NH  Nexthop monitoring    NP  NPC monitoring
    SP  SPU monitoring         SM  Schedule monitoring
    CF  Config Sync monitoring

Cluster ID: 2
Node  Priority Status  Preempt Manual  Monitor-failures
Redundancy group: 0 , Failover count: 1
node0  254      primary        no      no       None
node1  1        secondary      no      no       None
Redundancy group: 1, Failover count: 2
node0  0      secondary  no  no       IF
node1  100    primary    no  no       None

Redundancy group: 2, Failover count: 2
node0  0      secondary  no  no       IF
node1  100    primary    no  no       None

Meaning
Use the show chassis cluster status command to confirm that devices in the chassis cluster are communicating properly, with one device functioning as the primary node and the other as the secondary node.

Verifying Chassis Cluster Interfaces After Disabling Interface ge-0/0/3

Purpose
Verify information about chassis cluster interfaces.

Action
From operational mode, enter the show chassis cluster interfaces command.

{primary:node0}

user@host> show chassis cluster interfaces

Control link status: Up

Control interfaces:

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Monitored-Status</th>
<th>Internal-SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>em0</td>
<td>Up</td>
<td>Disabled</td>
</tr>
<tr>
<td>1</td>
<td>em1</td>
<td>Down</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Fabric link status: Up

Fabric interfaces:

<table>
<thead>
<tr>
<th>Name</th>
<th>Child-interface</th>
<th>Status (Physical/Monitored)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fab0</td>
<td>ge-0/0/0</td>
<td>Up / Up</td>
</tr>
<tr>
<td>fab0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fab1</td>
<td>ge-8/0/0</td>
<td>Up / Up</td>
</tr>
<tr>
<td>fab1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Redundant-ethernet Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>reth0</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>reth1</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>reth2</td>
<td>Up</td>
<td>2</td>
</tr>
</tbody>
</table>

Redundant-pseudo-interface Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0</td>
<td>Up</td>
<td>0</td>
</tr>
</tbody>
</table>

Interface Monitoring:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Weight</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-8/0/2</td>
<td>120</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-8/0/1</td>
<td>150</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-0/0/2</td>
<td>140</td>
<td>Down</td>
<td>1</td>
</tr>
<tr>
<td>ge-0/0/1</td>
<td>130</td>
<td>Down</td>
<td>1</td>
</tr>
<tr>
<td>ge-8/0/3</td>
<td>255</td>
<td>Up</td>
<td>2</td>
</tr>
<tr>
<td>ge-0/0/3</td>
<td>255</td>
<td>Down</td>
<td>2</td>
</tr>
</tbody>
</table>

Meaning
The sample output confirms that monitoring interfaces ge-0/0/1, ge-0/0/2, and ge-0/0/3 are down.

**Verifying Chassis Cluster Information After Disabling Interface ge-0/0/3**

**Purpose**
Verify information about the statistics of the different objects being synchronized, the fabric and control interface hellos, and the status of the monitoring interfaces in the cluster.

**Action**
From operational mode, enter the `show chassis cluster information` command.

{primary:node0}

user@host> **show chassis cluster information**

```
node0:

Redundancy Group Information:

Redundancy Group 0, Current State: primary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
</table>
```
Feb 24 22:56:27 hold secondary Hold timer expired
Feb 24 22:56:34 secondary primary Better priority (254/1)

Redundancy Group 1, Current State: secondary, Weight: -15

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 23:16:12</td>
<td>hold secondary</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Feb 24 23:16:12</td>
<td>secondary</td>
<td>primary</td>
<td>Remote yield (0/0)</td>
</tr>
<tr>
<td>Feb 24 23:31:36</td>
<td>primary</td>
<td>secondary-hold</td>
<td>Monitor failed: IF</td>
</tr>
<tr>
<td>Feb 24 23:31:37</td>
<td>secondary-hold</td>
<td>secondary</td>
<td>Ready to become secondary</td>
</tr>
</tbody>
</table>

Redundancy Group 2, Current State: secondary, Weight: 0

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 23:16:12</td>
<td>hold secondary</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Feb 24 23:16:13</td>
<td>secondary</td>
<td>primary</td>
<td>Remote yield (0/0)</td>
</tr>
<tr>
<td>Feb 24 23:35:57</td>
<td>primary</td>
<td>secondary-hold</td>
<td>Monitor failed: IF</td>
</tr>
<tr>
<td>Feb 24 23:35:58</td>
<td>secondary-hold</td>
<td>secondary</td>
<td>Ready to become secondary</td>
</tr>
</tbody>
</table>

Chassis cluster LED information:
- Current LED color: Amber
- Last LED change reason: Monitored objects are down

Failure Information:

Interface Monitoring Failure Information:
- Redundancy Group 1, Monitoring status: Failed
  - Interface ge-0/0/2 Status Down
  - Interface ge-0/0/1 Status Down
- Redundancy Group 2, Monitoring status: Failed
  - Interface ge-0/0/3 Status Down

node1:

Redundancy Group Information:

Redundancy Group 0, Current State: secondary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 22:56:34</td>
<td>hold secondary</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
</tbody>
</table>

Redundancy Group 1, Current State: primary, Weight: 255
Time            From           To             Reason
Feb 24 23:16:10 hold           secondary      Hold timer expired
Feb 24 23:31:36 secondary      primary        Remote is in secondary hold

Redundancy Group 2 , Current State: primary, Weight: 255

Time            From           To             Reason
Feb 24 23:16:10 hold           secondary      Hold timer expired
Feb 24 23:35:57 secondary      primary        Remote is in secondary hold

Chassis cluster LED information:
  Current LED color: Amber
  Last LED change reason: Monitored objects are down

**Meaning**
The sample output confirms that in node 0, monitoring interfaces ge-0/0/1, ge-0/0/2, and ge-0/0/3 are down.

In regard to RG1, allowing any interface in node 0 go up triggers a failover only if the **preempt** option is enabled. In the example, **preempt** is not enabled. Therefore the node should return to normal, with no monitor failure showing for RG1.

**Verifying That Interface ge-0/0/2 Is Enabled**

**Purpose**
Verify that interface ge-0/0/2 is enabled on node 0.

**Action**
From configuration mode, enter the **delete interfaces ge-0/0/2 disable** command.

```
{primary:node0}

user@host# delete interfaces ge-0/0/2 disable

user@host# commit
```

node0:
configuration check succeeds
node1:
commit complete
node0:
commit complete

Meaning
The sample output confirms that interface ge-0/0/2 disable is deleted.

Verifying Chassis Cluster Status After Enabling Interface ge-0/0/2

Purpose
Verify the chassis cluster status, failover status, and redundancy group information.

Action
From operational mode, enter the show chassis cluster status command.

{primary:node0}

user@host> show chassis cluster status

Monitor Failure codes:
  CS  Cold Sync monitoring       FL  Fabric Connection monitoring
  GR  GRES monitoring            HW  Hardware monitoring
  IF  Interface monitoring       IP  IP monitoring
  LB  Loopback monitoring        MB  Mbuf monitoring
  NH  Nexthop monitoring         NP  NPC monitoring
  SP  SPU monitoring             SM  Schedule monitoring
  CF  Config Sync monitoring

Cluster ID: 2
Node  Priority Status  Preempt Manual  Monitor-failures

Redundancy group: 0 , Failover count: 1
node0  254  primary  no  no  None
node1  1  secondary  no  no  None

Redundancy group: 1 , Failover count: 2
node0  200  secondary  no  no  None
node1  100  primary  no  no  None

Redundancy group: 2 , Failover count: 2
node0  0  secondary  no  no  IF
node1  100  primary  no  no  None
Meaning
Use the `show chassis cluster status` command to confirm that devices in the chassis cluster are communicating properly, with as one device functioning as the primary node and the other as the secondary node.

Verifying Chassis Cluster Interfaces After Enabling Interface ge-0/0/2

Purpose
Verify information about chassis cluster interfaces.

Action
From operational mode, enter the `show chassis cluster interfaces` command.

```shell
{primary:node0}
user@host> show chassis cluster interfaces
```

Control link status: Up

Control interfaces:

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Monitored-Status</th>
<th>Internal-SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>em0</td>
<td>Up</td>
<td>Disabled</td>
</tr>
<tr>
<td>1</td>
<td>em1</td>
<td>Down</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Fabric link status: Up

Fabric interfaces:

<table>
<thead>
<tr>
<th>Name</th>
<th>Child-interface</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>fab0</td>
<td>ge-0/0/0</td>
<td>Up / Up</td>
</tr>
<tr>
<td>fab0</td>
<td>ge-8/0/0</td>
<td>Up / Up</td>
</tr>
<tr>
<td>fab1</td>
<td>ge-0/0/0</td>
<td>Up / Up</td>
</tr>
<tr>
<td>fab1</td>
<td>ge-8/0/0</td>
<td>Up / Up</td>
</tr>
</tbody>
</table>

Redundant-ethernet Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>reth0</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>reth1</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>reth2</td>
<td>Up</td>
<td>2</td>
</tr>
</tbody>
</table>

Redundant-pseudo-interface Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0</td>
<td>Up</td>
<td>0</td>
</tr>
</tbody>
</table>

Interface Monitoring:
## Interface Information

<table>
<thead>
<tr>
<th>Interface</th>
<th>Weight</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-8/0/2</td>
<td>120</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-8/0/1</td>
<td>150</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-0/0/2</td>
<td>140</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-0/0/1</td>
<td>130</td>
<td>Down</td>
<td>1</td>
</tr>
<tr>
<td>ge-8/0/3</td>
<td>255</td>
<td>Up</td>
<td>2</td>
</tr>
<tr>
<td>ge-0/0/3</td>
<td>255</td>
<td>Down</td>
<td>2</td>
</tr>
</tbody>
</table>

### Meaning

The sample output confirms that monitoring interfaces ge-0/0/1 and ge-0/0/3 are down. Monitoring interface ge-0/0/2 is up after the disable has been deleted.

### Verifying Chassis Cluster Information After Enabling Interface ge-0/0/2

#### Purpose

Verify information about the statistics of the different objects being synchronized, the fabric and control interface hellos, and the status of the monitoring interfaces in the cluster.

#### Action

From operational mode, enter the `show chassis cluster information` command.

```
{primary:node0}

user@host> show chassis cluster information
```

---

```
node0:
--
Redundancy Group Information:

Redundancy Group 0 , Current State: primary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24</td>
<td>22:56:27</td>
<td>hold</td>
<td>secondary</td>
</tr>
<tr>
<td>Feb 24</td>
<td>22:56:34</td>
<td>secondary</td>
<td>primary</td>
</tr>
</tbody>
</table>

Redundancy Group 1 , Current State: secondary, Weight: 125

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24</td>
<td>23:16:12</td>
<td>hold</td>
<td>secondary</td>
</tr>
<tr>
<td>Feb 24</td>
<td>23:16:12</td>
<td>secondary</td>
<td>primary</td>
</tr>
<tr>
<td>Feb 24</td>
<td>23:31:36</td>
<td>primary</td>
<td>secondary-hold Monitor</td>
</tr>
<tr>
<td>Feb 24</td>
<td>23:31:37</td>
<td>secondary-hold</td>
<td>Ready to become secondary</td>
</tr>
</tbody>
</table>
```
Redundancy Group 2, Current State: secondary, Weight: 0

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 23:16:12</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Feb 24 23:16:13</td>
<td>secondary</td>
<td>primary</td>
<td>Remote yield (0/0)</td>
</tr>
<tr>
<td>Feb 24 23:35:57</td>
<td>primary</td>
<td>secondary-hold</td>
<td>Monitor failed: IF</td>
</tr>
<tr>
<td>Feb 24 23:35:58</td>
<td>secondary-hold</td>
<td>secondary</td>
<td>Ready to become secondary</td>
</tr>
</tbody>
</table>

Chassis cluster LED information:
Current LED color: Amber
Last LED change reason: Monitored objects are down

Failure Information:

Interface Monitoring Failure Information:
Redundancy Group 1, Monitoring status: Unhealthy
- Interface: ge-0/0/1, Status: Down

Redundancy Group 2, Monitoring status: Failed
- Interface: ge-0/0/3, Status: Down

node1:

Redundancy Group Information:

Redundancy Group 0, Current State: secondary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 22:56:34</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
</tbody>
</table>

Redundancy Group 1, Current State: primary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 23:16:10</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Feb 24 23:31:36</td>
<td>secondary</td>
<td>primary</td>
<td>Remote is in secondary hold</td>
</tr>
</tbody>
</table>

Redundancy Group 2, Current State: primary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 23:16:10</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Feb 24 23:35:57</td>
<td>secondary</td>
<td>primary</td>
<td>Remote is in secondary hold</td>
</tr>
</tbody>
</table>
Chassis cluster LED information:
   Current LED color: Amber
   Last LED change reason: Monitored objects are down

Meaning
The sample output confirms that in node 0, monitoring interfaces ge-0/0/1 and ge-0/0/3 are down. Monitoring interface ge-0/0/2 is active after the disable has been deleted.

Verifying Chassis Cluster RG2 Preempt

Purpose
Verify that the chassis cluster RG2 is preempted on node 0.

Action
From configuration mode, enter the `set chassis cluster redundancy-group 2 preempt` command.

{primary:node0}

user@host# set chassis cluster redundancy-group 2 preempt

user@host# commit

node0:
configuration check succeeds
node1:
commit complete
node0:
commit complete

Meaning
The sample output confirms that chassis cluster RG2 preempted on node 0.

In the next section, you check that RG2 fails over back to node 0 when preempt is enabled when the disabled node 0 interface is brought online.

Verifying Chassis Cluster Status After Preempting RG2

Purpose
Verify the chassis cluster status, failover status, and redundancy group information.
**Action**
From operational mode, enter the `show chassis cluster status` command.

{primary:node0}

user@host> `show chassis cluster status`

<table>
<thead>
<tr>
<th>Monitor Failure codes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS  Cold Sync monitoring</td>
</tr>
<tr>
<td>GR  GRES monitoring</td>
</tr>
<tr>
<td>IF  Interface monitoring</td>
</tr>
<tr>
<td>LB  Loopback monitoring</td>
</tr>
<tr>
<td>NH  Nexthop monitoring</td>
</tr>
<tr>
<td>SP  SPU monitoring</td>
</tr>
<tr>
<td>CF  Config Sync monitoring</td>
</tr>
</tbody>
</table>

Cluster ID: 2

<table>
<thead>
<tr>
<th>Redundancy group: 0 , Failover count: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>node0</td>
</tr>
<tr>
<td>node1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Redundancy group: 1 , Failover count: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>node0</td>
</tr>
<tr>
<td>node1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Redundancy group: 2 , Failover count: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>node0</td>
</tr>
<tr>
<td>node1</td>
</tr>
</tbody>
</table>

**Meaning**
Use the `show chassis cluster status` command to confirm that devices in the chassis cluster are communicating properly, with one device functioning as the primary node and the other as the secondary node.

**Verifying That Interface ge-0/0/3 Is Enabled**

**Purpose**
Verify that interface ge-0/0/3 is enabled on node 0.

**Action**
From configuration mode, enter the `delete interfaces ge-0/0/3 disable` command.

{primary:node0}
user@host# delete interfaces ge-0/0/3 disable
user@host# commit

node0:
configuration check succeeds
node1:
commit complete
node0:
commit complete

Meaning
The sample output confirms that interface ge-0/0/3 disable has been deleted.

Verifying Chassis Cluster Status After Enabling Interface ge-0/0/3

Purpose
Verify the chassis cluster status, failover status, and redundancy group information.

Action
From operational mode, enter the show chassis cluster status command.

{primary:node0}
user@host> show chassis cluster status

Monitor Failure codes:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>Cold Sync monitoring</td>
</tr>
<tr>
<td>GR</td>
<td>GRES monitoring</td>
</tr>
<tr>
<td>IF</td>
<td>Interface monitoring</td>
</tr>
<tr>
<td>LB</td>
<td>Loopback monitoring</td>
</tr>
<tr>
<td>NH</td>
<td>Nexthop monitoring</td>
</tr>
<tr>
<td>SP</td>
<td>SPU monitoring</td>
</tr>
<tr>
<td>CF</td>
<td>Config Sync monitoring</td>
</tr>
<tr>
<td>FL</td>
<td>Fabric Connection monitoring</td>
</tr>
<tr>
<td>HW</td>
<td>Hardware monitoring</td>
</tr>
<tr>
<td>IP</td>
<td>IP monitoring</td>
</tr>
<tr>
<td>MB</td>
<td>Mbuf monitoring</td>
</tr>
<tr>
<td>NP</td>
<td>NPC monitoring</td>
</tr>
<tr>
<td>SM</td>
<td>Schedule monitoring</td>
</tr>
</tbody>
</table>

Cluster ID: 2

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual</th>
<th>Monitor-failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>254</td>
<td>primary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
<tr>
<td>node1</td>
<td>1</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
</tbody>
</table>
Meaning

Use the `show chassis cluster status` command to confirm that devices in the chassis cluster are communicating properly, with one device functioning as the primary node and the other as the secondary node.

**Verifying Chassis Cluster Interfaces After Enabling Interface ge-0/0/3**

**Purpose**

Verify information about chassis cluster interfaces.

**Action**

From operational mode, enter the `show chassis cluster interfaces` command.

```bash
{primary:node0}
```

```
user@host> show chassis cluster interfaces
```

Control link status: Up

Control interfaces:

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Monitored-Status</th>
<th>Internal-SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>em0</td>
<td>Up</td>
<td>Disabled</td>
</tr>
<tr>
<td>1</td>
<td>em1</td>
<td>Down</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Fabric link status: Up

Fabric interfaces:

<table>
<thead>
<tr>
<th>Name</th>
<th>Child-interface</th>
<th>Status</th>
<th>(Physical/Monitored)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fab0</td>
<td>ge-0/0/0</td>
<td>Up</td>
<td>Up / Up</td>
</tr>
<tr>
<td>fab0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fab1</td>
<td>ge-8/0/0</td>
<td>Up</td>
<td>Up / Up</td>
</tr>
<tr>
<td>fab1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Redundant-ethernet Information:
<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>reth0</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>reth1</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>reth2</td>
<td>Up</td>
<td>2</td>
</tr>
</tbody>
</table>

**Redundant-pseudo-interface Information:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0</td>
<td>Up</td>
<td>0</td>
</tr>
</tbody>
</table>

**Interface Monitoring:**

<table>
<thead>
<tr>
<th>Interface</th>
<th>Weight</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-8/0/2</td>
<td>120</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-8/0/1</td>
<td>150</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-0/0/2</td>
<td>140</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-0/0/1</td>
<td>130</td>
<td>Down</td>
<td>1</td>
</tr>
<tr>
<td>ge-8/0/3</td>
<td>255</td>
<td>Up</td>
<td>2</td>
</tr>
<tr>
<td>ge-0/0/3</td>
<td>255</td>
<td>Up</td>
<td>2</td>
</tr>
</tbody>
</table>

**Meaning**

The sample output confirms that monitoring interface ge-0/0/1 is down. Monitoring interfaces ge-0/0/2, and ge-0/0/3 are up after deleting the disable.

**Verifying Chassis Cluster Information After Enabling Interface ge-0/0/3**

**Purpose**

Verify information about the statistics of the different objects being synchronized, the fabric and control interface hellos, and the status of the monitoring interfaces in the cluster.

**Action**

From operational mode, enter the `show chassis cluster information` command.

```
{primary:node0}

user@host> show chassis cluster information
```

**node0:**

Redundancy Group Information:

```
Redundancy Group 0 , Current State: primary, Weight: 255
```

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
</table>

Feb 24 22:56:27 hold secondary Hold timer expired
Feb 24 22:56:34 secondary primary Better priority (254/1)

Redundancy Group 1, Current State: secondary, Weight: 125

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 23:16:12</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Feb 24 23:16:12</td>
<td>secondary</td>
<td>primary</td>
<td>Remote yield (0/0)</td>
</tr>
<tr>
<td>Feb 24 23:31:36</td>
<td>primary</td>
<td>secondary-hold</td>
<td>Monitor failed: IF</td>
</tr>
<tr>
<td>Feb 24 23:31:37</td>
<td>secondary-hold</td>
<td>secondary</td>
<td>Ready to become secondary</td>
</tr>
</tbody>
</table>

Redundancy Group 2, Current State: primary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 23:16:12</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Feb 24 23:16:13</td>
<td>secondary</td>
<td>primary</td>
<td>Remote yield (0/0)</td>
</tr>
<tr>
<td>Feb 24 23:35:57</td>
<td>primary</td>
<td>secondary-hold</td>
<td>Monitor failed: IF</td>
</tr>
<tr>
<td>Feb 24 23:35:58</td>
<td>secondary-hold</td>
<td>secondary</td>
<td>Ready to become secondary</td>
</tr>
<tr>
<td>Feb 24 23:45:45</td>
<td>secondary</td>
<td>primary</td>
<td>Remote is in secondary hold</td>
</tr>
</tbody>
</table>

Chassis cluster LED information:
  Current LED color: Green
  Last LED change reason: No failures

Failure Information:

Interface Monitoring Failure Information:
  Redundancy Group 1, Monitoring status: Unhealthy
  Interface     Status
  ge-0/0/1      Down

Redundancy Group Information:

Redundancy Group 0, Current State: secondary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 22:56:34</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
</tbody>
</table>

Redundancy Group 1, Current State: primary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
</table>
### Redundancy Group 2, Current State: secondary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 23:16:10</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Feb 24 23:31:36</td>
<td>secondary</td>
<td>primary</td>
<td>Remote is in secondary hold</td>
</tr>
<tr>
<td>Feb 24 23:45:45</td>
<td>primary</td>
<td>secondary-hold</td>
<td>Preempt (100/200)</td>
</tr>
<tr>
<td>Feb 24 23:45:46</td>
<td>secondary-hold</td>
<td>secondary</td>
<td>Ready to become secondary</td>
</tr>
</tbody>
</table>

**Chassis cluster LED information:**
- Current LED color: Amber
- Last LED change reason: Monitored objects are down

### Meaning

The sample output confirms that in node 0, monitoring interface ge-0/0/1 is down. RG2 on node 0 state is back to primary state (because of the preempt enable) with a healthy weight of 255 when interface ge-0/0/3 is back up.

### SEE ALSO

- Example: Configuring Chassis Cluster Redundancy Groups | 95

### RELATED DOCUMENTATION

- Monitoring IP Addresses on a Chassis Cluster | 213
- Configuring Cluster Failover Parameters | 231
- Chassis Cluster Redundancy Group Failover | 237
Redundancy group IP address monitoring checks end-to-end connectivity and allows a redundancy group to fail over if reth interface fails to reach a configured IP address. Redundancy groups on both devices in a cluster can be configured to monitor specific IP addresses to determine whether an upstream device in the network is reachable. For more information, see the following topics:

**IP Monitoring Overview**

IP monitoring checks the end-to-end connectivity of configured IP addresses and allows a redundancy group to automatically fail over when the monitored IP address is not reachable through the redundant Ethernet (reth) interface. Both the primary and secondary nodes in the chassis cluster monitor specific IP addresses to determine whether an upstream device in the network is reachable.

IP monitoring allows for failover based upon end-to-end reachability of a configured monitored IP address. On SRX Series devices, the reachability test is done by sending a ping to the monitored IP address from both the primary node and the secondary node through the reth interface and checking if a response is returned. The monitored IP address can be on a directly connected host in the same subnet as the reth interface or on a remote device reachable through a next-hop router.

The reachability states of the monitored IP address are reachable, unreachable, and unknown. The status is "unknown" if Packet Forwarding Engines are not yet up and running. The status changes to either "reachable" or "unreachable," depending on the corresponding message from the Packet Forwarding Engine.

We do not recommend configuring chassis cluster IP monitoring on Redundancy Group 0 (RG0) for SRX Series devices.

Table 16 on page 214 provides details of different combinations of monitored results from both the primary and secondary nodes, and the corresponding actions by the Juniper Services Redundancy Protocol (jsrpd) process.
**Table 16: IP Monitoring Results and Failover Action**

<table>
<thead>
<tr>
<th>Primary Node Monitored Status</th>
<th>Secondary Node Monitored Status</th>
<th>Failover Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reachable</td>
<td>Reachable</td>
<td>No action</td>
</tr>
<tr>
<td>Unreachable</td>
<td>Reachable</td>
<td>Failover</td>
</tr>
<tr>
<td>Reachable</td>
<td>Unreachable</td>
<td>No action</td>
</tr>
<tr>
<td>Unreachable</td>
<td>Unreachable</td>
<td>No action</td>
</tr>
</tbody>
</table>

- You can configure up to 64 IP addresses for IP monitoring on SRX5000 line devices.
- On SRX Branch Series devices, when the reth interface has more than one physical interface configured, IP monitoring for redundant groups is not supported. The SRX uses the lowest interface in the bundle for tracking on the secondary node. If the peer forwards the reply on any other port except the one it received it on, the SRX drops it.
- The minimum interval of IP monitoring is 1 second and the maximum is 30 seconds. Default interval is 1 second.
- The minimum threshold of IP monitoring is 5 requests and the maximum is 15 requests. If the IP monitoring request does not receive a response for consecutive requests (exceeding the threshold value), IP monitoring reports that the monitored IP is unreachable. Default value for the threshold is 5.
- Reth interface not associated with Redundancy Group (RG) in IP monitoring CLI configuration is supported.

**Table 17: Maximum MACs Supported for IP Monitoring on IOC2 and IOC3**

<table>
<thead>
<tr>
<th>Cards</th>
<th>Interfaces</th>
<th>Maximum MACs Supported for IP Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOC2 (SRX5K-MPC)</td>
<td>10XGE</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>20GE</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2X40GE</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1X100GE</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 17: Maximum MACs Supported for IP Monitoring on IOC2 and IOC3 (continued)

<table>
<thead>
<tr>
<th>Cards</th>
<th>Interfaces</th>
<th>Maximum MACs Supported for IP Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOC3</td>
<td>24x10GE</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>6x40GE</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2x100GE + 4x10GE</td>
<td>6</td>
</tr>
</tbody>
</table>

Note the following limitations for IP monitoring support on SRX5000 line IOC2 and IOC3:

- IP monitoring is supported through the reth or the RLAG interface. If your configuration does not specify either of these interfaces, the route lookup returns a non-reth/RLAG interface, which results in a failure report.

- Equal-cost multipath (ECMP) routing is not supported in IP monitoring.

Benefits of Monitoring IP Addresses in a Chassis Cluster

- Helps determine the status of a specific IP address in a Chassis Cluster setup as unknown, reachable or unreachable.

- Initiates failover based upon end to-end reachability of a configured monitored IP address. If the monitored IP address becomes unreachable, the redundancy group can fail over to its backup to maintain service.

SEE ALSO

- SRX5400, SRX5600, and SRX5800 Services Gateway Card Overview
- Chassis Cluster Redundancy Groups | 91

Understanding Chassis Cluster Redundancy Group IP Address Monitoring

Redundancy group IP address monitoring checks end-to-end connectivity and allows a redundancy group to fail over because of the inability of a redundant Ethernet interface (known as a reth) to reach a configured IP address. Redundancy groups on both devices in a cluster can be configured to monitor specific IP addresses to determine whether an upstream device in the network is reachable. The redundancy group can be configured such that if the monitored IP address becomes unreachable, the redundancy group will fail over to its backup to maintain service. The primary difference between this monitoring feature and interface monitoring is that IP address monitoring allows for failover when the interface is still up but the
network device it is connected to is not reachable for some reason. It may be possible under those circumstances for the other node in the cluster to route traffic around the problem.

If you want to dampen the failovers occurring because of IP address monitoring failures, use the **hold-down-interval** statement.

IP address monitoring configuration allows you to set not only the address to monitor and its failover weight but also a global IP address monitoring threshold and weight. Only after the IP address monitoring global-threshold is reached because of cumulative monitored address reachability failure will the IP address monitoring global-weight value be deducted from the redundant group's failover threshold. Thus, multiple addresses can be monitored simultaneously as well as monitored to reflect their importance to maintaining traffic flow. Also, the threshold value of an IP address that is unreachable and then becomes reachable again will be restored to the monitoring threshold. This will not, however, cause a failback unless the preempt option has been enabled.

When configured, the IP address monitoring failover value (global-weight) is considered along with interface monitoring—if set—and built-in failover monitoring, including SPU monitoring, cold-sync monitoring, and NPC monitoring (on supported platforms). The main IP addresses that should be monitored are router gateway addresses to ensure that valid traffic coming into the services gateway can be forwarded to the appropriate network router.

Starting in Junos OS Release 12.1X46-D35 and Junos OS Release 17.3R1, for all SRX Series devices, the reth interface supports proxy ARP.

One Services Processing Unit (SPU) or Packet Forwarding Engine (PFE) per node is designated to send Internet Control Message Protocol (ICMP) ping packets for the monitored IP addresses on the cluster. The primary PFE sends ping packets using Address Resolution Protocol (ARP) requests resolved by the Routing Engine (RE). The source for these pings is the redundant Ethernet interface MAC and IP addresses. The secondary PFE resolves ARP requests for the monitored IP address itself. The source for these pings is the physical child MAC address and a secondary IP address configured on the redundant Ethernet interface. For the ping reply to be received on the secondary interface, the I/O card (IOC), central PFE processor, or Flex IOC adds both the physical child MAC address and the redundant Ethernet interface MAC address to its MAC table. The secondary PFE responds with the physical child MAC address to ARP requests sent to the secondary IP address configured on the redundant Ethernet interface.

**NOTE:** IP address monitoring is not supported on SRX5000 line devices if the redundant Ethernet interface is configured for a VPN routing and forwarding (VRF) instance.

The default interval to check the reachability of a monitored IP address is once per second. The interval can be adjusted using the **retry-interval** command. The default number of permitted consecutive failed ping attempts is 5. The number of allowed consecutive failed ping attempts can be adjusted using the **retry-count** command. After failing to reach a monitored IP address for the configured number of
consecutive attempts, the IP address is determined to be unreachable and its failover value is deducted from the redundancy group's global-threshold.

On SRX5600 and SRX5800 devices, only two of the 10 ports on each PIC of 40-port 1-Gigabit Ethernet I/O cards (IOCs) can simultaneously enable IP address monitoring. Because there are four PICs per IOC, this permits a total of eight ports per IOC to be monitored. If more than two ports per PIC on 40-port 1-Gigabit Ethernet IOCs are configured for IP address monitoring, the commit will succeed but a log entry will be generated, and the accuracy and stability of IP address monitoring cannot be ensured. This limitation does not apply to any other IOCs or devices.

Once the IP address is determined to be unreachable, its weight is deducted from the global-threshold. If the recalculated global-threshold value is not 0, the IP address is marked unreachable, but the global-weight is not deducted from the redundancy group's threshold. If the redundancy group IP monitoring global-threshold reaches 0 and there are unreachable IP addresses, the redundancy group will continuously fail over and fail back between the nodes until either an unreachable IP address becomes reachable or a configuration change removes unreachable IP addresses from monitoring. Note that both default and configured hold-down-interval failover dampening is still in effect.

Every redundancy group x has a threshold tolerance value initially set to 255. When an IP address monitored by redundancy group x becomes unavailable, its weight is subtracted from the redundancy group x's threshold. When redundancy group x's threshold reaches 0, it fails over to the other node. For example, if redundancy group 1 was primary on node 0, on the threshold-crossing event, redundancy group 1 becomes primary on node 1. In this case, all the child interfaces of redundancy group 1's redundant Ethernet interfaces begin handling traffic.

A redundancy group x failover occurs because the cumulative weight of the redundancy group x's monitored IP addresses and other monitoring has brought its threshold value to 0. When the monitored IP addresses of redundancy group x on both nodes reach their thresholds at the same time, redundancy group x is primary on the node with the lower node ID, which is typically node 0.

Upstream device failure detection for the chassis cluster feature is supported on SRX Series devices.

Starting in Junos OS Release 15.1X49-D60 and Junos OS Release 17.3R1, configuring Address Resolution Protocol (ARP) request throttling is supported on SRX5000 line devices. This feature allows you to bypass the previously hard-coded ARP request throttling time default (10 seconds per SPU for each IP address) and set the time to a greater value (10 through 100 seconds). Setting the throttling time to a greater value reduces the high utilization of the Routing Engine, allowing it to work more efficiently. You can configure the ARP request throttling time using the **set forwarding-options next-hop arp-throttle <seconds>** command.

Monitoring can be accomplished only if the IP address is reachable on a redundant Ethernet interface (known as a reth in CLI commands and interface listings), and IP addresses cannot be monitored over a tunnel. For an IP address to be monitored through a redundant Ethernet interface on a secondary cluster node, the interface must have a secondary IP address configured. IP address monitoring cannot be used on a chassis cluster running in transparent mode. The maximum number of monitoring IP addresses that can be configured per cluster is 64 for the SRX5000 line of devices, SRX1500, SRX4000 line of devices.
Redundancy group IP address monitoring is not supported for IPv6 destinations.

Example: Configuring Chassis Cluster Redundancy Group IP Address Monitoring

This example shows how to configure redundancy group IP address monitoring for an SRX Series device in a chassis cluster.

Requirements

Before you begin:

- Set the chassis cluster node ID and cluster ID. See "Example: Setting the Node ID and Cluster ID for Security Devices in a Chassis Cluster" on page 60
- Configure the chassis cluster management interface. See "Example: Configuring the Chassis Cluster Management Interface" on page 64.
- Configure the chassis cluster fabric. See "Example: Configuring the Chassis Cluster Fabric Interfaces" on page 78.

Overview

You can configure redundancy groups to monitor upstream resources by pinging specific IP addresses that are reachable through redundant Ethernet interfaces on either node in a cluster. You can also configure global threshold, weight, retry interval, and retry count parameters for a redundancy group. When a monitored IP address becomes unreachable, the weight of that monitored IP address is deducted from the redundancy group IP address monitoring global threshold. When the global threshold reaches 0, the global weight is deducted from the redundancy group threshold. The retry interval determines the ping interval for each IP address monitored by the redundancy group. The pings are sent as soon as the
configuration is committed. The retry count sets the number of allowed consecutive ping failures for each IP address monitored by the redundancy group.

In this example, you configure the following settings for redundancy group 1:

- IP address to monitor—10.1.1.10
- IP address monitoring global-weight—100
- IP address monitoring global-threshold—200
  
  The threshold applies cumulatively to all IP addresses monitored by the redundancy group.
- IP address retry-interval—3 seconds
- IP address retry-count—10
- Weight—100
- Redundant Ethernet interface—reth1.0
- Secondary IP address—10.1.1.101

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
{primary:node0}[edit]
user@host# set chassis cluster redundancy-group 1 ip-monitoring global-weight 100
set chassis cluster redundancy-group 1 ip-monitoring global-threshold 200
set chassis cluster redundancy-group 1 ip-monitoring retry-interval 3
set chassis cluster redundancy-group 1 ip-monitoring retry-count 10
set chassis cluster redundancy-group 1 ip-monitoring family inet 10.1.1.10 weight 100 interface reth1.0
 secondary-ip-address 10.1.1.101
```

Step-by-Step Procedure

To configure redundancy group IP address monitoring:

1. Specify a global monitoring weight.

```
{primary:node0}[edit]
user@host# set chassis cluster redundancy-group 1 ip-monitoring global-weight 100
```
2. Specify the global monitoring threshold.

{primary:node0}[edit]
user@host# set chassis cluster redundancy-group 1 ip-monitoring global-threshold 200

3. Specify the retry interval.

{primary:node0}[edit]
user@host# set chassis cluster redundancy-group 1 ip-monitoring retry-interval 3

4. Specify the retry count.

{primary:node0}[edit]
user@host# set chassis cluster redundancy-group 1 ip-monitoring retry-count 10

5. Specify the IP address to be monitored, weight, redundant Ethernet interface, and secondary IP address.

{primary:node0}[edit]
user@host# set chassis cluster redundancy-group 1 ip-monitoring family inet 10.1.1.10 weight 100 interface reth1.0 secondary-ip-address 10.1.1.101

Results

From configuration mode, confirm your configuration by entering the show chassis cluster redundancy-group 1 command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For brevity, this show command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).
If you are done configuring the device, enter `commit` from configuration mode.

**Verification**

*Verifying the Status of Monitored IP Addresses for a Redundancy Group*

**Purpose**
Verify the status of monitored IP addresses for a redundancy group.

**Action**
From operational mode, enter the `show chassis cluster ip-monitoring status` command. For information about a specific group, enter the `show chassis cluster ip-monitoring status redundancy-group` command.

{primary:node0}

```
user@host> show chassis cluster ip-monitoring status

node0:---
Redundancy group: 1
Global threshold: 200
Current threshold: -120

<table>
<thead>
<tr>
<th>IP address</th>
<th>Status</th>
<th>Failure count</th>
<th>Reason</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.1.10</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
<td>220</td>
</tr>
<tr>
<td>10.1.1.101</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
<td>100</td>
</tr>
</tbody>
</table>

node1:---
Redundancy group: 1
Global threshold: 200
Current threshold: -120

<table>
<thead>
<tr>
<th>IP address</th>
<th>Status</th>
<th>Failure count</th>
<th>Reason</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.1.10</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
<td>220</td>
</tr>
<tr>
<td>10.1.1.101</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
<td>100</td>
</tr>
</tbody>
</table>
```
This example shows how to monitor IP address on an SRX5000 line device with chassis cluster enabled.

Requirements

This example uses the following hardware and software:

- Two SRX5400 Services Gateways with MIC (SRX-MIC-10XG-SFPP [IOC2]), and one Ethernet switch
- Junos OS Release 15.1X49-D30

The procedure mentioned in this example is also applicable to IOC3.

Before you begin:

- Physically connect the two SRX5400 devices (back-to-back for the fabric and control ports).
- Configure the two devices to operate in a chassis cluster.

Overview

IP address monitoring checks end-to-end reachability of the configured IP address and allows a redundancy group to automatically fail over when it is not reachable through the child link of redundant Ethernet (reth) interface. Redundancy groups on both devices, or nodes, in a cluster can be configured to monitor specific IP addresses to determine whether an upstream device in the network is reachable.

Topology

In this example, two SRX5400 devices in a chassis cluster are connected to an Ethernet switch. The example shows how the redundancy groups can be configured to monitor key upstream resources reachable through redundant Ethernet interfaces on either node in a cluster.
You set the system to send pings every second, with 10 losses required to declare unreachability to peer. You also set up a secondary IP address to allow testing from the secondary node.

In this example, you configure the following settings for redundancy group 1:

- IP address to be monitored—192.0.2.2, 198.51.100.2, 203.0.113.2
- IP monitoring global-weight—255
- IP monitoring global-threshold—240
- IP monitoring retry-interval—3 seconds
- IP monitoring retry-count—10
- Weight for monitored IP address—80
- Secondary IP addresses—192.0.2.12, 198.51.100.12, 203.0.113.12

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```console
set chassis cluster reth-count 10
set chassis cluster control-ports fpc 3 port 0
set chassis cluster control-ports fpc 0 port 0
set chassis cluster redundancy-group 0 node 0 priority 254
set chassis cluster redundancy-group 0 node 1 priority 1
set chassis cluster redundancy-group 1 node 0 priority 200
set chassis cluster redundancy-group 1 node 1 priority 199
set chassis cluster redundancy-group 1 ip-monitoring global-weight 255
set chassis cluster redundancy-group 1 ip-monitoring global-threshold 240
set chassis cluster redundancy-group 1 ip-monitoring retry-interval 3
set chassis cluster redundancy-group 1 ip-monitoring retry-count 10
set chassis cluster redundancy-group 1 ip-monitoring family inet 192.0.2.2
 weight 80
set chassis cluster redundancy-group 1 ip-monitoring family inet 192.0.2.2
 interface reth0.0 secondary-ip-address 192.0.2.12
```
set chassis cluster redundancy-group 1 ip-monitoring family inet 198.51.100.2 weight 80
set chassis cluster redundancy-group 1 ip-monitoring family inet 198.51.100.2 interface reth1.0 secondary-ip-address 198.51.100.12
set chassis cluster redundancy-group 1 ip-monitoring family inet 203.0.113.2 weight 80
set chassis cluster redundancy-group 1 ip-monitoring family inet 203.0.113.2 interface reth2.0 secondary-ip-address 203.0.113.12

set interfaces xe-1/2/1 gigether-options redundant-parent reth0
set interfaces xe-1/2/2 gigether-options redundant-parent reth2
set interfaces xe-1/2/3 gigether-options redundant-parent reth1
set interfaces xe-4/2/1 gigether-options redundant-parent reth0
set interfaces xe-4/2/2 gigether-options redundant-parent reth2
set interfaces xe-4/2/3 gigether-options redundant-parent reth1
set interfaces fab0 fabric-options member-interfaces xe-1/2/0
set interfaces fab1 fabric-options member-interfaces xe-4/2/0
set interfaces reth0 redundant-ether-options redundancy-group 1
set interfaces reth0 unit 0 family inet address 192.0.2.1/24
set interfaces reth1 redundant-ether-options redundancy-group 1
set interfaces reth1 unit 0 family inet address 198.51.100.1/24
set interfaces reth2 redundant-ether-options redundancy-group 1
set interfaces reth2 unit 0 family inet address 203.0.113.1/24

set security zones security-zone HOST host-inbound-traffic system-services any-service
set security zones security-zone HOST host-inbound-traffic protocols all
set security zones security-zone HOST interfaces all

**Configuring IP Monitoring on a 10x10GE SFP+ MIC**

**Step-by-Step Procedure**

To configure IP monitoring on a 10x10GE SFP+ MIC:

1. Specify the number of redundant Ethernet interfaces.
2. Configure the control ports.

```bash
{primary:node0}[edit]
user@host# set chassis cluster reth-count 10
```


```bash
{primary:node0}[edit]
user@host# set interfaces fab0 fabric-options member-interfaces xe-1/2/0
user@host# set interfaces fab1 fabric-options member-interfaces xe-4/2/0
```

4. Specify a redundancy group's priority for primacy on each node of the cluster. The higher number takes precedence.

```bash
{primary:node0}[edit]
user@host# set chassis cluster redundancy-group 0 node 0 priority 254
user@host# set chassis cluster redundancy-group 0 node 1 priority 1
user@host# set chassis cluster redundancy-group 1 node 0 priority 200
user@host# set chassis cluster redundancy-group 1 node 1 priority 199
```

5. Configure IP monitoring under redundancy-group 1 with global weight, global threshold, retry interval and retry count.

```bash
{primary:node0}[edit]
user@host# set chassis cluster redundancy-group 1 ip-monitoring global-weight 255
user@host# set chassis cluster redundancy-group 1 ip-monitoring global-threshold 240
user@host# set chassis cluster redundancy-group 1 ip-monitoring retry-interval 3
user@host# set chassis cluster redundancy-group 1 ip-monitoring retry-count 10
```

6. Configure the redundant Ethernet interfaces to redundancy-group 1. Assign a weight to the IP address to be monitored, and configure a secondary IP address that will be used to send packets from the secondary node to track the IP address being monitored.

```bash
{primary:node0}[edit]
```
user@host# set chassis cluster redundancy-group 1 ip-monitoring family inet 192.0.2.2 weight 80
user@host# set chassis cluster redundancy-group 1 ip-monitoring family inet 192.0.2.2 interface reth0.0 secondary-ip-address 192.0.2.12
user@host# set chassis cluster redundancy-group 1 ip-monitoring family inet 198.51.100.2 weight 80
user@host# set chassis cluster redundancy-group 1 ip-monitoring family inet 198.51.100.2 interface reth1.0 secondary-ip-address 198.51.100.12
user@host# set chassis cluster redundancy-group 1 ip-monitoring family inet 203.0.113.2 weight 80
user@host# set chassis cluster redundancy-group 1 ip-monitoring family inet 203.0.113.2 interface reth2.0 secondary-ip-address 203.0.113.12

7. Assign child interfaces for the redundant Ethernet interfaces from node 0, node 1, and node 2.

    {primary:node0}[edit]
    user@host# set interfaces xe-1/2/1 gigether-options redundant-parent reth0
    user@host# set interfaces xe-1/2/2 gigether-options redundant-parent reth2
    user@host# set interfaces xe-1/2/3 gigether-options redundant-parent reth1
    user@host# set interfaces xe-4/2/1 gigether-options redundant-parent reth0
    user@host# set interfaces xe-4/2/2 gigether-options redundant-parent reth2
    user@host# set interfaces xe-4/2/3 gigether-options redundant-parent reth1

8. Configure the redundant Ethernet interfaces to redundancy-group 1.

    {primary:node0}[edit]
    user@host# set interfaces reth0 redundant-ether-options redundancy-group 1
    user@host# set interfaces reth0 unit 0 family inet address 192.0.2.1/24
    user@host# set interfaces reth1 redundant-ether-options redundancy-group 1
    user@host# set interfaces reth1 unit 0 family inet address 198.51.100.1/24
    user@host# set interfaces reth2 redundant-ether-options redundancy-group 1
    user@host# set interfaces reth2 unit 0 family inet address 203.0.113.1/24

9. Create security zone and assign interfaces to zone.

    user@host# set security zones security-zone HOST host-inbound-traffic system-services any-service
    user@host# set security zones security-zone HOST host-inbound-traffic protocols all
    user@host# set security zones security-zone HOST interfaces all

Results
From configuration mode, confirm your configuration by entering the show security chassis cluster and show interfaces commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.
chassis {
  cluster {
    reth-count 10;
    redundancy-group 0 {
      node 0 priority 254;
      node 1 priority 1;
    }
    redundancy-group 1 {
      node 0 priority 200;
      node 1 priority 199;
      ip-monitoring {
        global-weight 255;
        global-threshold 240;
        retry-interval 3;
        retry-count 10;
        family {
          inet {
            192.0.2.2 {
              weight 80;
              interface reth0.0 secondary-ip-address 192.0.2.12;
            }
            198.51.100.2 {
              weight 80;
              interface reth1.0 secondary-ip-address 198.51.100.12;
            }
            203.0.113.2 {
              weight 80;
              interface reth2.0 secondary-ip-address 203.0.113.12;
            }
          }
        }
      }
    }
  }
}
interfaces {
  xe-1/2/1 {
    gigether-options {
      redundant-parent reth0;
    }
  }
  xe-1/2/2 {
    gigether-options {
      redundant-parent reth2;
    }
  }
}
xe-1/2/3 {
    gigether-options {
        redundant-parent reth1;
    }
}
xe-4/2/1 {
    gigether-options {
        redundant-parent reth0;
    }
}
xe-4/2/2 {
    gigether-options {
        redundant-parent reth2;
    }
}
xe-4/2/3 {
    gigether-options {
        redundant-parent reth1;
    }
}
fab0 {
    fabric-options {
        member-interfaces {
            xe-1/2/0;
        }
    }
}
fab1 {
    fabric-options {
        member-interfaces {
            xe-4/2/0;
        }
    }
}
reth0 {
    redundant-ether-options {
        redundancy-group 1;
    }
    unit 0 {
        family inet {
            address 192.0.2.1/24;
        }
    }
}
If you are done configuring the device, enter `commit` from configuration mode.

**Verification**

**IN THIS SECTION**

- Verifying IP Monitoring Status | 229

Confirm the configuration is working properly.

**Verifying IP Monitoring Status**

**Purpose**

Verify the IP status being monitored from both nodes and the failure count for both nodes.
Action

From operational mode, enter the `show chassis cluster ip-monitoring status` command.

```
show chassis cluster ip-monitoring status

node0:

Redundancy group: 1
Global weight: 255
Global threshold: 240
Current threshold: 240

<table>
<thead>
<tr>
<th>IP address</th>
<th>Status</th>
<th>Failure count</th>
<th>Weight</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>203.0.113.2</td>
<td>reachable</td>
<td>1</td>
<td>80</td>
<td>n/a</td>
</tr>
<tr>
<td>198.51.100.2</td>
<td>reachable</td>
<td>1</td>
<td>80</td>
<td>n/a</td>
</tr>
<tr>
<td>192.0.2.2</td>
<td>reachable</td>
<td>1</td>
<td>80</td>
<td>n/a</td>
</tr>
</tbody>
</table>

node1:

Redundancy group: 1
Global weight: 255
Global threshold: 240
Current threshold: 240

<table>
<thead>
<tr>
<th>IP address</th>
<th>Status</th>
<th>Failure count</th>
<th>Weight</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>203.0.113.2</td>
<td>reachable</td>
<td>2</td>
<td>80</td>
<td>n/a</td>
</tr>
<tr>
<td>198.51.100.2</td>
<td>reachable</td>
<td>1</td>
<td>80</td>
<td>n/a</td>
</tr>
<tr>
<td>192.0.2.2</td>
<td>reachable</td>
<td>2</td>
<td>80</td>
<td>n/a</td>
</tr>
</tbody>
</table>
```

Meaning

All the monitored IP addresses are reachable.
### Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1X49-D60</td>
<td>Starting in Junos OS Release 15.1X49-D60 and Junos OS Release 17.3R1, configuring Address Resolution Protocol (ARP) request throttling is supported on SRX5000 line devices.</td>
</tr>
<tr>
<td>12.1X46-D35</td>
<td>Starting in Junos OS Release 12.1X46-D35 and Junos OS Release 17.3R1, for all SRX Series devices, the reth interface supports proxy ARP.</td>
</tr>
</tbody>
</table>

### RELATED DOCUMENTATION

- [Chassis Cluster Redundancy Groups](#) | 91
- [Example: Configuring an Active/Passive Chassis Cluster on SRX5800 Devices](#) | 312
- [Monitoring Chassis Cluster Interfaces](#) | 174

### Configuring Cluster Failover Parameters

**IN THIS SECTION**

- [Understanding Chassis Cluster Control Link Heartbeats, Failure, and Recovery](#) | 232
- [Example: Configuring Chassis Cluster Control Link Recovery](#) | 234

SRX Series devices in a chassis cluster uses heartbeat transmissions to determine the "health" of the control link. If the number of missed heartbeats has reached the configured threshold, the system assesses whether a failure condition exists. For more information, see the following topics:
Understanding Chassis Cluster Control Link Heartbeats, Failure, and Recovery

Understanding Chassis Cluster Control Link Heartbeats

You specify the heartbeat threshold and heartbeat interval when you configure the chassis cluster.

The system monitors the control link's status by default.

For dual control links, which are supported on SRX5600 and SRX5800 lines, the Juniper Services Redundancy Protocol process (jsrpdp) sends and receives the control heartbeat messages on both control links. As long as heartbeats are received on one of the control links, Junos OS considers the other node to be alive.

The product of the `heartbeat-threshold` option and the `heartbeat-interval` option defines the wait time before failover is triggered. The default values of these options produce a wait time of 3 seconds. A heartbeat-threshold of 5 and a heartbeat-interval of 1000 milliseconds would yield a wait time of 5 seconds. Setting the heartbeat-threshold to 4 and the heartbeat-interval to 1250 milliseconds would also yield a wait time of 5 seconds.

In a chassis cluster environment, if more than 1000 logical interfaces are used, the cluster heartbeat timers are recommended to be increased from the default of 3 seconds. At maximum capacity on an SRX4600, SRX5400, SRX5600 or an SRX5800 device, we recommend that you increase the configured time before failover to at least 5 seconds. In a large chassis cluster configuration on an SRX3400 or SRX3600 device, we recommend increasing the wait to 8 seconds.

Understanding Chassis Cluster Control Link Failure and Recovery

If the control link fails, Junos OS changes the operating state of the secondary node to ineligible for a 180-second countdown. If the fabric link also fails during the 180 seconds, Junos OS changes the secondary node to primary; otherwise, after 180 seconds the secondary node state changes to disabled.

When the control link is down, a system log message is generated.

A control link failure is defined as not receiving heartbeats over the control link while heartbeats are still being received over the fabric link.

In the event of a legitimate control link failure, redundancy group 0 remains primary on the node on which it is currently primary, inactive redundancy groups x on the primary node become active, and the secondary node enters a disabled state.

When the secondary node is disabled, you can still log in to the management port and run diagnostics.

To determine if a legitimate control link failure has occurred, the system relies on redundant liveliness signals sent across both the control link and the fabric link.
The system periodically transmits probes over the fabric link and heartbeat signals over the control link. Probes and heartbeat signals share a common sequence number that maps them to a unique time event. Junos OS identifies a legitimate control link failure if the following two conditions exist:

- The threshold number of heartbeats were lost.
- At least one probe with a sequence number corresponding to that of a missing heartbeat signal was received on the fabric link.

If the control link fails, the 180-second countdown begins and the secondary node state is ineligible. If the fabric link fails before the 180-second countdown reaches zero, the secondary node becomes primary because the loss of both links is interpreted by the system to indicate that the other node is dead. Because concurrent loss of both control and fabric links means that the nodes are no longer synchronizing states nor comparing priorities, both nodes might thus temporarily become primary, which is not a stable operating state. However, once the control link is reestablished, the node with the higher priority value automatically becomes primary, the other node becomes secondary, and the cluster returns to normal operation.

When a legitimate control link failure occurs, the following conditions apply:

- Redundancy group 0 remains primary on the node on which it is currently primary (and thus its Routing Engine remains active), and all redundancy groups x on the node become primary.
  
  If the system cannot determine which Routing Engine is primary, the node with the higher priority value for redundancy group 0 is primary and its Routing Engine is active. (You configure the priority for each node when you configure the `redundancy-group` statement for redundancy group 0.)

- The system disables the secondary node.

  To recover a device from the disabled mode, you must reboot the device. When you reboot the disabled node, the node synchronizes its dynamic state with the primary node.

If you make any changes to the configuration while the secondary node is disabled, execute the commit command to synchronize the configuration after you reboot the node. If you did not make configuration changes, the configuration file remains synchronized with that of the primary node.

You cannot enable preemption for redundancy group 0. If you want to change the primary node for redundancy group 0, you must do a manual failover.

When you use dual control links (supported on SRX5600 and SRX5800 devices), note the following conditions:

- Host inbound or outbound traffic can be impacted for up to 3 seconds during a control link failure. For example, consider a case where redundancy group 0 is primary on node 0 and there is a Telnet session to the Routing Engine through a network interface port on node 1. If the currently active control link fails, the Telnet session will lose packets for 3 seconds, until this failure is detected.

- A control link failure that occurs while the commit process is running across two nodes might lead to commit failure. In this situation, run the commit command again after 3 seconds.
For SRX5600 and SRX5800 devices, dual control links require a second Routing Engine on each node of
the chassis cluster.

You can specify that control link recovery be done automatically by the system by setting the
control-link-recovery statement. In this case, once the system determines that the control link is healthy,
it issues an automatic reboot on the disabled node. When the disabled node reboots, the node joins the
cluster again.

Example: Configuring Chassis Cluster Control Link Recovery

This example shows how to enable control link recovery, which allows the system to automatically take
over after the control link recovers from a failure.

Requirements

Before you begin:

- Understand chassis cluster control links. See "Understanding Chassis Cluster Control Plane and Control
  Links" on page 84.
- Understand chassis cluster dual control links. See "Understanding Chassis Cluster Dual Control Links"
on page 155.
- Connect dual control links in a chassis cluster. See "Connecting Dual Control Links for SRX Series Devices
  in a Chassis Cluster" on page 157.

Overview

You can enable the system to perform control link recovery automatically. After the control link recovers,
the system takes the following actions:
• It checks whether it receives at least three consecutive heartbeats on the control link or, in the case of dual control links (SRX5600 and SRX5800 devices only), on either control link. This is to ensure that the control link is not flapping and is healthy.

• After it determines that the control link is healthy, the system issues an automatic reboot on the node that was disabled when the control link failed. When the disabled node reboots, it can rejoin the cluster. There is no need for any manual intervention.

In this example, you enable chassis cluster control link recovery.

Configuration

Step-by-Step Procedure
To enable chassis cluster control-link-recovery:

1. Enable control link recovery.

   {primary:node0}[edit]
   user@host# set chassis cluster control-link-recovery

2. If you are done configuring the device, commit the configuration.

   {primary:node0}[edit]
   user@host# commit

RELATED DOCUMENTATION

- Chassis Cluster Dual Control Links | 155
- Example: Configuring Chassis Cluster Control Ports for Dual Control Links | 160
Understanding Chassis Cluster Resiliency

Junos OS uses a layered model to provide resiliency on SRX series devices that are in a chassis cluster setup. In the event of a software or hardware component failure, the layered model ensures that the system performance is not impacted.

Layer 1 for Detecting Hardware Faults and Software Failures

Layer 1 identifies and detects the components that are causing the software failures and impacting the system performance. An alarm, syslog, or an SNMP trap is triggered to provide notifications about the failures.

Layer 2 for Probing Critical Paths

Layer 2 probes the system's critical paths to detect hardware and software failures that are not detected by Layer 1.

Heartbeat communications validate the state of the paths between the two endpoints of the path. If any component in the path fails, communication is lost and the system health status is communicated using heartbeat messages sent from one end of the path to the other end.

Layer 3 for Detecting Control Link and Fabric Link Failure

Layer 3 determines the system health information from Layer 1 and Layer 2, shares the health status between two nodes over the control links and fabric links, and makes the failover decision based on the health status of the two nodes and the heartbeat status of the control links and fabric links. An alarm, syslog, or an SNMP trap is triggered to provide notifications about the failures.

Layer 3 addresses the following software issues:

- em0 flapping
- Control path hardware or software component fails
- Fabric link is down and control link is alive
- Control link is down and fabric link is alive
- Both the control link and fabric link are down
Benefits

- Improve the failover time and stability.
- Identify the exact location of the fault or failure.

RELATED DOCUMENTATION

cluster (Chassis) | 500

Chassis Cluster Redundancy Group Failover

IN THIS SECTION

- Understanding Chassis Cluster Redundancy Group Failover | 237
- Understanding Chassis Cluster Redundancy Group Manual Failover | 242
- Initiating a Chassis Cluster Manual Redundancy Group Failover | 243
- Example: Configuring a Chassis Cluster with a Dampening Time Between Back-to-Back Redundancy Group Failovers | 246
- Understanding SNMP Failover Traps for Chassis Cluster Redundancy Group Failover | 247
- Verifying Chassis Cluster Failover Status | 248
- Clearing Chassis Cluster Failover Status | 249

A redundancy group (RG) includes and manages a collection of objects on both nodes of a cluster to provide high-availability. Each redundancy group acts as an independent unit of failover and is primary on only one node at a time. For more information, see the following topics:

Understanding Chassis Cluster Redundancy Group Failover

Chassis cluster employs a number of highly efficient failover mechanisms that promote high availability to increase your system's overall reliability and productivity.
A redundancy group is a collection of objects that fail over as a group. Each redundancy group monitors a set of objects (physical interfaces), and each monitored object is assigned a weight. Each redundancy group has an initial threshold of 255. When a monitored object fails, the weight of the object is subtracted from the threshold value of the redundancy group. When the threshold value reaches zero, the redundancy group fails over to the other node. As a result, all the objects associated with the redundancy group fail over as well. Graceful restart of the routing protocols enables the SRX Series device to minimize traffic disruption during a failover.

Back-to-back failovers of a redundancy group in a short interval can cause the cluster to exhibit unpredictable behavior. To prevent such unpredictable behavior, configure a dampening time between failovers. On failover, the previous primary node of a redundancy group moves to the secondary-hold state and stays in the secondary-hold state until the hold-down interval expires. After the hold-down interval expires, the previous primary node moves to the secondary state.

Configuring the hold-down interval prevents back-to-back failovers from occurring within the duration of hold-down interval.

The hold-down interval affects manual failovers, as well as automatic failovers associated with monitoring failures.

The default dampening time for a redundancy group 0 is 300 seconds (5 minutes) and is configurable to up to 1800 seconds with the `hold-down-interval` statement. For some configurations, such as those with a large number of routes or logical interfaces, the default interval or the user-configured interval might not be sufficient. In such cases, the system automatically extends the dampening time in increments of 60 seconds until the system is ready for failover.

Redundancy groups x (redundancy groups numbered 1 through 128) have a default dampening time of 1 second, with a range from 0 through 1800 seconds.

On SRX Series devices, chassis cluster failover performance is optimized to scale with more logical interfaces. Previously, during redundancy group failover, gratuitous arp (GARP) is sent by the Juniper Services Redundancy Protocol (jsrp) process running in the Routing Engine on each logical interface to steer the traffic to the appropriate node. With logical interface scaling, the Routing Engine becomes the checkpoint and GARP is directly sent from the Services Processing Unit (SPU).

**Preemptive Failover Delay Timer**

A redundancy group is in the primary state (active) on one node and in the secondary state (backup) on the other node at any given time.

You can enable the preemptive behavior on both nodes in a redundancy group and assign a priority value for each node in the redundancy group. The node in the redundancy group with the higher configured priority is initially designated as the primary in the group, and the other node is initially designated as the secondary in the redundancy group.
When a redundancy group swaps the state of its nodes between primary and secondary, there is a possibility that a subsequent state swap of its nodes can happen again soon after the first state swap. This rapid change in states results in flapping of the primary and secondary systems.

Starting with Junos OS Release 17.4R1, a failover delay timer is introduced on SRX Series devices in a chassis cluster to limit the flapping of redundancy group state between the secondary and the primary nodes in a preemptive failover.

To prevent the flapping, you can configure the following parameters:

- **Preemptive delay** – The preemptive delay time is the amount of time a redundancy group in a secondary state waits when the primary state is down in a preemptive failover before switching to the primary state. This delay timer delays the immediate failover for a configured period of time—between 1 and 21,600 seconds.

- **Preemptive limit** – The preemptive limit restricts the number of preemptive failovers (between 1 to 50) during a configured preemptive period, when preempt is enabled for a redundancy group.

- **Preemptive period** – Time period (1 to 1440 seconds) during which the preemptive limit is applied, that is, number of configured preemptive failovers are applied when preempt is enabled for a redundancy group.

Consider the following scenario where you have configured a preemptive period as 300 seconds and preemptive limit as 50.

When the preemptive limit is configured as 50, the count starts at 0 and increments with a first preemptive failover; this process continues until the count reaches the configured preemptive limit, that is 50, before the preemptive period expires. When the preemptive limit (50) is exceeded, you must manually reset the preempt count to allow preemptive failovers to occur again.

When you have configured the preemptive period as 300 seconds, and if the time difference between the first preemptive failover and the current failover has already exceeded 300 seconds, and the preemptive limit (50) is not yet reached, then the preemptive period will be reset. After resetting, the last failover is considered as the first preemptive failover of the new preemptive period and the process starts all over again.

The preemptive delay can be configured independent of the failover limit. Configuring the preemptive delay timer does not change the existing preemptive behavior.

This enhancement enables the administrator to introduce a failover delay, which can reduce the number of failovers and result in a more stable network state due to the reduction in active/standby flapping within the redundancy group.

**Understanding Transition from Primary State to Secondary State with Preemptive Delay**

Consider the following example, where a redundancy group, that is primary on the node 0 is ready for preemptive transition to the secondary state during a failover. Priority is assigned to each node and the preemptive option is also enabled for the nodes.
Figure 30 on page 240 illustrates the sequence of steps in transition from the primary state to the secondary state when a preemptive delay timer is configured.

Figure 30: Transition from Primary State to Secondary State with Preemptive Delay

1. The node in the primary state is ready for preemptive transition to secondary state if the preemptive option is configured, and the node in secondary state has the priority over the node in primary state. If the preemptive delay is configured, the node in the primary state transitions to primary-preempt-hold state. If preemptive delay is not configured, then instant transition to the secondary state happens.

2. The node is in primary-preempt-hold state waiting for the preemptive delay timer to expire. The preemptive delay timer is checked and transition is held until the timer expires. The primary node stays in the primary-preempt-hold state until the timer expires, before transitioning to the secondary state.

3. The node transitions from primary-preempt-hold state into secondary-hold state and then to the secondary state.

4. The node stays in the secondary-hold state for the default time (1 second) or the configured time (a minimum of 300 seconds), and then the node transitions to the secondary state.
If your chassis cluster setup experiences an abnormal number of flaps, you must check your link and monitoring timers to make sure they are set correctly. Be careful when while setting timers in high latency networks to avoid getting false positives.

**Configuring Preemptive Delay Timer**

This topic explains how to configure the delay timer on SRX Series devices in a chassis cluster. Back-to-back redundancy group failovers that occur too quickly can cause a chassis cluster to exhibit unpredictable behavior. Configuring the delay timer and failover rate limit delays immediate failover for a configured period of time.

To configure the preemptive delay timer and failover rate limit between redundancy group failovers:

1. Enable preemptive failover for a redundancy group.

   You can set the delay timer between 1 and 21,600 seconds. Default value is 1 second.

   ```
 {primary:node1}
 [edit chassis cluster redundancy-group number preempt]
 user@host# set delay interval
   ```

2. Set up a limit for preemptive failover.

   You can set maximum number of preemptive failovers between 1 to 50 and time period during which the limit is applied between 1 to 1440 seconds.

   ```
 {primary:node1}[edit chassis cluster redundancy-group number preempt]
 user@host# set limit limit period period
   ```

In the following example, you are setting the preemptive delay timer to 300 seconds, and the preemptive limit to 10 for a preemptive period of 600 seconds. That is, this configuration delays immediate failover for 300 seconds, and it limits a maximum of 10 preemptive failovers in a duration of 600 seconds.

```
{primary:node1}[edit chassis cluster redundancy-group 1 preempt]
user@host# set delay 300 limit 10 period 600
```

You can use the `clear chassis clusters preempt-count` command to clear the preempt failover counter for all redundancy groups. When a preempt limit is configured, the counter starts with a first preemptive failover and the count is reduced; this process continues until the count reaches zero before the timer expires. You can use this command to clear the preempt failover counter and reset it to start again.

SEE ALSO
Understanding Chassis Cluster Redundancy Group Manual Failover

You can initiate a redundancy group x (redundancy groups numbered 1 through 128) failover manually. A manual failover applies until a failback event occurs.

For example, suppose that you manually do a redundancy group 1 failover from node 0 to node 1. Then an interface that redundancy group 1 is monitoring fails, dropping the threshold value of the new primary redundancy group to zero. This event is considered a failback event, and the system returns control to the original redundancy group.

You can also initiate a redundancy group 0 failover manually if you want to change the primary node for redundancy group 0. You cannot enable preemption for redundancy group 0.

If preempt is added to a redundancy group configuration, the device with the higher priority in the group can initiate a failover to become master. By default, preemption is disabled. For more information on preemption, see preempt (Chassis Cluster).

When you do a manual failover for redundancy group 0, the node in the primary state transitions to the secondary-hold state. The node stays in the secondary-hold state for the default or configured time (a minimum of 300 seconds) and then transitions to the secondary state.

State transitions in cases where one node is in the secondary-hold state and the other node reboots, or the control link connection or fabric link connection is lost to that node, are described as follows:

- Reboot case—The node in the secondary-hold state transitions to the primary state; the other node goes dead (inactive).
- Control link failure case—The node in the secondary-hold state transitions to the ineligible state and then to a disabled state; the other node transitions to the primary state.
- Fabric link failure case—The node in the secondary-hold state transitions directly to the ineligible state.

Starting with Junos OS Release 12.1X46-D20 and Junos OS Release 17.3R1, fabric monitoring is enabled by default. With this enabling, the node transitions directly to the ineligible state in case of fabric link failures.

Starting with Junos OS Release 12.1X47-D10 and Junos OS Release 17.3R1, fabric monitoring is enabled by default. With this enabling, the node transitions directly to the ineligible state in case of fabric link failures.

Keep in mind that during an in-service software upgrade (ISSU), the transitions described here cannot happen. Instead, the other (primary) node transitions directly to the secondary state because Juniper Networks releases earlier than 10.0 do not interpret the secondary-hold state. While you start an ISSU, if one of the nodes has one or more redundancy groups in the secondary-hold state, you must wait for them
to move to the secondary state before you can do manual failovers to make all the redundancy groups be primary on one node.

Be cautious and judicious in your use of redundancy group 0 manual failovers. A redundancy group 0 failover implies a Routing Engine failover, in which case all processes running on the primary node are killed and then spawned on the new master Routing Engine. This failover could result in loss of state, such as routing state, and degrade performance by introducing system churn.

In some Junos OS releases, for redundancy groups x, it is possible to do a manual failover on a node that has 0 priority. We recommend that you use the `show chassis cluster status` command to check the redundancy group node priorities before doing the manual failover. However, from Junos OS Releases 12.1X44-D25, 12.1X45-D20, 12.1X46-D10, and 12.1X47-D10 and later, the readiness check mechanism for manual failover is enhanced to be more restrictive, so that you cannot set manual failover to a node in a redundancy group that has 0 priority. This enhancement prevents traffic from being dropped unexpectedly due to a failover attempt to a 0 priority node, which is not ready to accept traffic.

**Initiating a Chassis Cluster Manual Redundancy Group Failover**

You can initiate a failover manually with the `request` command. A manual failover bumps up the priority of the redundancy group for that member to 255.

Before you begin, complete the following tasks:

- **Example: Configuring Chassis Cluster Redundancy Groups on page 95**
- **Example: Configuring Chassis Cluster Redundant Ethernet Interfaces on page 102**

Be cautious and judicious in your use of redundancy group 0 manual failovers. A redundancy group 0 failover implies a Routing Engine (RE) failover, in which case all processes running on the primary node are killed and then spawned on the new master Routing Engine (RE). This failover could result in loss of state, such as routing state, and degrade performance by introducing system churn.

Unplugging the power cord and holding the power button to initiate a chassis cluster redundancy group failover might result in unpredictable behavior.

For redundancy groups x (redundancy groups numbered 1 through 128), it is possible to do a manual failover on a node that has 0 priority. We recommend that you check the redundancy group node priorities before doing the manual failover.

Use the `show` command to display the status of nodes in the cluster:

```
{primary:node0}
```

```
user@host> show chassis cluster status redundancy-group 0
```
Cluster ID: 9

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>254</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>1</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Redundancy group: 0 , Failover count: 1

Output to this command indicates that node 0 is primary.

Use the request command to trigger a failover and make node 1 primary:

```
{primary:node0}
```

```
user@host> request chassis cluster failover redundacy-group 0 node 1

Initiated manual failover for redundacy group 0
```

Use the show command to display the new status of nodes in the cluster:

```
{secondary-hold:node0}
```

```
user@host> show chassis cluster status redundacy-group 0

Cluster ID: 9

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>254</td>
<td>secondary-hold</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>node1</td>
<td>255</td>
<td>primary</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

```

Output to this command shows that node 1 is now primary and node 0 is in the secondary-hold state. After 5 minutes, node 0 will transition to the secondary state.

You can reset the failover for redundancy groups by using the request command. This change is propagated across the cluster.

```
{secondary-hold:node0}
```

```
user@host> request chassis cluster failover reset redundacy-group 0
```
You cannot trigger a back-to-back failover until the 5-minute interval expires.

{secondary-hold:node0}

user@host> request chassis cluster failover redundancy-group 0 node 0

node0:
-----------------------------------------------------------------------------------------------
No reset required for redundancy group 0.

node1:
-----------------------------------------------------------------------------------------------
Successfully reset manual failover for redundancy group 0

Use the show command to display the new status of nodes in the cluster:

{secondary-hold:node0}

user@host> show chassis cluster status redundancy-group 0

Output to this command shows that a back-to-back failover has not occurred for either node.

After doing a manual failover, you must issue the reset failover command before requesting another failover.

When the primary node fails and comes back up, election of the primary node is done based on regular criteria (priority and preempt).
Example: Configuring a Chassis Cluster with a Dampening Time Between Back-to-Back Redundancy Group Failovers

IN THIS SECTION

- Requirements | 246
- Overview | 246
- Configuration | 246

This example shows how to configure the dampening time between back-to-back redundancy group failovers for a chassis cluster. Back-to-back redundancy group failovers that occur too quickly can cause a chassis cluster to exhibit unpredictable behavior.

Requirements

Before you begin:

- Understand redundancy group failover. See “Understanding Chassis Cluster Redundancy Group Failover” on page 237.

Overview

The dampening time is the minimum interval allowed between back-to-back failovers for a redundancy group. This interval affects manual failovers and automatic failovers caused by interface monitoring failures.

In this example, you set the minimum interval allowed between back-to-back failovers to 420 seconds for redundancy group 0.

Configuration

Step-by-Step Procedure

To configure the dampening time between back-to-back redundancy group failovers:

1. Set the dampening time for the redundancy group.
2. If you are done configuring the device, commit the configuration.

Understanding SNMP Failover Traps for Chassis Cluster Redundancy Group Failover

Chassis clustering supports SNMP traps, which are triggered whenever there is a redundancy group failover. The trap message can help you troubleshoot failovers. It contains the following information:

- The cluster ID and node ID
- The reason for the failover
- The redundancy group that is involved in the failover
- The redundancy group’s previous state and current state

These are the different states that a cluster can be in at any given instant: hold, primary, secondary-hold, secondary, ineligible, and disabled. Traps are generated for the following state transitions (only a transition from a hold state does not trigger a trap):

- primary <-> secondary
- primary -> secondary-hold
- secondary-hold -> secondary
- secondary -> ineligible
- ineligible -> disabled
- ineligible -> primary
- secondary -> disabled

A transition can be triggered because of any event, such as interface monitoring, SPU monitoring, failures, and manual failovers.

The trap is forwarded over the control link if the outgoing interface is on a node different from the node on the Routing Engine that generates the trap.
You can specify that a trace log be generated by setting the `traceoptions flag snmp` statement.

---

**Verifying Chassis Cluster Failover Status**

**Purpose**
Display the failover status of a chassis cluster.

**Action**
From the CLI, enter the `show chassis cluster status` command:

```
{primary:node1}
user@host> show chassis cluster status
```

### Cluster ID: 3

<table>
<thead>
<tr>
<th>Node name</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>254</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>2</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

### Cluster ID: 15

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>200</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>0</td>
<td>lost</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

{primary:node1}
user@host> **show chassis cluster status**

Cluster ID: 15

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>200</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>0</td>
<td>unavailable</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Redundancy group: 0, Failover count: 5

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>101</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>0</td>
<td>unavailable</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Redundancy group: 1, Failover count: 41

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>101</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>0</td>
<td>unavailable</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

**Clearing Chassis Cluster Failover Status**

To clear the failover status of a chassis cluster, enter the `clear chassis cluster failover-count` command from the CLI:

```
{primary:node1}
```

user@host> **clear chassis cluster failover-count**

Cleared failover-count for all redundancy-groups

**Release History Table**

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4R1</td>
<td>Starting with Junos OS Release 17.4R1, a failover delay timer is introduced on SRX Series devices in a chassis cluster to limit the flapping of redundancy group state between the secondary and the primary nodes in a preemptive failover.</td>
</tr>
<tr>
<td>12.1X47-D10</td>
<td>Starting with Junos OS Release 12.1X47-D10 and Junos OS Release 17.3R1, fabric monitoring is enabled by default. With this enabling, the node transitions directly to the ineligible state in case of fabric link failures.</td>
</tr>
<tr>
<td>12.1X46-D20</td>
<td>Starting with Junos OS Release 12.1X46-D20 and Junos OS Release 17.3R1, fabric monitoring is enabled by default. With this enabling, the node transitions directly to the ineligible state in case of fabric link failures.</td>
</tr>
</tbody>
</table>
RELATED DOCUMENTATION

- Monitoring of Global-Level Objects in a Chassis Cluster | 170
- Monitoring Chassis Cluster Interfaces | 174
- Monitoring IP Addresses on a Chassis Cluster | 213
CHAPTER

Chassis Cluster Operations

Aggregated Ethernet Interfaces in a Chassis Cluster | 252
NTP Time Synchronization on Chassis Cluster | 304
Active/Passive Chassis Cluster Deployments | 311
Multicast Routing and Asymmetric Routing on Chassis Cluster | 370
Ethernet Switching on Chassis Cluster | 388
Media Access Control Security (MACsec) on Chassis Cluster | 417
Understanding SCTP Behavior in Chassis Cluster | 434
Example: Encrypting Messages Between Two Nodes in a Chassis Cluster | 434
Aggregated Ethernet Interfaces in a Chassis Cluster

IEEE 802.3ad link aggregation enables you to group Ethernet interfaces to form a single link layer interface, also known as a link aggregation group (LAG) or bundle. Reth LAG interfaces combine characteristics of reth interfaces and LAG interfaces. For more information, see the following topics:

**Understanding Link Aggregation Groups in a Chassis Cluster**

Support for Ethernet link aggregation groups (LAGs) based on IEEE 802.3ad makes it possible to aggregate physical interfaces on a standalone device. LAGs on standalone devices provide increased interface bandwidth and link availability. Aggregation of links in a chassis cluster allows a redundant Ethernet interface to add more than two physical child interfaces thereby creating a redundant Ethernet interface LAG. A redundant Ethernet interface LAG can have up to eight links per redundant Ethernet interface per node (for a total of 16 links per redundant Ethernet interface).

The aggregated links in a redundant Ethernet interface LAG provide the same bandwidth and redundancy benefits of a LAG on a standalone device with the added advantage of chassis cluster redundancy. A redundant Ethernet interface LAG has two types of simultaneous redundancy. The aggregated links within the redundant Ethernet interface on each node are redundant; if one link in the primary aggregate fails,
its traffic load is taken up by the remaining links. If enough child links on the primary node fail, the redundant Ethernet interface LAG can be configured so that all traffic on the entire redundant Ethernet interface fails over to the aggregate link on the other node. You can also configure interface monitoring for LACP-enabled redundancy group reth child links for added protection.

Aggregated Ethernet interfaces, known as local LAGs, are also supported on either node of a chassis cluster but cannot be added to redundant Ethernet interfaces. Local LAGs are indicated in the system interfaces list using an ae- prefix. Likewise any child interface of an existing local LAG cannot be added to a redundant Ethernet interface and vice versa. Note that it is necessary for the switch (or switches) used to connect the nodes in the cluster to have a LAG link configured and 802.3ad enabled for each LAG on both nodes so that the aggregate links are recognized as such and correctly pass traffic. The total maximum number of combined individual node LAG interfaces (ae) and redundant Ethernet (reth) interfaces per cluster is 128.

The redundant Ethernet interface LAG child links from each node in the chassis cluster must be connected to a different LAG at the peer devices. If a single peer switch is used to terminate the redundant Ethernet interface LAG, two separate LAGs must be used in the switch.

Links from different PICs or IOCs and using different cable types (for example, copper and fiber-optic) can be added to the same redundant Ethernet interface LAG but the speed of the interfaces must be the same and all interfaces must be in full duplex mode. We recommend, however, that for purposes of reducing traffic processing overhead, interfaces from the same PIC or IOC be used whenever feasible. Regardless, all interfaces configured in a redundant Ethernet interface LAG share the same virtual MAC address.

SRX Series devices interface-monitoring feature allows monitoring of redundant Ethernet/aggregated Ethernet interfaces.

Redundant Ethernet interface configuration also includes a minimum-links setting that allows you to set a minimum number of physical child links on the primary node in a given redundant Ethernet interface that must be working for the interface to be up. The default minimum-links value is 1. Note that the minimum-links setting only monitors child links on the primary node. Redundant Ethernet interfaces do not use physical interfaces on the backup node for either ingress or egress traffic.

Note the following support details:

- Quality of service (QoS) is supported in a redundant Ethernet interface LAG. Guaranteed bandwidth is, however, duplicated across all links. If a link is lost, there is a corresponding loss of guaranteed bandwidth.

- Layer 2 transparent mode and Layer 2 security features are supported in redundant Ethernet interface LAGs.

- Link Aggregation Control Protocol (LACP) is supported in chassis cluster deployments, where aggregated Ethernet interfaces and redundant Ethernet interfaces are supported simultaneously.

- Chassis cluster management, control, and fabric interfaces cannot be configured as redundant Ethernet interface LAGs or added to a redundant Ethernet interface LAG.
• Network processor (NP) bundling can coexist with redundant Ethernet interface LAGs on the same cluster. However, assigning an interface simultaneously to a redundant Ethernet interface LAG and a network processor bundle is not supported.

IOC2 cards do not have network processors but IOC1 cards do have them.

• Single flow throughput is limited to the speed of a single physical link regardless of the speed of the aggregate interface.

On SRX300, SRX320, SRX340, SRX345, and SRX380 devices, the speed mode and link mode configuration is available for member interfaces of a reth interface.

For more information about Ethernet interface link aggregation and LACP, see the “Aggregated Ethernet” information in the Interfaces User Guide for Security Devices.

SEE ALSO

Understanding Link Aggregation Control Protocol

Example: Configuring Link Aggregation Groups in a Chassis Cluster

IN THIS SECTION

- Requirements | 254
- Overview | 255
- Configuration | 255
- Verification | 257

This example shows how to configure a redundant Ethernet interface link aggregation group for a chassis cluster. Chassis cluster configuration supports more than one child interface per node in a redundant Ethernet interface. When at least two physical child interface links from each node are included in a redundant Ethernet interface configuration, the interfaces are combined within the redundant Ethernet interface to form a redundant Ethernet interface link aggregation group.

Requirements

Before you begin:
Configure chassis cluster redundant interfaces. See "Example: Configuring Chassis Cluster Redundant Ethernet Interfaces" on page 102.

Understand chassis cluster redundant Ethernet interface link aggregation groups. See "Understanding Link Aggregation Groups in a Chassis Cluster" on page 252.

Overview

For aggregation to take place, the switch used to connect the nodes in the cluster must enable IEEE 802.3ad link aggregation for the redundant Ethernet interface physical child links on each node. Because most switches support IEEE 802.3ad and are also LACP capable, we recommend that you enable LACP on SRX Series devices. In cases where LACP is not available on the switch, you must not enable LACP on SRX Series devices.

In this example, you assign six Ethernet interfaces to reth1 to form the Ethernet interface link aggregation group:

- ge-1/0/1—reth1
- ge-1/0/2—reth1
- ge-1/0/3—reth1
- ge-12/0/1—reth1
- ge-12/0/2—reth1
- ge-12/0/3—reth1

A maximum of eight physical interfaces per node in a cluster, for a total of 16 child interfaces, can be assigned to a single redundant Ethernet interface when a redundant Ethernet interface LAG is being configured.

Junos OS supports LACP and LAG on a redundant Ethernet interface, which is called RLAG.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
{primary:node0}[edit]
 set interfaces ge-1/0/1 gigether-options redundant-parent reth1
 set interfaces ge-1/0/2 gigether-options redundant-parent reth1
 set interfaces ge-1/0/3 gigether-options redundant-parent reth1
 set interfaces ge-12/0/1 gigether-options redundant-parent reth1
```
Step-by-Step Procedure
To configure a redundant Ethernet interface link aggregation group:

- Assign Ethernet interfaces to reth1.

```
{primary:node0}[edit]
user@host# set interfaces ge-1/0/1 gigether-options redundant-parent reth1
user@host# set interfaces ge-1/0/2 gigether-options redundant-parent reth1
user@host# set interfaces ge-1/0/3 gigether-options redundant-parent reth1
user@host# set interfaces ge-12/0/1 gigether-options redundant-parent reth1
user@host# set interfaces ge-12/0/2 gigether-options redundant-parent reth1
user@host# set interfaces ge-12/0/3 gigether-options redundant-parent reth1
```

Results
From configuration mode, confirm your configuration by entering the `show interfaces reth1` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For brevity, this `show` command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).

```
user@host# show interfaces reth1
...
ge-1/0/1 {
 gigether-options {
 redundant-parent reth1;
 }
}
ge-1/0/2 {
 gigether-options {
 redundant-parent reth1;
 }
}
ge-1/0/3 {
 gigether-options {
 redundant-parent reth1;
 }
}
ge-12/0/1 {
```
If you are done configuring the device, enter `commit` from configuration mode.

**Verification**

**Verifying the Redundant Ethernet Interface LAG Configuration**

**Purpose**
Verify the redundant Ethernet interface LAG configuration.

**Action**
From operational mode, enter the `show interfaces terse | match reth` command.

```
{primary:node0}
```

```
user@host> show interfaces terse | match reth

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Port</th>
<th>Mode</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-1/0/1.0</td>
<td>up</td>
<td>down</td>
<td>aenet</td>
<td>--> reth1.0</td>
</tr>
<tr>
<td>ge-1/0/2.0</td>
<td>up</td>
<td>down</td>
<td>aenet</td>
<td>--> reth1.0</td>
</tr>
<tr>
<td>ge-1/0/3.0</td>
<td>up</td>
<td>down</td>
<td>aenet</td>
<td>--> reth1.0</td>
</tr>
<tr>
<td>ge-12/0/1.0</td>
<td>up</td>
<td>down</td>
<td>aenet</td>
<td>--> reth1.0</td>
</tr>
<tr>
<td>ge-12/0/2.0</td>
<td>up</td>
<td>down</td>
<td>aenet</td>
<td>--> reth1.0</td>
</tr>
<tr>
<td>ge-12/0/3.0</td>
<td>up</td>
<td>down</td>
<td>aenet</td>
<td>--> reth1.0</td>
</tr>
<tr>
<td>reth0</td>
<td>up</td>
<td>down</td>
<td></td>
<td></td>
</tr>
<tr>
<td>reth0.0</td>
<td>up</td>
<td>down</td>
<td>inet</td>
<td>10.10.37.214/24</td>
</tr>
<tr>
<td>reth1</td>
<td>up</td>
<td>down</td>
<td></td>
<td></td>
</tr>
<tr>
<td>reth1.0</td>
<td>up</td>
<td>down</td>
<td>inet</td>
<td></td>
</tr>
</tbody>
</table>
```
SEE ALSO

Example: Configuring Aggregated Ethernet Device with LAG and LACP (CLI Procedure)

Understanding Link Aggregation Group Failover in a Chassis Cluster

IN THIS SECTION

- Scenario 1: Monitored Interface Weight is 255 | 259
- Scenario 2: Monitored Interface Weight is 75 | 260
- Scenario 3: Monitored Interface Weight is 100 | 260
To control failover of redundant Ethernet (reth) interfaces, it is important to configure the weights of interface monitoring according to the `minimum-links` setting. This configuration requires that the weights be equally distributed among the monitored links such that when the number of active physical interface links falls below the `minimum-links` setting, the computed weight for that redundancy group falls to zero or below zero. This triggers a failover of the redundant Ethernet interfaces link aggregation group (LAG) once the number of physical links falls below the `minimum-links` value.

Consider a reth0 interface LAG with four underlying physical links and the `minimum-links` value set as 2. In this case, a failover is triggered only when the number of active physical links is less than 2.

- **Interface-monitor** and `minimum-links` values are used to monitor LAG link status and correctly calculate failover weight.
- The `minimum-links` value is used to keep the redundant Ethernet link status. However, to trigger a failover, **interface-monitor** must be set.
- When the physical link is Up and LACP is Down, a failover of the redundant ethernet interfaces link aggregation group (LAG) is triggered.

Configure the underlying interface attached to the redundant Ethernet LAG.

```
{primary:node0}[edit]
user@host# set interfaces ge-0/0/4 gigether-options redundant-parent reth0
user@host# set interfaces ge-0/0/5 gigether-options redundant-parent reth0
user@host# set interfaces ge-0/0/6 gigether-options redundant-parent reth0
user@host# set interfaces ge-0/0/7 gigether-options redundant-parent reth0
```

Specify the minimum number of links for the redundant Ethernet interface as 2.

```
{primary:node0}[edit]
user@host# set interfaces reth0 redundant-ether-options minimum-links 2
```

Set up interface monitoring to monitor the health of the interfaces and trigger redundancy group failover.

The following scenarios provide examples of how to monitor redundant Ethernet LAG failover:

**Scenario 1: Monitored Interface Weight Is 255**

Specify the monitored interface weight as 255 for each underlying interface.

```
{primary:node0}[edit]
user@host# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/4 weight 255
user@host# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/5 weight 255
user@host# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/6 weight 255
user@host# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/7 weight 255
```
In this case, although there are three active physical links and the redundant Ethernet LAG could have handled the traffic because of minimum-links configured, one physical link is still down, which triggers a failover based on the computed weight.

**Scenario 2: Monitored Interface Weight Is 75**

Specify the monitored interface weight as 75 for each underlying interface.

```plaintext
[primary:node0][edit]
user@host# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/4 weight 75
user@host# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/5 weight 75
user@host# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/6 weight 75
user@host# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/7 weight 75
```

In this case, when three physical links are down, the redundant Ethernet interface will go down due to minimum-links configured. However, the failover will not happen, which in turn will result in traffic outage.

**Scenario 3: Monitored Interface Weight Is 100**

Specify the monitored interface weight as 100 for each underlying interface.

```plaintext
[primary:node0][edit]
user@host# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/4 weight 100
user@host# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/5 weight 100
user@host# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/6 weight 100
user@host# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/7 weight 100
```

In this case, when the three physical links are down, the redundant Ethernet interface will go down because of the minimum-links value. However, at the same time a failover would be triggered because of interface monitoring computed weights, ensuring that there is no traffic disruption.

Of all the three scenarios, scenario 3 illustrates the most ideal way to manage redundant Ethernet LAG failover.

---

**Understanding LACP on Chassis Clusters**

---

**IN THIS SECTION**

- Chassis Cluster Redundant Ethernet Interface Link Aggregation Groups  | 261
- Sub-LAGs  | 262
You can combine multiple physical Ethernet ports to form a logical point-to-point link, known as a link aggregation group (LAG) or bundle, such that a media access control (MAC) client can treat the LAG as if it were a single link.

LAGs can be established across nodes in a chassis cluster to provide increased interface bandwidth and link availability.

The Link Aggregation Control Protocol (LACP) provides additional functionality for LAGs. LACP is supported in standalone deployments, where aggregated Ethernet interfaces are supported, and in chassis cluster deployments, where aggregated Ethernet interfaces and redundant Ethernet interfaces are supported simultaneously.

You configure LACP on a redundant Ethernet interface by setting the LACP mode for the parent link with the `lacp` statement. The LACP mode can be off (the default), active, or passive.

This topic contains the following sections:

**Chassis Cluster Redundant Ethernet Interface Link Aggregation Groups**

A redundant Ethernet interface has active and standby links located on two nodes in a chassis cluster. All active links are located on one node, and all standby links are located on the other node. You can configure up to eight active links and eight standby links per node.

When at least two physical child interface links from each node are included in a redundant Ethernet interface configuration, the interfaces are combined within the redundant Ethernet interface to form a redundant Ethernet interface LAG.

Having multiple active redundant Ethernet interface links reduces the possibility of failover. For example, when an active link is out of service, all traffic on this link is distributed to other active redundant Ethernet interface links, instead of triggering a redundant Ethernet active/standby failover.

Aggregated Ethernet interfaces, known as local LAGs, are also supported on either node of a chassis cluster but cannot be added to redundant Ethernet interfaces. Likewise, any child interface of an existing local LAG cannot be added to a redundant Ethernet interface, and vice versa. The total maximum number of combined individual node LAG interfaces (ae) and redundant Ethernet (reth) interfaces per cluster is 128.

However, aggregated Ethernet interfaces and redundant Ethernet interfaces can coexist, because the functionality of a redundant Ethernet interface relies on the Junos OS aggregated Ethernet framework.
For more information, see "Understanding Chassis Cluster Redundant Ethernet Interface Link Aggregation Groups" on page 252.

**Minimum Links**

Redundant Ethernet interface configuration includes a **minimum-links** setting that allows you to set a minimum number of physical child links in a redundant Ethernet interface LAG that must be working on the primary node for the interface to be up. The default **minimum-links** value is 1. When the number of physical links on the primary node in a redundant Ethernet interface falls below the **minimum-links** value, the interface might be down even if some links are still working. For more information, see "Example: Configuring Chassis Cluster Minimum Links" on page 271.

**Sub-LAGs**

LACP maintains a point-to-point LAG. Any port connected to the third point is denied. However, a redundant Ethernet interface does connect to two different systems or two remote aggregated Ethernet interfaces by design.

To support LACP on redundant Ethernet interface active and standby links, a redundant Ethernet interface is created automatically to consist of two distinct sub-LAGs, where all active links form an active sub-LAG and all standby links form a standby sub-LAG.

In this model, LACP selection logic is applied and limited to one sub-LAG at a time. In this way, two redundant Ethernet interface sub-LAGs are maintained simultaneously while all the LACP advantages are preserved for each sub-LAG.

It is necessary for the switches used to connect the nodes in the cluster to have a LAG link configured and 802.3ad enabled for each LAG on both nodes so that the aggregate links are recognized as such and correctly pass traffic.

The redundant Ethernet interface LAG child links from each node in the chassis cluster must be connected to a different LAG at the peer devices. If a single peer switch is used to terminate the redundant Ethernet interface LAG, two separate LAGs must be used in the switch.

**Supporting Hitless Failover**

With LACP, the redundant Ethernet interface supports hitless failover between the active and standby links in normal operation. The term **hitless** means that the redundant Ethernet interface state remains up during a failover.

The lacpd process manages both the active and standby links of the redundant Ethernet interfaces. A redundant Ethernet interface state remains up when the number of active up links is equal to or more than the number of minimum links configured. Therefore, to support hitless failover, the LACP state on the redundant Ethernet interface standby links must be collected and distributed before failover occurs.
Managing Link Aggregation Control PDUs

The protocol data units (PDUs) contain information about the state of the link. By default, aggregated and redundant Ethernet links do not exchange link aggregation control PDUs.

You can configure PDUs exchange in the following ways:

- Configure Ethernet links to actively transmit link aggregation control PDUs
- Configure Ethernet links to passively transmit PDUs, sending out link aggregation control PDUs only when they are received from the remote end of the same link

The local end of a child link is known as the actor and the remote end of the link is known as the partner. That is, the actor sends link aggregation control PDUs to its protocol partner that convey what the actor knows about its own state and that of the partner’s state.

You configure the interval at which the interfaces on the remote side of the link transmit link aggregation control PDUs by configuring the periodic statement on the interfaces on the local side. It is the configuration on the local side that specifies the behavior of the remote side. That is, the remote side transmits link aggregation control PDUs at the specified interval. The interval can be fast (every second) or slow (every 30 seconds).

For more information, see “Example: Configuring LACP on Chassis Clusters” on page 263.

By default, the actor and partner transmit link aggregation control PDUs every second. You can configure different periodic rates on active and passive interfaces. When you configure the active and passive interfaces at different rates, the transmitter honors the receiver’s rate.

Example: Configuring LACP on Chassis Clusters

This example shows how to configure LACP on chassis clusters.
Requirements

Before you begin:

Complete the tasks such as enabling the chassis cluster, configuring interfaces and redundancy groups. See "SRX Series Chassis Cluster Configuration Overview" on page 35 and "Example: Configuring Chassis Cluster Redundant Ethernet Interfaces" on page 102 for more details.

Overview

You can combine multiple physical Ethernet ports to form a logical point-to-point link, known as a link aggregation group (LAG) or bundle. You configure LACP on a redundant Ethernet interface of SRX series device in chassis cluster.

In this example, you set the LACP mode for the reth1 interface to active and set the link aggregation control PDU transmit interval to slow, which is every 30 seconds.

When you enable LACP, the local and remote sides of the aggregated Ethernet links exchange protocol data units (PDUs), which contain information about the state of the link. You can configure Ethernet links to actively transmit PDUs, or you can configure the links to passively transmit them (sending out LACP PDUs only when they receive them from another link). One side of the link must be configured as active for the link to be up.

Figure 31 on page 264 shows the topology used in this example.

Figure 31: Topology for LAGs Connecting SRX Series Devices in Chassis Cluster to an EX Series Switch

In the Figure 31 on page 264, SRX550 devices are used to configure the interfaces on node0 and node1. For more information on EX Series switch configuration, see Configuring Aggregated Ethernet LACP (CLI Procedure).
Configuration

IN THIS SECTION

- Configuring LACP on Chassis Cluster | 265
- Configuring LACP on EX Series Switch | 267

Configuring LACP on Chassis Cluster

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see the CLI User Guide.

To configure LACP on chassis clusters:

1. Specify the number of redundant Ethernet interfaces.

   ```
 [edit chassis cluster]
 user@host# set reth-count 2
   ```

2. Specify a redundancy group's priority for primacy on each node of the cluster. The higher number takes precedence.

   ```
 [edit chassis cluster]
 user@host# set redundancy-group 1 node 0 priority 200
 user@host# set redundancy-group 1 node 1 priority 100
   ```

3. Create security zone and assign interfaces to zone.

   ```
 [edit security zones]
 user@host# set security-zone trust host-inbound-traffic system-services all
 user@host# set security-zone trust interfaces reth1.0
   ```

4. Bind redundant child physical interfaces to reth1.

   ```
 [edit interfaces]
 user@host# set ge-0/0/4 gigether-options redundant-parent reth1
 user@host# set ge-0/0/5 gigether-options redundant-parent reth1
   ```
5. Add reth1 to redundancy group 1.

[edit interfaces]
user@host# set reth1 redundant-ether-options redundancy-group 1

6. Set the LACP on reth1.

[edit interfaces]
user@host# set reth1 redundant-ether-options lacp active
user@host# set reth1 redundant-ether-options lacp periodic slow

7. Assign an IP address to reth1.

[edit interfaces]
user@host# set reth1 unit 0 family inet address 192.168.2.1/24

8. Configure LACP on aggregated Ethernet interfaces (ae1).

9. If you are done configuring the device, commit the configuration.

[edit interfaces]
user@host# commit

Results
From configuration mode, confirm your configuration by entering the show chassis, show security zones, and show interfaces commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

[edit]
user@host# show chassis
cluster {
  reth-count 2;
  redundancy-group 1 {
    node 0 priority 200;
    node 1 priority 100;
  }
}
Configuring LACP on EX Series Switch

Step-by-Step Procedure
Configure LACP on EX Series switch.

1. Set the number of aggregated Ethernet interfaces.

   [edit chassis]
   user@host# set aggregated-devices ethernet device-count 2

2. Associate physical interfaces with aggregated Ethernet interfaces.
3. Configure LACP on aggregated Ethernet interfaces (ae1).

```text
[edit interfaces]
user@host# set ge-0/0/1 gigether-options 802.3ad ae1
user@host# set ge-0/0/2 gigether-options 802.3ad ae1
user@host# set ge-0/0/3 gigether-options 802.3ad ae1
user@host# set ge-0/0/4 gigether-options 802.3ad ae1
```

**Results**

From configuration mode, confirm your configuration by entering the `show chassis` and `show interfaces` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```text
[edit]
user@host# show chassis
aggregated-devices {
 ethernet {
 device-count 2;
 }
}

user@host# show interfaces
ge-0/0/1 {
 gigether-options {
 802.3ad ae1;
 }
}
ge-0/0/2 {
 gigether-options {
 802.3ad ae1;
 }
}
ge-0/0/3 {
 gigether-options {
 802.3ad ae1;
 }
}
ge-0/0/4 {
```
Verification

Verifying LACP on Redundant Ethernet Interfaces

Purpose
Display LACP status information for redundant Ethernet interfaces.

Action
From operational mode, enter the `show chassis cluster status` command.

```
{primary:node0}[edit]

user@host> show chassis cluster status
```

Monitor Failure codes:
```
CS Cold Sync monitoring FL Fabric Connection monitoring
GR GRES monitoring HW Hardware monitoring
IF Interface monitoring IP IP monitoring
LB Loopback monitoring MB Mbuf monitoring
NH Nexthop monitoring NP NPC monitoring
SP SPU monitoring SM Schedule monitoring
CF Config Sync monitoring RE Relinquish monitoring
IS IRQ storm
```

Cluster ID: 1
Node   Priority Status               Preempt Manual   Monitor-failures
Redundancy group: 0 , Failover count: 1
node0  1        primary              no      no       None
node1  1        secondary            no      no       None

Redundancy group: 1 , Failover count: 1
node0  200      primary              no      no       None
node1  100      secondary            no      no       None

{primary:node0}[edit]
user@host> show chassis cluster interfaces

Control link status: Up

Control interfaces:

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Monitored-Status</th>
<th>Internal-SA</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>fxp1</td>
<td>Up</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Fabric link status: Up

Fabric interfaces:

<table>
<thead>
<tr>
<th>Name</th>
<th>Child-interface</th>
<th>Status</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>fab0</td>
<td>ge-0/0/2</td>
<td>Up</td>
<td>/ Up</td>
</tr>
<tr>
<td>fab0</td>
<td>ge-9/0/2</td>
<td>Up</td>
<td>/ Up</td>
</tr>
<tr>
<td>fab1</td>
<td>ge-9/0/2</td>
<td>Up</td>
<td>/ Up</td>
</tr>
</tbody>
</table>

Redundant-ethernet Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>reth0</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth1</td>
<td>Up</td>
<td>1</td>
</tr>
</tbody>
</table>

Redundant-pseudo-interface Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0</td>
<td>Up</td>
<td>0</td>
</tr>
</tbody>
</table>

From operational mode, enter the show lacp interfaces reth1 command.

{primary:node0}[edit]
user@host> **show lACP interfaces reth1**

<table>
<thead>
<tr>
<th>Aggregated interface: reth1</th>
</tr>
</thead>
<tbody>
<tr>
<td>LACP state:</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>ge-0/0/4</td>
</tr>
<tr>
<td>ge-0/0/4</td>
</tr>
<tr>
<td>ge-0/0/5</td>
</tr>
<tr>
<td>ge-0/0/5</td>
</tr>
<tr>
<td>ge-9/0/4</td>
</tr>
<tr>
<td>ge-9/0/4</td>
</tr>
<tr>
<td>ge-9/0/5</td>
</tr>
<tr>
<td>ge-9/0/5</td>
</tr>
</tbody>
</table>

LACP protocol:

<table>
<thead>
<tr>
<th>Receive State</th>
<th>Transmit State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>Slow periodic Collecting distributing</td>
</tr>
</tbody>
</table>

The output shows redundant Ethernet interface information, such as the following:

- The LACP state—Indicates whether the link in the bundle is an actor (local or near-end of the link) or a partner (remote or far-end of the link).

- The LACP mode—Indicates whether both ends of the aggregated Ethernet interface are enabled (active or passive)—at least one end of the bundle must be active.

- The periodic link aggregation control PDU transmit rate.

- The LACP protocol state—Indicates the link is up if it is collecting and distributing packets.

---

**Example: Configuring Chassis Cluster Minimum Links**

---

**IN THIS SECTION**

- Requirements | 272
- Overview | 272
- Configuration | 272
- Verification | 273
This example shows how to specify a minimum number of physical links assigned to a redundant Ethernet interface on the primary node that must be working for the interface to be up.

Requirements

Before you begin:

- Configure redundant Ethernet interfaces. See "Example: Configuring Chassis Cluster Redundant Ethernet Interfaces" on page 102.
- Understand redundant Ethernet interface link aggregation groups. See "Example: Configuring Link Aggregation Groups in a Chassis Cluster" on page 254.

Overview

When a redundant Ethernet interface has more than two child links, you can set a minimum number of physical links assigned to the interface on the primary node that must be working for the interface to be up. When the number of physical links on the primary node falls below the minimum-links value, the interface will be down even if some links are still working.

In this example, you specify that three child links on the primary node and bound to reth1 (minimum-links value) be working to prevent the interface from going down. For example, in a redundant Ethernet interface LAG configuration in which six interfaces are assigned to reth1, setting the minimum-links value to 3 means that all reth1 child links on the primary node must be working to prevent the interface's status from changing to down.

Although it is possible to set a minimum-links value for a redundant Ethernet interface with only two child interfaces (one on each node), we do not recommend it.

Configuration

Step-by-Step Procedure

To specify the minimum number of links:

1. Specify the minimum number of links for the redundant Ethernet interface.

   ```
 [primary:node0][edit]
 user@host# set interfaces reth1 redundant-ether-options minimum-links 3
   ```

2. If you are done configuring the device, commit the configuration.

   ```
 [primary:node0][edit]
 user@host# commit
   ```
Verification

Verifying the Chassis Cluster Minimum Links Configuration

Purpose
To verify the configuration is working properly, enter the `show interface reth1` command.

Action
From operational mode, enter the show `show interfaces reth1` command.

{primary:node0}[edit]

user@host> show interfaces reth1

Physical interface: reth1, Enabled, Physical link is Down
  Interface index: 129, SNMP ifIndex: 548
  Link-level type: Ethernet, MTU: 1514, Speed: Unspecified, BPDU Error: None,
  MAC-REWRITE Error: None, Loopback: Disabled, Source filtering: Disabled,
  Flow control: Disabled, Minimum links needed: 3, Minimum bandwidth needed: 0
  Device flags : Present Running
  Interface flags: Hardware-Down SNMP-Traps Internal: 0x0
  Current address: 00:10:db:ff:10:01, Hardware address: 00:10:db:ff:10:01
  Last flapped : 2010-09-15 15:54:53 UTC (1w0d 22:07 ago)
  Input rate : 0 bps (0 pps)
  Output rate : 0 bps (0 pps)

Logical interface reth1.0 (Index 68) (SNMP ifIndex 550)
  Flags: Hardware-Down Device-Down SNMP-Traps 0x0 Encapsulation: ENET2
  Statistics Packets pps Bytes bps
  Bundle:          0  0    0  0
  Input :          0  0    0  0
  Output:          0  0    0  0

Security: Zone: untrust
  Allowed host-inbound traffic : bootp bfd bgp dns dvmrp igmp ldp msdp nhrp
  ospf pgm pim rip router-discovery rsvp sap vrrp dhcp finger ftp tftp
  ident-reset http https ike netconf ping reverse-telnet reverse-ssh rlogin
  rpm rsh snmp snmp-trap ssh telnet traceroute xnm-clear-text xnm-ssl lsping
  ntp sip

  Protocol inet, MTU: 1500
  Flags: Sendbcast-pkt-to-re
Support for Ethernet link aggregation groups (LAGs) based on IEEE 802.3ad makes it possible to aggregate physical interfaces on a standalone device. LAGs on standalone devices provide increased interface bandwidth and link availability. Aggregation of links in a chassis cluster allows a redundant Ethernet interface to add more than two physical child interfaces, thereby creating a redundant Ethernet interface LAG.

Requirements

This example uses the following software and hardware components:

- Junos OS Release 15.1X49-D40 or later for SRX Series devices.
- SRX5800 with IOC2 or IOC3 with Express Path enabled on IOC2 and IOC3. For details, see Example: Configuring SRX5K-MPC3-100G10G (IOC3) and SRX5K-MPC3-40G10G (IOC3) on an SRX5000 Line Device to Support Express Path.

Overview

This example shows how to configure a redundant Ethernet interface link aggregation group and configure LACP on chassis clusters on an SRX Series device using the ports from either IOC2 or IOC3 in Express Path mode. Note that configuring child interfaces by mixing links from both IOC2 and IOC3 is not supported.

The following member links are used in this example:

- xe-1/0/0
- xe-3/0/0
- xe-14/0/0
- xe-16/0/0
**Configuration**

**CLI Quick Configuration**

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, delete, and then copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter **commit** from configuration mode.

```plaintext
set chassis cluster reth-count 5
set interfaces reth0 redundant-ether-options redundancy-group 1
set interfaces reth0 redundant-ether-options lACP active
set interfaces reth0 redundant-ether-options lacp periodic fast
set interfaces reth0 redundant-ether-options minimum-links 1
set interfaces reth0 unit 0 family inet address 192.0.2.1/24
set interfaces xe-1/0/0 gigether-options redundant-parent reth0
set interfaces xe-3/0/0 gigether-options redundant-parent reth0
set interfaces xe-14/0/0 gigether-options redundant-parent reth0
set interfaces xe-16/0/0 gigether-options redundant-parent reth0
```

**Step-by-Step Procedure**

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode* in *CLI User Guide*.

To configure LAG Interfaces:

1. Specify the number of aggregated Ethernet interfaces to be created.

   ```plaintext
 [edit chassis]
 user@host# set chassis cluster reth-count 5
   ```

2. Bind redundant child physical interfaces to reth0.

   ```plaintext
 [edit interfaces]
 user@host# set xe-1/0/0 gigether-options redundant-parent reth0
 user@host# set xe-3/0/0 gigether-options redundant-parent reth0
 user@host# set xe-14/0/0 gigether-options redundant-parent reth0
 user@host# set xe-16/0/0 gigether-options redundant-parent reth0
   ```

3. Add reth0 to redundancy group 1.

   ```plaintext
 user@host# set reth0 redundant-ether-options redundancy-group 1
   ```
4. Assign an IP address to reth0.

```
[edit interfaces]
user@host# set reth0 unit 0 family inet address 192.0.2.1/24
```

5. Set the LACP on reth0.

```
[edit interfaces]
user@host# set reth0 redundant-ether-options lacp active
user@host# set reth0 redundant-ether-options lacp periodic fast
user@host# set reth0 redundant-ether-options minimum-links 1
```

**Results**

From configuration mode, confirm your configuration by entering the `show interfaces` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show interfaces
xe-1/0/0 {
 gigether-options {
 redundant-parent reth0;
 }
}
xe-3/0/0 {
 gigether-options {
 redundant-parent reth0;
 }
}
xe-14/0/0 {
 gigether-options {
 redundant-parent reth0;
 }
}
xe-16/0/0 {
 gigether-options {
 redundant-parent reth0;
 }
}
reth0 {
 redundant-ether-options {
 lacp {
```
If you are done configuring the device, enter commit from configuration mode.

**Verification**

**Verifying LACP on Redundant Ethernet Interfaces**

**Purpose**
Display LACP status information for redundant Ethernet interfaces.

**Action**
From operational mode, enter the show lacp interfaces command to check that LACP has been enabled as active on one end.

```bash
user@host> show lacp interfaces
```
The output indicates that LACP has been set up correctly and is active at one end.

### Understanding VRRP on SRX Series Devices

#### IN THIS SECTION
- Overview of VRRP on SRX Series Devices | 278
- Benefits of VRRP | 279
- Sample VRRP Topology | 280
- SRX Series Devices Support for VRRPv3 | 281
- Limitations of VRRPv3 Features | 281

SRX Series devices support the Virtual Router Redundancy Protocol (VRRP) and VRRP for IPv6. This topic covers:

#### Overview of VRRP on SRX Series Devices

Configuring end hosts on your network with static default routes minimizes configuration effort and complexity and reduces processing overhead on the end hosts. When hosts are configured with static
routes, the failure of the default gateway normally results in a catastrophic event, isolating all hosts that are unable to detect available alternate paths to their gateway. Using Virtual Router Redundancy Protocol (VRRP) enables you to dynamically provide alternative gateways for end hosts if the primary gateway fails.

You can configure the Virtual Router Redundancy Protocol (VRRP) or VRRP for IPv6 on Gigabit Ethernet interfaces, 10-Gigabit Ethernet interfaces, and logical interfaces on SRX Series devices. VRRP enables hosts on a LAN to make use of redundant devices on that LAN without requiring more than the static configuration of a single default route on the hosts. Devices configured with VRRP share the IP address corresponding to the default route configured on the hosts. At any time, one of the VRRP configured devices is the master (active) and the others are backups. If the master device fails, then one of the backup devices becomes the new master, providing a virtual default device and enabling traffic on the LAN to be routed without relying on a single device. Using VRRP, a backup SRX Series device can take over a failed default device within a few seconds. This is done with minimum loss of VRRP traffic and without any interaction with the hosts. Virtual Router Redundancy Protocol is not supported on management interfaces.

VRRP for IPv6 provides a much faster switchover to an alternate default device than IPv6 Neighbor Discovery (ND) procedures. VRRP for IPv6 does not support the authentication-type or authentication-key statements.

Devices running VRRP dynamically elect master and backup devices. You can also force assignment of master and backup devices using priorities from 1 through 255, with 255 being the highest priority. In VRRP operation, the default master device sends advertisements to the backup device at a regular intervals. The default interval is 1 second. If the backup device do not receive an advertisement for a set period, then the backup device with the highest priority takes over as master and begins forwarding packets.

The backup devices do not attempt to preempt the master device unless it has higher priority. This eliminates service disruption unless a more preferred path becomes available. It is possible to administratively prohibit all preemption attempts, with the exception of a VRRP device becoming master device of any device associated with addresses it owns.

VRRP does not support session synchronization between members. If the master device fails, the backup device with the highest priority takes over as master and will begin forwarding packets. Any existing sessions will be dropped on the backup device as out-of-state.

Priority 255 cannot be set for routed VLAN interfaces (RVIs).

VRRP is defined in RFC 3768, Virtual Router Redundancy Protocol.

**Benefits of VRRP**

- VRRP provides dynamic failover of IP addresses from one device to another in the event of failure.
- You can implement VRRP to provide a highly available default path to a gateway without needing to configure dynamic routing or router discovery protocols on end hosts.
**Sample VRRP Topology**

*Figure 32 on page 280* illustrates a basic VRRP topology with SRX Series devices. In this example, Devices A and B are running VRRP and share the virtual IP address 192.0.2.1. The default gateway for each of the clients is 192.0.2.1.

**Figure 32: Basic VRRP on SRX Series Switches**

<table>
<thead>
<tr>
<th>VRRP Group 100 / Virtual IP 192.0.2.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX Series</td>
</tr>
<tr>
<td>Device A</td>
</tr>
<tr>
<td>Master / Priority = 250</td>
</tr>
<tr>
<td>192.0.2.251</td>
</tr>
</tbody>
</table>

| SRX Series                           |
| Device B                             |
| Backup / Priority = 200              |
| 192.0.2.252                          |

Default Gateway = 192.0.2.1

The following illustrates basic VRRP behavior using *Figure 32 on page 280* for reference:

1. When any of the servers wants to send traffic out of the LAN, it sends the traffic to the default gateway address of 192.0.2.1. This is a virtual IP address (VIP) owned by VRRP group 100. Because Device A is the master of the group, the VIP is associated with the “real” address 192.0.2.251 on Device A, and traffic from the servers is actually sent to this address. (Device A is the master because it has been configured with a higher priority value.)

2. If there is a failure on Device A that prevents it from forwarding traffic to or from the servers—for example, if the interface connected to the LAN fails—Device B becomes the master and assumes ownership of the VIP. The servers continue to send traffic to the VIP, but because the VIP is now associated with the “real” address 192.0.2.252 on Device B (because of change of master), the traffic is sent to Device B instead of Device A.

3. If the problem that caused the failure on Device A is corrected, Device A becomes the master again and reasserts ownership of the VIP. In this case, the servers resume sending traffic to Device A.

Notice that no configuration changes are required on the servers for them to switch between sending traffic to Device A and Device B. When the VIP moves between 192.0.2.251 and 192.0.2.252, the change is detected by normal TCP-IP behavior and no configuration or intervention is required on the servers.
SRX Series Devices Support for VRRPv3

The advantage of using VRRPv3 is that VRRPv3 supports both IPv4 and IPv6 address families, whereas VRRP supports only IPv4 addresses.

Enable VRRPv3 in your network only if VRRPv3 can be enabled on all the devices configured with VRRP in your network because VRRPv3 (IPv4) does not interoperate with the previous versions of VRRP. For example, if VRRP IPv4 advertisement packets are received by a device on which VRRPv3 is enabled, then the device transitions itself to the backup state to avoid creating multiple masters in the network.

You can enable VRRPv3 by configuring the version-3 statement at the [edit protocols vrrp] hierarchy level (for IPv4 or IPv6 networks). Configure the same protocol version on all VRRP devices on the LAN.

Limitations of VRRPv3 Features

Below are some VRRPv3 features limitations.

**VRRPv3 Authentication**

When VRRPv3 (for IPv4) is enabled, it does not allow authentication.

- The authentication-type and authentication-key statements cannot be configured for any VRRP groups.
- You must use non-VRRP authentication.

**VRRPv3 Advertisement Intervals**

VRRPv3 (for IPv4 and IPv6) advertisement intervals must be set with the fast-interval statement at the [edit interfaces interface-name unit 0 family inet address ip-address vrrp-group group-name] hierarchy level.

- Do not use the advertise-interval statement (for IPv4).
- Do not use the inet6-advertise-interval statement (for IPv6).

SEE ALSO

For more information on VRRP or VRRP for IPv6, see the Junos OS High Availability Configuration Guide.

show vrrp | 793
Failover is a backup operational mode in which the functions of a network device are assumed by a secondary device when the primary device becomes unavailable because of a failure or a scheduled down time. Failover is typically an integral part of mission-critical systems that must be constantly available on the network.

VRRP does not support session synchronization between members. If the master device fails, the backup device with the highest priority takes over as master and will begin forwarding packets. Any existing sessions will be dropped on the backup device as out-of-state.

A fast failover requires a short delay. Thus, failover-delay configures the failover delay time, in milliseconds, for VRRP and VRRP for IPv6 operations. Junos OS supports a range of 50 through 100000 milliseconds for delay in failover time.

The VRRP process (vrrpd) running on the Routing Engine communicates a VRRP mastership change to the Packet Forwarding Engine for every VRRP session. Each VRRP group can trigger such communication to update the Packet Forwarding Engine with its own state or the state inherited from an active VRRP group. To avoid overloading the Packet Forwarding Engine with such messages, you can configure a failover-delay to specify the delay between subsequent Routing Engine to Packet Forwarding Engine communications.

The Routing Engine communicates a VRRP mastership change to the Packet Forwarding Engine to facilitate necessary state change on the Packet Forwarding Engine, such as reprogramming of Packet Forwarding Engine hardware filters, VRRP sessions and so on. The following sections elaborate the Routing Engine to Packet Forwarding Engine communication in two scenarios:
When failover-delay Is Not Configured

Without failover-delay configured, the sequence of events for VRRP sessions operated from the Routing Engine is as follows:

1. When the first VRRP group detected by the Routing Engine changes state, and the new state is master, the Routing Engine generates appropriate VRRP announcement messages. The Packet Forwarding Engine is informed about the state change, so that hardware filters for that group are reprogrammed without delay. The new master then sends gratuitous ARP message to the VRRP groups.

2. The delay in failover timer starts. By default, failover-delay timer is:
   - 500 milliseconds—when the configured VRRP announcement interval is less than 1 second.
   - 2 seconds—when the configured VRRP announcement interval is 1 second or more, and the total number of VRRP groups on the router is 255.
   - 10 seconds—when the configured VRRP announcement interval is 1 second or more, and the number of VRRP groups on the router is more than 255.

3. The Routing Engine performs one-by-one state change for subsequent VRRP groups. Every time there is a state change, and the new state for a particular VRRP group is master, the Routing Engine generates appropriate VRRP announcement messages. However, communication toward the Packet Forwarding Engine is suppressed until the failover-delay timer expires.

4. After failover-delay timer expires, the Routing Engine sends message to the Packet Forwarding Engine about all VRRP groups that managed to change the state. As a consequence, hardware filters for those groups are reprogrammed, and for those groups whose new state is master, gratuitous ARP messages are sent.

This process repeats until state transition for all VRRP groups is complete.

Thus, without configuring failover-delay, the full state transition (including states on the Routing Engine and the Packet Forwarding Engine) for the first VRRP group is performed immediately, while state transition on the Packet Forwarding Engine for remaining VRRP groups is delayed by at least 0.5-10 seconds, depending on the configured VRRP announcement timers and the number of VRRP groups. During this intermediate state, receiving traffic for VRRP groups for state changes that were not yet completed on the Packet Forwarding Engine might be dropped at the Packet Forwarding Engine level due to deferred reconfiguration of hardware filters.
**When failover-delay Is Configured**

When failover-delay is configured, the sequence of events for VRRP sessions operated from the Routing Engine is modified as follows:

1. The Routing Engine detects that some VRRP groups require a state change.

2. The failover-delay starts for the period configured. The allowed failover-delay timer range is 50 through 100000 milliseconds.

3. The Routing Engine performs one-by-one state change for the VRRP groups. Every time there is a state change, and the new state for a particular VRRP group is master, the Routing Engine generates appropriate VRRP announcement messages. However, communication toward the Packet Forwarding Engine is suppressed until the failover-delay timer expires.

4. After failover-delay timer expires, the Routing Engine sends message to the Packet Forwarding Engine about all VRRP groups that managed to change the state. As a consequence, hardware filters for those groups are reprogrammed, and for those groups whose new state is master, gratuitous ARP messages are sent.

This process repeats until state transition for all VRRP groups is complete.

Thus, when failover-delay is configured even the Packet Forwarding Engine state for the first VRRP group is deferred. However, the network operator has the advantage of configuring a failover-delay value that best suits the need of the network deployment to ensure minimal outage during VRRP state change.

failover-delay influences only VRRP sessions operated by the VRRP process (vrrpd) running on the Routing Engine. For VRRP sessions distributed to the Packet Forwarding Engine, failover-delay configuration has no effect.

SEE ALSO

| failover-delay |
Example: Configuring VRRP/VRRPv3 on Chassis Cluster Redundant Ethernet Interfaces

When Virtual Router Redundancy Protocol (VRRP) is configured, the VRRP groups multiple devices into a virtual device. At any time, one of the devices configured with VRRP is the master (active) and the other devices are backups. If the master fails, one of the backup devices becomes the new master device.

This example describes how to configure VRRP on redundant interface:

Requirements

This example uses the following hardware and software components:

- Junos OS Release 18.1 R1 or later for SRX Series Services Gateways.
- Two SRX Series devices connected in a chassis cluster.
- One SRX Series device connected as standalone device.

Overview

You configure VRRP by configuring VRRP groups on redundant interfaces on a chassis cluster devices and on Gigabit Ethernet interface on standalone device. A redundant interface of chassis cluster devices and Gigabit Ethernet interface of standalone device can be a member of one or more VRRP groups. Within a VRRP group, the master redundant interface of chassis cluster devices and the backup Gigabit Ethernet interface of standalone device must be configured.

To configure VRRP group, you must configure group identifier, and virtual IP address to the redundant interfaces and Gigabit Ethernet interfaces that are members of VRRP group. The virtual IP address must be the same for all the interfaces in the VRRP group. Then you configure the priority to the redundant interfaces and Gigabit Ethernet interfaces to become the master interface.
You can force assignment of master and backup redundant interfaces and Gigabit Ethernet interfaces using priorities from 1 through 255, where 255 is the highest priority.

**Topology**

Figure 33 on page 286 shows the topology used in this example.

Figure 33: VRRP on Redundant interface

---

**Configuration VRRP**

---

**IN THIS SECTION**

- Configuring VRRPv3, VRRP Groups, and Priority on Chassis Cluster Redundant Ethernet Interfaces | 286
- Configuring VRRP Groups on Standalone Device | 290

---

**Configuring VRRPv3, VRRP Groups, and Priority on Chassis Cluster Redundant Ethernet Interfaces**

**CLI Quick Configuration**

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter **commit** from configuration mode.

```
set protocols vrrp traceoptions file vrrp.log
set protocols vrrp traceoptions file size 10000000
set protocols vrrp traceoptions flag all
set protocols vrrp version-3
set protocols vrrp ignore-nonstop-routing
```
Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure VRRPv3, VRRP Groups, and priority on chassis cluster devices:

1. Configure a filename to the traceoptions to trace VRRP protocol traffic.

   ```
 [edit protocols vrrp]
 user@host# set traceoptions file vrrp.log
   ```

2. Specify the maximum trace file size.

   ```
 [edit protocols vrrp]
 user@host# set traceoptions file size 10000000
   ```

3. Enable vrrp traceoptions.

   ```
 [edit protocols vrrp]
 user@host# set traceoptions flag all
   ```
4. Set vrrp version to 3.

```
[edit protocols vrrp]
user@host# set version-3
```

5. Configure this command to support graceful Routing Engine switchover (GRES) for VRRP and for nonstop active routing when there is VRRP reth failover. Using vrrp, a secondary node can take over a failed primary node within a few seconds and this is done with minimum VRRP traffic and without any interaction with the hosts

```
[edit protocols vrrp]
user@host#set ignore-nonstop-routing
```

6. Set up the redundant Ethernet (reth) interfaces and assign the redundant interface to a zone.

```
[edit interfaces]
user@host# set ge-0/0/0 gigether-options redundant-parent reth0
user@host# set ge-0/0/3 gigether-options redundant-parent reth1
user@host# set ge-5/0/0 gigether-options redundant-parent reth0
user@host# set ge-5/0/3 gigether-options redundant-parent reth1
user@host# set reth0 redundant-ether-options redundancy-group 1
user@host# set reth1 redundant-ether-options redundancy-group 2
```

7. Configure the family inet address and virtual address for the redundant interface 0 unit 0.

```
[edit interfaces]
user@host# set reth0 unit 0 family inet address 192.0.2.2/24 vrrp-group 0 virtual-address 192.168.110.3
user@host# set reth0 unit 0 family inet6 address 2001:db8::2/32 vrrp-inet6-group 2 virtual-inet6-address 2001:db8::3
```

8. Configure the family inet address and virtual address for the redundant interface 1 unit 0.

```
[edit interfaces]
user@host# set reth1 unit 0 family inet address 192.0.2.4/24 vrrp-group 1 virtual-address 192.168.120.3
user@host# set reth1 unit 0 family inet6 address 2001:db8::3/32 vrrp-inet6-group 3 virtual-inet6-address 2001:db8::4
```

9. Set the priority of the redundant interface 0 unit 0 to 255.
10. Set the priority of the redundant interface 1 unit 0 to 150.

[edit interfaces]
user@host# set reth0 unit 0 family inet address 192.0.2.2/24 vrrp-group 0 priority 255
user@host# set reth0 unit 0 family inet6 address 2001:db8::2/32 vrrp-inet6-group 2 priority 255

11. Configure the redundant interface 0 unit 0 to accept all packets sent to the virtual IP address.

[edit interfaces]
user@host# set reth1 unit 0 family inet address 192.0.2.4/24 vrrp-group 1 priority 150
user@host# set reth1 unit 0 family inet6 address 2001:db8::3/32 vrrp-inet6-group 3 priority 150

12. Configure the redundant interface 1 unit 0 to accept all packets sent to the virtual IP address.

[edit interfaces]
user@host# set reth0 unit 0 family inet address 192.0.2.2/24 vrrp-group 0 accept-data
user@host# set reth0 unit 0 family inet6 address 2001:db8::2/32 vrrp-inet6-group 2 accept-data

[edit interfaces]
user@host# set reth1 unit 0 family inet address 192.0.2.4/24 vrrp-group 1 accept-data
user@host# set reth1 unit 0 family inet6 address 2001:db8::3/32 vrrp-inet6-group 3 accept-data

Results
From configuration mode, confirm your configuration by entering the show interfaces reth0 and show interfaces reth1 commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

[edit]
user@host# show interfaces reth0
redundant-ether-options {
    redundancy-group 1;
}
unit 0 {
    family inet {
        address 192.0.2.2/24 {
            vrrp-group 0 {
                virtual-address 192.0.2.3;
                priority 255;
                accept-data;
            }
        }
    }
}
family inet6 {
    address 2001:db8::2/32 {
        vrrp-inet6-group 2 {
            virtual-inet6-address 2001:db8::3;
            priority 255;
            accept-data;
        }
    }
}

[edit]
user@host# show interfaces reth1
redundant-ether-options {
    redundancy-group 2;
}
unit 0 {
    family inet {
        address 192.0.2.4/24 {
            vrrp-group 1 {
                virtual-address 192.0.2.5;
                priority 150;
                accept-data;
            }
        }
    }
    family inet6 {
        address 2001:db8::3/32 {
            vrrp-inet6-group 3 {
                virtual-inet6-address 2001:db8::4;
                priority 150;
                accept-data;
            }
        }
    }
}

If you are done configuring the device, enter commit from configuration mode.

Configuring VRRP Groups on Standalone Device

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```plaintext
set protocols vrrp version-3
set interfaces xe-5/0/5 unit 0 family inet address 192.0.2.1/24 vrrp-group 0 virtual-address 192.0.2.3
set interfaces xe-5/0/5 unit 0 family inet address 192.0.2.1/24 vrrp-group 0 priority 50
set interfaces xe-5/0/5 unit 0 family inet address 192.0.2.1/24 vrrp-group 0 accept-data
set interfaces xe-5/0/5 unit 0 family inet6 address 2001:db8::1/32 vrrp-inet6-group 2 virtual-inet6-address 2001:db8::3
set interfaces xe-5/0/5 unit 0 family inet6 address 2001:db8::1/32 vrrp-inet6-group 2 priority 50
set interfaces xe-5/0/5 unit 0 family inet6 address 2001:db8::1/32 vrrp-inet6-group 2 accept-data
set interfaces xe-5/0/6 unit 0 family inet address 192.0.2.1/24 vrrp-group 1 virtual-address 192.0.2.5
set interfaces xe-5/0/6 unit 0 family inet address 192.0.2.1/24 vrrp-group 1 priority 50
set interfaces xe-5/0/6 unit 0 family inet address 192.0.2.1/24 vrrp-group 1 accept-data
set interfaces xe-5/0/6 unit 0 family inet6 address 2001:db8::5/32 vrrp-inet6-group 3 virtual-inet6-address 2001:db8::4
set interfaces xe-5/0/6 unit 0 family inet6 address 2001:db8::5/32 vrrp-inet6-group 3 priority 50
set interfaces xe-5/0/6 unit 0 family inet6 address 2001:db8::5/32 vrrp-inet6-group 3 accept-data
```

**Step-by-Step Procedure**

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode* in the *CLI User Guide*.

To configure VRRP groups on standalone device:

1. Set vrrp version to 3.

   ```
 [edit protocols vrrp]
 user@host# set version-3
   ```

2. Configure the family inet address and virtual address for the Gigabit Ethernet interface unit 0.

   ```
 [edit interfaces]
 user@host# set xe-5/0/5 unit 0 family inet address 192.0.2.1/24 vrrp-group 0 virtual-address 192.0.2.3
 user@host# set xe-5/0/5 unit 0 family inet6 address 2001:db8::1/32 vrrp-inet6-group 2 virtual-inet6-address 2001:db8::3
 user@host# set xe-5/0/6 unit 0 family inet address 192.0.2.1/24 vrrp-group 1 virtual-address 192.0.2.5
 user@host# set xe-5/0/6 unit 0 family inet6 address 2001:db8::5/32 vrrp-inet6-group 3 virtual-inet6-address 2001:db8::4
   ```

3. Set the priority of the Gigabit Ethernet interface unit 0 to 50.
4. Configure the Gigabit Ethernet interface unit 0 to accept all packets sent to the virtual IP address.

   [edit interfaces]
   user@host# set xe-5/0/5 unit 0 family inet address 192.0.2.1/24 vrrp-group 0 accept-data
   user@host# set xe-5/0/5 unit 0 family inet6 address 2001:db8::1/32 vrrp-inet6-group 2 accept-data
   user@host# set xe-5/0/6 unit 0 family inet address 192.0.2.1/24 vrrp-group 1 accept-data
   user@host# set xe-5/0/6 unit 0 family inet6 address 2001:db8::5/32 vrrp-inet6-group 3 accept-data

Results
From configuration mode, confirm your configuration by entering the `show interfaces xe-5/0/5` and `show interfaces xe-5/0/6` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.
[edit]
user@host# show interfaces xe-5/0/6
unit 0 {
    family inet {
        address 192.0.2.1/24 {
            vrrp-group 1 {
                virtual-address 192.0.2.5;
                priority 50;
                accept-data;
            }
        }
    }
    family inet6 {
        address 2001:db8::5/32 {
            vrrp-inet6-group 3 {
                virtual-inet6-address 2001:db8::4;
                priority 50;
                accept-data;
            }
        }
    }
}

If you are done configuring the device, enter `commit` from configuration mode.

**Verification**

**IN THIS SECTION**

- Verifying the VRRP on Chassis Cluster Devices | 293
- Verifying the VVRP on standalone device | 294

Confirm that the configuration is working properly.

**Verifying the VRRP on Chassis Cluster Devices**

**Purpose**

Verify that VRRP on chassis cluster devices has been configured properly.

**Action**
From operational mode, enter the `show vrrp brief` command to display the status of VRRP on chassis cluster devices.

```
user@host> show vrrp brief
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Group</th>
<th>VR state</th>
<th>VR Mode</th>
<th>Timer</th>
<th>Type</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>reth0.0</td>
<td>up</td>
<td></td>
<td>0</td>
<td>master</td>
<td></td>
<td>A</td>
<td>0.149 lcl 192.0.2.3</td>
</tr>
<tr>
<td>vip</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reth0.0</td>
<td>up</td>
<td></td>
<td>2</td>
<td>master</td>
<td></td>
<td>A</td>
<td>0.155 lcl 2001::db8::2</td>
</tr>
<tr>
<td>vip</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reth0.0</td>
<td>up</td>
<td></td>
<td>1</td>
<td>master</td>
<td></td>
<td>A</td>
<td>0.445 lcl 192.0.2.4</td>
</tr>
<tr>
<td>vip</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reth0.0</td>
<td>up</td>
<td></td>
<td>3</td>
<td>master</td>
<td></td>
<td>A</td>
<td>0.414 lcl 2001::db8::4</td>
</tr>
<tr>
<td>vip</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Meaning**

The sample output shows that the four VRRP groups are active and that the redundant interfaces has assumed the correct master roles. The lcl address is the physical address of the interface and the vip address is the virtual address shared by redundant interfaces. The Timer value (A 0.149, A 0.155, A 0.445, and A 0.414) indicates the remaining time (in seconds) in which the redundant interfaces expects to receive a VRRP advertisement from the Gigabit Ethernet interfaces. If an advertisement for group 0, 1, 2, and 3 does not arrive before the timer expires, Chassis cluster devices asserts itself as the master.

**Verifying the VVRP on standalone device**

**Purpose**

Verify that VVRP has been configured properly on a standalone device.

**Action**

From operational mode, enter the `show vrrp brief` command to display the status of VRRP on standalone device.

```
user@host> show vrrp brief
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Group</th>
<th>VR state</th>
<th>VR Mode</th>
<th>Timer</th>
<th>Type</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>xe-5/0/5.0</td>
<td>up</td>
<td></td>
<td>0</td>
<td>backup</td>
<td></td>
<td>D</td>
<td>3.093 lcl 192.0.2.2.1</td>
</tr>
</tbody>
</table>
**Meaning**

The sample output shows that the four VRRP groups are active and that the Gigabit Ethernet interfaces has assumed the correct backup roles. The lcl address is the physical address of the interface and the vip address is the virtual address shared by Gigabit Ethernet interfaces. The Timer value (D 3.093, D 3.502, D 3.499, and D 3.282) indicates the remaining time (in seconds) in which the Gigabit Ethernet interfaces expects to receive a VRRP advertisement from the redundant interfaces. If an advertisement for group 0, 1, 2, and 3 does not arrive before the timer expires, then the standalone device continues to be a backup device.

**SEE ALSO**

<table>
<thead>
<tr>
<th>authentication-type</th>
<th>496</th>
</tr>
</thead>
<tbody>
<tr>
<td>authentication-key</td>
<td>494</td>
</tr>
<tr>
<td>show vrrp</td>
<td>793</td>
</tr>
</tbody>
</table>
Example: Configuring VRRP for IPv6

This example shows how to configure VRRP properties for IPv6 in one master (Router A) and one backup (Router B).

Requirements

This example uses the following hardware and software components:

- Two routers
- Junos OS Release 11.3 or later
- Junos OS Release 18.1 R1 or later for SRX Series Services Gateways.
- Static routing or a dynamic routing protocol enabled on both routers.

Overview

This example uses a VRRP group, which has its own virtual IPv6 address. Devices on the LAN use this virtual IPv6 address as their default gateway. If the master router fails, the backup router takes over for it.

Configuring VRRP

IN THIS SECTION

- Configuring Router A | 297
- Configuring Router B | 299
Configuring Router A

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

```
set interfaces ge-1/0/0 unit 0 family inet6 address 2001:db8::5:0:0:6/64
set interfaces ge-1/0/0 unit 0 family inet6 address 2001:db8::6:0:0:6/64 vrrp-inet6-group 3 virtual-inet6-address 2001:db8::6:0:0:7
set interfaces ge-1/0/0 unit 0 family inet6 address 2001:db8::6:0:0:6/64 vrrp-inet6-group 3 virtual-link-local-address 2001:db8::5:0:0:7
set interfaces ge-1/0/0 unit 0 family inet6 address 2001:db8::6:0:0:6/64 vrrp-inet6-group 3 priority 200
set interfaces ge-1/0/0 unit 0 family inet6 address 2001:db8::6:0:0:6/64 vrrp-inet6-group 3 preempt
set protocols router-advertisement interface ge-1/0/0.0 prefix 2001:db8::/64
set protocols router-advertisement interface ge-1/0/0.0 max-advertisement-interval 4
set protocols router-advertisement interface ge-1/0/0.0 virtual-router-only
```

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure this example:

1. Configure the interfaces.

   ```
 [edit interfaces]
 user@hostA# set ge-1/0/0 unit 0 family inet6 address 2001:db8::5:0:0:6/64
 user@hostA# set ge-1/0/0 unit 0 family inet6 address 2001:db8::6:0:0:6/64
   ```

2. Configure the IPv6 VRRP group identifier.

   ```
 [edit interfaces ge-1/0/0 unit 0 family inet6 address 2001:db8::6:0:0:6/64]
 user@hostA# set vrrp-inet6-group 3
   ```

3. Configure the virtual IP address of a virtual router that is a member of the VRRP group.

   ```
 [edit interfaces ge-1/0/0 unit 0 family inet6 address 2001:db8::6:0:0:6/64]
 user@hostA# set vrrp-inet6-group 3 virtual-inet6-address 2001:db8::6:0:0:7
   ```

4. Configure the virtual link-local address.
5. Configure the priority for this routing platform to become the master virtual router.

[edit interfaces ge-1/0/0 unit 0 family inet6 address 2001:db8::6:0:0:6/64]
user@hostA# set vrrp-inet6-group 3 priority 200

6. By default, a higher-priority backup router preempts a lower-priority master router. To explicitly enable the master router to be preempted, include the `preempt` statement.

[edit interfaces ge-1/0/0 unit 0 family inet6 address 2001:db8::6:0:0:6/64]
user@hostA# set vrrp-inet6-group 3 preempt

7. For VRRP for IPv6, you must configure the interface on which VRRP is configured to send IPv6 router advertisements for the VRRP group. When an interface receives an IPv6 router solicitation message, it sends an IPv6 router advertisement to all VRRP groups configured on it.

[edit protocols router-advertisement interface ge-1/0/0.0]
user@hostA# set prefix 2001:db8::/64
user@hostA# set max-advertisement-interval 4

8. Configure router advertisements to be sent only for VRRP IPv6 groups configured on the interface if the groups are in the master state.

[edit protocols router-advertisement interface ge-1/0/0.0]
user@hostA# set virtual-router-only

**Results**

From configuration mode, confirm your configuration by entering the `show interfaces` and `show protocols router-advertisement` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.
address 2001:db8::5:0:0:6/64;
address 2001:db8::6:0:0:6/64 {
    vrrp-inet6-group 3;
    vrrp-inet6-group 3 virtual-inet6-address 2001:db8::6:0:0:7;
    vrrp-inet6-group 3 virtual-link-local-address 2001:db8::5:0:0:7;
    vrrp-inet6-group 3 priority 200;
    vrrp-inet6-group 3 preempt;
}
}
}

[edit]
user@hostA# show protocols router-advertisement
interface ge-1/0/0.0 {
    prefix 2001:db8::/64;
    max-advertisement-interval 4;
    virtual-router-only;
}

If you are done configuring the device, enter commit from configuration mode.

Configuring Router B

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

set interfaces ge-1/0/0 unit 0 family inet6 address 2001:db8::5:0:0:8/64
set interfaces ge-1/0/0 unit 0 family inet6 address 2001:db8::6:0:0:8/64 vrrp-inet6-group 3 virtual-inet6-address 2001:db8::6:0:0:7
set interfaces ge-1/0/0 unit 0 family inet6 address 2001:db8::6:0:0:8/64 vrrp-inet6-group 3 virtual-link-local-address 2001:db8::5:0:0:7
set interfaces ge-1/0/0 unit 0 family inet6 address 2001:db8::6:0:0:8/64 vrrp-inet6-group 3 priority 100
set interfaces ge-1/0/0 unit 0 family inet6 address 2001:db8::6:0:0:8/64 vrrp-inet6-group 3 preempt
set protocols router-advertisement interface ge-1/0/0.0 prefix 2001:db8::/64
set protocols router-advertisement interface ge-1/0/0.0 max-advertisement-interval 4
set protocols router-advertisement interface ge-1/0/0.0 virtual-router-only

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure this example:

1. Configure the interfaces.

```
[edit interfaces]
user@hostB# set ge-1/0/0 unit 0 family inet6 address 2001:db8::5:0:0:8/64
user@hostB# set ge-1/0/0 unit 0 family inet6 address 2001:db8::6:0:0:8/64
```

2. Configure the IPv6 VRRP group identifier.

```
[edit interfaces ge-1/0/0 unit 0 family inet6 address 2001:db8::6:0:0:8/64]
user@hostB# set vrrp-inet6-group 3
```

3. Configure the virtual IP address of a virtual router that is a member of the VRRP group.

```
[edit interfaces ge-1/0/0 unit 0 family inet6 address 2001:db8::6:0:0:8/64]
user@hostB# set vrrp-inet6-group 3 virtual-inet6-address 2001:db8::6:0:0:7
```

4. Configure the virtual link-local address.

```
[edit interfaces ge-1/0/0 unit 0 family inet6 address 2001:db8::6:0:0:8/64]
user@hostB# set vrrp-inet6-group 3 virtual-link-local-address 2001:db8::5:0:0:7
```

5. Configure the priority for this routing platform to become the master virtual router.

```
[edit interfaces ge-1/0/0 unit 0 family inet6 address 2001:db8::6:0:0:8/64]
user@hostB# set vrrp-inet6-group 3 priority 100
```

6. By default, a higher-priority backup router preempts a lower-priority master router. To explicitly enable the master router to be preempted, include the `preempt` statement.

```
[edit interfaces ge-1/0/0 unit 0 family inet6 address 2001:db8::6:0:0:8/64]
user@hostB# set vrrp-inet6-group 3 preempt
```
7. Configure the interface on which VRRP is configured to send IPv6 router advertisements for the VRRP group. When an interface receives an IPv6 router solicitation message, it sends an IPv6 router advertisement to all VRRP groups configured on it.

```
[edit protocols router-advertisement interface ge-1/0/0.0]
user@hostB# set prefix 2001:db8::/64
user@hostB# set max-advertisement-interval 4
```

8. Configure router advertisements to be sent only for VRRP IPv6 groups configured on the interface if the groups are in the master state.

```
[edit protocols router-advertisement interface ge-1/0/0.0]
user@hostB# set virtual-router-only
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces` and `show protocols router-advertisement` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
[edit]
user@hostB# show interfaces
ge-1/0/0 {
 unit 0 {
 family inet6 {
 address 2001:db8::5:0:0:8/64;
 address 2001:db8::6:0:0:8/64 {
 vrrp-inet6-group 3;
 vrrp-inet6-group 3 virtual-inet6-address 2001:db8::6:0:0:7;
 vrrp-inet6-group 3 virtual-link-local-address 2001:db8::5:0:0:7;
 vrrp-inet6-group 3 priority 100;
 vrrp-inet6-group 3 preempt;
 }
 }
 }
}
```

```
[edit]
user@hostB# show protocols router-advertisement
interface ge-1/0/0.0 {
 prefix 2001:db8::/64;
 max-advertisement-interval 4;
```
If you are done configuring the device, enter commit from configuration mode.

**Verification**

**IN THIS SECTION**

- Verifying that VRRP Is Working on Router A | 302
- Verifying that VRRP Is Working on Router B | 302

**Verifying that VRRP Is Working on Router A**

**Purpose**
Verify that VRRP is active on Router A and that its role in the VRRP group is correct.

**Action**
Use the following command to verify that VRRP is active on Router A and that the router is master for group 3.

```
user@hostA> show vrrp
```

```
Interface State Group VR state Timer Type Address
ge-1/0/0.0 up 3 master A .0327 lcl
2001:db8::6:0:0:6/64
vip 2001:db8::6:0:0:7
```

**Meaning**
The show vrrp command displays fundamental information about the VRRP configuration. This output shows that the VRRP group is active and that this router has assumed the master role. The lcl address is the physical address of the interface and the vip address is the virtual address shared by both routers. The Timer value (A .0327) indicates the remaining time (in seconds) in which this router expects to receive a VRRP advertisement from the other router.

**Verifying that VRRP Is Working on Router B**

**Purpose**
Verify that VRRP is active on Router B and that its role in the VRRP group is correct.

**Action**
Use the following command to verify that VRRP is active on Router B and that the router is backup for group 3.

```
user@hostB> show vrrp
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Group</th>
<th>VR state</th>
<th>Timer</th>
<th>Type</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-1/0/0.0</td>
<td>up</td>
<td>3</td>
<td>A .0327</td>
<td>lcl 0.327</td>
<td>up</td>
<td>2001:db8::6:0:0:8/64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>vip 2001:db8::6:0:0:7</td>
</tr>
</tbody>
</table>

**Meaning**
The `show vrrp` command displays fundamental information about the VRRP configuration. This output shows that the VRRP group is active and that this router has assumed the backup role. The `lcl` address is the physical address of the interface and the `vip` address is the virtual address shared by both routers. The `Timer` value (A .0327) indicates the remaining time (in seconds) in which this router expects to receive a VRRP advertisement from the other router.

**SEE ALSO**
- *Understanding VRRP*
- *Configuring VRRP*
- *Configuring VRRP Route Tracking*

**RELATED DOCUMENTATION**
- *Chassis Cluster Redundant Ethernet Interfaces | 99*
- *Configuring Chassis Clustering on an SRX Series Devices | 116*
Network Time Protocol (NTP) is used to synchronize the time between the Packet Forwarding Engine and the Routing Engine in a standalone device and between two devices in a chassis cluster. For more information, see the following topics:

### NTP Time Synchronization on SRX Series Devices

In both standalone and chassis cluster modes, the primary Routing Engine runs the NTP process to get the time from the external NTP server. Although the secondary Routing Engine runs the NTP process in an attempt to get the time from the external NTP server, this attempt fails because of network issues. For this reason, the secondary Routing Engine uses NTP to get the time from the primary Routing Engine.

Use NTP to:

- Send the time from the primary Routing Engine to the secondary Routing Engine through the chassis cluster control link.
- Get the time from an external NTP server to the primary or a standalone Routing Engine.
- Get the time from the Routing Engine NTP process to the Packet Forwarding Engine.

Starting with Junos OS Release 15.1X49-D70 and Junos OS Release 17.3R1, configuring the NTP time adjustment threshold is supported on SRX300, SRX320, SRX340, SRX345, SRX1500, SRX4100, SRX4200, SRX5400, SRX5600, and SRX5800 devices and vSRX instances. This feature allows you to configure and enforce the NTP adjustment threshold for the NTP service and helps in improve the security and flexibility of the NTP service protocol.

**SEE ALSO**

- [NTP Overview](#)
- [ntp threshold](#)
Example: Simplifying Network Management by Synchronizing the Primary and Backup Nodes with NTP

This example shows how to simplify management by synchronizing the time between two SRX Series devices operating in a chassis cluster. Using a Network Time Protocol (NTP) server, the primary node can synchronize time with the secondary node. NTP is used to synchronize the time between the Packet Forwarding Engine and the Routing Engine in a standalone device and between two devices in a chassis cluster. You need to synchronize the system clocks on both nodes of the SRX Series devices in a chassis cluster in order to manage the following items:

- Real-time objects (RTO)
- Licenses
- Software updates
- Node failovers
- Analyzing system logs (syslogs)

Requirements

This example uses the following hardware and software components:

- SRX Series devices operating in a chassis cluster
- Junos OS Release 12.1X47-D10 or later

Before you begin:
• Understand the basics of the Network Time Protocol. See NTP Overview.

Overview

When SRX Series devices are operating in chassis cluster mode, the secondary node cannot access the external NTP server through the revenue port. Junos OS Release 12.1X47 or later supports synchronization of secondary node time with the primary node through the control link by configuring the NTP server on the primary node.

Topology

Figure 34 on page 306 shows the time synchronization from the peer node using the control link.

Configuration

IN THIS SECTION

- Synchronizing Time from the NTP server | 307
- Results | 307

CLI Quick Configuration

To quickly configure this example, and synchronize the time from the NTP server, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.
### Synchronizing Time from the NTP server

#### Step-by-Step Procedure

In this example, you configure the primary node to get its time from an NTP server at IP address 1.1.1.121. To synchronize the time from the NTP server:

1. Configure the NTP server.

   ```
 {primary:node0}[edit]
 [edit system]
 user@host# set ntp server 1.1.1.121
   ```

2. Commit the configuration.

   ```
 user@host# commit
   ```

#### Results

From configuration mode, confirm your configuration by entering the `show system ntp` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
{primary:node0}[edit]
user@host# show system ntp
server 1.1.1.121
```

If you are done configuring the device, enter `commit` from configuration mode.

#### Verification

Confirm that the configuration is working properly.
Verifying the NTP Configuration on the Primary Node

Purpose
Verify that the configuration is working properly.

Action
From operational mode, enter the `show ntp associations` command:

```
user@host> show ntp associations
```

<table>
<thead>
<tr>
<th>remote</th>
<th>refid</th>
<th>st</th>
<th>t</th>
<th>when</th>
<th>poll</th>
<th>reach</th>
<th>delay</th>
<th>offset</th>
<th>jitter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1-1-121-dynami</td>
<td>10.208.0.50</td>
<td>4</td>
<td>63</td>
<td>64 65</td>
<td>4.909</td>
<td>-12.067</td>
<td>2.014</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From operational mode, enter the `show ntp status` command:

```
user@host> show ntp status
```

```
status=0664 leap_none, sync_ntp, 6 events, event_peer/strat_chg,
version="ntpd 4.2.0-a Fri Mar 21 00:50:30 PDT 2014 (1)",
processor="i386", system="JUNOS12.1I20140320_srx_12q1_x47.1-637245",
leap=00, stratum=5, precision=-20, rootdelay=209.819,
rootdispersion=513.087, peer=14596, refid=1.1.1.121,
reftime=d6dbb2f9.b3f41ff7 Tue, Mar 25 2014 15:47:05.702, poll=6,
clock=d6dbb47a.729182b20 Tue, Mar 25 2014 15:53:30.447, state=4,
offset=-6.066, frequency=-55.135, jitter=4.343, stability=0.042
```

Meaning
The output on the primary and secondary node shows the NTP association as follows:

- **remote**—Address or name of the remote NTP peer.
- **refid**—Reference identifier of the remote peer. If the reference identifier is not known, this field shows a value of 0.0.0.0.
- **st**—Stratum of the remote peer.
- **t**—Type of peer: b (broadcast), l (local), m (multicast), or u (unicast).
- **when**—When the last packet from the peer was received.
- **poll**—Polling interval, in seconds.
- **reach**—Reachability register, in octal.
- **delay**—Current estimated delay of the peer, in milliseconds.
• **offset**—Current estimated offset of the peer, in milliseconds.

• **jitter**—Magnitude of jitter, in milliseconds.

The output on the primary and secondary node shows the NTP status as follows:

• **status**—System status word, a code representing the status items listed.

• **x events**—Number of events that have occurred since the last code change. An event is often the receipt of an NTP polling message.

• **version**—A detailed description of the version of NTP being used.

• **processor**—Current hardware platform and version of the processor.

• **system**—Detailed description of the name and version of the operating system in use.

• **leap**—Number of leap seconds in use.

• **stratum**—Stratum of the peer server. Anything greater than 1 is a secondary reference source, and the number roughly represents the number of hops away from the stratum 1 server. Stratum 1 is a primary reference, such as an atomic clock.

• **precision**—Precision of the peer clock, how precisely the frequency and time can be maintained with this particular timekeeping system.

• **rootdelay**—Total roundtrip delay to the primary reference source, in seconds.

• **rootdispersion**—Maximum error relative to the primary reference source, in seconds.

• **peer**—Identification number of the peer in use.

• **refid**—Reference identifier of the remote peer. If the reference identifier is not known, this field shows a value of 0.0.0.0.

• **reftime**—Local time, in timestamp format, when the local clock was last updated. If the local clock has never been synchronized, the value is zero.

• **poll**—NTP broadcast message polling interval, in seconds.

• **clock**—Current time on the local router clock.

• **state**—Current mode of NTP operation, where 1 is symmetric active, 2 is symmetric passive, 3 is client, 4 is server, and 5 is broadcast.

• **offset**—Current estimated offset of the peer, in milliseconds. Indicates the time difference between the reference clock and the local clock.

• **frequency**—Frequency of the clock.

• **jitter**—Magnitude of jitter, in milliseconds.

• **stability**—Measurement of how well this clock can maintain a constant frequency.
**Verifying the NTP Configuration on the Secondary Node**

**Purpose**
Verify that the configuration is working properly.

**Action**
From operational mode, enter the `show ntp associations` command:

```bash
user@host> show ntp associations
```

<table>
<thead>
<tr>
<th>remote</th>
<th>refid</th>
<th>st</th>
<th>t</th>
<th>when</th>
<th>poll</th>
<th>reach</th>
<th>delay</th>
<th>offset</th>
<th>jitter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1-1-121-dynam. INIT.</td>
<td>- INIT.</td>
<td>16</td>
<td>-</td>
<td>1024</td>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
<td>4000.00</td>
<td></td>
</tr>
<tr>
<td>*129.96.0.1</td>
<td>1.1.1.121</td>
<td>5</td>
<td>u</td>
<td>32</td>
<td>64</td>
<td>247</td>
<td>0.417</td>
<td>0.760</td>
<td>1.204</td>
</tr>
</tbody>
</table>

From operational mode, enter the `show ntp status` command:

```bash
user@host> show ntp status
```

```
status=0664 leap_none, sync_ntp, 6 events, event_peer/strat_chg,
version="ntpd 4.2.0-a Thu Mar 13 01:53:03 PDT 2014 (1)",
processor="i386", system="JUNOS12.1I20140312_srx_12q1_x47.2-635305",
leap=00, stratum=12, precision=-20, rootdelay=2.408,
rootdispersion=892.758, peer=51948, refid=1.1.1.121,
reftime=d6d646bb.853d2f42 Fri, Mar 21 2014 13:03:55.520, poll=6,
clock=d6d647bc.e8f28b2f Fri, Mar 21 2014 13:08:12.909, state=4,
offset=-1.126, frequency=-62.564, jitter=0.617, stability=0.002
```

**Release History Table**

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1X49-D70</td>
<td>Starting with Junos OS Release 15.1X49-D70 and Junos OS Release 17.3R1, configuring the NTP time adjustment threshold is supported on SRX300, SRX320, SRX340, SRX345, SRX1500, SRX4100, SRX4200, SRX5400, SRX5600, and SRX5800 devices and vSRX instances. This feature allows you to configure and enforce the NTP adjustment threshold for the NTP service and helps in improve the security and flexibility of the NTP service protocol.</td>
</tr>
</tbody>
</table>
Active/Passive Chassis Cluster Deployments

IN THIS SECTION

- Understanding Active/Passive Chassis Cluster Deployment | 311
- Example: Configuring an Active/Passive Chassis Cluster on SRX5800 Devices | 312
- Example: Configuring an Active/Passive Chassis Cluster Pair (SRX1500) | 329
- Example: Configuring an Active/Passive Chassis Cluster Pair (J-Web) | 344
- Understanding Active/Passive Chassis Cluster Deployment with an IPsec Tunnel | 346
- Example: Configuring an Active/Passive Chassis Cluster Pair with an IPsec Tunnel | 348
- Example: Configuring an Active/Passive Chassis Cluster Pair with an IPsec Tunnel (J-Web) | 367

Understanding Active/Passive Chassis Cluster Deployment

In this case, a single device in the cluster is used to route all traffic while the other device is used only in the event of a failure (see Figure 35 on page 312). When a failure occurs, the backup device becomes master and controls all forwarding.
An active/passive chassis cluster can be achieved by using redundant Ethernet interfaces (reths) that are all assigned to the same redundancy group. If any of the interfaces in an active group in a node fails, the group is declared inactive and all the interfaces in the group fail over to the other node.

This configuration minimizes the traffic over the fabric link because only one node in the cluster forwards traffic at any given time.

SEE ALSO

Chassis Cluster Overview | 24

Example: Configuring an Active/Passive Chassis Cluster on SRX5800 Devices
This example shows how to set up basic active/passive chassis clustering on an SRX5800 devices.

Requirements

Before you begin:

- You need two SRX5800 Services Gateways with identical hardware configurations, and optionally one MX240 edge router, and one EX8208 Ethernet Switch for sending end to end data traffic.
- Physically connect the two devices (back-to-back for the fabric and control ports) and ensure that they are the same models.
- Before the cluster is formed, you must configure control ports for each device, as well as assign a cluster ID and node ID to each device, and then reboot. When the system boots, both the nodes come up as a cluster.

Control port configuration is required for SRX5400, SRX5600, and SRX5800 devices.

Now the devices are a pair. From this point forward, configuration of the cluster is synchronized between the node members, and the two separate devices function as one device.

Overview

This example shows how to set up basic active/passive chassis clustering on an SRX Series device. The basic active/passive example is the most common type of chassis cluster.

The basic active/passive chassis cluster consists of two devices:

- One device actively provides routing, firewall, NAT, VPN, and security services, along with maintaining control of the chassis cluster.
- The other device passively maintains its state for cluster failover capabilities in case the active device becomes inactive.

This active/passive mode example for the SRX5800 Services Gateway does not describe in detail miscellaneous configurations such as how to configure NAT, security policies, or VPNs. They are essentially the same as they would be for standalone configurations. See Introduction to NAT, Security Policies Overview, and IPsec VPN Overview. However, if you are performing proxy ARP in chassis cluster configurations, you must apply the proxy ARP configurations to the reth interfaces rather than the member interfaces because the RETH interfaces hold the logical configurations. See Configuring Proxy ARP for NAT (CLI Procedure). You
can also configure separate logical interface configurations using VLANs and trunked interfaces in the SRX5800 Services Gateway. These configurations are similar to the standalone implementations using VLANs and trunked interfaces.

Figure 36 on page 314 shows the topology used in this example.

Figure 36: Basic Active/Passive Chassis Clustering on an SRX Series Device Topology Example

**Configuration**

**Configuring the Control Ports and Enabling Cluster Mode**

**CLI Quick Configuration**

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter **commit** from configuration mode.

On (primary:node0)

```plaintext
[edit]
set groups re0 system host-name hostA
set groups re0 system backup-router 10.204.191.254
set groups re0 system backup-router destination 10.0.0.0/8
```
set groups re0 system backup-router destination 172.0.0.0/8
set groups re0 system backup-router destination 192.0.0.0/8
set groups re0 interfaces fxp0 unit 0 family inet address 10.204.149.140/18
set apply-groups re0
set groups re0 system host-name hostB
set groups re0 system backup-router 10.204.191.254
set groups re0 system backup-router destination 10.0.0.0/8
set groups re0 system backup-router destination 172.0.0.0/8
set groups re0 system backup-router destination 192.0.0.0/8
set groups re0 interfaces fxp0 unit 0 family inet address 10.204.149.142/18
set apply-groups re0
set groups node0 system host-name hostA
set groups node0 system backup-router 10.204.191.254
set groups node0 system backup-router destination 10.0.0.0/8
set groups node0 system backup-router destination 172.0.0.0/8
set groups node0 system backup-router destination 192.0.0.0/8
set groups node0 interfaces fxp0 unit 0 family inet address 10.204.149.140/18
set groups node1 system host-name hostB
set groups node1 system backup-router 10.204.191.254
set groups node1 system backup-router destination 10.0.0.0/8
set groups node1 system backup-router destination 172.0.0.0/8
set groups node1 system backup-router destination 192.0.0.0/8
set groups node1 interfaces fxp0 unit 0 family inet address 10.204.149.142/18
set chassis cluster control-ports fpc 1 port 0
set chassis cluster control-ports fpc 13 port 0
set chassis cluster cluster-id 1 node 0 reboot
set chassis cluster cluster-id 1 node 1 reboot
delete apply-groups re0
set apply-groups "${node}"
set chassis cluster reth-count 2
set chassis cluster redundancy-group 0 node 0 priority 254
set chassis cluster redundancy-group 0 node 1 priority 1
set chassis cluster redundancy-group 1 node 0 priority 254
set chassis cluster redundancy-group 1 node 1 priority 1
set interfaces fab0 fabric-options member-interfaces ge-3/2/8
set interfaces fab1 fabric-options member-interfaces ge-15/2/8

(Optional) To quickly configure an EX8208 Core Switch, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

On [primary:node0]
(Optional) To quickly configure an MX240 edge router, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

On [primary:node0]

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure a chassis cluster on an SRX Series device:

In cluster mode, the configuration is synchronized over the control link between the nodes when you execute a commit command. All commands are applied to both nodes regardless of from which device the command is configured.

1. Configure both the standalone devices with backup router destination configuration to provide the management access on the backup node after the device is up in cluster mode. The access to the primary node is enabled through the routing on the primary node.
2. Because the SRX5000 series Services Gateway chassis cluster configuration is contained within a single common configuration, to assign some elements of the configuration to a specific member only, you must use the Junos OS node-specific configuration method called groups. The `set apply-groups ${node}` command uses the node variable to define how the groups are applied to the nodes; each node recognizes its number and accepts the configuration accordingly. You must also configure out-of-band management on the fxp0 interface of the SRX5000 series Services Gateway using separate IP addresses for the individual control planes of the cluster.

Configuring the backup router destination address as x.x.x.0/0 is not allowed.

3. Configure the control port for each device, and commit the configuration.
Ensure to have the physical control link connection between the SPC cards on both the nodes as per the configuration.

The control ports are derived based on the SPC location in the chassis and offset value is based on the platform. In the below example the SPC is present in revenue slot 1 and because offset of SRX5800 is 12, the control ports are 1, 13. You can view the Offset value for particular platform using “jwhoami -c” command in shell mode. You must enter the following commands on both devices. For example:

- On node 0:

  user@hostA# set chassis cluster control-ports fpc 1 port 0
  user@hostA# set chassis cluster control-ports fpc 13 port 0
  user@hostA# commit

- On node 1:

  user@hostB# set chassis cluster control-ports fpc 1 port 0
  user@hostB# set chassis cluster control-ports fpc 13 port 0
  user@hostB# commit

4. Set the two devices to cluster mode. A reboot is required to enter into cluster mode after the cluster ID and node ID are set. You can cause the system to boot automatically by including the reboot parameter in the CLI command line. You must enter the operational mode commands on both devices. For example:

- On node 0:

  user@hostA> set chassis cluster cluster-id 1 node 0 reboot

- On node 1:

  user@hostB> set chassis cluster cluster-id 1 node 1 reboot

The cluster ID must be the same on both devices in a cluster, but the node ID must be different because one device is node 0 and the other device is node 1. The range for the cluster ID is 1 through 255. Setting a cluster ID to 0 is equivalent to disabling a cluster. But it is recommended to use set chassis cluster disable to break the nodes from cluster.

5. Use the following commands to configure the node 0, which is primary. The node 1 is unreachable till the node configuration is committed. The node 0 will automatically sync the configuration through the control port to node 1 and it is not required to explicitly configure node 1.

  user@hostA# delete apply-groups re0
  user@hostA# set apply-groups "${node}"
6. Configure redundancy groups for chassis clustering. Each node has interfaces in a redundancy group where interfaces are active in active redundancy groups (multiple active interfaces can exist in one redundancy group). Redundancy group 0 controls the control plane and redundancy group 1+ controls the data plane and includes the data plane ports. For this active/passive mode example, only one chassis cluster member is active at a time so you need to define redundancy groups 0 and 1 only. Besides redundancy groups, you must also define:

- Redundant Ethernet groups—Configure how many redundant Ethernet interfaces (member links) will be active on the device so that the system can allocate the appropriate resources for it.

- Priority for control plane and data plane—Define which device has priority (for chassis cluster, high priority is preferred) for the control plane, and which device is preferred to be active for the data plane.

- In active/passive or active/active mode, the control plane (redundancy group 0) can be active on a chassis different from the data plane (redundancy group 1+ and groups) chassis. However, for this example we recommend having both the control and data plane active on the same chassis member. When traffic passes through the fabric link to go to another member node, latency is introduced (z line mode traffic).

- On SRX Series devices (SRX5000 line), the IPsec VPN is not supported in active/active chassis cluster configuration (that is, when there are multiple RG1+ redundancy groups).

```
user@hostA# set chassis cluster reth-count 2
user@hostA# set chassis cluster redundancy-group 1 node 0 priority 254
user@hostA# set chassis cluster redundancy-group 1 node 1 priority 1
user@hostA# set chassis cluster redundancy-group 0 node 0 priority 254
user@hostA# set chassis cluster redundancy-group 0 node 1 priority 1
```

7. Configure the fabric (data) ports of the cluster that are used to pass RTOs in active/passive mode. For this example, use one of the revenue ports. Define two fabric interfaces, one on each chassis, to connect together.

Configure the data interfaces on the platform so that in the event of a data plane failover, the other chassis cluster member can take over the connection seamlessly. Seamless transition to a new active node will occur with data plane failover. In case of control plane failover, all the daemons are restarted on the new node thus enabling a graceful restart to avoid losing neighborship with peers (ospf, bgp). This promotes a seamless transition to the new node without any packet loss.

You must define the following items:

- Define the membership information of the member interfaces to the reth interface.

- Define which redundancy group the reth interface is a member of. For this active/passive example, it is always 1.

- Define reth interface information such as the IP address of the interface.
8. (Optional) Configure the chassis cluster behavior in case of a failure. For the SRX5800 Services Gateway, the failover threshold is set at 255. You can alter the weights to determine the impact on the chassis failover. You must also configure control link recovery. The recovery automatically causes the secondary node to reboot should the control link fail, and then come back online. Enter these commands on node 0.

   {primary:node0}[edit]
   user@hostA# set interfaces fab0 fabric-options member-interfaces ge-3/2/8
   user@hostA# set interfaces fab1 fabric-options member-interfaces ge-15/2/8

   {primary:node0}[edit]
   user@hostA# set chassis cluster redundancy-group 1 interface-monitor xe-6/0/0 weight 255
   user@hostA# set chassis cluster redundancy-group 1 interface-monitor xe-6/1/0 weight 255
   user@hostA# set chassis cluster redundancy-group 1 interface-monitor xe-18/0/0 weight 255
   user@hostA# set chassis cluster redundancy-group 1 interface-monitor xe-18/1/0 weight 255
   user@hostA# set chassis cluster control-link-recovery

   This step completes the chassis cluster configuration part of the active/passive mode example for the SRX5800 Services Gateway. The rest of this procedure describes how to configure the zone, virtual router, routing, EX8208 Core Switch, and MX240 Edge Router to complete the deployment scenario.

9. (Optional) Configure and connect the reth interfaces to the appropriate zones and virtual routers. For this example, leave the reth0 and reth1 interfaces in the default virtual router inet.0, which does not require any additional configuration.

   {primary:node0}[edit]
   user@hostA# set security zones security-zone untrust interfaces reth0.0
   user@hostA# set security zones security-zone trust interfaces reth1.0

10. (Optional) For this active/passive mode example, because of the simple network architecture, use static routes to define how to route to the other network devices.

    {primary:node0}[edit]
    user@hostA# set routing-options static route 0.0.0.0/0 next-hop 1.1.1.254
    user@hostA# set routing-options static route 2.0.0.0/8 next-hop 2.2.2.254

11. (Optional) For the EX8208 Ethernet Switch, the following commands provide only an outline of the applicable configuration as it pertains to this active/passive mode example for the SRX5800 Services Gateway; most notably the VLANs, routing, and interface configuration.
12. (Optional) For the MX240 edge router, the following commands provide only an outline of the applicable configuration as it pertains to this active/passive mode example for the SRX5800 Services Gateway; most notably you must use an IRB interface within a virtual switch instance on the switch.

```plaintext
{primary:node0}[edit]
user@hostA# set interfaces xe-1/0/0 encapsulation ethernet-bridge unit 0 family ethernet-switching
user@hostA# set interfaces xe-2/0/0 encapsulation ethernet-bridge unit 0 family ethernet-switching
user@hostA# set interfaces irb unit 0 family inet address 1.1.1.254/24
user@hostA# set routing-options static route 2.0.0.0/8 next-hop 1.1.1.1
user@hostA# set vlans SRX5800 vlan-id X (could be set to "none")
user@hostA# set vlans SRX5800 domain-type bridge routing-interface irb.0
user@hostA# set vlans SRX5800 domain-type bridge interface xe-1/0/0
user@hostA# set vlans SRX5800 domain-type bridge interface xe-2/0/0
```

Verification

### IN THIS SECTION
- Verifying Chassis Cluster Status | 322
- Verifying Chassis Cluster Interfaces | 322
- Verifying Chassis Cluster Statistics | 323
- Verifying Chassis Cluster Control Plane Statistics | 325
- Verifying Chassis Cluster Data Plane Statistics | 326
- Verifying Chassis Cluster Redundancy Group Status | 327
- Troubleshooting with Logs | 328
Confirm that the configuration is working properly.

**Verifying Chassis Cluster Status**

**Purpose**
Verify the chassis cluster status, failover status, and redundancy group information.

**Action**
From operational mode, enter the `show chassis cluster status` command.

```
{primary:node0}
```

**show chassis cluster status**

```
Monitor Failure codes:
 CS Cold Sync monitoring FL Fabric Connection monitoring
 GR GRES monitoring HW Hardware monitoring
 IF Interface monitoring IP IP monitoring
 LB Loopback monitoring MB Mbuf monitoring
 NH Nexthop monitoring NP NPC monitoring
 SP SPU monitoring SM Schedule monitoring
 CF Config Sync monitoring RE Relinquish monitoring

Cluster ID: 1
Node Priority Status Preempt Manual Monitor-failures

Redundancy group: 0 , Failover count: 1
node0 254 primary no no None
node1 1 secondary no no None

Redundancy group: 1 , Failover count: 1
node0 254 primary no no None
node1 1 secondary no no None
```

**Verifying Chassis Cluster Interfaces**

**Purpose**
Verify information about chassis cluster interfaces.

**Action**
From operational mode, enter the `show chassis cluster interfaces` command.

```
{primary:node0}
```

```
user@host> show chassis cluster interfaces
```
Control link status: Up

Control interfaces:

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Monitored-Status</th>
<th>Internal-SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>em0</td>
<td>Up</td>
<td>Disabled</td>
</tr>
<tr>
<td>1</td>
<td>em1</td>
<td>Down</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Fabric link status: Up

Fabric interfaces:

<table>
<thead>
<tr>
<th>Name</th>
<th>Child-interface</th>
<th>Status (Physical/Monitored)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fab0</td>
<td>ge-3/2/8</td>
<td>Up / Up</td>
</tr>
<tr>
<td>fab1</td>
<td>ge-15/2/8</td>
<td>Up / Up</td>
</tr>
</tbody>
</table>

Redundant-ethernet Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>reth0</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth1</td>
<td>Down</td>
<td>Not configured</td>
</tr>
</tbody>
</table>

Redundant-pseudo-interface Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0</td>
<td>Up</td>
<td>0</td>
</tr>
</tbody>
</table>

**Verifying Chassis Cluster Statistics**

**Purpose**

Verify information about chassis cluster services and control link statistics (heartbeats sent and received), fabric link statistics (probes sent and received), and the number of RTOs sent and received for services.

**Action**

From operational mode, enter the `show chassis cluster statistics` command.

```
{primary:node0}

user@host> show chassis cluster statistics
```

Control link statistics:

Control link 0:

Heartbeat packets sent: 16275
Heartbeat packets received: 16072
Heartbeat packet errors: 0

Control link 1:
Heartbeat packets sent: 0
Heartbeat packets received: 0
Heartbeat packet errors: 0

Fabric link statistics:
Child link 0
Probes sent: 30690
Probes received: 9390
Child link 1
Probes sent: 0
Probes received: 0

Services Synchronized:

<table>
<thead>
<tr>
<th>Service name</th>
<th>RTOs sent</th>
<th>RTOs received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation context</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource manager</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DS-LITE create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPv6 session create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session close</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPv6 session close</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPv6 session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ALG Support Library</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gate create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPv6 session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPv6 session ageout refresh replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPSec VPN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Firewall user authentication</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MGCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H323 ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SIP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPTP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>JSF PPTP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RPC ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RTSP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RAS ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC address learning</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GPRS GTP</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Verifying Chassis Cluster Control Plane Statistics

Purpose
Verify information about chassis cluster control plane statistics (heartbeats sent and received) and the fabric link statistics (probes sent and received).

Action
From operational mode, enter the `show chassis cluster control-plane statistics` command.

{primary:node0}

```
user@host> show chassis cluster control-plane statistics
```

Control link statistics:
Control link 0:
  Heartbeat packets sent: 16315
  Heartbeat packets received: 16113
  Heartbeat packet errors: 0
Control link 1:
  Heartbeat packets sent: 0
  Heartbeat packets received: 0
  Heartbeat packet errors: 0

Fabric link statistics:
  Child link 0
Probes sent: 30772
Probes received: 9472
Child link 1
Probes sent: 0
Probes received: 0

Verifying Chassis Cluster Data Plane Statistics

Purpose
Verify information about the number of RTOs sent and received for services.

Action
From operational mode, enter the `show chassis cluster data-plane statistics` command.

{primary:node0}

user@host> show chassis cluster data-plane statistics

Services Synchronized:

<table>
<thead>
<tr>
<th>Service name</th>
<th>RTOs sent</th>
<th>RTOs received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation context</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource manager</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DS-LITE create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPv6 session create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session close</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPv6 session close</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPv6 session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ALG Support Library</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gate create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPv6 session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPv6 session ageout refresh replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPSec VPN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Firewall user authentication</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MGCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H323 ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SIP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPTP ALG</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Verifying Chassis Cluster Redundancy Group Status

Purpose
Verify the state and priority of both nodes in a cluster and information about whether the primary node has been preempted or whether there has been a manual failover.

Action
From operational mode, enter the `chassis cluster status redundancy-group` command.

```
{primary:node0}
```

```
user@host> show chassis cluster status redundancy-group 1
```

Monitor Failure codes:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>Cold Sync monitoring</td>
</tr>
<tr>
<td>GR</td>
<td>GRES monitoring</td>
</tr>
<tr>
<td>IF</td>
<td>Interface monitoring</td>
</tr>
<tr>
<td>LB</td>
<td>Loopback monitoring</td>
</tr>
<tr>
<td>FL</td>
<td>Fabric Connection monitoring</td>
</tr>
<tr>
<td>HW</td>
<td>Hardware monitoring</td>
</tr>
<tr>
<td>IP</td>
<td>IP monitoring</td>
</tr>
<tr>
<td>MB</td>
<td>Mbuf monitoring</td>
</tr>
<tr>
<td>NH</td>
<td>Nexthop monitoring</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------</td>
</tr>
<tr>
<td>SP</td>
<td>SPU monitoring</td>
</tr>
<tr>
<td>CF</td>
<td>Config Sync monitoring</td>
</tr>
</tbody>
</table>

Cluster ID: 1
Node  Priority Status       Preempt Manual Monitor-failures

Redundancy group: 1, Failover count: 1
node0 254   primary    no  no    None
node1 1      secondary no  no    None

Troubleshooting with Logs

Purpose
Use these logs to identify any chassis cluster issues. You must run these logs on both nodes.

Action
From operational mode, enter these `show log` commands.

```
user@host> show log jsrp
user@host> show log chassisd
user@host> show log messages
user@host> show log dcd
user@host> show traceoptions
```

SEE ALSO

| Preparing Your Equipment for Chassis Cluster Formation | 51 |
| Connecting SRX Series Devices to Create a Chassis Cluster | 55 |
Example: Configuring an Active/Passive Chassis Cluster Pair (SRX1500)

IN THIS SECTION

- Requirements | 329
- Overview | 329
- Configuration | 332
- Verification | 338

This example shows how to configure active/passive chassis clustering for SRX1500 device.

Requirements

Before you begin:

1. Physically connect a pair of devices together, ensuring that they are the same models.

2. Create a fabric link by connecting a Gigabit Ethernet interface on one device to another Gigabit Ethernet interface on the other device.

3. Create a control link by connecting the control port of the two SRX1500 devices.

4. Connect to one of the devices using the console port. (This is the node that forms the cluster.) and set the cluster ID and node number.

   ```
 user@host> set chassis cluster cluster-id 1 node 0 reboot
   ```

5. Connect to the other device using the console port and set the cluster ID and node number.

   ```
 user@host> set chassis cluster cluster-id 1 node 1 reboot
   ```

Overview

In this example, a single device in the cluster is used to route all traffic, and the other device is used only in the event of a failure. (See Figure 37 on page 330.) When a failure occurs, the backup device becomes master and controls all forwarding.
You can create an active/passive chassis cluster by configuring redundant Ethernet interfaces (reths) that are all assigned to the same redundancy group. This configuration minimizes the traffic over the fabric link because only one node in the cluster forwards traffic at any given time.

In this example, you configure group (applying the configuration with the `apply-groups` command) and chassis cluster information. Then you configure security zones and security policies. See Table 18 on page 330 through Table 21 on page 332.

Table 18: Group and Chassis Cluster Configuration Parameters

<table>
<thead>
<tr>
<th>Feature</th>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
</table>
| Groups  | node0| • Hostname: srx1500-A  
|         |      | • Interface: fxp0  
|         |      |   • Unit 0  
|         |      |     • 192.0.2.110/24  |
|         | node1| • Hostname: srx1500-B  
|         |      | • Interface: fxp0  
|         |      |   • Unit 0  
<p>|         |      |     • 192.0.2.111/24  |</p>
<table>
<thead>
<tr>
<th>Feature</th>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric links</td>
<td>fab0</td>
<td>Interface: ge-0/0/1</td>
</tr>
<tr>
<td></td>
<td>fab1</td>
<td>Interface: ge-7/0/1</td>
</tr>
<tr>
<td>Heartbeat interval</td>
<td>-</td>
<td>1000</td>
</tr>
<tr>
<td>Heartbeat threshold</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Redundancy group</td>
<td>0</td>
<td>• Priority:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Node 0: 254</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Node 1: 1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>• Priority:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Node 0: 254</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Node 1: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interface monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ge-0/0/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ge-7/0/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ge-0/0/5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ge-7/0/5</td>
</tr>
<tr>
<td>Number of redundant Ethernet</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>interfaces</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Table 19: Chassis Cluster Configuration Parameters (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interfaces</td>
<td>ge-0/0/4</td>
<td>Redundant parent: reth0</td>
</tr>
<tr>
<td></td>
<td>ge-7/0/4</td>
<td>Redundant parent: reth0</td>
</tr>
<tr>
<td></td>
<td>ge-0/0/5</td>
<td>Redundant parent: reth1</td>
</tr>
<tr>
<td></td>
<td>ge-7/0/5</td>
<td>Redundant parent: reth1</td>
</tr>
<tr>
<td></td>
<td>reth0</td>
<td>Redundancy group: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Unit 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 198.51.100.1/24</td>
</tr>
<tr>
<td></td>
<td>reth1</td>
<td>Redundancy group: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Unit 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 203.0.113.233/24</td>
</tr>
</tbody>
</table>

### Table 20: Security Zone Configuration Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>trust</td>
<td>The reth1.0 interface is bound to this zone.</td>
</tr>
<tr>
<td>untrust</td>
<td>The reth0.0 interface is bound to this zone.</td>
</tr>
</tbody>
</table>

### Table 21: Security Policy Configuration Parameters

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
</table>
| This security policy permits traffic from the trust zone to the untrust zone. | ANY | • Match criteria:
| | | • source-address any
| | | • destination-address any
| | | • application any
| | | • Action: permit |

### Configuration

**CLI Quick Configuration**
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```plaintext
[edit]
set groups node0 system host-name srx1500-A
set groups node0 interfaces fxp0 unit 0 family inet address 192.0.2.110/24
set groups node1 system host-name srx1500-B
set groups node1 interfaces fxp0 unit 0 family inet address 192.0.2.111/24
set apply-groups "${node}"
set interfaces fab0 fabric-options member-interfaces ge-0/0/1
set interfaces fab1 fabric-options member-interfaces ge-7/0/1
set chassis cluster heartbeat-interval 1000
set chassis cluster heartbeat-threshold 3
set chassis cluster redundancy-group 0 node 0 priority 100
set chassis cluster redundancy-group 0 node 1 priority 1
set chassis cluster redundancy-group 1 node 0 priority 100
set chassis cluster redundancy-group 1 node 1 priority 1
set chassis cluster redundancy-group 1 interface-monitor ge-0/0/4 weight 255
set chassis cluster redundancy-group 1 interface-monitor ge-0/0/5 weight 255
set chassis cluster redundancy-group 1 interface-monitor ge-7/0/4 weight 255
set chassis cluster redundancy-group 1 interface-monitor ge-7/0/5 weight 255
set chassis cluster reth-count 2
set interfaces ge-0/0/5 gigether-options redundant-parent reth1
set interfaces ge-7/0/5 gigether-options redundant-parent reth1
set interfaces ge-0/0/4 gigether-options redundant-parent reth0
set interfaces ge-7/0/4 gigether-options redundant-parent reth0
set interfaces reth0 redundant-ether-options redundancy-group 1
set interfaces reth0 unit 0 family inet address 198.51.100.1/24
set interfaces reth1 redundant-ether-options redundancy-group 1
set interfaces reth1 unit 0 family inet address 203.0.113.233/24
set security zones security-zone untrust interfaces reth1.0
set security zones security-zone trust interfaces reth0.0
set security policies from-zone trust to-zone untrust policy ANY match source-address any
set security policies from-zone trust to-zone untrust policy ANY match destination-address any
set security policies from-zone trust to-zone untrust policy ANY match application any
set security policies from-zone trust to-zone untrust policy ANY then permit
```

**Step-by-Step Procedure**

To configure an active/passive chassis cluster:

1. Configure the management interface.

```plaintext
{primary:node0}[edit]
```
2. Configure the fabric interface.

   {primary:node0}[edit]
   user@host# set interfaces fab0 fabric-options member-interfaces ge-0/0/1
   user@host# set interfaces fab1 fabric-options member-interfaces ge-7/0/1

3. Configure heartbeat settings.

   {primary:node0}[edit]
   user@host# set chassis cluster heartbeat-interval 1000
   user@host# set chassis cluster heartbeat-threshold 3

4. Configure redundancy groups.

   {primary:node0}[edit]
   user@host# set chassis cluster redundancy-group 0 node 0 priority 100
   user@host# set chassis cluster redundancy-group 0 node 1 priority 1
   user@host# set chassis cluster redundancy-group 1 node 0 priority 100
   user@host# set chassis cluster redundancy-group 1 node 1 priority 1
   user@host# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/4 weight 255
   user@host# set chassis cluster redundancy-group 1 interface-monitor ge-7/0/4 weight 255
   user@host# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/5 weight 255
   user@host# set chassis cluster redundancy-group 1 interface-monitor ge-7/0/5 weight 255

5. Configure redundant Ethernet interfaces.

   {primary:node0}[edit]
   user@host# set chassis cluster reth-count 2
   user@host# set interfaces ge-0/0/5 gigether-options redundant-parent reth1
   user@host# set interfaces ge-7/0/5 gigether-options redundant-parent reth1
   user@host# set interfaces ge-0/0/4 gigether-options redundant-parent reth0
   user@host# set interfaces ge-7/0/4 gigether-options redundant-parent reth0
   user@host# set interfaces reth0 redundant-ether-options redundancy-group 1
   user@host# set interfaces reth0 unit 0 family inet address 198.51.100.1/24
6. Configure security zones.

   {primary:node0}[edit]
   user@host# set security zones security-zone untrust interfaces reth1.0
   user@host# set security zones security-zone trust interfaces reth0.0

7. Configure security policies.

   {primary:node0}[edit]
   user@host# set security policies from-zone trust to-zone untrust policy ANY match source-address any
   user@host# set security policies from-zone trust to-zone untrust policy ANY match destination-address any
   user@host# set security policies from-zone trust to-zone untrust policy ANY match application any
   user@host# set security policies from-zone trust to-zone untrust policy ANY then permit

Results

From configuration mode, confirm your configuration by entering the show configuration command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For brevity, this show command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).

user@host> show configuration
version x.xx.x;
groups {
  node0 {
    system {
      host-name srx1500-A;
    }
    interfaces {
      fxp0 {
        unit 0 {
          family inet {
            address 192.0.2.110/24;
          }
        }
      }
    }
  }
}
node1 {
  system {
    host-name srx1500-B;
    interfaces {
      fxp0 {
        unit 0 {
          family inet {
            address 192.0.2.110/24;
          }
        }
      }
    }
  }
  apply-groups "${node}";
  chassis {
    cluster {
      reth-count 2;
      heartbeat-interval 1000;
      heartbeat-threshold 3;
      redundancy-group 0 {
        node 0 priority 100;
        node 1 priority 1;
      }
      redundancy-group 1 {
        node 0 priority 100;
        node 1 priority 1;
        interface-monitor {
          ge-0/0/4 weight 255;
          ge-7/0/4 weight 255;
          ge-0/0/5 weight 255;
          ge-7/0/5 weight 255;
        }
      }
    }
  }
  interfaces {
    ge-0/0/4 {
      gigether--options {
        redundant-parent reth0;
      }
    }
    ge-7/0/4{

gigether-options {
    redundant-parent reth0;
}

ge-0/0/5 {
    gigether-options {
        redundant-parent reth1;
    }
}

ge-7/0/5 {
    gigether-options {
        redundant-parent reth1;
    }
}

fab0 {
    fabric-options {
        member-interfaces {
            ge-0/0/1;
        }
    }
}

fab1 {
    fabric-options {
        member-interfaces {
            ge-7/0/1;
        }
    }
}

reth0 {
    redundant-ether-options {
        redundancy-group 1;
    }
    unit 0 {
        family inet {
            address 198.51.100.1/24;
        }
    }
}

reth1 {
    redundant-ether-options {
        redundancy-group 1;
    }
    unit 0 {
        family inet {

address 203.0.113.233/24;
}
}
}

...

security {
zones {
  security-zone untrust {
    interfaces {
      reth1.0;
    }
  }
  security-zone trust {
    interfaces {
      reth0.0;
    }
  }
}
}
}
}

policies {
  from-zone trust to-zone untrust {
    policy ANY {
      match {
        source-address any;
        destination-address any;
        application any;
      }
      then {
        permit;
      }
    }
  }
}

If you are done configuring the device, enter commit from configuration mode.

Verification

IN THIS SECTION

- Verifying Chassis Cluster Status | 339
- Verifying Chassis Cluster Interfaces | 339
Confirm that the configuration is working properly.

**Verifying Chassis Cluster Status**

**Purpose**
Verify the chassis cluster status, failover status, and redundancy group information.

**Action**
From operational mode, enter the `show chassis cluster status` command.

```
{primary:node0}
user@host> show chassis cluster status
```

<table>
<thead>
<tr>
<th>Cluster ID: 1</th>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>node0</td>
<td>100</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>node1</td>
<td>1</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

| Redundancy group: 0 , Failover count: 1 |
| node0  | 100 | primary | no | no |
| node1  | 1   | secondary | no | no |

```
{primary:node0}
```

**Verifying Chassis Cluster Interfaces**

**Purpose**
Verify information about chassis cluster interfaces.

**Action**
From operational mode, enter the `show chassis cluster interfaces` command.

```
{primary:node0}
```
user@host> **show chassis cluster interfaces**

Control link status: Up

Control interfaces:

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Monitored-Status</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>em0</td>
<td>Up</td>
<td>Disabled</td>
</tr>
<tr>
<td>1</td>
<td>em1</td>
<td>Down</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Fabric link status: Up

Fabric interfaces:

<table>
<thead>
<tr>
<th>Name</th>
<th>Child-interface</th>
<th>Status</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>fab0</td>
<td>ge-0/0/1</td>
<td>Up</td>
<td>Disabled</td>
</tr>
<tr>
<td>fab1</td>
<td>ge-7/0/1</td>
<td>Up</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Redundant-ethernet Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>reth0</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>reth1</td>
<td>Up</td>
<td>1</td>
</tr>
</tbody>
</table>

Redundant-pseudo-interface Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0</td>
<td>Up</td>
<td>1</td>
</tr>
</tbody>
</table>

Interface Monitoring:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Weight</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/4</td>
<td>255</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-7/0/4</td>
<td>255</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-0/0/5</td>
<td>255</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-7/0/5</td>
<td>255</td>
<td>Up</td>
<td>1</td>
</tr>
</tbody>
</table>

**Verifying Chassis Cluster Statistics**

**Purpose**

Verify information about the statistics of the different objects being synchronized, the fabric and control interface hellos, and the status of the monitored interfaces in the cluster.

**Action**
From operational mode, enter the `show chassis cluster statistics` command.

```
{primary:node0}

user@host> show chassis cluster statistics
```

Control link statistics:
  Control link 0:
    Heartbeat packets sent: 2276
    Heartbeat packets received: 2280
    Heartbeat packets errors: 0

Fabric link statistics:
  Child link 0
    Probes sent: 2272
    Probes received: 597

Services Synchronized:

Service name	RTOs sent	RTOs received
Translation context	0	0
Incoming NAT	0	0
Resource manager	6	0
Session create	161	0
Session close	148	0
Session change	0	0
Gate create	0	0
Session ageout refresh requests	0	0
Session ageout refresh replies	0	0
IPSec VPN	0	0
Firewall user authentication	0	0
MGCP ALG	0	0
H323 ALG	0	0
SIP ALG	0	0
SCCP ALG	0	0
PPTP ALG	0	0
RPC ALG	0	0
RTSP ALG	0	0
RAS ALG	0	0
MAC address learning	0	0
GPRS GTP	0	0

**Verifying Chassis Cluster Control Plane Statistics**

**Purpose**
Verify information about chassis cluster control plane statistics (heartbeats sent and received) and the fabric link statistics (probes sent and received).

**Action**
From operational mode, enter the `show chassis cluster control-plane statistics` command.

```
{primary:node0}
user@host> show chassis cluster control-plane statistics
```

Control link statistics:
  Control link 0:
    Heartbeat packets sent: 258689
    Heartbeat packets received: 258684
    Heartbeat packets errors: 0
Fabric link statistics:
  Child link 0
    Probes sent: 258681
    Probes received: 258681

**Verifying Chassis Cluster Data Plane Statistics**

**Purpose**
Verify information about the number of RTOs sent and received for services.

**Action**
From operational mode, enter the `show chassis cluster data-plane statistics` command.

```
{primary:node0}
user@host> show chassis cluster data-plane statistics
```

<table>
<thead>
<tr>
<th>Service name</th>
<th>RTOs sent</th>
<th>RTOs received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation context</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource manager</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Session create</td>
<td>161</td>
<td>0</td>
</tr>
<tr>
<td>Session close</td>
<td>148</td>
<td>0</td>
</tr>
<tr>
<td>Session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gate create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Verifying Chassis Cluster Redundancy Group Status

Purpose
Verify the state and priority of both nodes in a cluster and information about whether the primary node has been preempted or whether there has been a manual failover.

Action
From operational mode, enter the `chassis cluster status redundancy-group` command.

```
{primary:node0}
```

```
user@host> show chassis cluster status redundancy-group 1
```

<table>
<thead>
<tr>
<th>Cluster ID: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>Redundancy-Group: 1, Failover count: 1</td>
</tr>
<tr>
<td>node0</td>
</tr>
<tr>
<td>node1</td>
</tr>
</tbody>
</table>

Troubleshooting with Logs

Purpose
Use these logs to identify any chassis cluster issues. You must run these logs on both nodes.

Action
From operational mode, enter these `show` commands.
SEE ALSO

Example: Setting the Node ID and Cluster ID for Security Devices in a Chassis Cluster | 60
Chassis Cluster Management Interfaces | 63
Chassis Cluster Fabric Interfaces | 72
Chassis Cluster Control Plane Interfaces | 83
Chassis Cluster Redundancy Groups | 91
Chassis Cluster Redundant Ethernet Interfaces | 99

**Example: Configuring an Active/Passive Chassis Cluster Pair (J-Web)**

1. Enable clustering. See Step 1 in "Example: Configuring an Active/Passive Chassis Cluster Pair (SRX1500)" on page 329.

2. Configure the management interface. See Step 2 in "Example: Configuring an Active/Passive Chassis Cluster Pair (SRX1500)" on page 329.


4. Configure the redundancy groups.
   - Select **Configure>Chassis Cluster**.
   - Enter the following information, and then click **Apply**:
     - Redundant ether-Interface Count: 2
     - Heartbeat Interval: 1000
     - Heartbeat Threshold: 3
     - Nodes: 0
5. Configure the redundant Ethernet interfaces.
   • Select Configure>Chassis Cluster.
   • Select ge-0/0/4.
   • Enter reth1 in the Redundant Parent box.
   • Click Apply.
   • Select ge-7/0/4.
   • Enter reth1 in the Redundant Parent box.
   • Click Apply.
   • Select ge-0/0/5.
   • Enter reth0 in the Redundant Parent box.
   • Click Apply.
   • Select ge-7/0/5.
   • Enter reth0 in the Redundant Parent box.
   • Click Apply.
   • See Step 5 in “Example: Configuring an Active/Passive Chassis Cluster Pair (SRX1500)” on page 329 for the last four configuration settings.

6. Configure the security zones. See Step 6 in “Example: Configuring an Active/Passive Chassis Cluster Pair (SRX1500)” on page 329.
7. Configure the security policies. See Step 7 in “Example: Configuring an Active/Passive Chassis Cluster Pair (SRX1500)” on page 329.

8. Click OK to check your configuration and save it as a candidate configuration, then click Commit Options>Commit.

SEE ALSO

<table>
<thead>
<tr>
<th>Understanding Active/Passive Chassis Cluster Deployment</th>
<th>311</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: Configuring an Active/Passive Chassis Cluster Pair (SRX1500)</td>
<td>329</td>
</tr>
</tbody>
</table>

**Understanding Active/Passive Chassis Cluster Deployment with an IPsec Tunnel**

In this case, a single device in the cluster terminates in an IPsec tunnel and is used to process all traffic while the other device is used only in the event of a failure (see Figure 38 on page 347). When a failure occurs, the backup device becomes master and controls all forwarding.
An active/passive chassis cluster can be achieved by using redundant Ethernet interfaces (reths) that are all assigned to the same redundancy group. If any of the interfaces in an active group in a node fails, the group is declared inactive and all the interfaces in the group fail over to the other node.

This configuration provides a way for a site-to-site IPsec tunnel to terminate in an active/passive cluster where a redundant Ethernet interface is used as the tunnel endpoint. In the event of a failure, the redundant Ethernet interface in the backup SRX Series device becomes active, forcing the tunnel to change endpoints to terminate in the new active SRX Series device. Because tunnel keys and session information are synchronized between the members of the chassis cluster, a failover does not require the tunnel to be renegotiated and all established sessions are maintained.

Dynamic tunnels cannot load-balance across different SPCs.

SEE ALSO

- IPsec VPN Overview
Example: Configuring an Active/Passive Chassis Cluster Pair with an IPsec Tunnel

This example shows how to configure active/passive chassis clustering with an IPsec tunnel for SRX Series devices.

Requirements

Before you begin:

- Get two SRX5000 models with identical hardware configurations, one SRX1500 device, and four EX Series Ethernet switches.
- Physically connect the two devices (back-to-back for the fabric and control ports) and ensure that they are the same models. You can configure both the fabric and control ports on the SRX5000 line.
- Set the two devices to cluster mode and reboot the devices. You must enter the following operational mode commands on both devices, for example:
  - On node 0:
    
    ```
 user@host> set chassis cluster cluster-id 1 node 0 reboot
    ```
  - On node 1:
    
    ```
 user@host> set chassis cluster cluster-id 1 node 1 reboot
    ```
  
  The cluster ID is the same on both devices, but the node ID must be different because one device is node 0 and the other device is node 1. The range for the cluster ID is 1 through 255. Setting a cluster ID to 0 is equivalent to disabling a cluster.
  
  Cluster ID greater than 15 can only be set when the fabric and control link interfaces are connected back-to-back.
• Get two SRX5000 models with identical hardware configurations, one SRX1500 edge router, and four EX Series Ethernet switches.

• Physically connect the two devices (back-to-back for the fabric and control ports) and ensure that they are the same models. You can configure both the fabric and control ports on the SRX5000 line.

From this point forward, configuration of the cluster is synchronized between the node members and the two separate devices function as one device. Member-specific configurations (such as the IP address of the management port of each member) are entered using configuration groups.

Overview

In this example, a single device in the cluster terminates in an IPsec tunnel and is used to process all traffic, and the other device is used only in the event of a failure. (See Figure 39 on page 349.) When a failure occurs, the backup device becomes master and controls all forwarding.

Figure 39: Active/Passive Chassis Cluster with IPsec Tunnel Topology (SRX Series Devices)

In this example, you configure group (applying the configuration with the `apply-groups` command) and chassis cluster information. Then you configure IKE, IPsec, static route, security zone, and security policy parameters. See Table 22 on page 350 through Table 28 on page 353.
### Table 22: Group and Chassis Cluster Configuration Parameters

<table>
<thead>
<tr>
<th>Feature</th>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
<td>node0</td>
<td>• Hostname: SRX5800-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Interface: fxp0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Unit 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 172.19.100.50/24</td>
</tr>
<tr>
<td></td>
<td>node1</td>
<td>• Hostname: SRX5800-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Interface: fxp0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Unit 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 172.19.100.51/24</td>
</tr>
</tbody>
</table>

### Table 23: Chassis Cluster Configuration Parameters

<table>
<thead>
<tr>
<th>Feature</th>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric links</td>
<td>fab0</td>
<td>Interface: xe-5/3/0</td>
</tr>
<tr>
<td></td>
<td>fab1</td>
<td>Interface: xe-17/3/0</td>
</tr>
<tr>
<td>Number of redundant Ethernet</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>interfaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heartbeat interval</td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td>Heartbeat threshold</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Redundancy group</td>
<td>0</td>
<td>• Priority:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Node 0: 254</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Node 1: 1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>• Priority:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Node 0: 254</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Node 1: 1</td>
</tr>
<tr>
<td>Interface monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• xe-5/0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• xe-5/1/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• xe-17/0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• xe-17/1/0</td>
</tr>
</tbody>
</table>
### Table 23: Chassis Cluster Configuration Parameters (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interfaces</td>
<td>xe-5/1/0</td>
<td>Redundant parent: reth1</td>
</tr>
<tr>
<td></td>
<td>xe-5/1/0</td>
<td>Redundant parent: reth1</td>
</tr>
<tr>
<td></td>
<td>xe-5/0/0</td>
<td>Redundant parent: reth0</td>
</tr>
<tr>
<td></td>
<td>xe-17/0/0</td>
<td>Redundant parent: reth0</td>
</tr>
<tr>
<td></td>
<td>reth0</td>
<td>Redundancy group: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Unit 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 10.1.1.60/16</td>
</tr>
<tr>
<td></td>
<td>reth1</td>
<td>Redundancy group: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multipoint</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Unit 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 10.10.1.1/30</td>
</tr>
<tr>
<td></td>
<td>st0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Unit 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 10.10.1.1/30</td>
</tr>
</tbody>
</table>

### Table 24: IKE Configuration Parameters

<table>
<thead>
<tr>
<th>Feature</th>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposal</td>
<td>proposal-set</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>Policy</td>
<td>preShared</td>
<td>• Mode: main</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Proposal reference: proposal-set standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• IKE Phase 1 policy authentication method: pre-shared-key ascii-text</td>
</tr>
</tbody>
</table>
Table 24: IKE Configuration Parameters (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gateway</td>
<td>SRX1500-1</td>
<td>• IKE policy reference: perShared</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• External interface: reth0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Gateway address: 10.1.1.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE: In SRX chassis clustering, only reth and lo0 interfaces are supported for the IKE external interface configuration. Other interface types can be configured, but IPsec VPN might not work. If a lo0 logical interface is used as an IKE gateway external interface, it cannot be configured with RG0.</td>
</tr>
</tbody>
</table>

Table 25: IPsec Configuration Parameters

<table>
<thead>
<tr>
<th>Feature</th>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposal</td>
<td>proposal-set standard</td>
<td>–</td>
</tr>
<tr>
<td>Policy</td>
<td>std</td>
<td>–</td>
</tr>
<tr>
<td>VPN</td>
<td>SRX1500-1</td>
<td>• IKE gateway reference: SRX1500-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• IPsec policy reference: std</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Bind to interface: st0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VPN monitoring: vpn-monitor optimized</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tunnels established: establish-tunnels immediately</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE: The manual VPN name and the site-to-site gateway name cannot be the same.</td>
</tr>
</tbody>
</table>

Table 26: Static Route Configuration Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0/0</td>
<td>Next hop: 10.2.1.1</td>
</tr>
<tr>
<td>10.3.0.0/16</td>
<td>Next hop: 10.10.1.2</td>
</tr>
</tbody>
</table>

Table 27: Security Zone Configuration Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>trust</td>
<td>• All system services are allowed.</td>
</tr>
<tr>
<td></td>
<td>• All protocols are allowed.</td>
</tr>
<tr>
<td></td>
<td>• The reth0.0 interface is bound to this zone.</td>
</tr>
</tbody>
</table>
### Table 27: Security Zone Configuration Parameters (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>untrust</td>
<td>• All system services are allowed.</td>
</tr>
<tr>
<td></td>
<td>• All protocols are allowed.</td>
</tr>
<tr>
<td></td>
<td>• The reth1.0 interface is bound to this zone.</td>
</tr>
<tr>
<td>vpn</td>
<td>• All system services are allowed.</td>
</tr>
<tr>
<td></td>
<td>• All protocols are allowed.</td>
</tr>
<tr>
<td></td>
<td>• The st0.0 interface is bound to this zone.</td>
</tr>
</tbody>
</table>

### Table 28: Security Policy Configuration Parameters

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>This security policy permits traffic from the trust zone to the untrust zone.</td>
<td>ANY</td>
<td>• Match criteria:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• source-address any</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• destination-address any</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• application any</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Action: permit</td>
</tr>
<tr>
<td>This security policy permits traffic from the trust zone to the vpn zone.</td>
<td>vpn-any</td>
<td>• Match criteria:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• source-address any</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• destination-address any</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• application any</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Action: permit</td>
</tr>
</tbody>
</table>

### Configuration

#### CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.

```bash
{primary:node0}[edit]
 set chassis cluster control-ports fpc 2 port 0
 set chassis cluster control-ports fpc 14 port 0
 set groups node0 system host-name SRX5800-1
 set groups node0 interfaces fxp0 unit 0 family inet address 172.19.100.50/24
 set groups node1 system host-name SRX5800-2
 set groups node1 interfaces fxp0 unit 0 family inet address 172.19.100.51/24
```
set apply-groups "\{node\}"
set interfaces fab0 fabric-options member-interfaces xe-5/3/0
set interfaces fab1 fabric-options member-interfaces xe-17/3/0
set chassis cluster reth-count 2
set chassis cluster heartbeat-interval 1000
set chassis cluster heartbeat-threshold 3
set chassis cluster node 0
set chassis cluster node 1
set chassis cluster redundancy-group 0 node 0 priority 254
set chassis cluster redundancy-group 0 node 1 priority 1
set chassis cluster redundancy-group 1 node 0 priority 254
set chassis cluster redundancy-group 1 node 1 priority 1
set chassis cluster redundancy-group 1 preempt
set chassis cluster redundancy-group 1 interface-monitor xe-5/0/0 weight 255
set chassis cluster redundancy-group 1 interface-monitor xe-5/1/0 weight 255
set chassis cluster redundancy-group 1 interface-monitor xe-17/0/0 weight 255
set chassis cluster redundancy-group 1 interface-monitor xe-17/1/0 weight 255
set interfaces xe-5/1/0 gigether-options redundant-parent reth1
set interfaces xe-5/0/0 gigether-options redundant-parent reth0
set interfaces xe-17/1/0 gigether-options redundant-parent reth1
set interfaces xe-17/0/0 gigether-options redundant-parent reth0
set interfaces reth0 redundant-ether-options redundancy-group 1
set interfaces reth0 unit 0 family inet address 10.1.1.60/16
set interfaces reth1 redundant-ether-options redundancy-group 1
set interfaces reth1 unit 0 family inet address 10.2.1.60/16
set interfaces st0 unit 0 multipoint family inet address 10.10.1.1/30
set security ike policy preShared mode main
set security ike policy preShared proposal-set standard
set security ike policy preShared pre-shared-key ascii-text "$ABC123"## Encrypted password
set security ike gateway SRX1500-1 ike-policy preShared
set security ike gateway SRX1500-1 address 10.1.1.90
set security ike gateway SRX1500-1 external-interface reth0.0
set security ipsec policy std proposal-set standard
set security ipsec vpn SRX1500-1 bind-interface st0.0
set security ipsec vpn SRX1500-1 vpn-monitor optimized
set security ipsec vpn SRX1500-1 ike gateway SRX1500-1
set security ipsec vpn SRX1500-1 ike ipsec-policy std
set security ipsec vpn SRX1500-1 establish-tunnels immediately
set routing-options static route 0.0.0.0/0 next-hop 10.2.1.1
set routing-options static route 10.3.0.0/16 next-hop 10.10.1.2
set security zones security-zone untrust host-inbound-traffic system-services all
set security zones security-zone untrust host-inbound-traffic protocols all
set security zones security-zone untrust interfaces reth1.0
set security zones security-zone trust host-inbound-traffic system-services all
set security zones security-zone trust host-inbound-traffic protocols all
set security zones security-zone trust interfaces reth0.0
set security zones security-zone vpn host-inbound-traffic system-services all 144
set security zones security-zone vpn host-inbound-traffic protocols all
set security zones security-zone vpn interfaces st0.0
set security policies from-zone trust to-zone untrust policy ANY match source-address any
set security policies from-zone trust to-zone untrust policy ANY match destination-address any
set security policies from-zone trust to-zone untrust policy ANY match application any
set security policies from-zone trust to-zone vpn policy vpn-any then permit

Step-by-Step Procedure

To configure an active/passive chassis cluster pair with an IPsec tunnel:

1. Configure control ports.

   [primary:node0][edit]
   user@host# set chassis cluster control-ports fpc 2 port 0
   user@host# set chassis cluster control-ports fpc 14 port 0

2. Configure the management interface.

   [primary:node0][edit]
   user@host# set groups node0 system host-name SRX5800-1
   user@host# set groups node0 interfaces fxp0 unit 0 family inet address 172.19.100.50/24
   user@host# set groups node1 system host-name SRX5800-2
   user@host# set groups node1 interfaces fxp0 unit 0 family inet address 172.19.100.51/24
   user@host# set apply-groups "${node}"

3. Configure the fabric interface.

   [primary:node0][edit]
   user@host# set interfaces fab0 fabric-options member-interfaces xe-5/3/0
   user@host# set interfaces fab1 fabric-options member-interfaces xe-17/3/0

4. Configure redundancy groups.

   [primary:node0][edit]
   user@host# set chassis cluster reth-count 2
   user@host# set chassis cluster heartbeat-interval 1000
   user@host# set chassis cluster heartbeat-threshold 3
5. Configure redundant Ethernet interfaces.

[primary:node0][edit]
user@host# set interfaces xe-5/1/0 gigether-options redundant-parent reth1
user@host# set interfaces xe-5/0/0 gigether-options redundant-parent reth0
user@host# set interfaces xe-17/1/0 gigether-options redundant-parent reth1
user@host# set interfaces xe-17/0/0 gigether-options redundant-parent reth0
user@host# set interfaces reth0 unit 0 family inet address 10.1.1.60/16
user@host# set interfaces reth1 unit 0 family inet address 10.2.1.60/16

6. Configure IPsec parameters.

[primary:node0][edit]
user@host# set interfaces st0 unit 0 multipoint family inet address 10.10.1.1/30
user@host# set security ike policy preShared mode main
user@host# set security ike policy preShared proposal-set standard
user@host# set security ike policy preShared pre-shared-key ascii-text "$ABC123" Encrypted password
user@host# set security ike gateway SRX1500-1 ike-policy preShared
user@host# set security ike gateway SRX1500-1 address 10.1.1.90
user@host# set security ike gateway SRX1500-1 external-interface reth0.0
user@host# set security ipsec policy std proposal-set standard
user@host# set security ipsec vpn SRX1500-1 bind-interface st0.0
user@host# set security ipsec vpn SRX1500-1 vpn-monitor optimized
user@host# set security ipsec vpn SRX1500-1 ike gateway SRX1500-1
user@host# set security ipsec vpn SRX1500-1 ike ipsec-policy std
user@host# set security ipsec vpn SRX1500-1 establish-tunnels immediately

7. Configure static routes.
8. Configure security zones.

   [primary:node0][edit]
   user@host# set routing-options static route 0.0.0.0/0 next-hop 10.2.1.1
   user@host# set routing-options static route 10.3.0.0/16 next-hop 10.10.1.2

9. Configure security policies.

   [primary:node0][edit]
   user@host# set security zones security-zone untrust host-inbound-traffic system-services all
   user@host# set security zones security-zone untrust host-inbound-traffic protocols all
   user@host# set security zones security-zone untrust interfaces reth1.0
   user@host# set security zones security-zone trust host-inbound-traffic system-services all
   user@host# set security zones security-zone trust host-inbound-traffic protocols all
   user@host# set security zones security-zone trust interfaces reth0.0
   user@host# set security zones security-zone vpn host-inbound-traffic system-services all
   user@host# set security zones security-zone vpn host-inbound-traffic protocols all
   user@host# set security zones security-zone vpn interfaces st0.0

Results

From operational mode, confirm your configuration by entering the `show configuration` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For brevity, this `show` command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (…).

   user@host> show configuration

   version x.xx.x;
   groups {
     node0 {
       system {

host-name SRX58001;
}
interfaces {
    fxp0 {
        unit 0 {
            family inet {
                address 172.19.100.50/24;
            }
        }
    }
}
}

node1 {
    system {
        host-name SRX58002;
    }
    interfaces {
        fxp0 {
            unit 0 {
                family inet {
                    address 172.19.100.51/24;
                }
            }
        }
    }
}

apply-groups "${node}";

system {
    root-authentication {
        encrypted-password "$ABC123";
    }
}

chassis {
    cluster {
        reth-count 2;
        heartbeat-interval 1000;
        heartbeat-threshold 3;
        control-ports {
            fpc 2 port 0;
            fpc 14 port 0;
        }
        redundancy-group 0 {
            node 0 priority 254;
        }
    }
node 1 priority 1;
}
redundancy-group 1 {
     node 0 priority 254;
     node 1 priority 1;
     preempt;
     interface-monitor {
     xe-6/0/0 weight 255;
     xe-6/1/0 weight 255;
     xe-18/0/0 weight 255;
     xe-18/1/0 weight 255;
     }
}
}
}
}
interfaces {
    xe-5/0/0 {
        gigether-options {
            redundant-parent reth0;
        }
    }
    xe-5/1/0 {
        gigether-options {
            redundant-parent reth1;
        }
    }
    xe-17/0/0 {
        gigether-options {
            redundant-parent reth0;
        }
    }
    xe-17/1/0 {
        gigether-options {
            redundant-parent reth1;
        }
    }
    fab0 {
        fabric-options {
            member-interfaces {
                xe-5/3/0;
            }
        }
    }
    fab1 {
fabric-options {
    member-interfaces {
        xe-17/3/0;
    }
}
}
reth0 {
    redundant-ether-options {
        redundancy-group 1;
    }
    unit 0 {
        family inet {
            address 10.1.1.60/16;
        }
    }
}
reth1 {
    redundant-ether-options {
        redundancy-group 1;
    }
    unit 0 {
        family inet {
            address 10.2.1.60/16;
        }
    }
}
st0 {
    unit 0 {
        multipoint;
        family inet {
            address 5.4.3.2/32;
        }
    }
}
}
routing-options {
    static {
        route 0.0.0.0/0 {
            next-hop 10.2.1.1;
        }
        route 10.3.0.0/16 {
            next-hop 10.10.1.2;
        }
    }
}
```json
{
 "security": {
 "zones": {
 "security-zone trust": {
 "host-inbound-traffic": {
 "system-services": {
 "all": {}
 }
 }
 }
 }
 }
}
```
If you are done configuring the device, enter commit from configuration mode.

Verification

IN THIS SECTION

- Verifying Chassis Cluster Status | 363
- Verifying Chassis Cluster Interfaces | 363
- Verifying Chassis Cluster Statistics | 364
- Verifying Chassis Cluster Control Plane Statistics | 365
- Verifying Chassis Cluster Data Plane Statistics | 365
- Verifying Chassis Cluster Redundancy Group Status | 366
- Troubleshooting with Logs | 367
Confirm that the configuration is working properly.

**Verifying Chassis Cluster Status**

**Purpose**
Verify the chassis cluster status, failover status, and redundancy group information.

**Action**
From operational mode, enter the `show chassis cluster status` command.

{primary:node0}

```plaintext
show chassis cluster status
```

<table>
<thead>
<tr>
<th>Cluster ID: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>node0</td>
</tr>
<tr>
<td>node1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Redundancy group: 0 , Failover count: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
</tr>
<tr>
<td>node1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Redundancy group: 1 , Failover count: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
</tr>
<tr>
<td>node1</td>
</tr>
</tbody>
</table>

**Verifying Chassis Cluster Interfaces**

**Purpose**
Verify the chassis cluster interfaces.

**Action**
From operational mode, enter the `show chassis cluster interfaces` command.

{primary:node0}

```plaintext
user@host> show chassis cluster interfaces
```

<table>
<thead>
<tr>
<th>Control link name: fxp1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redundant-ethernet Information:</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>reth0</td>
</tr>
<tr>
<td>reth1</td>
</tr>
</tbody>
</table>

| Interface Monitoring: |
Verifying Chassis Cluster Statistics

Purpose
Verify information about chassis cluster services and control link statistics (heartbeats sent and received), fabric link statistics (probes sent and received), and the number of RTOs sent and received for services.

Action
From operational mode, enter the show chassis cluster statistics command.

{primary:node0}

user@host> show chassis cluster statistics

Control link statistics:
  Control link 0:
    Heartbeat packets sent: 258689
    Heartbeat packets received: 258684
    Heartbeat packets errors: 0

Fabric link statistics:
  Child link 0
    Probes sent: 258681
    Probes received: 258681

Services Synchronized:
  Service name          RTOs sent  RTOs received
  Translation context   0           0
  Incoming NAT          0           0
  Resource manager      6           0
  Session create        161         0
  Session close         148         0
  Session change        0           0
  Gate create           0           0
  Session ageout refresh requests 0           0
  Session ageout refresh replies 0           0
  IPSec VPN             0           0
  Firewall user authentication 0           0
  MGCP ALG              0           0
<table>
<thead>
<tr>
<th>Protocol</th>
<th>Sent</th>
<th>Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>H323 ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SIP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPTP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RPC ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RTSP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RAS ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC address learning</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GPRS GTP</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

**Verifying Chassis Cluster Control Plane Statistics**

**Purpose**
Verify information about chassis cluster control plane statistics (heartbeats sent and received) and the fabric link statistics (probes sent and received).

**Action**
From operational mode, enter the `show chassis cluster control-panel statistics` command.

```
{primary:node0}

user@host> **show chassis cluster control-plane statistics**
```

Control link statistics:
- Control link 0:
  - Heartbeat packets sent: 258689
  - Heartbeat packets received: 258684
  - Heartbeat packets errors: 0

Fabric link statistics:
- Child link 0
  - Probes sent: 258681
  - Probes received: 258681

**Verifying Chassis Cluster Data Plane Statistics**

**Purpose**
Verify information about the number of RTOs sent and received for services.

**Action**
From operational mode, enter the `show chassis cluster data-plane statistics` command.

{primary:node0}

user@host> `show chassis cluster data-plane statistics`

```
Services Synchronized:

<table>
<thead>
<tr>
<th>Service name</th>
<th>RTOs sent</th>
<th>RTOs received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation context</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource manager</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Session create</td>
<td>161</td>
<td>0</td>
</tr>
<tr>
<td>Session close</td>
<td>148</td>
<td>0</td>
</tr>
<tr>
<td>Session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gate create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPSec VPN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Firewall user authentication</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MGCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H323 ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SIP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPTP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RPC ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RTSP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RAS ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC address learning</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GPRS GTP</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

**Verifying Chassis Cluster Redundancy Group Status**

**Purpose**

Verify the state and priority of both nodes in a cluster and information about whether the primary node has been preempted or whether there has been a manual failover.

**Action**

From operational mode, enter the `chassis cluster status redundancy-group` command.

{primary:node0}

user@host> `show chassis cluster status redundancy-group 1`
Cluster ID: 1

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>0</td>
<td>primary</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>254</td>
<td>secondary</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

Redundancy-Group: 1, Failover count: 1

Troubleshooting with Logs

Purpose
Use these logs to identify any chassis cluster issues. You must run these logs on both nodes.

Action
From operational mode, enter these show commands.

user@host> show log jsrp
user@host> show log chassisd
user@host> show log messages
user@host> show log dcd
user@host> show traceoptions

Example: Configuring an Active/Passive Chassis Cluster Pair with an IPsec Tunnel (J-Web)

1. Enable clusters. See Step 1 in "Example: Configuring an Active/Passive Chassis Cluster Pair with an IPsec Tunnel" on page 348.

2. Configure the management interface. See Step 2 in "Example: Configuring an Active/Passive Chassis Cluster Pair with an IPsec Tunnel" on page 348.


4. Configure the redundancy groups.
   - Select Configure>System Properties>Chassis Cluster.
   - Enter the following information, and then click Apply:
Redundant ether-Interfaces Count: 2
Heartbeat Interval: 1000
Heartbeat Threshold: 3
Nodes: 0
Group Number: 0
Priorities: 254

• Enter the following information, and then click Apply:
  Nodes: 0
  Group Number: 1
  Priorities: 254

• Enter the following information, and then click Apply:
  Nodes: 1
  Group Number: 0
  Priorities: 1

• Enter the following information, and then click Apply:
  Nodes: 1
  Group Number: 1
  Priorities: 1
  Preempt: Select the check box.
  Interface Monitor—Interface: xe-5/0/0
  Interface Monitor—Weight: 255
  Interface Monitor—Interface: xe-5/1/0
  Interface Monitor—Weight: 255
  Interface Monitor—Interface: xe-17/0/0
  Interface Monitor—Weight: 255
  Interface Monitor—Interface: xe-17/1/0
  Interface Monitor—Weight: 255

5. Configure the redundant Ethernet interfaces.

• Select Configure>System Properties>Chassis Cluster.

• Select xe-5/1/0.
• Enter **reth1** in the Redundant Parent box.
• Click Apply.
• Select xe-17/1/0.
• Enter **reth1** in the Redundant Parent box.
• Click Apply.
• Select xe-5/0/0.
• Enter **reth0** in the Redundant Parent box.
• Click Apply.
• Select xe-17/0/0.
• Enter **reth0** in the Redundant Parent box.
• Click Apply.
• See Step 5 in "Example: Configuring an Active/Passive Chassis Cluster Pair with an IPsec Tunnel" on page 348.

6. Configure the IPsec configuration. See Step 6 in “Example: Configuring an Active/Passive Chassis Cluster Pair with an IPsec Tunnel" on page 348.

7. Configure the static routes .
• Select **Configure>Routing>Static Routing**.
• Click Add.
• Enter the following information, and then click **Apply**:  
  Static Route Address: 0.0.0.0/0  
  Next-Hop Addresses: 10.2.1.1
• Enter the following information, and then click **Apply**:  
  Static Route Address: 10.3.0.0/16  
  Next-Hop Addresses: 10.10.1.2

8. Configure the security zones. See Step 8 in "Example: Configuring an Active/Passive Chassis Cluster Pair with an IPsec Tunnel" on page 348.

9. Configure the security policies. See Step 9 in "Example: Configuring an Active/Passive Chassis Cluster Pair with an IPsec Tunnel" on page 348.

10. Click **OK** to check your configuration and save it as a candidate configuration, then click **Commit Options>Commit**.
Multicast Routing and Asymmetric Routing on Chassis Cluster

Multicast routing support in a chassis cluster allows different multicast protocols to send traffic across interfaces to multiple recipients. Asymmetric routing is the situation where packets from source host to destination host but follow a different path than packets from destination host to source host. For more information, see the following topics:

### Understanding Multicast Routing on a Chassis Cluster

Multicast routing support across nodes in a chassis cluster allows multicast protocols, such as Protocol Independent Multicast (PIM) versions 1 and 2, Internet Group Management Protocol (IGMP), Session Announcement Protocol (SAP), and Distance Vector Multicast Routing Protocol (DVMRP), to send traffic across interfaces in the cluster. Note, however, that the multicast protocols should not be enabled on the chassis management interface (fxp0) or on the fabric interfaces (fab0 and fab1). Multicast sessions are synched across the cluster and maintained during redundant group failovers. During failover, as with other types of traffic, there might be some multicast packet loss.

Multicast data forwarding in a chassis cluster uses the incoming interface to determine whether or not the session remains active. Packets are forwarded to the peer node if a leaf session's outgoing interface is on the peer instead of on the incoming interface's node. Multicast routing on a chassis cluster supports tunnels for both incoming and outgoing interfaces.
Multicast traffic has an upstream (toward source) and downstream (toward subscribers) direction in traffic flows. The devices replicate (fanout) a single multicast packet to multiple networks that contain subscribers. In the chassis cluster environment, multicast packet fanouts can be active on either nodes.

If the incoming interface is active on the current node and backup on the peer node, then the session is active on the current node and backup on the peer node.

Multicast configuration on a chassis cluster is the same as multicast configuration on a standalone device. See the Multicast Protocols User Guide for more information.

Understanding PIM Data Forwarding

Protocol Independent Multicast (PIM) is used between devices to track the multicast packets to be forwarded to each other.

A PIM session encapsulates multicast data into a PIM unicast packet. A PIM session creates the following sessions:

- Control session
- Data session

The data session saves the control session ID. The control session and the data session are closed independently. The incoming interface is used to determine whether the PIM session is active or not. If the outgoing interface is active on the peer node, packets are transferred to the peer node for transmission.

Understanding Multicast and PIM Session Synchronization

Synchronizing multicast and PIM sessions helps to prevent packet loss due to failover because the sessions do not need to be set up again when there is a failover.

In PIM sessions, the control session is synchronized to the backup node, and then the data session is synchronized.

In multicast sessions, the template session is synchronized to the peer node, then all the leaf sessions are synchronized, and finally the template session is synchronized again.

SEE ALSO

| Chassis Cluster Overview | 24 |
Understanding Asymmetric Routing on a Chassis Cluster

You can use SRX Series devices in chassis clusters asymmetric routing scenarios (see Figure 40 on page 372). Traffic received by a node is matched against that node’s session table. The result of this lookup determines whether or not that the node processes the packet or forwards it to the other node over the fabric link. Sessions are anchored on the egress node for the first packet that created the session. If traffic is received on the node in which the session is not anchored, those packets are forwarded over the fabric link to the node where the session is anchored.

The anchor node for the session can change if there are changes in routing during the session.

Figure 40: Asymmetric Routing Chassis Cluster Scenario

In this scenario, two Internet connections are used, with one being preferred. The connection to the trust zone is done by using a redundant Ethernet interface to provide LAN redundancy for the devices in the
trust zone. This scenario describes two failover cases in which sessions originate in the trust zone with a destination of the Internet (untrust zone).

**Understanding Failures in the Trust Zone Redundant Ethernet Interface**

Under normal operating conditions, traffic flows from the trust zone interface ge-0/0/1, belonging to reth0.0, to the Internet. Because the primary Internet connection is on node 0, sessions are created in node 0 and synced to node 1. However, sessions are only active on node 0.

A failure in interface ge-0/0/1 triggers a failover of the redundancy group, causing interface ge-7/0/1 in node 1 to become active. After the failover, traffic arrives at node 1. After session lookup, the traffic is sent to node 0 because the session is active on this node. Node 0 then processes the traffic and forwards it to the Internet. The return traffic follows a similar process. The traffic arrives at node 0 and gets processed for security purposes—for example, antispam scanning, antivirus scanning, and application of security policies—on node 0 because the session is anchored to node 0. The packet is then sent to node 1 through the fabric interface for egress processing and eventual transmission out of node 1 through interface ge-7/0/1.

**Understanding Failures in the Untrust Zone Interfaces**

In this case, sessions are migrated from node to node. Under normal operating conditions, traffic is processed by only node 0. A failure of interface ge-0/0/0 on node 0 causes a change in the routing table, so that it now points to interface ge-7/0/0 in node 1. After the failure, sessions in node 0 become inactive, and the passive sessions in node 1 become active. Traffic arriving from the trust zone is still received on interface ge-0/0/1, but is forwarded to node 1 for processing. After traffic is processed in node 1, it is forwarded to the Internet through interface ge-7/0/0.

In this chassis cluster configuration, redundancy group 1 is used to control the redundant Ethernet interface connected to the trust zone. As configured in this scenario, redundancy group 1 fails over only if interface ge-0/0/1 or ge-7/0/1 fails, but not if the interfaces connected to the Internet fail. Optionally, the configuration could be modified to permit redundancy group 1 to monitor all interfaces connected to the Internet and fail over if an Internet link were to fail. So, for example, the configuration can allow redundancy group 1 to monitor ge-0/0/0 and make ge-7/0/1 active for reth0 if the ge-0/0/0 Internet link fails. (This option is not described in the following configuration examples.)

**SEE ALSO**

| Chassis Cluster Overview | 24 |
Example: Configuring an Asymmetric Chassis Cluster Pair

This example shows how to configure a chassis cluster to allow asymmetric routing. Configuring asymmetric routing for a chassis cluster allows traffic received on either device to be processed seamlessly.

Requirements

Before you begin:

1. Physically connect a pair of devices together, ensuring that they are the same models. This example uses a pair of SRX1500 devices.
   a. To create the fabric link, connect a Gigabit Ethernet interface on one device to another Gigabit Ethernet interface on the other device.
   b. To create the control link, connect the control port of the two SRX1500 devices.

2. Connect to one of the devices using the console port. (This is the node that forms the cluster.)
   a. Set the cluster ID and node number.

   ```
 user@host> set chassis cluster cluster-id 1 node 0 reboot
   ```

3. Connect to the other device using the console port.
   a. Set the cluster ID and node number.

   ```
 user@host> set chassis cluster cluster-id 1 node 1 reboot
   ```
Overview

In this example, a chassis cluster provides asymmetric routing. As illustrated in Figure 41 on page 375, two Internet connections are used, with one being preferred. The connection to the trust zone is provided by a redundant Ethernet interface to provide LAN redundancy for the devices in the trust zone.

Figure 41: Asymmetric Routing Chassis Cluster Topology

In this example, you configure group (applying the configuration with the `apply-groups` command) and chassis cluster information. Then you configure security zones and security policies. See Table 29 on page 375 through Table 32 on page 377.

Table 29: Group and Chassis Cluster Configuration Parameters

<table>
<thead>
<tr>
<th>Feature</th>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
<td>node0</td>
<td>• Hostname: srxseries-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Interface: fxp0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Unit 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 192.168.100.50/24</td>
</tr>
<tr>
<td></td>
<td>node1</td>
<td>• Hostname: srxseries-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Interface: fxp0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Unit 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 192.168.100.51/24</td>
</tr>
</tbody>
</table>
Table 30: Chassis Cluster Configuration Parameters

<table>
<thead>
<tr>
<th>Feature</th>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric links</td>
<td>fab0</td>
<td>Interface: ge-0/0/7</td>
</tr>
<tr>
<td></td>
<td>fab1</td>
<td>Interface: ge-7/0/7</td>
</tr>
<tr>
<td>Heartbeat interval</td>
<td>–</td>
<td>1000</td>
</tr>
<tr>
<td>Heartbeat threshold</td>
<td>–</td>
<td>3</td>
</tr>
<tr>
<td>Redundancy group</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Priority:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Node 0: 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Node 1: 1</td>
</tr>
<tr>
<td>Interfacemonitoring</td>
<td></td>
<td>Interface monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ge-0/0/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ge-7/0/3</td>
</tr>
<tr>
<td>Number of redundant Ethernet interfaces</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td>Interfaces</td>
<td>ge-0/0/1</td>
<td>• Unit 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 10.4.0.202/24</td>
</tr>
<tr>
<td></td>
<td>ge-7/0/1</td>
<td>• Unit 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 10.2.1.233/24</td>
</tr>
<tr>
<td></td>
<td>ge-0/0/3</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Redundant parent: reth0</td>
</tr>
<tr>
<td></td>
<td>ge-7/0/3</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Redundant parent: reth0</td>
</tr>
<tr>
<td></td>
<td>reth0</td>
<td>• Unit 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 10.16.8.1/24</td>
</tr>
</tbody>
</table>

Table 31: Security Zone Configuration Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>trust</td>
<td>The reth0.0 interface is bound to this zone.</td>
</tr>
</tbody>
</table>
Table 31: Security Zone Configuration Parameters (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>untrust</td>
<td>The ge-0/0/1 and ge-7/0/1 interfaces are bound to this zone.</td>
</tr>
</tbody>
</table>

Table 32: Security Policy Configuration Parameters

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>This security policy permits traffic from the trust zone to the untrust zone.</td>
<td>ANY</td>
<td>• Match criteria:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• source-address any</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• destination-address any</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• application any</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Action: permit</td>
</tr>
</tbody>
</table>

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```bash
[primary:node0][edit]
set groups node0 system host-name srxseries-1
set groups node0 interfaces fxp0 unit 0 family inet address 192.168.100.50/24
set groups node1 system host-name srxseries-2
set groups node1 interfaces fxp0 unit 0 family inet address 192.168.100.51/24
set apply-groups "${node}"
set interfaces fab0 fabric-options member-interfaces ge-0/0/7
set interfaces fab1 fabric-options member-interfaces ge-7/0/7
set chassis cluster reth-count 1
set chassis cluster heartbeat-interval 1000
set chassis cluster heartbeat-threshold 3
set chassis cluster redundancy-group 1 node 0 priority 100
set chassis cluster redundancy-group 1 node 1 priority 1
set chassis cluster redundancy-group 1 interface-monitor ge-0/0/3 weight 255
set chassis cluster redundancy-group 1 interface-monitor ge-7/0/3 weight 255
set interfaces ge-0/0/1 unit 0 family inet address 1.4.0.202/24
set interfaces ge-0/0/3 gigether-options redundant-parent reth0
set interfaces ge-7/0/1 unit 0 family inet address 10.2.1.233/24
set interfaces ge-7/0/3 gigether-options redundant-parent reth0
set interfaces reth0 unit 0 family inet address 10.16.8.1/24
```
set routing-options static route 0.0.0.0/0 qualified-next-hop 10.4.0.1 metric 10
set routing-options static route 0.0.0.0/0 qualified-next-hop 10.2.1.1 metric 100
set security zones security-zone untrust interfaces ge-0/0/1.0
set security zones security-zone untrust interfaces ge-7/0/1.0
set security zones security-zone trust interfaces reth0.0
set security policies from-zone trust to-zone untrust policy ANY match source-address any
set security policies from-zone trust to-zone untrust policy ANY match destination-address any
set security policies from-zone trust to-zone untrust policy ANY match application any
set security policies from-zone trust to-zone untrust policy ANY then permit

Step-by-Step Procedure
To configure an asymmetric chassis cluster pair:

1. Configure the management interface.

   [primary:node0][edit]
   user@host# set groups node0 system host-name srxseries-1
   user@host# set groups node0 interfaces fxp0 unit 0 family inet address 192.168.100.50/24
   user@host# set groups node1 system host-name srxseries-2
   user@host# set groups node1 interfaces fxp0 unit 0 family inet address 192.168.100.51/24
   user@host# set apply-groups "${node}"

2. Configure the fabric interface.

   [primary:node0][edit]
   user@host# set interfaces fab0 fabric-options member-interfaces ge-0/0/7
   user@host# set interfaces fab1 fabric-options member-interfaces ge-7/0/7

3. Configure the number of redundant Ethernet interfaces.

   [primary:node0][edit]
   user@host# set chassis cluster reth-count 1

4. Configure the redundancy groups.

   [primary:node0][edit]
   user@host# set chassis cluster heartbeat-interval 1000
   user@host# set chassis cluster heartbeat-threshold 3
   user@host# set chassis cluster node 0
   user@host# set chassis cluster node 1
5. Configure the redundant Ethernet interfaces.

{primary:node0}[edit]
user@host# set interfaces ge-0/0/1 unit 0 family inet address 1.4.0.202/24
user@host# set interfaces ge-0/0/3 gigether-options redundant-parent reth0
user@host# set interfaces ge-7/0/1 unit 0 family inet address 10.2.1.233/24
user@host# set interfaces ge-7/0/3 gigether-options redundant-parent reth0
user@host# set interfaces reth0 unit 0 family inet address 10.16.8.1/24

6. Configure the static routes (one to each ISP, with preferred route through ge-0/0/1).

{primary:node0}[edit]
user@host# set routing-options static route 0.0.0.0/0 qualified-next-hop 10.4.0.1 metric 10
user@host# set routing-options static route 0.0.0.0/0 qualified-next-hop 10.2.1.1 metric 100

7. Configure the security zones.

{primary:node0}[edit]
user@host# set security zones security-zone untrust interfaces ge-0/0/1.0
user@host# set security zones security-zone untrust interfaces ge-7/0/1.0
user@host# set security zones security-zone trust interfaces reth0.0

8. Configure the security policies.

{primary:node0}[edit]
user@host# set security policies from-zone trust to-zone untrust policy ANY match source-address any
user@host# set security policies from-zone trust to-zone untrust policy ANY match destination-address any
user@host# set security policies from-zone trust to-zone untrust policy ANY match application any
user@host# set security policies from-zone trust to-zone untrust policy ANY then permit

Results
From operational mode, confirm your configuration by entering the `show configuration` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.
For brevity, this show command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).

```
user@host> show configuration
version x.x.x.x;
groups {
 node0 {
 system {
 host-name srxseries-1;
 }
 interfaces {
 fxp0 {
 unit 0 {
 family inet {
 address 192.168.100.50/24;
 }
 }
 }
 }
 }
 node1 {
 system {
 host-name srxseries-2;
 interfaces {
 fxp0 {
 unit 0 {
 family inet {
 address 192.168.100.51/24;
 }
 }
 }
 }
 }
 }
}
apply-groups "${node}";
chassis {
 cluster {
 reth-count 1;
 heartbeat-interval 1000;
 heartbeat-threshold 3;
 redundancy-group 1 {
 node 0 priority 100;
 node 1 priority 1;
 interface-monitor {
 ge-0/0/3 weight 255;
 }
 }
 }
```
ge-7/0/3 weight 255;

}
}
}

interfaces {
  ge-0/0/3 {
    gigether–options {
      redundant–parent reth0;
    }
  }
  ge-7/0/3 {
    gigether–options {
      redundant–parent reth0;
    }
  }
  ge-0/0/1 {
    unit 0 {
      family inet {
        address 10.4.0.202/24;
      }
    }
  }
  ge-7/0/1 {
    unit 0 {
      family inet {
        address 10.2.1.233/24;
      }
    }
  }
}

fab0 {
  fabric–options {
    member–interfaces {
      ge–0/0/7;
    }
  }
}

fab1 {
  fabric–options {
    member–interfaces {
      ge–7/0/7;
    }
  }
}
reth0 {
  gigether--options {
    redundancy--group 1;
  }
  unit 0 {
    family inet {
      address 10.16.8.1/24;
    }
  }
}

... 

routing-options {
  static {
    route 0.0.0.0/0 {
      next-hop 10.4.0.1;
      metric 10;
    }
  }
}

routing-options {
  static {
    route 0.0.0.0/0 {
      next-hop 10.2.1.1;
      metric 100;
    }
  }
}

security {
  zones {
    security--zone untrust {
      interfaces {
        ge-0/0/1.0;
        ge-7/0/1.0;
      }
    }
    security--zone trust {
      interfaces {
        reth0.0;
      }
    }
  }
  policies {
    from-zone trust to-zone untrust {

If you are done configuring the device, enter **commit** from configuration mode.

**Verification**

**IN THIS SECTION**
- Verifying Chassis Cluster Status | 383
- Verifying Chassis Cluster Interfaces | 384
- Verifying Chassis Cluster Statistics | 384
- Verifying Chassis Cluster Control Plane Statistics | 385
- Verifying Chassis Cluster Data Plane Statistics | 386
- Verifying Chassis Cluster Redundancy Group Status | 387
- Troubleshooting with Logs | 387

Confirm that the configuration is working properly.

**Verifying Chassis Cluster Status**

**Purpose**
Verify the chassis cluster status, failover status, and redundancy group information.

**Action**
From operational mode, enter the **show chassis cluster status** command.

{primary:node0}
user@host> **show chassis cluster status**

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>100</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>1</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Redundancy group: 1, Failover count: 1

---

**Verifying Chassis Cluster Interfaces**

**Purpose**
Verify information about chassis cluster interfaces.

**Action**
From operational mode, enter the `show chassis cluster interfaces` command.

{primary:node0}

user@host> **show chassis cluster interfaces**

Control link name: fxp1

Redundant-ethernet Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>reth0</td>
<td>Up</td>
<td>1</td>
</tr>
</tbody>
</table>

Interface Monitoring:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Weight</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/3</td>
<td>255</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-7/0/3</td>
<td>255</td>
<td>Up</td>
<td>1</td>
</tr>
</tbody>
</table>

---

**Verifying Chassis Cluster Statistics**

**Purpose**
Verify information about the statistics of the different objects being synchronized, the fabric and control interface hellos, and the status of the monitored interfaces in the cluster.

**Action**
From operational mode, enter the `show chassis cluster statistics` command.

{primary:node0}
show chassis cluster statistics

Control link statistics:
  Control link 0:
    Heartbeat packets sent: 228
    Heartbeat packets received: 2370
    Heartbeat packets errors: 0

Fabric link statistics:
  Child link 0
    Probes sent: 2272
    Probes received: 597

Services Synchronized:

<table>
<thead>
<tr>
<th>Service name</th>
<th>RTOs sent</th>
<th>RTOs received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation context</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource manager</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Session create</td>
<td>160</td>
<td>0</td>
</tr>
<tr>
<td>Session close</td>
<td>147</td>
<td>0</td>
</tr>
<tr>
<td>Session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gate create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPSec VPN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Firewall user authentication</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MGCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H323 ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SIP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPTP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RPC ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RTSP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RAS ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC address learning</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GPRS GTP</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Verifying Chassis Cluster Control Plane Statistics

Purpose
Verify information about chassis cluster control plane statistics (heartbeats sent and received) and the fabric link statistics (probes sent and received).

Action
From operational mode, enter the `show chassis cluster control-plane statistics` command.

```
user@host>
```

```
show chassis cluster control-plane statistics
```

Control link statistics:
  Control link 0:
    Heartbeat packets sent: 258689
    Heartbeat packets received: 258684
    Heartbeat packets errors: 0

Fabric link statistics:
  Child link 0
    Probes sent: 258681
    Probes received: 258681

---

**Verifying Chassis Cluster Data Plane Statistics**

**Purpose**
Verify information about the number of RTOs sent and received for services.

**Action**
From operational mode, enter the `show chassis cluster data-plane statistics` command.

```
user@host>
```

```
show chassis cluster data-plane statistics
```

<table>
<thead>
<tr>
<th>Service name</th>
<th>RTOs sent</th>
<th>RTOs received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation context</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource manager</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Session create</td>
<td>160</td>
<td>0</td>
</tr>
<tr>
<td>Session close</td>
<td>147</td>
<td>0</td>
</tr>
<tr>
<td>Session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gate create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPSec VPN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Firewall user authentication</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MGCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Verifying Chassis Cluster Redundancy Group Status

Purpose
Verify the state and priority of both nodes in a cluster and information about whether the primary node has been preempted or whether there has been a manual failover.

Action
From operational mode, enter the `chassis cluster status redundancy-group` command.

```
{primary:node0}
```

```
user@host> show chassis cluster status redundancy-group 1
```

<table>
<thead>
<tr>
<th>Cluster ID: 1</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>node0</td>
<td>100</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>1</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Troubleshooting with Logs

Purpose
Use these logs to identify any chassis cluster issues. You must run these logs on both nodes.

Action
From operational mode, enter these `show` commands.

```
user@host> show log jsrp
user@host> show log chassisd
user@host> show log messages
user@host> show log dcd
```
You can configure a chassis cluster to act as a Layer 2 Ethernet switch. For more information, see the following topics:

Layer 2 Ethernet Switching Capability in a Chassis Cluster Mode
Understanding Layer 2 Ethernet Switching Capability in a Chassis Cluster on SRX Series Devices

Ethernet ports support various Layer 2 features such as spanning-tree protocols (STPs), IEEE 802.1x, Link Layer Discovery Protocol (LLDP), and Multiple VLAN Registration Protocol (MVRP). With the extension of Layer 2 switching capability to devices in a chassis cluster, you can use Ethernet switching features on both nodes of a chassis cluster.

To ensure that Layer 2 switching works seamlessly across chassis cluster nodes, a dedicated physical link connecting the nodes is required. This type of link is called a switching fabric interface. Its purpose is to carry Layer 2 traffic between nodes.

Configuring a LAG with members and reth interface with family ethernet switching across nodes is not supported.

If a switching fabric interface is not configured on both nodes, and if you try to configure Ethernet switching-related features on the nodes, then the behavior of the nodes might be unpredictable.

Understanding Chassis Cluster Failover and New Primary Election

When chassis cluster failover occurs, a new primary node is elected and the Ethernet switching process (eswd) runs in a different node. During failover, the chassis control subsystem is restarted. Also during failover, traffic outage occurs until the PICs are up and the VLAN entries are reprogrammed. After failover, all Layer 2 protocols reconverge because Layer 2 protocol states are not maintained in the secondary node.

The Q-in-Q feature in chassis cluster mode is not supported because of chip limitation for swfab interface configuration in Broadcom chipsets.

Benefits of Ethernet Switching on Chassis Cluster

- Enables Ethernet switching functionality on both nodes of a chassis cluster and provides the option to configure the ethernet ports on either node for family Ethernet switching.
- Enables configuring a Layer 2 VLAN domain with member ports from both nodes and the Layer 2 switching protocols on both devices.

SEE ALSO

- Ethernet Switching and Layer 2 Transparent Mode Overview
Example: Configuring Switch Fabric Interfaces to Enable Switching in Chassis Cluster Mode on a Security Device

This example shows how to configure switching fabric interfaces to enable switching in chassis cluster mode.

Requirements

- The physical link used as the switch fabric member must be directly connected to the device.
- Switching fabric interfaces must be configured on ports that support switching features. See Ethernet Ports Switching Overview for Security Devices for information about the ports on which switching features are supported.

The physical link used as the switch fabric member must be directly connected to the device. Switching supported ports must be used for switching fabric interfaces. See Ethernet Ports Switching Overview for Security Devices for switching supported ports.

Before you begin, See “Example: Configuring the Chassis Cluster Fabric Interfaces” on page 78.

Overview

In this example, pseudointerfaces swfab0 and swfab1 are created for Layer 2 fabric functionality. You also configure dedicated Ethernet ports on each node to be associated with the swfab interfaces.

Configuration

CLI Quick Configuration

To quickly configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.
Step-by-Step Procedure
To configure swfab interfaces:

1. Configure swfab0 and swfab1 and associate these switch fabric interfaces to enable switching across the nodes. Note that swfab0 corresponds to node 0 and swfab1 corresponds to node 1.

   ```
 {primary:node0} [edit]
 user@host# set interfaces swfab0 fabric-options member-interfaces ge-0/0/3
 user@host# set interfaces swfab1 fabric-options member-interfaces ge-9/0/3
   ```

2. If you are done configuring the device, commit the configuration.

   ```
 {primary:node0} [edit]
 user@host# commit
   ```

Results
From configuration mode, confirm your configuration by entering the `show interfaces swfab0` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct the configuration.

```
[edit]
user@host# show interfaces swfab0
fabric-options{
 member-interfaces {
 ge-0/0/3;
 }
}
```

Verification

IN THIS SECTION

- Verifying Switching Fabric Ports | 392

To confirm that the configuration is working properly, perform these tasks:
Verifying Switching Fabric Ports

Purpose
Verify that you are able to configure multiple ports as members of switching fabric ports.

Action
From configuration mode, enter the `show interfaces swfab0` command to view the configured interfaces for each port.

```
user@host# show interfaces swfab0
fabric-options{
 member-interfaces {
 ge-0/0/3;
 }
}
```

From operational mode, enter the `show chassis cluster ethernet-switching interfaces` command to view the appropriate member interfaces.

```
user@host> show chassis cluster ethernet-switching interfaces

swfab0:

 Name Status
 ge-0/0/3 up
swfab1:

 Name Status
 ge-9/0/3 up
```

SEE ALSO

| SRX Series Chassis Cluster Configuration Overview | 35 |
Configuring IRB and VLAN with Members Across Two Nodes on a Security Device using Tagged

IN THIS SECTION
- Requirements | 393
- Overview | 393
- Configuration | 394

Requirements

This example uses the following hardware and software components:

- configure a switching fabric interface on both nodes to configure Ethernet switching-related features on the nodes. See "Example: Configuring Switch Fabric Interfaces to Enable Switching in Chassis Cluster Mode on a Security Device" on page 390
- SRX550 security device
- interface-mode is supported in 15.1X49 release.
- port-mode is supported in 12.1 and 12.3X48 releases.

Overview

This example shows the configuration of a VLAN with members across node 0 and node 1.

Topology

Figure 42 on page 394 shows the Layer 2 ethernet switching across chassis cluster nodes using tagged traffic.
Figure 42: Layer 2 Ethernet Switching Across Chassis Cluster using Tagged Traffic

Configuration

CLI Quick Configuration
To quickly configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set security zones security-zone trust host-inbound-traffic system-services all
set security zones security-zone trust interfaces irb.100
set security zones security-zone trust interfaces irb.200
set interfaces ge-0/0/4 unit 0 family ethernet-switching interface-mode trunk
set interfaces ge-0/0/4 unit 0 family ethernet-switching vlan members v100
set interfaces ge-0/0/5 unit 0 family ethernet-switching interface-mode trunk
set interfaces ge-0/0/5 unit 0 family ethernet-switching vlan members v200
set interfaces ge-9/0/4 unit 0 family ethernet-switching interface-mode trunk
set interfaces ge-9/0/4 unit 0 family ethernet-switching vlan members v100
set interfaces ge-9/0/5 unit 0 family ethernet-switching interface-mode trunk
set interfaces ge-9/0/5 unit 0 family ethernet-switching vlan members v200
set interfaces fab0 fabric-options member-interfaces ge-0/0/2
set interfaces fab1 fabric-options member-interfaces ge-9/0/2
set interfaces irb unit 100 family inet address 10.1.100.254/24
set interfaces irb unit 200 family inet address 10.1.200.254/24
set vlans v100 vlan-id 100
set vlans v100 l3-interface irb.100
set vlans v200 vlan-id 200
set vlans v200 l3-interface irb.200
```

Step-by-Step Procedure
To configure IRB and a VLAN:

1. Configure security zones.

```bash
{primary:node0} [edit security zones]
user@host# set security-zone trust host-inbound-traffic system-services all
user@host# set security-zone trust interfaces irb.100
user@host# set security-zone trust interfaces irb.200
```

2. Configure Ethernet switching on the node0 interface.

```bash
{primary:node0} [edit interfaces]
user@host# set ge-0/0/4 unit 0 family ethernet-switching interface-mode trunk
user@host# set ge-0/0/4 unit 0 family ethernet-switching vlan members v100
user@host# set ge-0/0/5 unit 0 family ethernet-switching interface-mode trunk
user@host# set ge-0/0/5 unit 0 family ethernet-switching vlan members v200
user@host# set ge-9/0/4 unit 0 family ethernet-switching interface-mode trunk
user@host# set ge-9/0/4 unit 0 family ethernet-switching vlan members v100
user@host# set ge-9/0/5 unit 0 family ethernet-switching interface-mode trunk
user@host# set ge-9/0/5 unit 0 family ethernet-switching vlan members v200
user@host# set irb unit 100 family inet address 10.1.100.254/24
user@host# set irb unit 200 family inet address 10.1.200.254/24
```

3. Define the interfaces used for the fab connection (data plane links for RTOsync) by using physical ports from each node. These interfaces must be connected back-to-back, or through a Layer 2 infrastructure.

```bash
{primary:node0} [edit interfaces]
user@host# set fab0 fabric-options member-interfaces ge-0/0/2
user@host# set fab1 fabric-options member-interfaces ge-9/0/2
```


```bash
{primary:node0} [edit interfaces]
user@host# set irb unit 100 family inet address 10.1.100.254/24
user@host# set irb unit 200 family inet address 10.1.200.254/24
```

5. Create and associate a VLAN interface with the VLAN.

```bash
{primary:node0} [edit vlans]
user@host# set v100 vlan-id 100
user@host# set v100 l3-interface irb.100
```
6. If you are done configuring the device, commit the configuration.

```
[edit]
user@host# commit
```

**Results**

From configuration mode, confirm your configuration by entering the `show security`, `show interfaces`, and `show vlans` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct the configuration.

```
[edit]
user@host# show security
zones {
 security-zone trust {
 host-inbound-traffic {
 system-services {
 all;
 }
 }
 interfaces {
 irb.100;
 irb.200;
 }
 }
}
```

```
[edit]
user@host# show interfaces
ge-0/0/4 {
 unit 0 {
 family ethernet-switching {
 interface-mode trunk;
 vlan {
 members v100;
 }
 }
 }
}
```
ge-0/0/5 {
    unit 0 {
        family ethernet-switching {
            interface-mode trunk;
            vlan {
                members v200;
            }
        }
    }
}

ge-9/0/4 {
    unit 0 {
        family ethernet-switching {
            interface-mode trunk;
            vlan {
                members v100;
            }
        }
    }
}

ge-9/0/5 {
    unit 0 {
        family ethernet-switching {
            interface-mode trunk;
            vlan {
                members v200;
            }
        }
    }
}

fab0 {
    fabric-options {
        member-interfaces {
            ge-0/0/2;
        }
    }
}

fab1 {
    fabric-options {
        member-interfaces {
            ge-9/0/2;
        }
    }
}
[edit]
user@host# show vlans
v100 {
    vlan-id 100;
    l3-interface irb.100;
}
v200 {
    vlan-id 200;
    l3-interface irb.200;
}

**Verification**

**Verifying VLAN**

**Purpose**

Verify that the configuration of VLAN is working properly.
**Action**

From operational mode, enter the `show chassis cluster interfaces` command.

```
user@host> show chassis cluster interfaces
```

Control link status: Up

```
Control interfaces:

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Monitored-Status</th>
<th>Internal-SA</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>fxp1</td>
<td>Up</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
```

Fabric link status: Up

```
Fabric interfaces:

<table>
<thead>
<tr>
<th>Name</th>
<th>Child-interface</th>
<th>Status</th>
<th>(Physical/Monitored)</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>fab0</td>
<td>ge-0/0/2</td>
<td>Up</td>
<td>/ Up</td>
<td>Enabled</td>
</tr>
<tr>
<td>fab0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fab1</td>
<td>ge-9/0/2</td>
<td>Up</td>
<td>/ Up</td>
<td>Enabled</td>
</tr>
<tr>
<td>fab1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Redundant-pseudo-interface Information:

```
<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0</td>
<td>Up</td>
<td>0</td>
</tr>
</tbody>
</table>
```

From operational mode, enter the `show ethernet-switching table` command.

```
user@host> show ethernet-switching table
```

MAC flags (S - static MAC, D - dynamic MAC, L - locally learned, P - Persistent static, C - Control MAC
SE - statistics enabled, NM - non configured MAC, R - remote PE MAC, O - ovsdb MAC)

Ethernet switching table : 4 entries, 4 learned
Routing instance : default-switch

```
Routing | MAC | MAC | Age | Logical |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NH</td>
<td>RTR</td>
<td>name</td>
<td>address</td>
<td>flags</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>ID</th>
<th>MAC</th>
<th>age</th>
<th>Logical</th>
</tr>
</thead>
<tbody>
<tr>
<td>v100</td>
<td>0</td>
<td>08:81:4f:8a:eb:52</td>
<td>D</td>
<td>ge-9/0/4.0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
From operational mode, enter the **show arp** command.

```
user@host> show arp
```

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>Address</th>
<th>Name</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:81:f4:8a:eb:54 10.1.100.1</td>
<td>10.1.100.1</td>
<td>irb.100</td>
<td></td>
</tr>
<tr>
<td>none</td>
<td>08:81:f4:8a:eb:52 10.1.100.2</td>
<td>10.1.100.2</td>
<td>irb.100</td>
</tr>
<tr>
<td>ec:3e:f7:c6:81:b0 30.17.0.2</td>
<td>30.17.0.2</td>
<td>fab0.0</td>
<td></td>
</tr>
<tr>
<td>permanent</td>
<td>f0:4b:3a:09:cb:30 30.18.0.1</td>
<td>30.18.0.1</td>
<td>fab1.0</td>
</tr>
<tr>
<td>permanent</td>
<td>ec:3e:f7:c6:80:81 130.16.0.1</td>
<td>130.16.0.1</td>
<td>fxp1.0</td>
</tr>
</tbody>
</table>

Total entries: 7

From operational mode, enter the **show ethernet-switching interface** command to view the information about Ethernet switching interfaces.

```
user@host> show ethernet-switching interface
```

Routing Instance Name : default-switch
Logical Interface flags (DL - disable learning, AD - packet action drop,
LH - MAC limit hit, DN - interface down,
MMAS - Mac-move action shutdown, AS - Autostate-exclude enabled,
SCTL - shutdown by Storm-control, MI - MAC+IP limit hit)
| Logical Interface flags (DL - disable learning, AD - packet action drop, LH - MAC limit hit, DN - interface down, MMAS - Mac-move action shutdown, AS - Autostate-exclude enabled, SCTL - shutdown by Storm-control, MI - MAC+IP limit hit) |
|---|---|---|---|---|---|---|
| Logical Tagging | Vlan | TAG | MAC | MAC+IP | STP | Logical Interface flags |
| interface | members | limit | limit | state | interface |
| ge-0/0/5.0 | tagged | 16383 | 8192 | | |
| v200 | 200 | 1024 | 1024 | Forwarding | |
| Routing Instance Name | default-switch |
| Logical Interface flags | (DL - disable learning, AD - packet action drop, LH - MAC limit hit, DN - interface down, MMAS - Mac-move action shutdown, AS - Autostate-exclude enabled, SCTL - shutdown by Storm-control, MI - MAC+IP limit hit) |
| Logical Tagging | Vlan | TAG | MAC | MAC+IP | STP | Logical Interface flags |
| interface | members | limit | limit | state | interface |
| ge-0/0/4.0 | tagged | 16383 | 8192 | | |
| v100 | 100 | 1024 | 1024 | Forwarding | |
| Routing Instance Name | default-switch |
| Logical Interface flags | (DL - disable learning, AD - packet action drop, LH - MAC limit hit, DN - interface down, MMAS - Mac-move action shutdown, AS - Autostate-exclude enabled, SCTL - shutdown by Storm-control, MI - MAC+IP limit hit) |
| Logical Tagging | Vlan | TAG | MAC | MAC+IP | STP | Logical Interface flags |
| interface | members | limit | limit | state | interface |
| ge-9/0/4.0 | tagged | 16383 | 8192 | | |
| v100 | 100 | 1024 | 1024 | Forwarding | |
### SCTL - shutdown by Storm-control, MI - MAC+IP limit hit

<table>
<thead>
<tr>
<th>Logical Tagging</th>
<th>Vlan</th>
<th>TAG</th>
<th>MAC</th>
<th>MAC+IP</th>
<th>STP</th>
<th>Logical interface flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-9/0/5.0</td>
<td>v200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16383</td>
<td>8192</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>1024</td>
<td>1024</td>
<td></td>
<td>Forwarding</td>
</tr>
</tbody>
</table>

**Meaning**
The output shows the VLANs are configured and working fine.

---

## Configuring IRB and VLAN with Members Across Two Nodes on a Security Device using Untagged Traffic

### IN THIS SECTION
- Requirements | 402
- Overview | 403
- Configuration | 403

### Requirements

This example uses the following hardware and software components:

- **configure a switching fabric interface on both nodes to configure Ethernet switching-related features on the nodes.** See "Example: Configuring Switch Fabric Interfaces to Enable Switching in Chassis Cluster Mode on a Security Device" on page 390
- SRX550 security device
- **interface-mode** is supported in 15.1X49 release.
- **port-mode** is supported in 12.1 and 12.3X48 releases.
Overview

This example shows the configuration of a VLAN with members across node 0 and node 1.

Topology

Figure 43 on page 403 shows the Layer 2 ethernet switching across chassis cluster nodes using untagged traffic.

Figure 43: Layer2 Ethernet Switching Across Chassis Cluster Nodes using Untagged Traffic

Configuration

CLI Quick Configuration

To quickly configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set security zones security-zone trust host-inbound-traffic system-services all
set security zones security-zone trust interfaces irb.100
set security zones security-zone trust interfaces irb.200
set interfaces ge-0/0/4 unit 0 family ethernet-switching interface-mode access
set interfaces ge-0/0/4 unit 0 family ethernet-switching vlan members v100
set interfaces ge-0/0/5 unit 0 family ethernet-switching interface-mode access
set interfaces ge-0/0/5 unit 0 family ethernet-switching vlan members v200
set interfaces ge-9/0/4 unit 0 family ethernet-switching interface-mode access
set interfaces ge-9/0/4 unit 0 family ethernet-switching vlan members v100
set interfaces ge-9/0/5 unit 0 family ethernet-switching interface-mode access
set interfaces ge-9/0/5 unit 0 family ethernet-switching vlan members v200
set interfaces fab0 fabric-options member-interfaces ge-0/0/2
set interfaces fab1 fabric-options member-interfaces ge-9/0/2
```
set interfaces irb unit 100 family inet address 10.1.100.254/24
set interfaces irb unit 200 family inet address 10.1.200.254/24
set vlans v100 vlan-id 100
set vlans v100 l3-interface irb.100
set vlans v200 vlan-id 200
set vlans v200 l3-interface irb.200

Step-by-Step Procedure
To configure IRB and a VLAN:

1. Configure security zones.

   {primary:node0} [edit security zones]
   user@host# set security-zone trust host-inbound-traffic system-services all
   user@host# set security-zone trust interfaces irb.100
   user@host# set security-zone trust interfaces irb.200

2. Configure Ethernet switching on the node0 interface.

   {primary:node0} [edit interfaces]
   user@host# set ge-0/0/4 unit 0 family ethernet-switching interface-mode access
   user@host# set ge-0/0/4 unit 0 family ethernet-switching vlan members v100
   user@host# set ge-0/0/5 unit 0 family ethernet-switching interface-mode access
   user@host# set ge-0/0/5 unit 0 family ethernet-switching vlan members v200
   user@host# set ge-9/0/4 unit 0 family ethernet-switching interface-mode access
   user@host# set ge-9/0/4 unit 0 family ethernet-switching vlan members v100
   user@host# set ge-9/0/5 unit 0 family ethernet-switching interface-mode access
   user@host# set ge-9/0/5 unit 0 family ethernet-switching vlan members v200
   user@host# set irb unit 100 family inet address 10.1.100.254/24
   user@host# set irb unit 200 family inet address 10.1.200.254/24

3. Define the interfaces used for the fab connection (data plane links for RTOsync) by using physical ports from each node. These interfaces must be connected back-to-back, or through a Layer 2 infrastructure.

   {primary:node0} [edit interfaces]
   user@host# set fab0 fabric-options member-interfaces ge-0/0/2
   user@host# set fab1 fabric-options member-interfaces ge-9/0/2

5. Create and associate a VLAN interface with the VLAN.

{primary:node0} [edit vlans]
user@host# set v100 vlan-id 100
user@host# set v100 l3-interface irb.100
user@host# set v200 vlan-id 200
user@host# set v200 l3-interface irb.200

6. If you are done configuring the device, commit the configuration.

[edit]
user@host# commit

Results
From configuration mode, confirm your configuration by entering the `show security`, `show interfaces`, and `show vlans` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct the configuration.

[edit]
user@host# show security
zones {
  security-zone trust {
    host-inbound-traffic {
      system-services {
        all;
      }
    }
  }
  interfaces {
    irb.100;
    irb.200;
  }
}

[edit]
user@host# show interfaces
ge-0/0/4 {
  unit 0 {
    family ethernet-switching {
      interface-mode access;
      vlan {
        members v100;
      }
    }
  }
}
ge-0/0/5 {
  unit 0 {
    family ethernet-switching {
      interface-mode access;
      vlan {
        members v200;
      }
    }
  }
}
ge-9/0/4 {
  unit 0 {
    family ethernet-switching {
      interface-mode access;
      vlan {
        members v100;
      }
    }
  }
}
ge-9/0/5 {
  unit 0 {
    family ethernet-switching {
      interface-mode access;
      vlan {
        members v200;
      }
    }
  }
}
fab0 {
  fabric-options {
    member-interfaces {
      ge-0/0/2;
    }
  }
}
fabric-options {
  member-interfaces {
    ge-9/0/2;
  }
}

irb {
  unit 100 {
    family inet {
      address 10.1.100.254/24;
    }
  }
  unit 200 {
    family inet {
      address 10.1.200.254/24;
    }
  }
}

swfab0 {
  fabric-options {
    member-interfaces {
      ge-0/0/3;
    }
  }
}

swfab1 {
  fabric-options {
    member-interfaces {
      ge-9/0/3;
    }
  }
}

[edit]
user@host# show vlans
v100 {
  vlan-id 100;
  l3-interface irb.100;
}
v200 {
Verifying VLAN

Purpose

Verify that the configuration of VLAN is working properly.

Action

From operational mode, enter the `show chassis cluster interfaces` command.

```bash
user@host> show chassis cluster interfaces
```

Control link status: Up

Control interfaces:

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Monitored-Status</th>
<th>Internal-SA</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>fxp1</td>
<td>Up</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Fabric link status: Up

Fabric interfaces:

<table>
<thead>
<tr>
<th>Name</th>
<th>Child-interface</th>
<th>Status</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>fab0</td>
<td>ge-0/0/2</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>fab0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fab1</td>
<td>ge-9/0/2</td>
<td>Up</td>
<td>Up</td>
</tr>
</tbody>
</table>

Redundant-pseudo-interface Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0</td>
<td>Up</td>
<td>0</td>
</tr>
</tbody>
</table>

From operational mode, enter the `show ethernet-switching table` command.

```bash
user@host> show ethernet-switching table
```

MAC flags (S - static MAC, D - dynamic MAC, L - locally learned, P - Persistent static, C - Control MAC, SE - statistics enabled, NM - non configured MAC, R - remote PE MAC, O
- ovsdb MAC)

Ethernet switching table: 4 entries, 4 learned
Routing instance: default-switch

<table>
<thead>
<tr>
<th>NH</th>
<th>MAC Address</th>
<th>MAC Address</th>
<th>MAC Address</th>
<th>MAC Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Name</td>
<td>address</td>
<td>flags</td>
<td>interface</td>
</tr>
<tr>
<td></td>
<td>index</td>
<td>Index</td>
<td>ID</td>
<td>v100</td>
</tr>
<tr>
<td></td>
<td>NH RTR</td>
<td>MAC</td>
<td>Age</td>
<td>Logical</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>index</td>
<td>name</td>
<td>v100</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>v100</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>v200</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>v200</td>
</tr>
</tbody>
</table>

From operational mode, enter the `show arp` command.

user@host> show arp

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>Address</th>
<th>Name</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:81:f4:8a:eb:52</td>
<td>10.1.100.1</td>
<td>10.1.100.1</td>
<td>irb.100</td>
</tr>
<tr>
<td>08:81:f4:8a:eb:54</td>
<td>10.1.100.2</td>
<td>10.1.100.2</td>
<td>irb.100</td>
</tr>
<tr>
<td>08:81:f4:8a:eb:55</td>
<td>10.1.200.2</td>
<td>10.1.200.2</td>
<td>irb.200</td>
</tr>
<tr>
<td>ec:3e:f7:c6:81:b0</td>
<td>30.17.0.2</td>
<td>30.17.0.2</td>
<td>fab0.0</td>
</tr>
<tr>
<td>f0:4b:3a:09:cb:30</td>
<td>30.18.0.1</td>
<td>30.18.0.1</td>
<td>fab1.0</td>
</tr>
<tr>
<td>ec:3e:f7:c6:80:81</td>
<td>130.16.0.1</td>
<td>130.16.0.1</td>
<td>fxpl.0</td>
</tr>
</tbody>
</table>

Total entries: 7
From operational mode, enter the `show ethernet-switching interface` command to view the information about Ethernet switching interfaces.

```
user@host> show ethernet-switching interface
```

```
Routing Instance Name : default-switch
Logical Interface flags (DL - disable learning, AD - packet action drop,
 LH - MAC limit hit, DN - interface down,
 MMAS - Mac-move action shutdown, AS - Autostate-exclude
 enabled,
 SCTL - shutdown by Storm-control, MI - MAC+IP limit hit)
Logical Tagging
interface members limit limit state interface flags
ge-0/0/5.0 16383 8192
 untagged
 v200
 200 1024 1024 Forwarding
untagged
Routing Instance Name : default-switch
Logical Interface flags (DL - disable learning, AD - packet action drop,
 LH - MAC limit hit, DN - interface down,
 MMAS - Mac-move action shutdown, AS - Autostate-exclude
 enabled,
 SCTL - shutdown by Storm-control, MI - MAC+IP limit hit)
Logical Tagging
interface members limit limit state interface flags
ge-0/0/4.0 16383 8192
 untagged
 v100
 100 1024 1024 Forwarding
untagged
Routing Instance Name : default-switch
Logical Interface flags (DL - disable learning, AD - packet action drop,
 LH - MAC limit hit, DN - interface down,
 MMAS - Mac-move action shutdown, AS - Autostate-exclude
 enabled,
 SCTL - shutdown by Storm-control, MI - MAC+IP limit hit)
Logical Tagging
interface members limit limit state interface flags
```

```
```
<table>
<thead>
<tr>
<th>interface</th>
<th>members</th>
<th>limit</th>
<th>limit</th>
<th>state</th>
<th>interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>flags</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>flags</td>
</tr>
<tr>
<td>ge-9/0/4.0</td>
<td></td>
<td>16383</td>
<td>8192</td>
<td></td>
<td></td>
</tr>
<tr>
<td>untagged</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>untagged</td>
<td>v100</td>
<td>100</td>
<td>1024</td>
<td>1024</td>
<td>Forwarding</td>
</tr>
<tr>
<td>untagged</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routing Instance Name : default-switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical Interface flags (DL - disable learning, AD - packet action drop, LH - MAC limit hit, DN - interface down, MMAS - Mac-move action shutdown, AS - Autostate-exclude enabled, SCTL - shutdown by Storm-control, MI - MAC+IP limit hit)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical Tagging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>interface</td>
<td>members</td>
<td>limit</td>
<td>limit</td>
<td>state</td>
<td>interface</td>
</tr>
<tr>
<td>flags</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>flags</td>
</tr>
<tr>
<td>ge-9/0/5.0</td>
<td></td>
<td>16383</td>
<td>8192</td>
<td></td>
<td></td>
</tr>
<tr>
<td>untagged</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>untagged</td>
<td>v200</td>
<td>200</td>
<td>1024</td>
<td>1024</td>
<td>Forwarding</td>
</tr>
<tr>
<td>untagged</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Meaning**

The output shows the VLANs are configured and working fine.

---

**Example: Configuring VLAN with Members Across Two Nodes on a Security Device**
Requirements

This example uses the following hardware and software components:

• configure a switching fabric interface on both nodes to configure Ethernet switching-related features on the nodes. See "Example: Configuring Switch Fabric Interfaces to Enable Switching in Chassis Cluster Mode on a Security Device" on page 390

• SRX240 security device

• Junos OS 12.3X48-D90

• interface-mode is supported in 15.1X49 release.

• port-mode is supported in 12.1 and 12.3X48 releases.

Overview

This example shows the configuration of a VLAN with members across node 0 and node 1.

Configuration

CLI Quick Configuration

To quickly configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set interfaces ge-0/0/3 unit 0 family ethernet-switching port-mode access
set interfaces ge-0/0/3 unit 0 family ethernet-switching vlan members vlan100
set interfaces ge-0/0/4 unit 0 family ethernet-switching port-mode access
set interfaces ge-0/0/4 unit 0 family ethernet-switching vlan members vlan100
set interfaces ge-0/0/5 unit 0 family ethernet-switching port-mode trunk
set interfaces ge-0/0/5 unit 0 family ethernet-switching vlan members vlan100
set interfaces vlan unit 100 family inet address 11.1.1.1/24
set vlans vlan100 vlan-id 100
set vlans vlan100 l3-interface vlan.100
```

Step-by-Step Procedure

To configure VLAN:

1. Configure Ethernet switching on the node0 interface.
2. Configure Ethernet switching on the node1 interface.

```
{primary:node0} [edit]
user@host# set interfaces ge-0/0/3 unit 0 family ethernet-switching port-mode access
user@host# set interfaces ge0/0/4 unit 0 family ethernet-switching port-mode access
```

3. Create VLAN vlan100 with vlan-id 100.

```
{primary:node0} [edit]
user@host# set vlans vlan100 vlan-id 100
```

4. Add interfaces from both nodes to the VLAN.

```
{primary:node0} [edit]
user@host# set interfaces ge-0/0/3 unit 0 family ethernet-switching vlan members vlan100
user@host# set interfaces ge-0/0/4 unit 0 family ethernet-switching vlan members vlan100
user@host# set interfaces ge-7/0/5 unit 0 family ethernet-switching vlan members vlan100
```

5. Create a VLAN interface.

```
user@host# set interfaces vlan unit 100 family inet address 11.1.1.1/24
```

6. Associate an VLAN interface with the VLAN.

```
user@host# set vlans vlan100 l3-interface vlan.100
```

7. If you are done configuring the device, commit the configuration.

```
[edit]
user@host# commit
```

Results
From configuration mode, confirm your configuration by entering the `show vlans` and `show interfaces` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct the configuration.

```plaintext
[edit]
user@host# show vlans
vlan100 {
 vlan-id 100;
 l3-interface vlan.100;
}
[edit]
user@host# show interfaces
ge-0/0/3 {
 unit 0 {
 family ethernet-switching {
 port-mode access;
 vlan {
 members vlan100;
 }
 }
 }
}
ge-0/0/4 {
 unit 0 {
 family ethernet-switching {
 port-mode access;
 vlan {
 members vlan100;
 }
 }
 }
}
ge-7/0/5 {
 unit 0 {
 family ethernet-switching {
 port-mode trunk;
 vlan {
 members vlan100;
 }
 }
 }
}
```
Verification

Verifying VLAN

Purpose
Verify that the configuration of VLAN is working properly.

Action
From operational mode, enter the `show interfaces terse ge-0/0/3` command to view the node 0 interface.

```
user@host> show interfaces terse ge-0/0/3
Interface Admin Link Proto Local Remote
ge-0/0/3 up up
ge-0/0/3.0 up up eth-switch
```

From operational mode, enter the `show interfaces terse ge-0/0/4` command to view the node 0 interface.

```
user@host> show interfaces terse ge-0/0/4
Interface Admin Link Proto Local Remote
ge-0/0/4 up up
ge-0/0/4.0 up up eth-switch
```

From operational mode, enter the `show interfaces terse ge-7/0/5` command to view the node 1 interface.

```
user@host> show interfaces terse ge-7/0/5
Interface Admin Link Proto Local Remote
ge-7/0/5 up up
ge-7/0/5.0 up up eth-switch
```

From operational mode, enter the `show vlans` command to view the VLAN interface.

```
user@host> show vlans
Routing instance VLAN name Tag Interfaces
default-switch default 1 ge-0/0/3.0*
default-switch vlan100 100 ge-0/0/3.0*
ge-0/0/4.0*
ge-7/0/5.0*
```
From operational mode, enter the **show ethernet-switching interface** command to view the information about Ethernet switching interfaces.

```plaintext
Routing Instance Name : default-switch
Logical Interface flags (DL - disable learning, AD - packet action drop,
LH - MAC limit hit, DN - interface down,
MMAS - Mac-move action shutdown, AS - Autostate-exclude enabled,
SCTL - shutdown by Storm-control)

<table>
<thead>
<tr>
<th>Logical Tagging</th>
<th>Vlan</th>
<th>TAG</th>
<th>MAC</th>
<th>STP</th>
<th>Logical Interface flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DN</td>
</tr>
<tr>
<td>untagged</td>
<td>vlan100</td>
<td>100</td>
<td>1024</td>
<td>Discarding</td>
<td></td>
</tr>
<tr>
<td>untagged</td>
<td>ge-0/0/4.0</td>
<td>16383</td>
<td>DN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>untagged</td>
<td>vlan100</td>
<td>100</td>
<td>1024</td>
<td>Discarding</td>
<td></td>
</tr>
<tr>
<td>untagged</td>
<td>ge-7/0/5.0</td>
<td>16383</td>
<td>DN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tagged</td>
<td>vlan100</td>
<td>100</td>
<td>1024</td>
<td>Discarding</td>
<td></td>
</tr>
</tbody>
</table>
```

**Meaning**
The output shows the VLANs are configured and working fine.

**SEE ALSO**
- Example: Configuring an IRB Interface

**RELATED DOCUMENTATION**
- Configuring Chassis Clustering on an SRX Series Devices | 116
Media Access Control Security (MACsec) on Chassis Cluster

Understanding Media Access Control Security (MACsec)

Media Access Control Security (MACsec) is an industry-standard security technology that provides secure communication for all traffic on Ethernet links. For more information, see the following topics:

Understanding Media Access Control Security (MACsec)

- How MACsec Works | 418
- Understanding Connectivity Associations and Secure Channels | 418
- Understanding Static Connectivity Association Key Security Mode | 419
- MACsec Considerations | 419

Media Access Control Security (MACsec) is an industry-standard security technology that provides secure communication for all traffic on Ethernet links. MACsec provides point-to-point security on Ethernet links between directly connected nodes and is capable of identifying and preventing most security threats, including denial of service, intrusion, man-in-the-middle, masquerading, passive wiretapping, and playback attacks.

MACsec allows you to secure an Ethernet link for almost all traffic, including frames from the Link Layer Discovery Protocol (LLDP), Link Aggregation Control Protocol (LACP), Dynamic Host Configuration Protocol (DHCP), Address Resolution Protocol (ARP), and other protocols that are not typically secured on an Ethernet link because of limitations with other security solutions. MACsec can be used in combination...
with other security protocols such as IP Security (IPsec) and Secure Sockets Layer (SSL) to provide end-to-end network security.

Starting in Junos OS Release 15.1X49-D60, Media Access Control Security (MACsec) is supported on control and fabric ports of SRX340 and SRX345 devices in chassis cluster mode.

Starting in Junos OS Release 17.4R1, MACsec is supported on HA control and fabric ports of SRX4600 devices in chassis cluster mode.

This topic contains the following sections:

**How MACsec Works**

To determine if a feature is supported by a specific platform or Junos OS release, refer Feature Explorer.

MACsec provides industry-standard security through the use of secured point-to-point Ethernet links. The point-to-point links are secured after matching security keys. When you enable MACsec using static connectivity association key (CAK) security mode, user-configured pre-shared keys are exchanged and verified between the interfaces at each end of the point-to-point Ethernet link.

Once MACsec is enabled on a point-to-point Ethernet link, all traffic traversing the link is MACsec-secured through the use of data integrity checks and, if configured, encryption.

The data integrity checks verify the integrity of the data. MACsec appends an 8-byte header and a 16-byte tail to all Ethernet frames traversing the MACsec-secured point-to-point Ethernet link, and the header and tail are checked by the receiving interface to ensure that the data was not compromised while traversing the link. If the data integrity check detects anything irregular about the traffic, the traffic is dropped.

MACsec can also be used to encrypt all traffic on the Ethernet link. The encryption used by MACsec ensures that the data in the Ethernet frame cannot be viewed by anybody monitoring traffic on the link.

Encryption is enabled for all traffic entering or leaving the interface when MACsec is enabled using static CAK security mode, by default.

MACsec is configured on point-to-point Ethernet links between MACsec-capable interfaces. If you want to enable MACsec on multiple Ethernet links, you must configure MACsec individually on each point-to-point Ethernet link.

**Understanding Connectivity Associations and Secure Channels**

MACsec is configured in connectivity associations. MACsec is enabled when a connectivity association is assigned to an interface.

When you enable MACsec using static CAK or dynamic security mode, you have to create and configure a connectivity association. Two secure channels—one secure channel for inbound traffic and another secure channel for outbound traffic—are automatically created. The automatically-created secure channels
do not have any user-configurable parameters; all configuration is done in the connectivity association outside of the secure channels.

**Understanding Static Connectivity Association Key Security Mode**

When you enable MACsec using static connectivity association key (CAK) security mode, two security keys—a connectivity association key (CAK) that secures control plane traffic and a randomly-generated secure association key (SAK) that secures data plane traffic—are used to secure the point-to-point Ethernet link. Both keys are regularly exchanged between both devices on each end of the point-to-point Ethernet link to ensure link security.

You initially establish a MACsec-secured link using a pre-shared key when you are using static CAK security mode to enable MACsec. A pre-shared key includes a connectivity association name (CKN) and it’s own connectivity association key (CAK). The CKN and CAK are configured by the user in the connectivity association and must match on both ends of the link to initially enable MACsec.

Once matching pre-shared keys are successfully exchanged, the MACsec Key Agreement (MKA) protocol is enabled. The MKA protocol is responsible for maintaining MACsec on the link, and decides which switch on the point-to-point link becomes the key server. The key server then creates an SAK that is shared with the switch at the other end of the point-to-point link only, and that SAK is used to secure all data traffic traversing the link. The key server will continue to periodically create and share a randomly-created SAK over the point-to-point link for as long as MACsec is enabled.

You enable MACsec using static CAK security mode by configuring a connectivity association on both ends of the link. All configuration is done within the connectivity association but outside of the secure channel. Two secure channels—one for inbound traffic and one for outbound traffic—are automatically created when using static CAK security mode. The automatically-created secure channels do not have any user-configurable parameters that cannot already be configured in the connectivity association.

We recommend enabling MACsec using static CAK security mode. Static CAK security mode ensures security by frequently refreshing to a new random security key and by only sharing the security key between the two devices on the MACsec-secured point-to-point link. Additionally, some optional MACsec features—replay protection, SCI tagging, and the ability to exclude traffic from MACsec—are only available when you enable MACsec using static CAK security mode.

Starting with Junos OS Release 15.1X49-D60 and Junos OS Release 17.3R1, the 802.1x protocol process (daemon) does not support restart on SRX340 and SRX345 devices.

**MACsec Considerations**

All types of Spanning Tree Protocol frames cannot currently be encrypted using MACsec.

The connectivity association can be defined anywhere, either global or node specific or any other configuration group as long as it is visible to the MACsec interface configuration.
For MACsec configurations, identical configurations must exist on both the ends. That is, each node should contain the same configuration as the other node. If the other node is not configured or improperly configured with MACsec on the other side, the port is disabled and stops forwarding the traffic.

Prior to 15.1X49-D100, SRX340 and SRX345 devices did not support MACsec for host-to-host or switch-to-host connections.

SRX4600 devices currently do not support MACsec for host-to-host connections. Macsec is supported only on dedicated fab ports and is not supported if any other traffic port is used as fab.

On SRX340 and SRX345 devices, fabric interfaces must be configured such that the Media Access Control Security (MACsec) configurations are local to the nodes. Otherwise, the fabric link will not be reachable.

### Configuring Media Access Control Security (MACsec)

Starting in Junos OS Release 15.1X49-D60, Media Access Control Security (MACsec) is supported on control and fabric ports of SRX340 and SRX345 devices in chassis cluster mode.

Starting in Junos OS Release 17.4R1, MACsec is supported on control and fabric ports of SRX4600 devices in chassis cluster mode.

This topic shows how to configure MACsec on control and fabric ports of supported SRX Series device in chassis cluster to secure point-to-point Ethernet links between the peer devices in a cluster. Each point-to-point Ethernet link that you want to secure using MACsec must be configured independently. You can enable MACsec encryption on device-to-device links using static connectivity association key (CAK) security mode.

The configuration steps for both processes are provided in this document.
Configuration Considerations When Configuring MACsec on Chassis Cluster Setup

Before you begin, follow these steps to configure MACsec on control ports:

1. If the chassis cluster is already up, disable it by using the `set chassis cluster disable` command and reboot both nodes.

2. Configure MACsec on the control port with its attributes as described in the following sections “Configuring Static CAK on the Chassis Cluster Control Port” on page 427. Both nodes must be configured independently with identical configurations.

3. Enable the chassis cluster by using `set chassis cluster cluster-id id` on both of the nodes. Reboot both nodes.

Control port states affect the integrity of a chassis cluster. Consider the following when configuring MACsec on control ports:

- Any new MACsec chassis cluster port configurations or modifications to existing MACsec chassis cluster port configurations will require the chassis cluster to be disabled and displays a warning message `Modifying cluster control port CA will break chassis cluster`. Once disabled, you can apply the preceding configurations and enable the chassis cluster.

- By default, chassis clusters synchronize all configurations. Correspondingly, you must monitor that synchronization does not lead to loss of any MACsec configurations. Otherwise, the chassis cluster will break. For example, for nonsymmetric, node-specific MACsec configurations, identical configurations should exist on both ends. That is, each node should contain the same configuration as the other node.

The ineligible timer is 300 seconds when MACsec on the chassis cluster control port is enabled on SRX340 and SRX345 devices.

If both control link fail, Junos OS changes the operating state of the secondary node to ineligible for a 180 seconds. When MACsec is enabled on the control port, the ineligibility duration is 200 seconds for SRX4600 devices.

Starting with Junos OS Release 15.1X49-D60 and Junos OS Release 17.3R1, the initial hold timer is extended from 30 seconds to 120 seconds in chassis clusters on SRX340 and SRX345 devices.

For any change in the MACsec configurations of control ports, the steps mentioned above must be repeated.

Consider the following when configuring MACsec on fabric ports:

Configuring MACsec leads to link state changes that can affect traffic capability of the link. When you configure fabric ports, keep the effective link state in mind. Incorrect MACsec configuration on both ends of the fabric links can move the link to an ineligible state. Note the following key points about configuring fabric links:

- Both ends of the links must be configured simultaneously when the chassis cluster is formed.
Incorrect configuration can lead to fabric failures and errors in fabric recovery logic. Because of potential link failure scenarios, we recommend that fabric links be configured during formation of the chassis cluster.

Configuring MACsec Using Static Connectivity Association Key Security Mode

You can enable MACsec encryption by using static connectivity association key (CAK) security mode on a point-to-point Ethernet link connecting devices. This procedure shows you how to configure MACsec using static CAK security mode.

For SRX340 and SRX345 devices, ge-0/0/0 is a fabric port and ge-0/0/1 is a control port for the chassis cluster and assigned as cluster-control-port 0.

For SRX4600 devices, dedicated control and fabric ports are available. MACsec on control link can be configured on dedicated control ports (control port 0 [em0] and port 1 [em1]). Macsec on fabric links can be configured only on dedicated fabric ports port 2 and port 3 of fpc0 pic0 (e.g. xe-0/0/2 and xe-0/0/3), similarly on port-2 and port-3 of fpc7 pic0.

To configure MACsec by using static CAK security mode to secure a device-to-device Ethernet link:

1. Create a connectivity association. You can skip this step if you are configuring an existing connectivity association.

   ```
 [edit security macsec]
 user@host# set connectivity-association connectivity-association-name
   ```

   For instance, to create a connectivity association named ca1, enter:

   ```
 [edit security macsec]
 user@host# set connectivity-association ca1
   ```

2. Configure the MACsec security mode as static-cak for the connectivity association.

   ```
 [edit security macsec]
 user@host# set connectivity-association connectivity-association-name security-mode static-cak
   ```

   For instance, to configure the MACsec security mode to static-cak on connectivity association ca1:

   ```
 [edit security macsec]
 user@host# set connectivity-association connectivity-association-name security-mode static-cak
   ```
3. Create the preshared key by configuring the connectivity association key name (CKN) and connectivity association key (CAK).

```
[edit security macsec]
user@host# set connectivity-association connectivity-association-name pre-shared-key ckn hexadecimal-number
user@host# set connectivity-association connectivity-association-name pre-shared-key cak hexadecimal-number
```

A preshared key is exchanged between directly-connected links to establish a MACsec-secure link. The pre-shared-key includes the CKN and the CAK. The CKN is a 64-digit hexadecimal number and the CAK is a 32-digit hexadecimal number. The CKN and the CAK must match on both ends of a link to create a MACsec-secured link.

To maximize security, we recommend configuring all 64 digits of a CKN and all 32 digits of a CAK.

After the preshared keys are successfully exchanged and verified by both ends of the link, the MACsec Key Agreement (MKA) protocol is enabled and manages the secure link. The MKA protocol then elects one of the two directly-connected devices as the key server. The key server then shares a random security with the other device over the MACsec-secure point-to-point link. The key server will continue to periodically create and share a random security key with the other device over the MACsec-secured point-to-point link as long as MACsec is enabled.

To configure a CKN of 11c1c1c11xxx012xx5xx8ef284aa23ff6729xx2e4xxx66e91fe34ba2cd9fe311 and CAK of 228xx255aa23xx6729xx664xxx66e91f on connectivity association ca1:

```
[edit security macsec]
user@host# set connectivity-association ca1 pre-shared-key ckn 11c1c1c11xxx012xx5xx8ef284aa23ff6729xx2e4xxx66e91fe34ba2cd9fe311
user@host# set connectivity-association ca1 pre-shared-key cak 228xx255aa23xx6729xx664xxx66e91f
```

MACsec is not enabled until a connectivity association is attached to an interface. See the final step of this procedure to attach a connectivity association to an interface.

4. (Optional) Set the MKA key server priority.

```
[edit security macsec connectivity-association connectivity-association-name]
user@host# set mka key-server-priority priority-number
```

Specifies the key server priority used by the MKA protocol to select the key server. The device with the lower priority-number is selected as the key server.

The default priority-number is 16.

If the key-server-priority is identical on both sides of the point-to-point link, the MKA protocol selects the interface with the lower MAC address as the key server. Therefore, if this statement is not configured in the connectivity associations at each end of a MACsec-secured point-to-point link, the interface with the lower MAC address becomes the key server.
To change the key server priority to 0 to increase the likelihood that the current device is selected as the key server when MACsec is enabled on the interface using connectivity association ca1:

```
[edit security macsec connectivity-association ca1]
user@host# set mka key-server-priority 0
```

To change the key server priority to 255 to decrease the likelihood that the current device is selected as the key server in connectivity association ca1:

```
[edit security macsec connectivity-association ca1]
user@host# set mka key-server-priority 255
```

5. (Optional) Set the MKA transmit interval.

```
[edit security macsec connectivity-association connectivity-association-name]
user@host# set mka transmit-interval interval
```

The MKA transmit interval setting sets the frequency for how often the MKA protocol data unit (PDU) is sent to the directly connected device to maintain MACsec connectivity on the link. A lower interval increases bandwidth overhead on the link; a higher interval optimizes MKA protocol communication.

The default interval is 2000 ms. We recommend increasing the interval to 6000 ms in high-traffic load environments. The transmit interval settings must be identical on both ends of the link when MACsec using static CAK security mode is enabled.

Starting from Junos OS Release 17.4, for SRX340, SRX345, and SRX4600, the default MKA transmit interval is 10000 ms on HA links.

For instance, if you wanted to increase the MKA transmit interval to 6000 milliseconds when connectivity association ca1 is attached to an interface:

```
[edit security macsec connectivity-association ca1]
user@host# set mka transmit-interval 6000
```

6. (Optional) Disable MACsec encryption.

```
[edit security macsec connectivity-association connectivity-association-name]
user@host# set no-encryption
```

Encryption is enabled for all traffic entering or leaving the interface when MACsec is enabled using static CAK security mode, by default.
When encryption is disabled, traffic is forwarded across the Ethernet link in clear text. You are able to view unencrypted data in the Ethernet frame traversing the link when you are monitoring it. The MACsec header is still applied to the frame, however, and all MACsec data integrity checks are run on both ends of the link to ensure the traffic sent or received on the link has not been tampered with and does not represent a security threat.

7. (Optional) Set an offset for all packets traversing the link.

```
[edit security macsec connectivity-association connectivity-association-name]
user@host# set offset (0 | 30 | 50)
```

For instance, if you wanted to set the offset to 30 in the connectivity association named `ca1`:

```
[edit security macsec connectivity-association ca1]
user@host# set offset 30
```

The default offset is 0. All traffic in the connectivity association is encrypted when encryption is enabled and an offset is not set.

When the offset is set to 30, the IPv4 header and the TCP/UDP header are unencrypted while encrypting the rest of the traffic. When the offset is set to 50, the IPv6 header and the TCP/UDP header are unencrypted while encrypting the rest of the traffic.

You would typically forward traffic with the first 30 or 50 octets unencrypted if a feature needed to see the data in the octets to perform a function, but you otherwise prefer to encrypt the remaining data in the frames traversing the link. Load balancing features, in particular, typically need to see the IP and TCP/UDP headers in the first 30 or 50 octets to properly load balance traffic.

8. (Optional) Enable replay protection.

```
[edit security macsec connectivity-association connectivity-association-name]
user@host# set replay-protect replay-window-size number-of-packets
```

When MACsec is enabled on a link, an ID number is assigned to each packet on the MACsec-secured link.

When replay protection is enabled, the receiving interface checks the ID number of all packets that have traversed the MACsec-secured link. If a packet arrives out of sequence and the difference between the packet numbers exceeds the replay protection window size, the packet is dropped by the receiving interface. For instance, if the replay protection window size is set to five and a packet assigned the ID of 1006 arrives on the receiving link immediately after the packet assigned the ID of 1000, the packet that is assigned the ID of 1006 is dropped because it falls outside the parameters of the replay protection window.
Replay protection is especially useful for fighting man-in-the-middle attacks. A packet that is replayed by a man-in-the-middle attacker on the Ethernet link will arrive on the receiving link out of sequence, so replay protection helps ensure the replayed packet is dropped instead of forwarded through the network.

Replay protection should not be enabled in cases where packets are expected to arrive out of order. You can require that all packets arrive in order by setting the replay window size to 0.

To enable replay protection with a window size of five on connectivity association **ca1**:

```
[edit security macsec connectivity-association ca1]
user@host# set replay-protect replay-window-size 5
```

9. (Optional) Exclude a protocol from MACsec.

```
[edit security macsec connectivity-association connectivity-association-name]
user@host# set exclude-protocol protocol-name
```

For instance, if you did not want Link Level Discovery Protocol (LLDP) to be secured using MACsec:

```
[edit security macsec connectivity-association connectivity-association-name]
user@host# set exclude-protocol lldp
```

When this option is enabled, MACsec is disabled for all packets of the specified protocol—in this case, LLDP—that are sent or received on the link.

10. Assign the connectivity association to a chassis cluster control interface.

```
[edit security macsec]
user@host# set cluster-control-port port-no connectivity-association connectivity-association-name
```

Assigning the connectivity association to an interface is the final configuration step for enabling MACsec on an interface.

For instance, to assign connectivity association ca1 to interface ge-0/0/1 (For SRX340/SRX345):

```
[edit security macsec]
user@host# set cluster-control-port interfaces ge-0/0/1 connectivity-association ca1
```


```
[edit security macsec]
```
MACsec using static CAK security mode is not enabled until a connectivity association on the opposite end of the link is also configured, and contains preshared keys that match on both ends of the link.

### Configuring Static CAK on the Chassis Cluster Control Port

To establish a CA over a chassis cluster control link on two SRX345 devices:

1. Configure the MACsec security mode as `static-cak` for the connectivity association:

```
[edit security macsec]
user@host# set connectivity-association ca1 security-mode static-cak
```

2. Create the preshared key by configuring the connectivity association key name (CKN):

```
[edit security macsec]
user@host# set connectivity-association ca1 pre-shared-key ckn "MACSEC_KEY_NAME"
```

The CKN must contain 32 hexadecimal characters.

3. Create the pre-shared key by configuring the connectivity association key (CAK):

```
[edit security macsec]
user@host# set connectivity-association ca1 pre-shared-key cak "MACSEC_KEY"
```

The CAK must contain 64 hexadecimal characters.

4. Specify chassis cluster control ports for the connectivity association:

```
[edit security macsec]
user@host# set cluster-control-port 0 connectivity-association ca1
```

### Configuring Static CAK on the Chassis Cluster Fabric Port

To establish a connectivity association over a chassis cluster fabric link on two SRX345 devices:

1. Configure the MACsec security mode as `static-cak` for the connectivity association.
2. Create the preshared key by configuring the connectivity association key name (CKN).

   ```
 [edit security macsec]
 user@host# set connectivity-association ca2 pre-shared-key ckn "MACSEC_KEY_NAME"
   ```

   The CKN must contain 32 hexadecimal characters.

3. Create the preshared key by configuring the connectivity association key (CAK).

   ```
 [edit security macsec]
 user@host# set connectivity-association ca2 pre-shared-key cak "MACSEC_KEY"
   ```

   The CAK must contain 64 hexadecimal characters.

4. Specify a chassis cluster control ports to a connectivity association.

   ```
 [edit security macsec]
 user@host# set cluster-data-port ge-0/0/2 connectivity-association ca2
 user@host# set cluster-data-port ge-5/0/2 connectivity-association ca2
   ```

### Configuring Static CAK on the Control Port of SRX4600 Device in Chassis Cluster

Use this procedure to establish a CA over a chassis cluster control link on two SRX4600 devices.

1. Configure the MACsec security mode as **static-cak** for the connectivity association:

   ```
 [edit]
 user@host# set security macsec connectivity-association ca1 security-mode static-cak
   ```

2. Create the preshared key by configuring the connectivity association key name (CKN).

   ```
 [edit]
 user@host# set security macsec connectivity-association ca1 pre-shared-key ckn
 aaa
   ```

   The CKN must contain 32 hexadecimal characters.
3. Create the preshared key by configuring the connectivity association key (CAK).

```
[edit]
user@host# set security macsec connectivity-association ca1 pre-shared-key cak
 """9XX.XXXrXX8XX69X0X1yrevXXX-Xb24oXhXrvX8dXwXgoaXji.
 Xfz7-XYg4XJHqmf5Xn6Xpu1XXjqmX3n/Xtu0IhreX8XX"
```

The CAK must contain 64 hexadecimal characters.

4. Specify a chassis cluster control port for the connectivity association.

```
[edit]
user@host# set security macsec cluster-control-port 0 connectivity-association ca1
user@host# set security macsec cluster-control-port 1 connectivity-association ca1
```

### Verifying MACSEC Configuration

#### IN THIS SECTION

- Display the Status of Active MACsec Connections on the Device | 429
- Display MACsec Key Agreement (MKA) Session Information | 430
- Verifying That MACsec-Secured Traffic Is Traversing Through the Interface | 431
- Verifying Chassis Cluster Ports Are Secured with MACsec Configuration | 432

To confirm that the configuration provided in "Configuring Static CAK on the Control Port of SRX4600 Device in Chassis Cluster" on page 428 is working properly, perform these tasks:

**Display the Status of Active MACsec Connections on the Device**

**Purpose**

Verify that MACsec is operational on the chassis cluster setup.

**Action**

From the operational mode, enter the `show security macsec connections interface interface-name` command on one or both of the nodes of chassis cluster setup.

```
{primary:node0}[edit]

user@host# show security macsec connections
```
Interface name: em0  
CA name: ca1  
Cipher suite: GCM-AES-128 Encryption: on  
Key server offset: 0 Include SCI: no  
Replay protect: off Replay window: 0  
Outbound secure channels  
   SC Id: 02:00:00:01:01:04/1  
Outgoing packet number: 1  
Secure associations  
   AN: 3 Status: inuse Create time: 00:01:43  
Inbound secure channels  
   SC Id: 02:00:00:02:01:04/1  
Secure associations  
   AN: 3 Status: inuse Create time: 00:01:43

Meaning
The Interface name and CA name outputs show that the MACsec connectivity association is operational on the interface em0. The output does not appear when the connectivity association is not operational on the interface.

Display MACsec Key Agreement (MKA) Session Information

Purpose
Display MACsec Key Agreement (MKA) session information for all interfaces.

Action
From the operational mode, enter the show security mka sessions command.

user@host> show security mka sessions

Interface name: em0  
Member identifier: B51CXXX2678A7F5F6C12345  
CAK name: AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA  
Transmit interval: 10000(ms)  
Outbound SCI: 02:00:00:01:01:04/1  
Message number: 270 Key number: 8  
Key server: yes Key server priority: 16  
Latest SAK AN: 3 Latest SAK KI: B51C8XXX2678A7A5B6C54321/8  
Previous SAK AN: 0 Previous SAK KI: 000000000000000000000000/0  
Peer list  
   1. Member identifier: 0413427B38817XXXF054321 (live)
Meaning
The outputs show the status of MKA sessions.

Verifying That MACsec-Secured Traffic Is Traversing Through the Interface

Purpose
Verify that traffic traversing through the interface is MACsec-secured.

Action
From the operational mode, enter the `show security macsec statistics` command.

```
user@host> show security macsec statistics interface em0 detail
```

```
Interface name: em0
Secure Channel transmitted
 Encrypted packets: 2397305
 Encrypted bytes: 129922480
 Protected packets: 0
 Protected bytes: 0
Secure Association transmitted
 Encrypted packets: 2397305
 Protected packets: 0
Secure Channel received
 Accepted packets: 2395850
 Validated bytes: 0
 Decrypted bytes: 131715088
Secure Association received
 Accepted packets: 2395850
 Validated bytes: 0
 Decrypted bytes: 0
```

Meaning
The **Encrypted packets** line under the **Secure Channel transmitted** field are the values incremented each time a packet is sent from the interface that is secured and encrypted by MACsec.
The **Accepted packets** line under the **Secure Association received** field are the values incremented each time a packet that has passed the MACsec integrity check is received on the interface. The **Decrypted bytes** line under the **Secure Association received** output is incremented each time an encrypted packet is received and decrypted.

**Verifying Chassis Cluster Ports Are Secured with MACsec Configuration**

**Purpose**
Verify that MACsec is configured on chassis cluster ports.

**Action**
From operational mode, enter the `show chassis cluster interfaces` command.

```bash
user@host> show chassis cluster interfaces

Control link status: Up

Control interfaces:

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Monitored-Status</th>
<th>Internal-SA</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>em0</td>
<td>Up</td>
<td>Disabled</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Fabric link status: Up

Fabric interfaces:

<table>
<thead>
<tr>
<th>Name</th>
<th>Child-interface</th>
<th>Status</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>fab0</td>
<td>xe-1/1/6</td>
<td>Up / Up</td>
<td>Enabled</td>
</tr>
<tr>
<td>fab0</td>
<td>xe-8/1/6</td>
<td>Up / Up</td>
<td>Enabled</td>
</tr>
<tr>
<td>fab1</td>
<td>xe-1/1/6</td>
<td>Up / Up</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Redundant-ethernet Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>reth0</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>reth1</td>
<td>Up</td>
<td>2</td>
</tr>
<tr>
<td>reth2</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth3</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth4</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth5</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth6</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth7</td>
<td>Down</td>
<td>Not configured</td>
</tr>
</tbody>
</table>

Redundant-pseudo-interface Information:
Meaning

The **Security** line under the **Control interfaces** output for em0 interface shown as **Secured** means that the traffic sent from the em0 interface is secured and encrypted by MACsec.

You can also use the **show chassis cluster status** command to display the current status of the chassis cluster.

SEE ALSO

- **Understanding Media Access Control Security (MACsec)** | 417
- **macsec** | 535

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4R1</td>
<td>Starting in Junos OS Release 17.4R1, MACsec is supported on HA control and fabric ports of SRX4600 devices in chassis cluster mode.</td>
</tr>
<tr>
<td>15.1X49-D60</td>
<td>Starting in Junos OS Release 15.1X49-D60, Media Access Control Security (MACsec) is supported on control and fabric ports of SRX340 and SRX345 devices in chassis cluster mode.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- **SRX Series Chassis Cluster Configuration Overview** | 35
- **Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming** | 41
- **macsec** | 535
Understanding SCTP Behavior in Chassis Cluster

In a chassis cluster configuration mode, the SCTP configuration and the established SCTP association is synced with the peer device. The SCTP module supports both active-active and active-passive modes.

The established SCTP association sends a creation or deletion message to the peer whenever an association is created or deleted on the active device. The secondary device adds or deletes an association respectively upon receiving the message from the established SCTP association. SCTP module then registers the corresponding callback function to receive and handle this message. There is no continuous timer sync between the two associations.

SCTP module will register a cold start sync function when a secondary device joins the cluster or reboots. The SCTP cold start function is called to sync all SCTP associations with the peer devices at the same time.

After the switchover, the established SCTP associations will remain functioning, but the associations in the progress of establishment will be lost and the establishment procedure needs to be re-initiated. It is also possible that the associations in the progress of teardown miss the ack message and leaves unestablished SCTP associations in the firewall. These associations will be cleaned up when the timer expires (5 hours by default) due to no activity in the association.

- You should configure all policies for your required SCTP sessions.
 For example, suppose you have endpoints A and B. Endpoint A has one SCTP association with x number of IPs (IP_a1, IP_a2, IP_a3...IP_ax). Endpoint B has one SCTP association with y number of IPs (IP_b1, IP_b2, IP_b3...IP_by.) The policy on the security device should permit all possible x*y paths in both directions.
- When an SCTP association is removed, the related SCTP sessions still exist and time out by themselves.

Example: Encrypting Messages Between Two Nodes in a Chassis Cluster

This example provides you a procedure to enable encryption on security devices.

This procedure provides you step on how you can optionally configure the control-link to encrypt messages between two nodes in a chassis cluster. This configuration will ensure secure login by using configured internal IPsec security association (SA).

When the internal IPsec SA is configured, IPsec-based rlogin and remote command (rcmd) are enforced so that attackers cannot gain privileged access or observe traffic containing administrator commands and outputs.
You do not need to configure the internal IPsec SA on both nodes because the nodes are synchronized when the configuration is committed.

1. To enable control link encryption in chassis cluster, run the following commands:

 The only supported encryption algorithm is 3des-cbc and the key must be exactly 24 bytes long, otherwise the configuration will result in commit failure.

   ```
   edit security ipsec internal security-association
   root@srx-8# show | display set
   set security ipsec internal security-association manual encryption algorithm 3des-cbc
   set security ipsec internal security-association manual encryption ike-ha-link-encryption enable
   set security ipsec internal security-association manual encryption key ascii-text
     "$9$8gPx-b4aU.PQs2PQFnpu8X7dsgUHPT3.Pu1EhvMwYgJjq3n9CpBFntOREeKZGDj.fu01hcr"
   ```

2. Commit the configuration.

   ```
   [primary:node0] [edit] root@srx-8# commit
   warning: changes needs reboot to take effect
   node0: commit complete
   node1: commit complete
   ```

 After the settings have been configured correctly and committed, a reboot would be required for the feature to take effect.

3. View the configuration of control link encryption before reboot and after reboot.

 Before reboot, the status of this feature is disabled.

   ```
   show security internal-security-association
   ```

 node0:

 Internal SA Status : Disabled
 HA link encryption for IKE internal message status: Disabled
 node1:

 Internal SA Status : Disabled
 HA link encryption for IKE internal message status: Disabled
After reboot, to ensure that the encryption is active

 show security internal-security-association

{primary:node0}
root@srx-8> show security internal-security-association

node0:

Internal SA Status : Enabled
HA link encryption for IKE internal message status: Enabled

node1:

Internal SA Status : Enabled
HA link encryption for IKE internal message status: Enabled

RELATED DOCUMENTATION

internal (Security IPsec)
Upgrading or Disabling a Chassis Cluster

Upgrading Individual Devices in a Chassis Cluster Separately | 438
Upgrading Devices in a Chassis Cluster Using ICU | 438
Upgrading a Chassis Cluster Using In-Service Software Upgrade | 443
Disabling a Chassis Cluster | 461
Upgrading Individual Devices in a Chassis Cluster Separately

Devices in a chassis cluster can be upgraded separately one at a time; some models allow one device after the other to be upgraded using failover and an in-service software upgrade (ISSU) to reduce the operational impact of the upgrade.

To upgrade each device in a chassis cluster separately:

During this type of chassis cluster upgrade, a service disruption of about 3 to 5 minutes occurs.

1. Load the new image file on node 0.

2. Perform the image upgrade without rebooting the node by entering:

   ```
   user@host> request system software add image_name
   ```

3. Load the new image file on node 1.

4. Repeat Step 2.

5. Reboot both nodes simultaneously.

RELATED DOCUMENTATION

- Upgrading Devices in a Chassis Cluster Using ICU | 438
- Upgrading a Chassis Cluster Using In-Service Software Upgrade | 443

Upgrading Devices in a Chassis Cluster Using ICU

IN THIS SECTION

- Upgrading Both Devices in a Chassis Cluster Using ICU | 439
- Upgrading ICU Using a Build Available Locally on a Primary Node in a Chassis Cluster | 440
The chassis cluster ICU feature allows both devices in a cluster to be upgraded from supported Junos OS versions using a single command. For more information, see the following topics:

Upgrading Both Devices in a Chassis Cluster Using ICU

SRX Series devices in a chassis cluster can be upgraded with a minimal service disruption using In-Band Cluster Upgrade (ICU). The chassis cluster ICU feature allows both devices in a cluster to be upgraded from supported Junos OS versions using a single command. You can enable this feature by executing the `request system software in-service-upgrade image_name` command on the primary node. This command upgrades the Junos OS and reboots both the secondary node and the primary node in turn. During the ICU process, traffic outage is minimal; however, cold synchronization is not provided between the two nodes.

For SRX300, SRX320, SRX340, SRX345, and SRX380 devices, the devices in a chassis cluster can be upgraded with a minimal service disruption of approximately 30 seconds using ICU with the no-sync option. The chassis cluster ICU feature allows both devices in a cluster to be upgraded from supported Junos OS versions.

You must use the in-band cluster upgrade (ICU) commands on SRX1500 device to upgrade following Junos OS Releases:

- Junos OS Release 15.1X49-D50 to Junos OS Release 15.1X49-D100
- Junos OS Release 15.1X49-D60 to Junos OS Release 15.1X49-D110
- Junos OS Release 15.1X49-D50 to Junos OS Release 15.1X49-D120

For SRX300, SRX320, SRX340, SRX345, and SRX380 devices, the impact on traffic is as follows:

- Drop in traffic (30 seconds approximately)
- Loss of security flow sessions

Before you begin, note the following:

- ICU is available with the no-sync option only for SRX300, SRX320, SRX340, SRX345, and SRX380 devices.
• Before starting ICU, you should ensure that sufficient disk space is available. See “Upgrading ICU Using a Build Available Locally on a Primary Node in a Chassis Cluster” on page 440 and “Upgrading ICU Using a Build Available on an FTP Server” on page 441.

• For SRX300, SRX320, SRX340, SRX345, and SRX380 devices, this feature cannot be used to downgrade to a build earlier than Junos OS 11.2 R2.

 For SRX1500 devices, this feature cannot be used to downgrade to a build earlier than Junos OS 15.1X49-D50.

The upgrade is initiated with the Junos OS build locally available on the primary node of the device or on an FTP server.

• The primary node, RG0, changes to the secondary node after an ICU upgrade.

• During ICU, the chassis cluster redundancy groups are failed over to the primary node to change the cluster to active/passive mode.

• ICU states can be checked from the syslog or with the console/terminal logs.

• ICU requires that both nodes be running a dual-root partitioning scheme with one exception being the SRX1500. ICU will not continue if it fails to detect dual-root partitioning on either of the nodes. Requirement of the dual-root partitioning is applicable only for SRX300, SRX320, SRX340, SRX345, and SRX380 devices.

 Dual-root partitioning is not supported on SRX1500 devices. SRX1500 uses solid-state drive (SSD) as secondary storage.

Upgrading ICU Using a Build Available Locally on a Primary Node in a Chassis Cluster

Ensure that sufficient disk space is available for the Junos OS package in the `/var/tmp` location in the secondary node of the cluster.

To upgrade ICU using a build locally available on the primary node of a cluster:

1. Copy the Junos OS package build to the primary node at any location, or mount a network file server folder containing the Junos OS build.

2. Start ICU by entering the following command:

   ```
   user@host> request system software in-service-upgrade image_name no-sync
   ```

 (for SRX300, SRX320, SRX340, SRX345, and SRX380 devices)

   ```
   user@host> request system software in-service-upgrade image_name
   ```

 (for SRX1500 devices prior to Junos OS Release 15.1X49-D70)
Upgrading ICU Using a Build Available on an FTP Server

Ensure that sufficient disk space is available for the Junos OS package in the /var/tmp location in both the primary and the secondary nodes of the cluster.

To upgrade ICU using a build available on an FTP server:

1. Place the Junos OS build on an FTP server.

2. (SRX300, SRX320, SRX340, SRX345, and SRX380 only) Start ICU by entering the following command:

   ```
   user@root> request system software in-service-upgrade <ftp url for junos image> no-sync
   
   user@root> request system software in-service-upgrade
   ftp://<user>:<password>@<server>:/<path> no-sync
   ```

 This command upgrades the Junos OS and reboots both nodes in turn.

3. (SRX1500 only prior to Junos OS Release 15.1X49-D70) Start ICU by entering the following command:

   ```
   user@root> request system software in-service-upgrade <ftp url for junos image>
   
   user@root> request system software in-service-upgrade
   ftp://<user>:<password>@<server>:/<path>:
   ```

 This command upgrades the Junos OS and reboots both nodes in turn.

 The upgrade process displays the following warning message to reboot the system:

 WARNING: A reboot is required to load this software correctly. Use the `request system reboot` command when software installation is complete.

 This warning message can be ignored because the ICU process automatically reboots both the nodes.

Abort an Upgrade in a Chassis Cluster During an ICU

You can abort an ICU at any time by issuing the following command on the primary node:

```
request system software abort in-service-upgrade
```

Issuing an **abort** command during or after the secondary node reboots puts the cluster in an inconsistent state. The secondary node boots up running the new Junos OS build, while the primary continues to run the older Junos OS build.
To recover from the chassis cluster inconsistent state, perform the following actions sequentially on the secondary node:

1. Issue an abort command:

 request system software abort in-service-upgrade

2. Roll back the Junos OS build by entering the following command:

 request system software rollback node < node-id >

3. Reboot the secondary node immediately by using the following command:

 request system reboot

You must execute the above steps sequentially to complete the recovery process and avoid cluster instability.

Table 33 on page 442 lists the options and their descriptions for the request system software in-service-upgrade command.

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>no-sync</td>
<td>Disables the flow state from syncing up when the old secondary node has booted with a new Junos OS image. This option is not available on SRX1500 devices.</td>
</tr>
<tr>
<td>no-tcp-syn-check</td>
<td>Creates a window wherein the TCP SYN check for the incoming packets will be disabled. The default value for the window is 7200 seconds (2 hours). This option is not available on SRX1500 devices.</td>
</tr>
<tr>
<td>no-validate</td>
<td>Disables the validation of the configuration at the time of the installation. The system behavior is similar to software add.</td>
</tr>
<tr>
<td>unlink</td>
<td>Removes the package from the local media after installation.</td>
</tr>
</tbody>
</table>

- During ICU, if an abort command is executed, ICU will abort only after the current operation finishes. This is required to avoid any inconsistency with the devices.

 For example, if formatting and upgrade of a node is in progress, ICU aborts after this operation finishes.

- After an abort, ICU will try to roll back the build on the nodes if the upgrading nodes step was completed.
Upgrading a Chassis Cluster Using In-Service Software Upgrade

In-service software upgrade (ISSU) enables a software upgrade from one Junos OS version to a later Junos OS version with minimal downtime. For more information, see the following topics:

Understanding ISSU for a Chassis Cluster

In-service software upgrade (ISSU) enables a software upgrade from one Junos OS version to a later Junos OS version with little or no downtime. ISSU is performed when the devices are operating in chassis cluster mode only.

The chassis cluster ISSU feature enables both devices in a cluster to be upgraded from supported Junos OS versions with a minimal disruption in traffic and without a disruption in service.

Starting with Junos OS Release 15.1X49-D80, SRX4100 and SRX4200 devices support ISSU.

Starting with Junos OS Release 15.1X49-D70, SRX1500 devices support ISSU.
On SRX1500, SRX4100, and SRX4200 devices, ISSU is not supported for upgrading to 17.4 releases from previous Junos OS releases. ISSU is supported for upgrading from Junos OS 17.4 to successive 17.4 releases.

On SRX5400, SRX5600 and SRX5800 devices, ISSU is not supported for upgrading to 17.3 and higher releases from earlier Junos OS releases. ISSU is supported for upgrading from Junos OS 17.3 to Junos 17.4 releases.

SRX300 Series devices and vSRX do not support ISSU.

You can use the in-band cluster upgrade (ICU) commands on SRX4100 and SRX4200 devices to upgrade following Junos OS Releases:

- Junos OS Release 15.1X49-D65 to Junos OS Release 15.1X49-D70
- Junos OS Release 15.1X49-D70 to Junos OS Release 15.1X49-D80.

You must use the in-band cluster upgrade (ICU) commands on SRX1500 device to upgrade following Junos OS Releases:

- Junos OS Release 15.1X49-D50 to Junos OS Release 15.1X49-D60
- Junos OS Release 15.1X49-D60 to Junos OS Release 15.1X49-D70
- Junos OS Release 15.1X49-D50 to Junos OS Release 15.1X49-D70

ISSU provides the following benefits:

- Eliminates network downtime during software image upgrades
- Reduces operating costs, while delivering higher service levels
- Allows fast implementation of new features

ISSU has the following limitations:

- ISSU is available only for Junos OS Release 10.4R4 or later.
- ISSU does not support software downgrades.
- If you upgrade from a Junos OS version that supports only IPv4 to a version that supports both IPv4 and IPv6, the IPv4 traffic continue to work during the upgrade process. If you upgrade from a Junos OS version that supports both IPv4 and IPv6 to a version that supports both IPv4 and IPv6, both the IPv4 and IPv6 traffic continue to work during the upgrade process. Junos OS Release 10.2 and later releases support flow-based processing for IPv6 traffic.
- During an ISSU, you cannot bring any PICs online. You cannot perform operations such as commit, restart, or halt.
- During an ISSU, operations like fabric monitoring, control link recovery, and RGX preempt are suspended.
- During an ISSU, you cannot commit any configurations.

For details about ISSU support status, see knowledge base article KB17946.
The following process occurs during an ISSU for devices in a chassis cluster. The sequences given below are applicable when RG-0 is node 0 (primary node). Note that you must initiate an ISSU from RG-0 primary. If you initiate the upgrade on node 1 (RG-0 secondary), an error message is displayed.

1. At the beginning of a chassis cluster ISSU, the system automatically fails over all RG-1+ redundancy groups that are not primary on the node from which the ISSU is initiated. This action ensures that all the redundancy groups are active on only the RG-0 primary node.

The automatic failover of all RG-1+ redundancy groups is available from Junos OS release 12.1 or later. If you are using Junos OS release 11.4 or earlier, before starting the ISSU, ensure that all the redundancy groups are all active on only the RG-0 primary node.

After the system fails over all RG-1+ redundancy groups, it sets the manual failover bit and changes all RG-1+ primary node priorities to 255, regardless of whether the redundancy group failed over to the RG-0 primary node.

2. The primary node (node 0) validates the device configuration to ensure that it can be committed using the new software version. Checks are made for disk space availability for the /var file system on both nodes, unsupported configurations, and unsupported Physical Interface Cards (PICs).

If the disk space available on either of the Routing Engines is insufficient, the ISSU process fails and returns an error message. However, unsupported PICs do not prevent the ISSU. The software issues a warning to indicate that these PICs will restart during the upgrade. Similarly, an unsupported protocol configuration does not prevent the ISSU. However, the software issues a warning that packet loss might occur during the protocol upgrade.

3. When the validation succeeds, the kernel state synchronization daemon (ksyncd) synchronizes the kernel on the secondary node (node 1) with the node 0.

4. Node 1 is upgraded with the new software image. Before being upgraded, the node 1 gets the configuration file from node 0 and validates the configuration to ensure that it can be committed using the new software version. After being upgraded, it is resynchronized with node 0.

5. The chassis cluster process (chassisd) on the node 0 prepares other software processes for the ISSU. When all the processes are ready, chassisd sends a message to the PICs installed in the device.

6. The Packet Forwarding Engine on each Flexible PIC Concentrator (FPC) saves its state and downloads the new software image from node 1. Next, each Packet Forwarding Engine sends a message (unified-ISSU ready) to the chassisd.

7. After receiving the message (unified-ISSU ready) from a Packet Forwarding Engine, the chassisd sends a reboot message to the FPC on which the Packet Forwarding Engine resides. The FPC reboots with the new software image. After the FPC is rebooted, the Packet Forwarding Engine restores the FPC state and a high-speed internal link is established with node 1 running the new software. The chassisd is also reestablished with node 0.

8. After all Packet Forwarding Engines have sent a ready message using the chassisd on node 0, other software processes are prepared for a node switchover. The system is ready for a switchover at this point.
9. Node switchover occurs and node 1 becomes the new primary node (hitherto secondary node 1).
10. The new secondary node (hitherto primary node 0) is now upgraded to the new software image.

When both nodes are successfully upgraded, the ISSU is complete.

When upgrading a version cluster that does not support encryption to a version that supports encryption, upgrade the first node to the new version. Without the encryption configured and enabled, two nodes with different versions can still communicate with each other and service is not broken. After upgrading the first node, upgrade the second node to the new version. Users can decide whether to turn on the encryption feature after completing the upgrade. Encryption must be deactivated before downgrading to a version that does not support encryption. This ensures that communication between an encryption-enabled version node and a downgraded node does not break, because both are no longer encrypted.

ISSU System Requirements

You can use ISSU to upgrade from an ISSU-capable software release to a later release.

To perform an ISSU, your device must be running a Junos OS release that supports ISSU for the specific platform. See [Table 34 on page 446](#) for platform support.

<table>
<thead>
<tr>
<th>Device</th>
<th>Junos OS Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX5800</td>
<td>10.4R4 or later</td>
</tr>
<tr>
<td>SRX5600</td>
<td>10.4R4 or later</td>
</tr>
<tr>
<td>SRX5400</td>
<td>12.1X46-D20 or later</td>
</tr>
<tr>
<td>SRX1500</td>
<td>15.1X49-D70 or later</td>
</tr>
<tr>
<td>SRX4100</td>
<td>15.1X49-D80 or later</td>
</tr>
<tr>
<td>SRX4200</td>
<td>15.1X49-D80 or later</td>
</tr>
<tr>
<td>SRX4600</td>
<td>17.4R1 or later</td>
</tr>
</tbody>
</table>

For additional details on ISSU support and limitations, see [ISSU/ICU Upgrade Limitations on SRX Series Devices](#).
Note the following limitations related to an ISSU:

- The ISSU process is aborted if the Junos OS version specified for installation is a version earlier than the one currently running on the device.
- The ISSU process is aborted if the specified upgrade conflicts with the current configuration, the components supported, and so forth.
- ISSU does not support the extension application packages developed using the Junos OS SDK.
- ISSU does not support version downgrading on all supported SRX Series devices.
- ISSU occasionally fails under heavy CPU load.

To downgrade from an ISSU-capable release to an earlier release (ISSU-capable or not), use the `request system software add` command. Unlike an upgrade using the ISSU process, a downgrade using the `request system software add` command might cause network disruptions and loss of data.

We strongly recommend that you perform ISSU under the following conditions:

- When both the primary and secondary nodes are healthy
- During system maintenance period
- During the lowest possible traffic period
- When the Routing Engine CPU usage is less than 40 percent

In cases where ISSU is not supported or recommended, while still downtime during the system upgrade must be minimized, the minimal downtime procedure can be used, see knowledge base article KB17947.

Upgrading Both Devices in a Chassis Cluster Using ISSU

The chassis cluster ISSU feature enables both devices in a cluster to be upgraded from supported Junos OS versions with a traffic impact similar to that of redundancy group failovers.

Before you begin the ISSU for upgrading both the devices, note the following guidelines:

- Ensure the following ISSU pre-check requirements are met:
 - All redundancy groups priority is greater than 0
 - All redundancy groups are either primary or secondary in state
 - There exists enough (double the image size) space available in the `/var/tmp`
 - Usage of CPU is under 80% within 5 seconds period
If the pre-check requirements are not met, ISSU will abort at the beginning.

- Back up the software using the request system snapshot command on each Routing Engine to back up the system software to the device's hard disk. The request system snapshot command is not supported on SRX1500, SRX4100 and SRX4200 platforms.

- If you are using Junos OS Release 11.4 or earlier, before starting the ISSU, set the failover for all redundancy groups so that they are all active on only one node (primary). See “Initiating a Chassis Cluster Manual Redundancy Group Failover” on page 243.

 If you are using Junos OS Release 12.1 or later, Junos OS automatically fails over all RGs to the RG0 primary.

- We recommend that you enable graceful restart for routing protocols before you start an ISSU.

On all supported SRX Series devices, the first recommended ISSU from release is Junos OS Release 10.4R4.

Starting with Junos OS Release 15.1X49-D70, SRX1500 devices support ISSU.

Starting with Junos OS Release 15.1X49-D80, SRX4100 and SRX4200 devices support ISSU.

Starting with Junos OS Release 17.4R1, SRX4600 devices support ISSU.

To perform an ISSU from the CLI on Routing Engine2:

1. Download the software package from the Juniper Networks Support website:
 https://www.juniper.net/support/downloads/

2. Copy the package on primary node of the cluster. We recommend that you copy the package to the/var/tmp directory, which is a large file system on the hard disk. Note that the node from where you initiate the ISSU must have the software image.

 user@host> file copy ftp://username:prompt@ftp.hostname.net/filename/var/tmp/filename

3. Verify the current software version running on both nodes by issuing the show version command on the primary node.

4. Start the ISSU from the node that is primary for all the redundancy groups by entering the following command:

 user@host> request system software in-service-upgrade image-name-with-full-path

 For SRX1500, SRX4100, and SRX4200 devices, you can optionally remove the original image file by including unlink in the command.

 user@host> request system software in-service-upgrade image-name-with-full-path unlink

 Wait for both nodes to complete the upgrade (After which you are logged out of the device).
5. Wait a few minutes, and then log in to the device again. Verify by using the `show version` command that both devices in the cluster are running the new Junos OS release.

6. Verify that all policies, zones, redundancy groups, and other real-time objects (RTOs) return to their correct states.

7. Make node 0 the primary node again by issuing the `request chassis cluster failover node node-number redundancy-group group-number` command.

If you want redundancy groups to automatically return to node 0 as the primary after an in-service software upgrade (ISSU), you must set the redundancy group priority such that node 0 is primary and enable the `preempt` option. Note that this method works for all redundancy groups except redundancy group 0. You must manually set the failover for redundancy group 0.

To set the redundancy group priority and enable the `preempt` option, see "Example: Configuring Chassis Cluster Redundancy Groups" on page 95.

To manually set the failover for a redundancy group, see "Initiating a Chassis Cluster Manual Redundancy Group Failover" on page 243.

During the upgrade, both devices might experience redundancy group failovers, but traffic is not disrupted. Each device validates the package and checks version compatibility before beginning the upgrade. If the system finds that the new package version is not compatible with the currently installed version, the device refuses the upgrade or prompts you to take corrective action. Sometimes a single feature is not compatible, in which case, the upgrade software prompts you to either abort the upgrade or turn off the feature before beginning the upgrade.

If you want to operate the SRX Series device back as a standalone device or to remove a node from a chassis cluster, ensure that you have aborted the ISSU procedure on both the nodes (in case ISSU procedure is initiated)

To start ISSU process on Routing Engine3 for SRX 5K devices:

1. Run the following command to start ISSU:

```
   user@host> request vmhost software in-service-upgrade image-name-with-full-path
```

SEE ALSO

- `request vmhost software in-service-upgrade`
- In-Service Hardware Upgrade for SRX5K-RE-1800X4 and SRX5K-SCBE in a Chassis Cluster
Rolling Back Devices in a Chassis Cluster After an ISSU

If an ISSU fails to complete and only one device in the cluster is upgraded, you can roll back to the previous configuration on the upgraded device alone by issuing one of the following commands on the upgraded device:

- request chassis cluster in-service-upgrade abort
- request system software rollback node node-id reboot
- request system reboot

Enabling an Automatic Chassis Cluster Node Failback After an ISSU

If you want redundancy groups to automatically return to node 0 as the primary after the an in-service software upgrade (ISSU), you must set the redundancy group priority such that node 0 is primary and enable the preempt option. Note that this method works for all redundancy groups except redundancy group 0. You must manually set the failover for a redundancy group 0. To set the redundancy group priority and enable the preempt option, see “Example: Configuring Chassis Cluster Redundancy Groups” on page 95. To manually set the failover for a redundancy group, see “Initiating a Chassis Cluster Manual Redundancy Group Failover” on page 243.

To upgrade node 0 and make it available in the chassis cluster, manually reboot node 0. Node 0 does not reboot automatically.

Understanding Log Error Messages for Troubleshooting ISSU-Related Problems
The following problems might occur during an ISSU upgrade. You can identify the errors by using the details in the logs. For detailed information about specific system log messages, see System Log Explorer.

Chassisd Process Errors

Problem
Description: Errors related to chassisd.

Solution
Use the error messages to understand the issues related to chassisd.

When ISSU starts, a request is sent to chassisd to check whether there are any problems related to the ISSU from a chassis perspective. If there is a problem, a log message is created.

Understanding Common Error Handling for ISSU

Problem
Description: You might encounter some problems in the course of an ISSU. This section provides details on how to handle them.

Solution
Any errors encountered during an ISSU result in the creation of log messages, and ISSU continues to function without impact to traffic. If reverting to previous versions is required, the event is either logged or the ISSU is halted, so as not to create any mismatched versions on both nodes of the chassis cluster. Table 35 on page 451 provides some of the common error conditions and the workarounds for them. The sample messages used in the Table 35 on page 451 are from the SRX1500 device and are also applicable to all supported SRX Series devices.

Table 35: ISSU-Related Errors and Solutions

<table>
<thead>
<tr>
<th>Error Conditions</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attempt to initiate an ISSU when previous instance of an ISSU is already in progress</td>
<td>The following message is displayed:</td>
</tr>
<tr>
<td></td>
<td>warning: ISSU in progress</td>
</tr>
<tr>
<td></td>
<td>You can abort the current ISSU process, and initiate the ISSU again using the request</td>
</tr>
<tr>
<td></td>
<td>chassis cluster in-service-upgrade abort command.</td>
</tr>
<tr>
<td>Error Conditions</td>
<td>Solutions</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Reboot failure on the secondary</td>
<td>No service downtime occurs, because the primary node continues to provide required services. Detailed console messages are displayed requesting that you manually clear existing ISSU states and restore the chassis cluster.</td>
</tr>
<tr>
<td>node</td>
<td>error: [Oct 6 12:30:16]: Reboot secondary node failed (error-code: 4.1)</td>
</tr>
<tr>
<td></td>
<td>error: [Oct 6 12:30:16]: ISSU Aborted! Backup node maybe in inconsistent state, Please restore backup node</td>
</tr>
<tr>
<td></td>
<td>[Oct 6 12:30:16]: ISSU aborted. But, both nodes are in ISSU window.</td>
</tr>
<tr>
<td></td>
<td>Please do the following:</td>
</tr>
<tr>
<td></td>
<td>1. Rollback the node with the newer image using rollback command</td>
</tr>
<tr>
<td></td>
<td>Note: use the 'node' option in the rollback command otherwise, images on both nodes will be rolled back</td>
</tr>
<tr>
<td></td>
<td>2. Make sure that both nodes (will) have the same image</td>
</tr>
<tr>
<td></td>
<td>3. Ensure the node with older image is primary for all RGs</td>
</tr>
<tr>
<td></td>
<td>4. Abort ISSU on both nodes</td>
</tr>
<tr>
<td></td>
<td>5. Reboot the rolled back node</td>
</tr>
<tr>
<td></td>
<td>Starting with Junos OS Release 17.4R1, the hold timer for the initial reboot of the secondary node during the ISSU process is extended from 15 minutes (900 seconds) to 45 minutes (2700 seconds) in chassis clusters on SRX1500, SRX4100, SRX4200, and SRX4600 devices.</td>
</tr>
</tbody>
</table>
Table 35: ISSU-Related Errors and Solutions (continued)

<table>
<thead>
<tr>
<th>Error Conditions</th>
<th>Solutions</th>
</tr>
</thead>
</table>
| Secondary node failed to complete the cold synchronization | The primary node times out if the secondary node fails to complete the cold synchronization. Detailed console messages are displayed that you manually clear existing ISSU states and restore the chassis cluster. No service downtime occurs in this scenario.

[Oct 3 14:00:46]: timeout waiting for secondary node node1 to sync(error-code: 6.1)
 Chassis control process started, pid 36707

 error: [Oct 3 14:00:46]: ISSU Aborted! Backup node has been upgraded, Please restore backup node

[Oct 3 14:00:46]: ISSU aborted. But, both nodes are in ISSU window.
 Please do the following:
 1. Rollback the node with the newer image using rollback command
 Note: use the 'node' option in the rollback command otherwise, images on both nodes will be rolled back
 2. Make sure that both nodes (will) have the same image
 3. Ensure the node with older image is primary for all RGs

 4. Abort ISSU on both nodes
 5. Reboot the rolled back node |
Table 35: ISSU-Related Errors and Solutions (continued)

<table>
<thead>
<tr>
<th>Error Conditions</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failover of newly upgraded secondary</td>
<td>No service downtime occurs, because the primary node continues to provide required services. Detailed console messages are displayed requesting that you manually clear existing ISSU states and restore the chassis cluster.</td>
</tr>
<tr>
<td></td>
<td>[Aug 27 15:28:17]: Failing over all redundancy-groups to node0</td>
</tr>
<tr>
<td></td>
<td>ISSU: Preparing for Switchover</td>
</tr>
<tr>
<td></td>
<td>error: remote rgl priority zero, abort failover.</td>
</tr>
<tr>
<td></td>
<td>[Aug 27 15:28:17]: failover all RGs to node node0 failed</td>
</tr>
<tr>
<td></td>
<td>(error-code: 7.1)</td>
</tr>
<tr>
<td></td>
<td>error: [Aug 27 15:28:17]: ISSU Aborted!</td>
</tr>
<tr>
<td></td>
<td>[Aug 27 15:28:17]: ISSU aborted. But, both nodes are in ISSU window.</td>
</tr>
<tr>
<td></td>
<td>Please do the following:</td>
</tr>
<tr>
<td></td>
<td>1. Rollback the node with the newer image using rollback command</td>
</tr>
<tr>
<td></td>
<td>Note: use the 'node' option in the rollback command</td>
</tr>
<tr>
<td></td>
<td>otherwise, images on both nodes will be rolled back</td>
</tr>
<tr>
<td></td>
<td>2. Make sure that both nodes (will) have the same image</td>
</tr>
<tr>
<td></td>
<td>3. Ensure the node with older image is primary for all RGs</td>
</tr>
<tr>
<td></td>
<td>4. Abort ISSU on both nodes</td>
</tr>
<tr>
<td></td>
<td>5. Reboot the rolled back node</td>
</tr>
<tr>
<td></td>
<td>{primary:node1}</td>
</tr>
<tr>
<td>Upgrade failure on primary</td>
<td>No service downtime occurs, because the secondary node fails over as primary and continues to provide required services.</td>
</tr>
<tr>
<td>Reboot failure on primary node</td>
<td>Before the reboot of the primary node, devices being out of the ISSU setup, no ISSU-related error messages are displayed. The following reboot error message is displayed if any other failure is detected:</td>
</tr>
<tr>
<td></td>
<td>Reboot failure on Before the reboot of primary node, devices will be out of ISSU setup and no primary node error messages will be displayed.</td>
</tr>
<tr>
<td></td>
<td>Primary node</td>
</tr>
</tbody>
</table>

ISSU Support-Related Errors

Problem

Description: Installation failure occurs because of unsupported software and unsupported feature configuration.
Solution

Use the following error messages to understand the compatibility-related problems:

WARNING: Current configuration not compatible with /var/tmp/junos-srx5000-11.4X3.2-domestic.tgz
Exiting in-service-upgrade window
Exiting in-service-upgrade window

Initial Validation Checks Failure

Problem
Description: The initial validation checks fail.

Solution
The validation checks fail if the image is not present or if the image file is corrupt. The following error messages are displayed when initial validation checks fail when the image is not present and the ISSU is aborted:

When Image Is Not Present

user@host> ...0120914_srx_12q1_major2.2-539764-domestic.tgz reboot
Chassis ISSU Started
Chassis ISSU Started
ISSU: Validating Image
Initiating in-service-upgrade
Initiating in-service-upgrade
Fetching package...
error: File does not exist:
/var/tmp/junos-srx1k3k-12.1I20120914_srx_12q1_major2.2-539764-domestic.tgz
error: Couldn't retrieve package
/var/tmp/junos-srx1k3k-12.1I20120914_srx_12q1_major2.2-539764-domestic.tgz
Exiting in-service-upgrade window
Exiting in-service-upgrade window
Chassis ISSU Aborted
Chassis ISSU Aborted
Chassis ISSU Aborted
ISSU: IDLE
ISSU aborted; exiting ISSU window.

When Image File Is Corrupted

If the image file is corrupted, the following output displays:
user@host> ...junos-srx1k3k-11.4X9-domestic.tgz_1 reboot
Chassis ISSU Started
node1:

Chassis ISSU Started
ISSU: Validating Image
Initiating in-service-upgrade
node1:

Initiating in-service-upgrade
ERROR: Cannot use /var/tmp/junos-srx1k3k-11.4X9-domestic.tgz_1:
gzip: stdin: invalid compressed data--format violated
tar: Child returned status 1
tar: Error exit delayed from previous errors
ERROR: It may have been corrupted during download.
ERROR: Please try again, making sure to use a binary transfer.
Exiting in-service-upgrade window
node1:

Exiting in-service-upgrade window
Chassis ISSU Aborted
Chassis ISSU Aborted
node1:

Chassis ISSU Aborted
ISSU: IDLE
ISSU aborted; exiting ISSU window.
{primary:node0}

The primary node validates the device configuration to ensure that it can be committed using the new software version. If anything goes wrong, the ISSU aborts and error messages are displayed.

Installation-Related Errors

Problem

Description: The install image file does not exist or the remote site is inaccessible.

Solution
Use the following error messages to understand the installation-related problems:

```
error: File does not exist: /var/tmp/junos-srx5000-11.4X3.2-domest
error: Couldn't retrieve package /var/tmp/junos-srx5000-11.4X3.2-domest
```

ISSU downloads the install image as specified in the ISSU command as an argument. The image file can be a local file or located at a remote site. If the file does not exist or the remote site is inaccessible, an error is reported.

Redundancy Group Failover Errors

Problem

Description: Problem with automatic redundancy group (RG) failure.

Solution

Use the following error messages to understand the problem:

```
failover all RG 1+ groups to node 0
error: Command failed. None of the redundancy-groups has been failed over.
    Some redundancy-groups on node1 are already in manual failover mode.
    Please execute 'failover reset all' first..
```

Kernel State Synchronization Errors

Problem

Description: Errors related to ksysncd.

Solution

Use the following error messages to understand the issues related to ksysncd:

```
Failed to get kernel-replication error information from Standby Routing Engine.

mgd_slave_peer_has_errors() returns error at line 4414 in mgd_package_issu.
```

ISSU checks whether there are any ksysncd errors on the secondary node (node 1) and displays the error message if there are any problems and aborts the upgrade.
Managing Chassis Cluster ISSU-Related Problems

IN THIS SECTION
- Viewing ISSU Progress | 458
- Stopping ISSU Process if it Halts During an Upgrade | 459
- Recovering the Node in Case of a Failed ISSU | 459

This topic includes the following sections:

Viewing ISSU Progress

Problem
Description: Rather than wait for an ISSU failure, you can display the progress of the ISSU as it occurs, noting any message indicating that the ISSU was unsuccessful. Providing such messages to JTAC can help with resolving the issue.

Solution
After starting an ISSU, issue the `show chassis cluster information issu` command. Output similar to the following is displayed indicating the progress of the ISSU for all Services Processing Units (SPUs).

Note: Any management session to secondary node will be disconnected.
Shutdown NOW!
[pid 2480]
ISSU: Backup RE Prepare Done
Waiting for node1 to reboot.
Current time: Tue Apr 22 14:37:32 2014
Max. time to complete: 15min 0sec.
Note: For real time ISSU status, open a new management session and run
<show chassis cluster information issu> for detail information
node1 booted up.
Waiting for node1 to become secondary
Current time: Tue Apr 22 14:40:32 2014
Max. time to complete: 60min 0sec.
Note: For real time ISSU status, open a new management session and run
<show chassis cluster information issu> for detail information
node1 became secondary.
Waiting for node1 to be ready for failover
ISSU: Preparing Daemons

Current time: Tue Apr 22 14:41:27 2014
Max. time to complete: 60min 0sec.
Note: For real time ISSU status, open a new management session and run <show chassis cluster information issu> for detail information
Secondary node1 ready for failover.

Installing package
'/var/tmp/junos-srx5000-12.1I20140421_srx_12q1_x47.0-643920-domestic.tgz' ...
Verified SHA1 checksum of issu-indb.tgz
Verified junos-boot-srx5000-12.1I20140421_srx_12q1_x47.0-643920.tgz signed by PackageDevelopment_12_1_0
Verified junos-srx5000-12.1I20140421_srx_12q1_x47.0-643920-domestic signed by PackageDevelopment_12_1_0

Stopping ISSU Process if it Halts During an Upgrade

Problem
Description: The ISSU process halts in the middle of an upgrade.

Solution
If the ISSU fails to complete and only one device in the cluster is upgraded, you can roll back to the previous configuration on the upgraded device alone by issuing one of the following commands on the upgraded device:

- request chassis cluster in-service-upgrade abort to abort the ISSU on both nodes.
- request system software rollback node node-id reboot to roll back the image.
- request system reboot to reboot the rolled back node.

Recovering the Node in Case of a Failed ISSU

Problem
Description: The ISSU procedure stops progressing.

Solution
Open a new session on the primary device and issue the request chassis cluster in-service-upgrade abort command.

This step aborts an in-progress ISSU. This command must be issued from a session other than the one on which you issued the request system in-service-upgrade command that launched the ISSU. If the node is being upgraded, this command cancels the upgrade. The command is also helpful in recovering the node in case of a failed ISSU.
When an ISSU encounters an unexpected situation that necessitates an abort, the system message provides you with detailed information about when and why the upgrade stopped along with recommendations for the next steps to take.

For example, the following message is issued when a node fails to become RG-O secondary when it boots up:

```
Rebooting Secondary Node
Shutdown NOW!
[pid 2120]
ISSU: Backup RE Prepare Done
Waiting for node1 to reboot.
nodel booted up.
Waiting for node1 to become secondary
error: wait for node1 to become secondary failed {error-code: 5.1}
ISSU aborted. But, both nodes are in ISSU window.
Please do the following:
1. Log on to the upgraded node.
2. Rollback the image using rollback command with node option
   Note: Not using the 'node' option might cause the images on both nodes to be rolled back
3. Make sure that both nodes (will) have the same image
4. Ensure the node with older image is primary for all RGs
5. Abort ISSU on both nodes
6. Reboot the rolled back node
   {primary:node0}
```

If you attempt to upgrade a device pair running a Junos OS release earlier than Release 9.6, ISSU fails without changing anything on either device in the cluster. Devices running Junos OS releases earlier than Release 9.6 must be upgraded separately using individual device upgrade procedures.

If the secondary device experiences a power-off condition before it boots up using the new image specified when the ISSU was initiated, the newly upgraded device will still be waiting to end the ISSU after power is restored. To end the ISSU process on Routing Engine3 and Routing Engine2 on both the nodes, issue the `request chassis cluster in-service-upgrade abort` command.
Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4R1</td>
<td>Starting with Junos OS Release 17.4R1, SRX4600 devices support ISSU.</td>
</tr>
<tr>
<td>17.4R1</td>
<td>Starting with Junos OS Release 17.4R1, the hold timer for the initial reboot of the secondary node during the ISSU process is extended from 15 minutes (900 seconds) to 45 minutes (2700 seconds) in chassis clusters on SRX1500, SRX4100, SRX4200, and SRX4600 devices.</td>
</tr>
<tr>
<td>15.1X49-D80</td>
<td>Starting with Junos OS Release 15.1X49-D80, SRX4100 and SRX4200 devices support ISSU.</td>
</tr>
<tr>
<td>15.1X49-D80</td>
<td>Starting with Junos OS Release 15.1X49-D80, SRX4100 and SRX4200 devices support ISSU.</td>
</tr>
<tr>
<td>15.1X49-D70</td>
<td>Starting with Junos OS Release 15.1X49-D70, SRX1500 devices support ISSU.</td>
</tr>
<tr>
<td>15.1X49-D70</td>
<td>Starting with Junos OS Release 15.1X49-D70, SRX1500 devices support ISSU.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Upgrading Individual Devices in a Chassis Cluster Separately | 438
- Upgrading Devices in a Chassis Cluster Using ICU | 438
- Disabling a Chassis Cluster | 461

Disabling a Chassis Cluster

If you want to operate the SRX Series device back as a standalone device or to remove a node from a chassis cluster, you must disable the chassis cluster.

To disable chassis cluster, enter the following command:

```
{primary:node1}
```

```
user@host> set chassis cluster disable reboot
```
Successfully disabled chassis cluster. Going to reboot now.

After the system reboots, the chassis cluster is disabled.

After the chassis cluster is disabled using this CLI command, you do not have a similar CLI option to enable it back.

You can also use the below CLI commands to disable chassis cluster:

- To disable cluster on node 0:

  ```
  user@host> set chassis cluster cluster-id 0 node 0 reboot
  ```

- To disable cluster on node 1:

  ```
  user@host> set chassis cluster cluster-id 0 node 1 reboot
  ```

Setting cluster-id to zero disables clustering on a device.

RELATED DOCUMENTATION

- Upgrading Individual Devices in a Chassis Cluster Separately | 438
- Upgrading Devices in a Chassis Cluster Using ICU | 438
- set chassis cluster disable reboot | 619
- set chassis cluster cluster-id node node-number reboot | 620
Troubleshooting

Troubleshooting a Control Link Failure in an SRX Chassis Cluster | 464
Troubleshooting a Fabric Link Failure in an SRX Chassis Cluster | 466
Troubleshooting a Redundancy Group that Does Not Fail Over in an SRX Chassis Cluster | 468
Troubleshooting an SRX Chassis Cluster with One Node in the Primary State and the Other Node in the Disabled State | 473
Troubleshooting an SRX Chassis Cluster with One Node in the Primary State and the Other Node in the Lost State | 477
Troubleshooting an SRX Chassis Cluster with One Node in the Hold State and the Other Node in the Lost State | 480
Data Collection for Customer Support | 482
Troubleshooting a Control Link Failure in an SRX Chassis Cluster

Problem
Description: The control link fails to come up in an SRX chassis cluster.

Environment: SRX chassis cluster

Symptoms: The chassis cluster is down due to a control link failure. The status of the control link is displayed as down in the output of the show chassis cluster interfaces command. Here are sample outputs for an SRX branch device and a high-end SRX device.

```bash
{primary:node0}
root@J-SRX-branch> show chassis cluster interfaces
Control link 0 name: fxp1
Control link status: Down

{primary:node0}
root@J-SRX-highend> show chassis cluster interfaces
Control link 0 name: em0
Control link 1 name: em1
Control link status: Down
```

Diagnosis

1. Are the control link ports connected through a switch?
 - Yes: Remove the switch and connect the control link ports directly. Reboot the secondary node and check whether the control link is up.
 - If the link is up, then there might be an issue in the chassis cluster setup on the Layer 2 switch network. See SRX Series Gateway Cluster Deployment in Layer 2 Network.
 - If the link is down, proceed to Step 2.
 - No: Proceed to Step 2.

2. Are the link LEDs for the control link ports on both the nodes lit green?
 - Yes: Proceed to Step 4.
• No: The control link cable might be faulty. Proceed to Step 3.

3. Change the cable connecting the control link ports and check the link LED. Is the LED lit green?
 • Yes: This indicates that the original cable was faulty. Reboot both the nodes simultaneously to come out of the bad state. If the control link does not come up after the reboot, proceed to Step 4.
 • No: Open a case with your technical support representative to resolve the issue. Proceed to “Data Collection for Customer Support” on page 482.

4. Is this device an SRX5400, SRX5600, or SRX5800?
 • Yes: Reconfigure the control link on a different Services Processing Card (SPC), connect the cable to the new port, and reboot both the nodes.
 a. Check whether the control link status is up:
 • If the link is up, the issue is resolved.
 There might be a hardware issue with the SPC. Open a case with your technical support representative to resolve the hardware issue. Proceed to “Data Collection for Customer Support” on page 482.
 • If the link is still down, the transceivers might be faulty. Proceed to Step 5.
 • No: Verify that the correct ports are connected (see the following table):

<table>
<thead>
<tr>
<th>Port Type</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management (fxp0)</td>
<td>An Ethernet port on the Routing Engine</td>
</tr>
<tr>
<td>HA Control (fxp1 or em0/em1)</td>
<td>• Port 0 (fiber only) on SPC—em0</td>
</tr>
<tr>
<td></td>
<td>• Port 1 (fiber only) on SPC—em1</td>
</tr>
<tr>
<td>Fabric (fab0 and fab1)</td>
<td>Any available ge or xe interface (fiber only)</td>
</tr>
</tbody>
</table>

If the ports are connected correctly, and the link is still down, proceed to Step 5.

5. If the control link port is an SFP or XFP port, change the transceivers on both the nodes. Ensure that you use transceivers provided by Juniper Networks and that the transceivers are of the same type (such as LX or SX). Is the control link up now?
• Yes: The issue is resolved.

The transceiver might be faulty. Open a case with your technical support representative to resolve the issue with the transceivers. Proceed to "Data Collection for Customer Support" on page 482.

• No: Continue to troubleshoot this issue with your technical support representative. Proceed to "Data Collection for Customer Support" on page 482.

Troubleshooting a Fabric Link Failure in an SRX Chassis Cluster

Problem
Description: The fabric link fails to come up in an SRX chassis cluster.

Environment: SRX chassis cluster

Symptoms: The status of the fabric link is displayed as **down** in the output of the `show chassis cluster interfaces` command. Here are sample outputs for an SRX branch device and a high-end SRX device.

```bash
{primary:node0}
root@SRX_Branch> show chassis cluster interfaces
Control link 0 name: fxp1
Control link status: Up

Fabric interfaces:
Name Child-interface Status
fab0 ge-0/0/2 down
fab0
fab1 ge-9/0/2 down
fab1
Fabric link status: down
```

```bash
{primary:node0}
root@SRX_HighEnd> show chassis cluster interfaces
Control link 0 name: em0
Control link 1 name: em1
Control link status: up
```
Fabric interfaces:

<table>
<thead>
<tr>
<th>Name</th>
<th>Child-interface</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>fab0</td>
<td>ge-0/0/5</td>
<td>down</td>
</tr>
</tbody>
</table>

Fabric link status: down

Diagnosis

1. Are the fabric link ports connected through a switch?
 - Yes: Remove the switch and connect the fabric link ports directly. Reboot the secondary node and check whether the fabric link is up.
 - If the link is up, then there might be an issue in the chassis cluster setup on the Layer 2 switch network. See SRX Series Gateway Cluster Deployment in Layer 2 Network.
 - If the link is down, proceed to Step 2.
 - No: Proceed to Step 2.

2. Are the link LEDs for the fabric link ports on both the nodes lit green?
 - Yes: The physical link is up, but the fabric packets are not being processed. To eliminate possible issues with the port:
 a. Reconfigure the fabric link on a different port, connect the cable to the new port, and reboot the secondary node.
 b. Check whether the fabric link status is up:
 - If the link is up, the issue is resolved.
 There might be a hardware issue with the onboard ports or interface module ports on which you had previously configured the fabric link. Verify the interface statistics by using the `show interfaces interface-name` command. Open a case with your technical support representative to resolve the issue with the ports. Proceed to “Data Collection for Customer Support” on page 482.
 - If the link is still down, open a case with your technical support representative. Proceed to “Data Collection for Customer Support” on page 482.
 - No: The fabric link cable might be faulty. Proceed to Step 3.

3. Change the cable connecting the fabric link ports and check the link LED. Is the LED lit green?
Yes: This indicates that the original cable was faulty. Reboot both the nodes simultaneously to come out of the bad state. If the fabric link does not come up after the reboot:

a. Reconfigure the fabric link on a different port, connect the cable to the new port, and reboot the secondary node.

b. Check whether the fabric link status is up:
 • If the link is up, the issue is resolved.

 There might be a hardware issue with the onboard ports or interface module ports on which you had previously configured the fabric link. Verify the interface statistics by using the `show interfaces interface-name` command. Open a case with your technical support representative to resolve the issue with the ports. Proceed to “Data Collection for Customer Support” on page 482.

 • If the link is still down, open a case with your technical support representative. Proceed to “Data Collection for Customer Support” on page 482.

No: The transceivers might be faulty. Proceed to step 4.

4. If the fabric link port is an SFP or XFP port, change the transceivers on both the nodes. Ensure that you use transceivers provided by Juniper Networks and that the transceivers are of the same type (such as LX or SX). Is the fabric link up now?

 • Yes: The issue is resolved.

 The original transceivers used on the fabric link ports might be faulty. Open a case with your technical support representative to resolve the issue with the transceivers. Proceed to “Data Collection for Customer Support” on page 482.

 • No: Continue to troubleshoot this issue with your technical support representative. Proceed to “Data Collection for Customer Support” on page 482.

Troubleshooting a Redundancy Group that Does Not Fail Over in an SRX Chassis Cluster

Problem

Description: A redundancy group (RG) in a high-availability (HA) SRX chassis cluster does not fail over.
Environment: SRX chassis cluster

Diagnosis

From the command prompt of the SRX Series Services Gateway that is part of the chassis cluster, run the `show chassis cluster status` command.

Sample output:

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>150</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>100</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Redundancy group: 0 , Failover count: 0

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>255</td>
<td>primary</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>100</td>
<td>secondary</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

Redundancy group: 1 , Failover count: 0

In the sample output check the priority of the redundancy group that does not fail over.

- If the Priority is 255 and the Manual failover field is yes, proceed to "Redundancy Group Manual Failover" on page 470.
- If the priority is 0 or anything between 1 and 254, proceed to "Redundancy Group Auto Failover" on page 472

Resolution
Redundancy Group Manual Failover

1. Check whether a manual failover of the redundancy group was initiated earlier by using the `show chassis cluster status` command.

Sample output:

<table>
<thead>
<tr>
<th>Cluster ID: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>node0</td>
</tr>
<tr>
<td>node1</td>
</tr>
</tbody>
</table>

Redundancy group: 0 , Failover count: 0
node0 | 255 | primary | no | yes |
node1 | 100 | secondary | no | yes |

In the sample output, Priority value of redundancy group 1 (RG1) is 255 and the status of Manual failover is yes, which means that a manual failover of the redundancy group was initiated earlier. You must reset the redundancy group priority.

NOTE: After a manual failover of a redundancy group, we recommend that you reset the manual failover flag in the cluster status to allow further failovers.

2. Reset the redundancy group priority by using the `request chassis cluster failover reset redundancy-group <1-128>`.

For example:

```
user@host> request chassis cluster failover reset redundancy-group 1
```

```
root@srx> request chassis cluster failover reset redundancy-group 1
node0:  
-------------------------------------------------------------------------
Successfully reset manual failover for redundancy group 1
```
No reset required for redundancy group 1.

3. This must resolve the issue and allow further redundancy group failovers. If these steps do not resolve the issue, proceed to section What's Next.

4. If you want to initiate a redundancy group x (redundancy groups numbered 1 through 128) failover manually, see Understanding Chassis Cluster Redundancy Group Manual Failover.
Redundancy Group Auto Failover

1. Check the configuration and link status of the control and fabric links by using the `show chassis cluster interfaces` command.

Sample output for a branch SRX Series Services Gateway:

```bash
{primary:node0}
root@SRX_Branch> show chassis cluster interfaces
Control link 0 name: fxp1
Control link status: Up

Fabric interfaces:
Name Child-interface Status
fab0 ge-0/0/2 down
fab0
fab1 ge-9/0/2 down
fab1
Fabric link status: down
```

Sample output for a high-end SRX Series Services Gateway:

```bash
{primary:node0}
root@SRX_HighEnd> show chassis cluster interfaces
Control link 0 name: em0
Control link 1 name: em1
Control link status: up

Fabric interfaces:
Name Child-interface Status
fab0 ge-0/0/5 down
fab0
Fabric link status: down
```

- If the control link is down, see KB article [KB20698](#) to troubleshoot and bring up the control link and proceed to 3.

- If the fabric link is down, see "Troubleshooting a Fabric Link Failure in an SRX Chassis Cluster" on page 466 to troubleshoot and bring up the fabric link and proceed to 3.

2. Proceed to Step 3 if both the control link and fabric link are up.
3. Check the interface monitoring or IP monitoring configurations that are up. If the configurations are not correct rectify the configurations. If the configurations are correct proceed to step 4.

4. Check the priority of each node in the output of the `show chassis cluster status` command.
 - If the priority is 0, see KB article KB16869 for JSRP (Junos OS Services Redundancy Protocol) chassis clusters and KB article KB19431 for branch SRX Series Services Gateways.
 - If the priority is 255, see “Redundancy Group Manual Failover” on page 470.
 - If the priority is between 1 and 254 and if still the redundancy group does not fail over, proceed to the section Whats Next.

WHAT'S NEXT

If these steps do not resolve the issue, see KB article KB15911 for redundancy group failover tips.
If you wish to debug further, see KB article KB21164 to check the debug logs.
To open a JTAC case with the Juniper Networks Support team, see Data Collection for Customer Support | 482 for the data you should collect to assist in troubleshooting before you open a JTAC case.

Troubleshooting an SRX Chassis Cluster with One Node in the Primary State and the Other Node in the Disabled State

Problem

Description: The nodes of the SRX chassis cluster are in primary and disabled states.

Environment: SRX chassis cluster

Symptoms: One node of the cluster is in the primary state and the other node is in the disabled state. Run the `show chassis cluster status` command on each node to view the status of the node. Here is a sample output:

```
{primary:node0}
root@primary-srx> show chassis cluster status
Monitor Failure codes:
    CS  Cold Sync monitoring        FL  Fabric Connection monitoring
```
Diagnosis

1. Run the `show chassis cluster interfaces` command to verify the status of the control and fabric links. Are any of the links down?

 Here are sample outputs for a branch SRX Series device and a high-end SRX Series device.

```
root@Branch-SRX> show chassis cluster interfaces
Control link 0 name: fxp1
Control link status: Up

Fabric interfaces:
Name Child-interface Status
fab0 ge-0/0/2 up
fab0 ge-2/0/6 up
fab1 ge-9/0/2 up
fab1 ge-11/0/6 up
Fabric link status: Up

(primary:node0)
root@High-end-SRX> show chassis cluster interfaces
Control link 0 name: em0
```
Control link 1 name: em1
Control link status: Up

Fabric interfaces:
Name Child-interface Status
fab0 ge-2/0/0 down
fab0
fab1
fab1
Fabric link status: Up

• Yes: See “Troubleshooting a Fabric Link Failure in an SRX Chassis Cluster” on page 466 or “Troubleshooting a Control Link Failure in an SRX Chassis Cluster” on page 464.

• No: Proceed to Step 2.

2. Reboot the disabled node. Does the node come up in the disabled state after the reboot?
 • Yes: There might be hardware issues. Proceed to Step 3.
 • No: The issue is resolved.

3. Check the node for any hardware issues. Run the `show chassis fpc pic-status` command on both nodes, and ensure that the FPCs are online. Do you see the status of any FPC listed as Present, OK, or Offline?

 Here is a sample output.

   ```
   {primary:node1}
   root@J-SRX> show chassis fpc pic-status
   node0:
   ------------------------------------
   Slot 0  Online  FPC
   PIC 0 Online  4x GE Base PIC
   Slot 2  Online  FPC
   PIC 0 Online  24x GE gPIM
   Slot 6  Online  FPC
   PIC 0 Online  2x 10G gPIM
   node1:
   ------------------------------------
   Slot 0  Online  FPC
   PIC 0 Online  4x GE Base PIC
   ```
Slot 2 Online FPC
 PIC 0 Online 24x GE gPIM
Slot 6 Online FPC
 PIC 0 Online 2x 10G gPIM

- Yes: Reseat the cards and reboot the node. If this does not resolve the issue, open a case with your technical support representative for further troubleshooting. See "Data Collection for Customer Support" on page 482.

- No: Proceed to Step 4.

4. Run the **show chassis cluster statistics** on both nodes, and analyze the output.

```
{primary:node0}
root@J-SRX> show chassis cluster statistics
Control link statistics:
   Control link 0:
      Heartbeat packets sent: 418410
      Heartbeat packets received: 418406
      Heartbeat packet errors: 0
Fabric link statistics:
   Probes sent: 418407
   Probes received: 414896
   Probe errors: 0
```

Does the **Heartbeat packets received** field show a non-increasing value or zero (0), or does the **Heartbeat packet errors** field show a non-zero value?

- Yes: Open a case with your technical support representative for further troubleshooting. See "Data Collection for Customer Support" on page 482.

- No: Proceed to Step 5.

5. Configure **set chassis cluster no-fabric-monitoring** (hidden option) and commit the configuration to temporarily disable fabric monitoring during the troubleshooting process. Reboot the disabled node. After the node reboots, run the **show chassis cluster statistics** command. Are the probes still lost?

- Yes: Open a case with your technical support representative for further troubleshooting. See "Data Collection for Customer Support" on page 482
Troubleshooting an SRX Chassis Cluster with One Node in the Primary State and the Other Node in the Lost State

Problem
Description: The nodes of the SRX chassis cluster are in primary and lost states.

Environment: SRX chassis cluster

Symptoms: One node of the cluster is in the primary state and the other node is in the lost state. Run the show chassis cluster status command on each node to view the status of the node. Here is a sample output:

```
{primary:node0}
root@primary-srx> show chassis cluster status
Cluster ID: 1
Node                  Priority          Status    Preempt  Manual failover
Redundancy group: 0 , Failover count: 1
    node0                   100         primary        no       no
    node1                   0           lost           no       no
Redundancy group: 1 , Failover count: 1
    node0                   100         primary        no       no
    node1                   0           lost           no       no
```

Diagnosis

1. Is the node that is in the lost state powered on?
 - Yes: Are you able to access the node that is in the lost state through a console port? Do not use Telnet or SSH to access the node.
 - If you are able to access the node, proceed to Step 3.
• If you are unable to access the node and if the device is at a remote location, access the node through a console for further troubleshooting. If you have console access, but do not see any output, it might indicate a hardware issue. Open a case with your technical support representative for further troubleshooting. See “Data Collection for Customer Support” on page 482.

• No: Power on the node and proceed to Step 2.

2. After both nodes are powered on, run the `show chassis cluster status` command again. Is the node still in the lost state?

• Yes: Are you able to access the node that is in the lost state through a console port? Do not use Telnet or SSH to access the node.

 • If you are able to access the node, proceed to Step 3.

 • If you are unable to access the node and if the node is at a remote location, access the node through a console for further troubleshooting. If you have console access, but do not see any output, it might indicate a hardware issue. Open a case with your technical support representative for further troubleshooting. See “Data Collection for Customer Support” on page 482.

 • No: Powering on the device has resolved the issue.

3. Connect a console to the primary node, and run the `show chassis cluster status` command. Does the output show this node as primary and the other node as lost?

• Yes: This might indicate a split-brain scenario. Each node would show itself as primary and the other node as lost. Run the following commands to verify which node is processing the traffic:

 • `show security monitoring`

 • `show security flow session summary`

 • `monitor interface traffic`

 Isolate the node that is not processing the traffic. You can isolate the node from the network by removing all the cables except the control and fabric links. Proceed to Step 4.

• No: Proceed to Step 4.

4. Verify that all the FPCs are online on the node that is in the lost state by running the `show chassis fpc pic-status` command. Are all the FPCs online?

• Yes: Proceed to Step 5.

• No: Open a case with your technical support representative for further troubleshooting. See “Data Collection for Customer Support” on page 482.
5. Are the nodes connected through a switch?

- Yes: See "Troubleshooting a Fabric Link Failure in an SRX Chassis Cluster" on page 466 and "Troubleshooting a Control Link Failure in an SRX Chassis Cluster" on page 464.
- No: Proceed to Step 6.

6. Create a backup of the configuration from the node that is currently primary:

 [primary:node0]

 `root@primary-srx# show configuration | save /var/tmp/cfg-bkp.txt`

Copy the configuration to the node that is in the lost state, and load the configuration:

 `root@lost-srx# load override <terminal or filename>`

 NOTE: If you use the **terminal** option, paste the complete configuration into the window. Make sure that you use **Ctrl+D** at the end of the configuration.

 If you use the **filename** option, provide the path to the configuration file (for example: `/var/tmp/Primary_saved.conf`), and press Enter.

When you connect to the node in the lost state through a console, you might see the state as either primary or hold/disabled. If the node is in the hold/disabled state, a fabric link failure might have occurred before the device went into the lost state. To troubleshoot this issue, follow the steps in "Troubleshooting a Fabric Link Failure in an SRX Chassis Cluster" on page 466.

Commit the changes after the configuration is loaded. If the problem persists, then replace the existing control and fabric links on this device with new cables and reboot the node:

 `{primary:nodel}[edit]`

 `root@lost-srx# request system reboot`

Is the issue resolved?

- No: Open a case with your technical support representative for further troubleshooting. See "Data Collection for Customer Support" on page 482.
Troubleshooting an SRX Chassis Cluster with One Node in the Hold State and the Other Node in the Lost State

Problem

Description: The nodes of the SRX chassis cluster are in hold and lost states.

Environment: SRX chassis cluster

Symptoms: One node of the SRX chassis cluster is in the hold state and the other node is in the lost state after you connect the cables and reboot the devices in cluster mode. Run the `show chassis cluster status` command on each node to view the status of the node. Here is a sample output:

```
{hold:node0} user@node0> show chassis cluster status

Cluster ID: 1, Redundancy-group: 0
Node name  Priority Status Preempt Manual failover
node0        100      hold     No    No
node1        1        lost     No    No

{hold:node1}
user@node1> show chassis cluster status

Cluster ID: 1, Redundancy-group: 0
Node name  Priority Status Preempt Manual failover
node0        100      lost     No    No
node1        1        hold     No    No
```

If the status of a node is `hold`, the node is not ready to operate in a chassis cluster.

NOTE: This issue does not impact high-end SRX Series devices because these devices have dedicated control and management ports.

Cause

When you boot a branch SRX Series device in cluster mode, two revenue interfaces (depending upon the model of the device) are designated for the out-of-band management link (fxp0) and control link (fxp1) of the chassis cluster. The fxp0 and fxp1 ports cannot be used for transit traffic.
If you configure the fxp0 and fxp1 ports, the chassis cluster goes into the hold/lost state. The following table lists the ports that are designated as fxp0 and fxp1 ports for branch SRX Series devices:

Table 36: fxp0 and fxp1 Ports on Branch SRX Series Devices

<table>
<thead>
<tr>
<th>Device</th>
<th>Management (fxp0)</th>
<th>HA Control (fxp1)</th>
<th>Fabric (fab0 and fab1)—must be configured</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX300</td>
<td>ge-0/0/0</td>
<td>ge-0/0/1</td>
<td>Any ge interface</td>
</tr>
<tr>
<td>SRX320</td>
<td>ge-0/0/0</td>
<td>ge-0/0/1</td>
<td>Any ge interface</td>
</tr>
<tr>
<td>SRX340, SRX345, and SRX380</td>
<td>MGMT</td>
<td>ge-0/0/1</td>
<td>Any ge interface</td>
</tr>
<tr>
<td>SRX550 HM</td>
<td>ge-0/0/0</td>
<td>ge-0/0/1</td>
<td>Any ge or xe interface</td>
</tr>
</tbody>
</table>

Resolution

Remove the Configuration on a Device Running the Factory-Default Configuration

The factory-default configuration includes configuration for the interfaces that are transformed into fxp0 and fxp1 interfaces. You must delete these configurations before enabling chassis cluster mode. A device can have the factory-default configuration in the following scenarios:

- Typically, new devices are used in a chassis cluster. These new devices ship with the factory-default configuration, which includes configuration for the interfaces.
- If a device that is in chassis cluster mode crashes, the device might come up with the factory-default configuration.

To remove the configuration on the interfaces, delete the factory-default configuration and reconfigure the device.

> **CAUTION:** The following procedure removes the current configuration.

1. Log in to the device and enter the configuration mode.
2. Run the `delete` command to delete the current configuration from the device.
3. Configure the root password and commit the configuration:

```
root# set system root-authentication plain-text-password
root# commit
```

Remove the Configuration on a Device Operating as a Standalone Device

If the device is currently running in a production environment, then check whether the interfaces that are designated as the fxp0 and fxp1 interfaces are configured. To determine which interfaces are transformed into fxp0 and fxp1 interfaces, see Table 36 on page 481.

1. Run the following commands to list the configuration for the fxp0 and fxp1 interfaces:

   ```
   show | display set | match <physical interface of the control port (fxp1)>
   show | display set | match <physical interface of the management port (fxp0)>
   
   For example:
   
   show configuration | display set | match ge-0/0/0
   show configuration | display set | match ge-0/0/1
   
   2. Delete all the configurations related to the fxp0 and fxp1 interfaces from every configuration hierarchy.
   
   You can also choose to delete the entire configuration and reconfigure the device:

   ```
 root# delete
   ```

---

Data Collection for Customer Support

Before you contact customer support, collect the data listed in Table 37 on page 483.
Table 37: Data Collection for Customer Support

**Background information**

- All SSH or Telnet session captures
- Any available topology information
- Summary of how the device is being used (such as production, lab system, colocation)
- Summary of device history (new installation, production for x months or years, other recent cases)
- Summary of any recent changes in the network or on the device

**Request support information (RSI)**

Collect the RSI:

`request support information | save /var/tmp/rsi-CURRENT DATE.log`

**Logs**

Archive the contents of the `/var/log/` folder:

`file archive compress source /var/log/* destination /var/tmp/logs-CURRENT-DATE.tgz`

Ensure that the `/var/log/` directory is archived properly by verifying the file size using the `file list /var/tmp/logs-CURRENT-DATE.tgz detail` command.

---

**NOTE:** Upload all the logs to the JTAC support case. For instructions on how to upload the logs, see KB23337.
Configuration Statements and Operational Commands

Configuration Statements | 485
Operational Commands | 585
CHAPTER 7

Configuration Statements

IN THIS CHAPTER

- aggregated-devices | 487
- apply-groups (Chassis Cluster) | 489
- arp-detect | 490
- arp-throttle | 492
- authentication-key | 494
- authentication-type | 496
- cak | 498
- ckn | 499
- cluster (Chassis) | 500
- configuration-synchronize (Chassis Cluster) | 503
- connectivity-association | 504
- connectivity-association (MACsec Interfaces) | 506
- control-link-recovery | 507
- control-ports | 508
- exclude-protocol | 510
- fabric-options | 512
- gigether-options (Chassis Cluster) | 514
- global-threshold | 516
- global-weight | 517
- gratuitous-arp-count | 518
- heartbeat-interval | 519
- heartbeat-threshold | 521
- hold-down-interval | 522
- include-sci | 523
- interface (Chassis Cluster) | 524
- interfaces (MACsec) | 525
- interface-monitor | 526
- internal (Security IPSec) | 528
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-monitoring</td>
<td>530</td>
</tr>
<tr>
<td>key-server-priority (MACsec)</td>
<td>532</td>
</tr>
<tr>
<td>lACP (Interfaces)</td>
<td>533</td>
</tr>
<tr>
<td>link-protection (Chassis Cluster)</td>
<td>534</td>
</tr>
<tr>
<td>macsec</td>
<td>535</td>
</tr>
<tr>
<td>mka</td>
<td>537</td>
</tr>
<tr>
<td>must-secure</td>
<td>538</td>
</tr>
<tr>
<td>network-management</td>
<td>539</td>
</tr>
<tr>
<td>no-encryption (MACsec)</td>
<td>540</td>
</tr>
<tr>
<td>node (Chassis Cluster Redundancy Group)</td>
<td>541</td>
</tr>
<tr>
<td>ntp</td>
<td>543</td>
</tr>
<tr>
<td>ntp threshold</td>
<td>549</td>
</tr>
<tr>
<td>offset</td>
<td>551</td>
</tr>
<tr>
<td>preempt (Chassis Cluster)</td>
<td>553</td>
</tr>
<tr>
<td>pre-shared-key</td>
<td>555</td>
</tr>
<tr>
<td>priority (Protocols VRRP)</td>
<td>556</td>
</tr>
<tr>
<td>redundancy-group (Chassis Cluster)</td>
<td>558</td>
</tr>
<tr>
<td>redundant-ether-options</td>
<td>560</td>
</tr>
<tr>
<td>redundant-parent (Interfaces)</td>
<td>562</td>
</tr>
<tr>
<td>redundant-pseudo-interface-options</td>
<td>563</td>
</tr>
<tr>
<td>replay-protect</td>
<td>564</td>
</tr>
<tr>
<td>replay-window-size</td>
<td>566</td>
</tr>
<tr>
<td>reth-count (Chassis Cluster)</td>
<td>568</td>
</tr>
<tr>
<td>retry-count (Chassis Cluster)</td>
<td>569</td>
</tr>
<tr>
<td>retry-interval (Chassis Cluster)</td>
<td>570</td>
</tr>
<tr>
<td>route-active-on</td>
<td>571</td>
</tr>
<tr>
<td>security-mode</td>
<td>572</td>
</tr>
<tr>
<td>trace-options (Chassis Cluster)</td>
<td>574</td>
</tr>
<tr>
<td>transmit-interval (MACsec)</td>
<td>576</td>
</tr>
<tr>
<td>use-active-child-mac-on-reth</td>
<td>577</td>
</tr>
<tr>
<td>use-actual-mac-on-physical-interfaces</td>
<td>578</td>
</tr>
<tr>
<td>virtual-address</td>
<td>579</td>
</tr>
<tr>
<td>vrrp-group</td>
<td>580</td>
</tr>
<tr>
<td>weight</td>
<td>584</td>
</tr>
</tbody>
</table>
aggregated-devices

Syntax

aggregated-devices {
  ethernet {
    device-count number;
    lacp {
      link-protection {
        non-revertive;
      }
      system-priority;
    }
  }
  sonet {
    device-count number;
  }
  maximum-links maximum-links-limit;
}

Hierarchy Level

[edit chassis]

Release Information

Statement introduced before Junos OS Release 7.4.
Support for LACP link protection and system priority introduced in Junos OS Release 9.3.

Description

Configure properties for aggregated devices on the router. Aggregate Ethernet links are logical interfaces defined on the device that bundle together multiple physical interfaces into a single interface for the use of redundancy and bandwidth aggregation. When interconnecting devices you can create aggregate ethernet interfaces to bundle together multiple physical ethernet links to increase bandwidth and redundancy between devices.

Link aggregation enables you to group Ethernet interfaces to form a single link layer interface. Link Aggregation Control Protocol (LACP) is supported in chassis cluster deployments, where aggregated Ethernet interfaces and redundant Ethernet interfaces are supported simultaneously.

You must first configure the system to enable configuring the Aggregated Ethernet (ae) Interfaces. By default, Juniper devices do not have any aggregated ethernet interfaces created. To configure the device to support a given number of ae interfaces, you must define it on a per chassis basis using the set chassis aggregated-devices devices [1-32] in configuration mode. The number of devices you define will be the number of aggregated ethernet interfaces that the system will create which can be configured just like
any other ethernet interface. Also you can view the interfaces created by using the `show interface terse` command. Once you have defined the number of aggregated ethernet devices on the chassis you can then continue to configure the LAG members on a per ethernet interface basis.

**Options**
The remaining statements are explained separately.

**Required Privilege Level**
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

`Configuring Junos OS for Supporting Aggregated Devices`
apply-groups (Chassis Cluster)

Syntax

apply-groups [node]

Hierarchy Level

[edit chassis cluster]

Release Information
Statement introduced in Junos OS Release 9.0.

Description
Apply node-specific parameters to each node in a chassis cluster.

You can use the [edit groups] option to create a unique configuration between the cluster members by defining a unique hostname for each node and assigning a unique IP address for the fxp0 interface on each node.

Each group is named after the node it is applied to (node 0 and node 1) and once you apply the configured groups using the apply-groups statement, only the group that matches the node name is applied.

The configuration you specified under group node 0 will be active only on node 0 and the configuration you specified under group node 1 will be active only on node 1.

Options

$[node]—Each node (node0 or node1) in a chassis cluster.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

cluster (Chassis) | 500
**arp-detect**

**Syntax**

```plaintext
arp-detect milliseconds;
```

**Hierarchy Level**

```
[edit forwarding-options next-hop]
```

**Release Information**

Statement introduced in Junos OS Release 12.3X48-D65 and Junos OS Release 15.1X49-D130.

**Description**

Define the length of time (in milliseconds) for an SPU to wait for an acknowledgement from the Routing Engine that an ARP request has been received from the SPU. If the Routing Engine fails to respond within the specific time interval, the SPU considers that the Routing Engine CPU utilization is high at that moment, and initiates the ARP throttling. ARP throttling is initiated on the logical interface, where the incoming packet had triggered the ARP request.

Configuring a shorter ARP detect time interval results in triggering of ARP throttling more frequently. Frequent ARP throttling is useful for lowering Routing Engine CPU utilization caused by excessive ARP requests.

For example, when you configure the `set forwarding-options next-hop arp-detect 300` option, the nexthop resolution request must be acknowledged by the Routing Engine within 300 milliseconds. If the SPU does not get an acknowledgment from the Routing Engine in 300 milliseconds, the logical interface which had received the packet that triggered the nexthop request, changes into ARP throttle state. While the ARP throttle state is active for that interface, traffic entering into that interface does not trigger new nexthop resolution requests.

**CAUTION:** We recommend that only advanced Junos OS users attempt to configure ARP throttle and ARP detect feature. Because, improper configuration might result in high CPU utilization of Routing Engine affecting other processes on your device.

**Options**

- `milliseconds`—Number of seconds the SPU waits before receiving a response from Routing Engine.

**Range:** 1 through 10000 milliseconds

**Default:** 10000 milliseconds
Required Privilege Level

security—To view this statement in the configuration.
security-control—To add this statement to the configuration.

RELATED DOCUMENTATION

arp-throttle | 492
arp-throttle

Syntax

arp-throttle seconds;

Hierarchy Level

[edit forwarding-options next-hop]

Release Information

Statement introduced in Junos OS Release 12.3X48-D65, Junos OS Release 15.1X49-D60, and Junos OS Release 15.1X49-D130.

Description

Define the time duration (in seconds) for Address Resolution Protocol (ARP) request throttling to remain active when it is triggered.

When ARP throttling is triggered, it is active for a given logical interface. For the configured duration of time, the ARP throttling remains active, and the traffic entering into the specific interface does not trigger ARP nexthop resolution requests, which are being sent to the Routing Engine from the specific SPU.

When you configure a longer time duration, the ARP throttling can protect the Routing Engine by preventing too many ARP requests being triggered by incoming traffic.

For example, if there is a large amount of traffic destined to a directly connected, unresolved IP address, chances of getting frequent ARP requests is very high, which eventually results into a high CPU load on the Routing Engine. By setting a longer time interval of the ARP throttle, the Routing Engine is protected from numerous ARP requests.

For example, when you configure the set forwarding-options nexthop arp-throttle 15 option, and the interface state changes to throttle state, the nexthop requests triggered by incoming traffic into this interface, will not be sent. After 15 seconds, interface changes back from throttle to normal state. Then the nexthop requests triggered by the incoming traffic into this interface are sent to the Routing Engine again.

Options

seconds—Time interval (in seconds) for Address Resolution Protocol (ARP) request throttling to remain active when it is triggered.

Range: 10 through 100 seconds

Default: 10 seconds

Required Privilege Level

security—To view this statement in the configuration.
security-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| arp-detect | 490 |
authentication-key

Syntax

```
authentication-key key;
```

Hierarchy Level

```
[edit interfaces interface-name unit logical-unit-number family inet address address vrrp-group group-id],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family inet address address vrrp-group group-id]
```

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS 11.3 for the QFX Series.
Statement introduced in Junos OS Release 14.1x53-D20 for the OCX Series.
Statement introduced in Junos OS Release 18.1R1 for the SRX Series devices.

Description
Configure a Virtual Router Redundancy Protocol (VRRP) IPv4 authentication key. You also must specify a VRRP authentication scheme by including the `authentication-type` statement.

All devices in the VRRP group must use the same authentication scheme and password.

NOTE: When VRRPv3 is enabled, the `authentication-type` and `authentication-key` statements cannot be configured for any VRRP groups.

Options
`key`—Authentication password. For simple authentication, it can be 1 through 8 characters long. For Message Digest 5 (MD5) authentication, it can be 1 through 16 characters long. If you include spaces, enclose all characters in quotation marks (" ").

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

`Configuring VRRP Authentication (IPv4 Only)`
<table>
<thead>
<tr>
<th>authentication-type</th>
<th>496</th>
</tr>
</thead>
<tbody>
<tr>
<td>version-3</td>
<td></td>
</tr>
</tbody>
</table>

**Understanding VRRP on SRX Series Devices** | 278

**Example: Configuring VRRP/VRRPv3 on Chassis Cluster Redundant Ethernet Interfaces** | 285
**authentication-type**

**Syntax**

```
authentication-type (md5 | simple);
```

**Hierarchy Level**

```
[edit interfaces interface-name unit logical-unit-number family inet address address vrrp-group group-id],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family inet address address vrrp-group group-id]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS 11.3 for the QFX Series.
Statement introduced in Junos OS Release 14.1x53-D20 for the OCX Series.
Statement introduced in Junos OS Release 18.1R1 for the SRX Series devices.

**Description**

Enable Virtual Router Redundancy Protocol (VRRP) IPv4 authentication and specify the authentication scheme for the VRRP group. If you enable authentication, you must specify a password by including the `authentication-key` statement. The specific type of authentication used by OSPF is encoded in this field.

All devices in the VRRP group must use the same authentication scheme and password.

```
NOTE: When VRRPv3 is enabled, the authentication-type and authentication-key statements cannot be configured for any VRRP groups.
```

**Options**

- **authentication**—Authentication scheme:
  - **simple**—Use a simple password. The password is included in the transmitted packet, so this method of authentication is relatively insecure.
  - **md5**—Use the MD5 algorithm to create an encoded checksum of the packet. The encoded checksum is included in the transmitted packet. The receiving routing platform uses the authentication key to verify the packet, discarding it if the digest does not match. This algorithm provides a more secure authentication scheme.

**Default:** none (no authentication is performed).
**Required Privilege Level**

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

<table>
<thead>
<tr>
<th>Configuring VRRP Authentication (IPv4 Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td><a href="#">authentication-key</a></td>
</tr>
<tr>
<td><a href="#">version-3</a></td>
</tr>
</tbody>
</table>

| Understanding VRRP on SRX Series Devices | 278 |
| Example: Configuring VRRP/VRRPv3 on Chassis Cluster Redundant Ethernet Interfaces | 285 |
Syntax

```c
ckn hexadecimal-number;
```

Hierarchy Level

```
[edit security macsec connectivity-association pre-shared-key]
```

Release Information

Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description

Specifies the connectivity association key (CAK) for a pre-shared key.

To configure MACsec on the supported ports, you need to create the preshared key by configuring the connectivity association key name (CKN) and connectivity association key (CAK).

A preshared key is exchanged between directly-connected links to establish a MACsec-secure link. The CKN is a 64-digit hexadecimal number and the CAK is a 32-digit hexadecimal number. The CKN and the CAK must match on both ends of a link to create a MACsec-secured link.

Default

No CAK exists, by default.

Options

- **hexadecimal-number** — The key name, in hexadecimal format.

  The key name is 32 hexadecimal characters in length. If you enter a key name that is less than 32 characters long, the remaining characters are set to 0.

Required Privilege Level

- admin — To view this statement in the configuration.
- admin-control — To add this statement to the configuration.

RELATED DOCUMENTATION

- Understanding Media Access Control Security (MACsec) | 417
- Configuring Media Access Control Security (MACsec) | 420
- macsec | 535
ckn

Syntax

    ckn hexadecimal-number;

Hierarchy Level

    [edit security macsec connectivity-association pre-shared-key]

Release Information

Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description

Specifies the connectivity association key name (CKN) for a pre-shared key.

To configure MACsec on supported ports, you need to create the preshared key by configuring the connectivity association key name (CKN) and connectivity association key (CAK).

A preshared key is exchanged between directly-connected links to establish a MACsec-secure link. The CKN is a 64-digit hexadecimal number and the CAK is a 32-digit hexadecimal number. The CKN and the CAK must match on both ends of a link to create a MACsec-secured link.

Default

No CKN exists, by default.

Options

    hexadecimal-number — The key name, in hexadecimal format.

    The key name is 32 hexadecimal characters in length. If you enter a key name that is less than 32 characters long, the remaining characters are set to 0.

Required Privilege Level

    admin—To view this statement in the configuration.
    admin-control—To add this statement to the configuration.

RELATED DOCUMENTATION

    Understanding Media Access Control Security (MACsec) | 417
    Configuring Media Access Control Security (MACsec) | 420
    macsec | 535
cluster (Chassis)

Syntax

```plaintext
cluster {
 configuration-synchronize (Chassis Cluster) {
 no-secondary-bootup-auto;
 }
 control-link-recovery;
 control-ports fpc {
 port;
 }
 health-monitoring:
 heartbeat-interval milliseconds;
 heartbeat-threshold heartbeat-threshold;
 network-management {
 cluster-master;
 }
 redundancy-group (Chassis Cluster) name {
 gratuitous-arp-count gratuitous-arp-count;
 hold-down-interval seconds;
 interface-monitor name {
 weight weight;
 }
 }
 ip-monitoring {
 family {
 inet {
 address name {
 interface logical-interface-name {
 secondary-ip-address;
 }
 weight weight;
 }
 }
 }
 }
 global-threshold global-threshold;
 global-weight global-weight;
 retry-count retry-count;
 retry-interval (Chassis Cluster) retry-interval;
}
node (Chassis Cluster Redundancy Group) (0 | 1) {
 priority priority;
}
preempt (Chassis Cluster) {
 delay seconds;
```
Hierarchy Level

[edit chassis]

Release Information
Statement introduced in Junos OS Release 9.0.
The health-monitoring option is introduced in the Junos OS Release 18.4R1.

Description
Configure a chassis cluster. Perform the configuration under the [edit chassis cluster] configuration stanza to define chassis cluster configuration, operations, and monitoring. This configuration must specify configuration synchronization, control link recovery, heartbeat interval and threshold, network management, redundancy group, and traceoptions.
Options

configuration-synchronize — Disable automatic chassis cluster synchronization. See configuration-synchronize (Chassis Cluster).

control-link-recovery — Enable automatic control link recovery option.

control-ports — Enable specific chassis cluster control ports.
   Values:
   • fpc — FPC slot number
   • port — Port number

health-monitoring — Enable to monitor the health status of the SRX Series devices operating in chassis cluster mode. The health status between the two nodes is monitored and shared over control links and fabric links. Failover between the nodes occurs based on the heartbeat status and health status of the control links and fabric links. By default, the option is disabled.

heartbeat-interval — Interval between successive heartbeats (milliseconds)
   Default: 1000
   Range: 1000-2000

heartbeat-threshold — Number of consecutive missed heartbeats to indicate device failure
   Default: 3
   Range: 3-8

network-management — Define parameters for network management. See network-management.

redundancy-group name — Define a redundancy group. See redundancy-group (Chassis Cluster).

reth-count — Number of redundant ethernet interfaces
   Range: 1-128

traceoptions — Define chassis cluster redundancy process tracing operations. See traceoptions (Chassis Cluster).

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
interface — To view this statement in the configuration.
interface-control — To add this statement to the configuration.

RELATED DOCUMENTATION

| ip-monitoring | 530 |
configuration-synchronize (Chassis Cluster)

Syntax

configuration-synchronize {
  no-secondary-bootup-auto;
}

Hierarchy Level

[primary:node0]
[edit chassis cluster]

Release Information
Statement introduced in Junos OS Release 12.1X47-D10.

Description
Disables the automatic chassis cluster synchronization between the primary and secondary nodes.

The chassis cluster synchronization feature automatically synchronizes the configuration from the primary node to the secondary node when the secondary joins the primary as a cluster. If you want to disable automatic chassis cluster synchronization between the primary and secondary nodes, you can do so by entering the set chassis cluster configuration-synchronize no-secondary-bootup-auto command in configuration mode.

Options

no-secondary-bootup-auto—Disable the automatic chassis cluster synchronization between the primary and secondary nodes.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Understanding Automatic Chassis Cluster Synchronization Between Primary and Secondary Nodes	135
request chassis cluster configuration-synchronize	597
show chassis cluster information configuration-synchronization	641
connectivity-association

Syntax

connectivity-association connectivity-association-name;
exclude-protocol protocol-name;
include-sci;
    mka {
        must-secure;
        key-server-priority priority-number;
        transmit-interval interval;
    }
    no-encryption;
    offset (0)[30|50);
    pre-shared-key {
        cak hexadecimal-number;
        ckn hexadecimal-number;
    }
    replay-protect{
        replay-window-size number-of-packets;
    }
    security-mode security-mode;
}

Hierarchy Level

[edit security macsec]

Release Information

Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description

Create or configure a MACsec connectivity association.

A connectivity association is not applying MACsec to traffic until it is associated with an interface. MACsec connectivity associations are associated with interfaces using the interfaces statement in the [edit security macsec] hierarchy.

Required Privilege Level

admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.
RELATED DOCUMENTATION

- Understanding Media Access Control Security (MACsec) | 417
- Configuring Media Access Control Security (MACsec) | 420
- macsec | 535
connectivity-association (MACsec Interfaces)

Syntax

```
connectivity-association connectivity-association-name;
```

Hierarchy Level

```
[edit security macsec cluster-control-port <idx>]
[edit security macsec cluster-data-port interface]
```

Release Information

Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description

Applies a connectivity association to an interface, which enables Media Access Control Security (MACsec) on that interface. The point-to-point links are secured after security keys are matched at the endpoints of the links. If you enable MACsec by using the static connectivity association key (CAK) security mode, user-configured, preshared keys are matched. If you enable MACsec by using the static secure association key (SAK) security mode, user-configured static security association keys are matched.

When you enable MACsec using static CAK, you have to create and configure a connectivity association.

Default

No connectivity associations are associated with any interfaces.

Required Privilege Level

admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Understanding Media Access Control Security (MACsec) | 417
- Configuring Media Access Control Security (MACsec) | 420
- macsec | 535
control-link-recovery

Syntax

control-link-recovery;

Hierarchy Level

[edit chassis cluster]

Release Information

Statement introduced in Junos OS Release 9.5.

Description

Enable control link recovery to be done automatically by the system.

If the control link fails, the secondary node enters a disabled state. To recover the node from the disabled mode, you must reboot the node to resume operations. You can make this reboot automatic by using the control-link-recovery configuration option.

After the control link recovers, the system checks whether it receives at least three consecutive heartbeats on the control link. This is to ensure that the control link is not flapping and is perfectly healthy. Once this criterion is met, the system issues an automatic reboot on the node that was disabled when the control link failed. When the disabled node reboots, the node rejoins the cluster. There is no need for any manual intervention.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| interface (Chassis Cluster) | 524 |
**control-ports**

**Syntax**

```
control-ports fpc {
 port;
}
```

**Hierarchy Level**

```
[edit chassis cluster]
```

**Release Information**


**Description**

Enable the specific control port to use as a control link for the chassis cluster. By default, all control ports are disabled.

After connecting the control ports, you need to configure the control ports to setup control links as a step to establish the chassis cluster.

You need to configure a minimum of one control port per chassis of the cluster. If you configure port 0 only, the Juniper Services Redundancy Protocol process (jsrp) does not send control heartbeats on control link 1 and the counters it sends will show zeroes.

**Options**

- `fpc slot-number` — Flexible PIC Concentrator (FPC) slot number.

  **NOTE:** FPC slot range depends on platform. The maximum range of 0 through 23 applies to SRX5800 devices; for SRX5600 devices, the only applicable range is 0 through 11; for SRX5400 devices, the applicable slot range is 0 through 5. See "Chassis Cluster Control Plane Interfaces" on page 83 for details.

- `port port-number` — Port number on which to configure the control port.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.
RELATED DOCUMENTATION

cluster (Chassis) | 500
**exclude-protocol**

**Syntax**

```
exclude-protocol protocol-name;
```

**Hierarchy Level**

```
[edit security macsec connectivity-association]
```

**Release Information**

Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

**Description**

Specifies protocols whose packets are not secured using Media Access Control Security (MACsec) when MACsec is enabled on a link using static connectivity association key (CAK) security mode.

When this option is enabled in a connectivity association that is attached to an interface, MACsec is not enabled for all packets of the specified protocols that are sent and received on the link.

**Default**

Disabled.

All packets are secured on a link when MACsec is enabled, with the exception of all types of Spanning Tree Protocol (STP) packets.

**Options**

`protocol-name` — Specifies the name of the protocol that should not be MACsec-secured. Options include:

- `cdp` — Cisco Discovery Protocol.
- `lacp` — Link Aggregation Control Protocol.
- `lldp` — Link Level Discovery Protocol.

**Required Privilege Level**

- `admin` — To view this statement in the configuration.
- `admin-control` — To add this statement to the configuration.

**RELATED DOCUMENTATION**

- [Understanding Media Access Control Security (MACsec)](#) | 417
- [Configuring Media Access Control Security (MACsec)](#) | 420
macsec | 535
**fabric-options**

**Syntax**

```
fabric-options {
 member-interfaces member-interface-name;
}
```

**Hierarchy Level**

```
[edit interfaces interface-name]
```

**Release Information**

Statement introduced in Junos OS Release 8.5.

**Description**

Configure fabric interface specific options in chassis clusters.

The fabric is the data link between the nodes and is used to forward traffic between the chassis. Each node in the chassis requires a fabric interface configured. To create a fabric link between the two chassis requires the creation of a special interface called the fab interface. Node 0’s fabric interface, called fab0, and node 1’s fabric interface, called fab1.

Only the same type of interfaces can be configured as fabric children, and you must configure an equal number of child links for fab0 and fab1.

```
fab0 {
 fabric-options {
 member-interfaces {
 ge-0/0/4;
 }
 }
}

fab1 {
 fabric-options {
 member-interfaces {
 ge-2/0/4;
 }
 }
}
```
NOTE: When you run the system autoinstallation command, the command will configure unit 0 logical interface for all the active state physical interfaces. However, a few commands such as fabric-options do not allow the physical interface to be configured with a logical interface. If the system autoinstallation and the fabric-options commands are configured together, the following message is displayed:

```
incompatible with 'system autoinstallation'
```

Options

member-interface-name—Member interface name.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Example: Configuring the Chassis Cluster Fabric Interfaces | 78
gigether-options (Chassis Cluster)

Syntax

gigether-options {
  802.3ad {
    backup | primary | bundle;
    lacp {
      port-priority priority;
    }
  }
  auto-negotiation {
    remote-fault {
      local-interface-offline | local-interface-online;
    }
  }
  no-auto-negotiation;
  ethernet-switch-profile {
    mac-learn-enable;
    tag-protocol-id [tpids];
    ethernet-policer-profile {
      input-priority-map {
        ieee802.1p {
          premium [values];
        }
      }
      output-priority-map {
        classifier {
          premium {
            forwarding-class class-name {
              loss-priority (high | low);
            }
          }
        }
      }
      policer cos-policer-name {
        aggregate {
          bandwidth-limit bps;
          burst-size-limit bytes;
        }
        premium {
          bandwidth-limit bps;
          burst-size-limit bytes;
        }
      }
    }
  }
}
Hierarchy Level

[edit interfaces interface-name]

Release Information
Statement introduced in Junos OS Release 9.2.

Description
Configure Gigabit Ethernet specific interface properties.

Options
The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Example: Configuring Chassis Cluster Redundant Ethernet Interfaces | 102
global-threshold

Syntax

```
global-threshold number;
```

Hierarchy Level

```
[edit chassis cluster redundancy-group group-number ip-monitoring]
```

Release Information
Statement introduced in Junos OS Release 10.1.

Description
Define global threshold for IP monitoring. This is the number that needs to be met or exceeded by all of the cumulative weights of the monitored IP addresses to trigger a failover.

When a monitored address is marked as unreachable, the weight value associated with that address is deducted from the redundancy group IP address monitoring global threshold. If the accumulated monitored address weight values surpass the global-threshold value, that is, when the global threshold reaches 0, the global weight is deducted from the redundancy group threshold. Every redundancy group has a default threshold of 255. If the threshold reaches 0, a failover is triggered.

Options

- **number**—Value at which the IP monitoring weight is applied against the redundancy group failover threshold.

Range: 0 through 255

Default: 0

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- ip-monitoring | 530
global-weight

Syntax

global-weight number;

Hierarchy Level

[edit chassis cluster redundancy-group group-number ip-monitoring]

Release Information
Statement introduced in Junos OS Release 10.1.

Description
Define global weight for IP monitoring. This is the weight that is subtracted from the redundancy group weight for all of the hosts being monitored. This number specifies the relative importance of IP address monitored objects in the operation of the redundancy group.

Every monitored IP address is assigned a weight. If the monitored address becomes unreachable, the weight of the object is deducted from the global-threshold of IP monitoring objects in its redundancy group. When the global-threshold reaches 0, the global-weight is deducted from the redundancy group. Every redundancy group has a default threshold of 255. If the threshold reaches 0, a failover is triggered. Failover is triggered even if the redundancy group is in manual failover mode and preemption is not enabled.

Options
number — Combined weight assigned to all monitored IP addresses. A higher weight value indicates a greater importance.

Range: 0 through 255
Default: 255

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| ip-monitoring | 530 |
gratuitous-arp-count

Syntax

gratuitous-arp-count number;

Hierarchy Level

[edit chassis cluster redundancy-group group-number]

Release Information
Statement introduced in Junos OS Release 9.0.

Description
Specify the number of gratuitous Address Resolution Protocol (ARP) requests to send on an active interface after failover.

You can configure this option to specify the number of gratuitous ARP requests that an interface can send to notify other network devices of its presence after the redundancy group it belongs to has failed over.

By default, the SRX series device sends four GARP per reth on a failover. You can modify the number of GARP sent per-redundancy-group basis.

Options

number—Number of gratuitous ARP requests that a newly elected primary device in a chassis cluster sends out to announce its presence to the other network devices.

Range: 1 through 16
Default: 4

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION
redundancy-group (Chassis Cluster) | 558
heartbeat-interval

Syntax

```
heartbeat-interval milliseconds;
```

Hierarchy Level

[edit chassis cluster]

Release Information


Description

Set the interval between the periodic signals broadcast to the devices in a chassis cluster to indicate that the active node is operational.

The `heartbeat-interval` option works in combination with the `heartbeat-threshold` option to define the wait time before failover is triggered in a chassis cluster. The default values of these options produce a wait time of 3 seconds. In a large configuration approaching full capacity on an SRX5400 or SRX5600 or SRX5800 device, however, we recommend that you increase the failover wait time to 5 seconds.

For example, a `heartbeat-threshold` of 3 and a `heartbeat-interval` of 1000 milliseconds result in a total wait of 3 seconds before failover is triggered. To increase this wait to 5 seconds, you could increase the `heartbeat-threshold`, the `heartbeat-interval`, or both. A `heartbeat-threshold` of 5 and a `heartbeat-interval` of 1000 milliseconds would yield a wait time of 5 seconds. Setting the `heartbeat-threshold` to 4 and the `heartbeat-interval` to 1250 milliseconds would also yield a wait time of 5 seconds.

```
NOTE: In a chassis cluster scaling environment, the heartbeat-threshold must always be set to 8.
```

Options

- `milliseconds`—Time interval between any two heartbeat messages.

Range: 1000 through 2000 milliseconds

Default: 1000 milliseconds

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.
RELATED DOCUMENTATION

cluster (Chassis) | 500
heartbeat-threshold

Syntax

```
heartbeat-threshold number;
```

Hierarchy Level

```
[edit chassis cluster]
```

Release Information


Description

Set the number of consecutive missed heartbeat signals that a device in a chassis cluster must exceed to trigger failover of the active node.

The `heartbeat-threshold` option works in combination with the `heartbeat-interval` option to define the wait time before failover is triggered in a chassis cluster. The default values of these options produce a wait time of 3 seconds. In a large configuration approaching full capacity on an SRX5400 or SRX5600 or SRX5800 device, however, we recommend that you increase the failover wait time to 5 seconds.

For example, a `heartbeat-threshold` of 3 and a `heartbeat-interval` of 1000 milliseconds result in a total wait of 3 seconds before failover is triggered. To increase this wait to 5 seconds, you could increase the `heartbeat-threshold`, the `heartbeat-interval`, or both. A `heartbeat-threshold` of 5 and a `heartbeat-interval` of 1000 milliseconds would yield a wait time of 5 seconds. Setting the `heartbeat-threshold` to 4 and the `heartbeat-interval` to 1250 milliseconds would also yield a wait time of 5 seconds.

Options

- `number`—Number of consecutive missed heartbeats.

  Range: 3 through 8

  Default: 3

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- cluster (Chassis) | 500
**hold-down-interval**

**Syntax**

```
hold-down-interval number;
```

**Hierarchy Level**

```
[edit chassis cluster redundancy-group group-number]
```

**Release Information**

Statement introduced in Junos OS Release 10.0.

**Description**

Set the minimum interval to be allowed between back-to-back failovers for the specified redundancy group (affects manual failovers, as well as automatic failovers associated with monitoring failures).

For redundancy group 0, this setting prevents back-to-back failovers from occurring less than 5 minutes (300 seconds) apart. Note that a redundancy group 0 failover implies a Routing Engine failure.

For some configurations, such as ones with a large number of routes or logical interfaces, the default or specified interval for redundancy group 0 might not be sufficient. In such cases, the system automatically extends the dampening time in increments of 60 seconds until the system is ready for failover.

**Options**

`number`—Number of seconds specified for the interval.

**Range:** For redundancy group 0, 300 through 1800 seconds; for redundancy group 1 through 128, 0 through 1800 seconds.

**Default:** For redundancy group 0, 300 seconds; for redundancy group 1 through 128, 1 second.

**Required Privilege Level**

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- [cluster (Chassis)](#)
include-sci

Syntax

include-sci;

Hierarchy Level

[edit security macsec connectivity-association]

Release Information
Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description
Specify that the SCI tag be appended to each packet on a link that has enabled MACsec.

You must enable SCI tagging on a switch that is enabling MACsec on an Ethernet link connecting to an SRX device.

SCI tags are automatically appended to packets leaving a MACsec-enabled interface on an SRX device. This option is, therefore, not available on an SRX device.

You should only use this option when connecting a switch to an SRX device, or to a host device that requires SCI tagging. SCI tags are eight octets long, so appending an SCI tag to all traffic on the link adds a significant amount of unneeded overhead.

Default
SCI tagging is enabled on an SRX device that have enabled MACsec using static connectivity association key (CAK) security mode, by default.

SCI tagging is disabled on all other interfaces, by default.

Required Privilege Level
admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Understanding Media Access Control Security (MACsec)</th>
<th>417</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring Media Access Control Security (MACsec)</td>
<td>420</td>
</tr>
<tr>
<td>macsec</td>
<td>535</td>
</tr>
</tbody>
</table>
interface (Chassis Cluster)

Syntax

```
logical-interface-name secondary-ip-address;
```

Hierarchy Level

```
[edit chassis cluster redundancy-group group-number ip-monitoring family family-name IP-address]
```

Release Information

Statement introduced in Junos OS Release 10.1.

Description

Specify the redundant Ethernet interface, including its logical-unit-number, through which the monitored IP address must be reachable. The specified redundant Ethernet interface can be in any redundancy group. Likewise specify a secondary IP address to be used as a ping source for monitoring the IP address through the secondary node’s redundant Ethernet interface link.

Options

- **logical-interface-name**—Redundant Ethernet interface through which the monitored IP address must be reachable. You must specify the redundant Ethernet interface logical-unit-number. Note that you must also configure a secondary ping source IP address (see below).

  Range: **reth0.logical-unit-number** through **reth128.logical-unit-number** (device dependent)

  **NOTE:** If the redundant Ethernet interface belongs to a VPN routing and forwarding (VRF) routing instance type, then the IP monitoring feature will not work.

- **secondary-ip-address IP-address**—Specify the IP address that are used as the source IP address of ping packets for IP monitoring from the secondary child link of the redundant Ethernet interface. An IP address for sourcing the ping packets on the primary link of the redundant Ethernet interface must be configured before you can configure **secondary-ip-address**. For legacy support reasons, monitoring on an IP address without identifying a redundant Ethernet interface and without configuring a secondary ping source IP address is permitted but not recommended.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.
interfaces (MACsec)

Syntax

```
interface-name {
 connectivity-association connectivity-association-name;
}
```

Hierarchy Level

```
[edit security macsec cluster-data-port]
```

Release Information

Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description

Specify chassis cluster fabric interface on which MACsec is enabled. For SRX340, and SRX345 devices, the fabric interface can be any 1 G Ethernet interface. Use this configuration to apply a connectivity association to an interface, which enables Media Access Control Security (MACsec) on that interface.

Required Privilege Level

- `admin`—To view this statement in the configuration.
- `admin-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- Understanding Media Access Control Security (MACsec) | 417
- Configuring Media Access Control Security (MACsec) | 420
- macsec | 535
interface-monitor

Syntax

interface-monitor interface-name { weight number; }

Hierarchy Level

[edit chassis cluster redundancy-group group-number ]

Release Information

Statement introduced in Junos OS Release 9.0.

Description

Specify a redundancy group interface to be monitored for failover and the relative weight of the interface.

For a redundancy group to automatically failover to another node, its interfaces must be monitored. Interface monitoring monitors the physical status of an interface.

When you configure a redundancy group, you can specify a set of interfaces that the redundancy group is to monitor for status (or “health”) of interface to determine whether the interface is up or down. A monitored interface can be a child interface of any of its redundant Ethernet interfaces.

When you configure an interface for a redundancy group to monitor, you assign a weight to the interface. Every redundancy group has a threshold tolerance value initially set to 255. When an interface monitored by a redundancy group becomes unavailable, its weight is subtracted from the redundancy group's threshold. When a redundancy group's threshold reaches 0, the redundancy group fails over to the other node in the cluster.

Options

name—Name of the interface to monitor

weight—Weight assigned to this interface that influences failover

   Range: 0-255

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION
| cluster (Chassis) | 500 |
internal (Security IPsec)

Syntax

```plaintext
internal {
 security-association {
 manual {
 encryption {
 algorithm (3des-cbc | aes-128-cbc);
 ike-ha-link-encryption enable;
 key ascii-text;
 }
 }
 }
}
```

Hierarchy Level

```
[edit security ipsec]
```

Release Information

Statement introduced in Junos OS Release 12.1X45-D10.
Support for `ike-ha-link-encryption` option added in Junos OS Release 12.1X47-D15.
Support for `iked_encryption` option added in Junos OS Release 12.1X47-D10.
Support for `aes-128-cbc` option added in Junos OS Release 19.1R1.
Support for `ike-ha-link-encryption` option added for vSRX in Junos OS Release 19.4R1

Description

Enable secure login and to prevent attackers from gaining privileged access through this control port by configuring the internal IP security (IPsec) security association (SA).

When the internal IPsec is configured, IPsec-based `rlogin` and remote command (`rcmd`) are enforced, so an attacker cannot gain unauthorized information.

Options

`security-association`—Specify an IPsec SA. An SA is a simplex connection that allows two hosts to communicate with each other securely by means of IPsec.

`manual encryption`—Specify a manual SA. Manual SAs require no negotiation; all values, including the keys, are static and specified in the configuration.

algorithm aes-128-cbc—Specify the encryption algorithm for high availability encryption link.

iked-ha-link-encryption—Enable encryption for internal messages.

Values:
- **enable**—Enable HA link encryption IKE internal messages

key ascii-text—Specify the encryption key. You must ensure that the manual encryption key is in ASCII text and 24 characters long; otherwise, the configuration will result in a commit failure.

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Example: Configuring an Active/Passive Chassis Cluster on SRX5800 Devices | 312 |
| show security internal-security-association | 787 |
ip-monitoring

Syntax

```
ip-monitoring {
 family {
 inet {
 ipv4-address {
 interface {
 logical-interface-name;
 secondary-ip-address ip-address;
 }
 weight number;
 }
 global-threshold number;
 global-weight number;
 retry-count number;
 retry-interval seconds;
 }
 }
}
```

Hierarchy Level

```
[edit chassis cluster redundancy-group group-number]
```

Release Information

Statement updated in Junos OS Release 10.1.

Description

Specify a global IP address monitoring threshold and weight, and the interval between pings (`retry-interval`) and the number of consecutive ping failures (`retry-count`) permitted before an IP address is considered unreachable for all IP addresses monitored by the redundancy group. Also specify IP addresses, a monitoring weight, a redundant Ethernet interface number, and a secondary IP monitoring ping source for each IP address, for the redundancy group to monitor.

Options

**IPv4 address**—The address to be continually monitored for reachability. You also set up a secondary IP address to allow testing from the secondary node.
NOTE: All monitored object failures, including IP monitoring, are deducted from the redundancy group threshold priority. Other monitored objects include interface monitor, SPU monitor, cold-sync monitor, and NPC monitor (on supported platforms).

```
interface interface secondary-ip-address ip-address;—Define source address for monitoring packets on secondary link.

 Default: 0
 Range: 0-255

global-weight—Define global weight for IP monitoring. See global-weight.
 Default: 255
 Range: 0-255

retry-count—Number of retries needed to declare reachability failure. See retry-count (Chassis Cluster).
 Default: 5
 Range: 5-15

retry-interval—Define the time interval in seconds between retries. See retry-interval (Chassis Cluster).
 Default: 1
 Range: 1-30
```

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION
| Example: Configuring Chassis Cluster Redundancy Group IP Address Monitoring | 218 |
**key-server-priority (MACsec)**

**Syntax**

```
key-server-priority priority-number;
```

**Hierarchy Level**

```
[edit security macsec connectivity-association mka]
```

**Release Information**

Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

**Description**

Specifies the key server priority used by the MACsec Key Agreement (MKA) protocol to select the key server when MACsec is enabled using static connectivity association key (CAK) security mode.

The switch with the lower `priority-number` is selected as the key server.

If the `priority-number` is identical on both sides of a point-to-point link, the MKA protocol selects the device with the lower MAC address as the key server.

**Default**

The default key server priority number is 16.

**Options**

`priority-number` — Specifies the MKA server election priority number.

The `priority-number` can be any number between 0 and 255. The lower the number, the higher the priority.

**Required Privilege Level**

admin—To view this statement in the configuration.

admin-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Understanding Media Access Control Security (MACsec) | 417
- Configuring Media Access Control Security (MACsec) | 420
- macsec | 535
lacp (Interfaces)

Syntax

```
lacp {
 (active | passive);
 periodic (fast | slow);
}
```

Hierarchy Level

```
[edit interfaces interface-name redundant-ether-options]
```

Release Information

Statement introduced in Junos OS Release 10.2.

Description

For redundant Ethernet interfaces in a chassis cluster only, configure Link Aggregation Control Protocol (LACP).

Options

- **active**—Initiate transmission of LACP packets.
- **passive**—Respond to LACP packets.
- **periodic**—Interval for periodic transmission of LACP packets. The options are:
  - **fast**—Transmit link aggregation control PDUs every second.
  - **slow**—Transmit link aggregation control PDUs every 30 seconds.

**Default:** If you do not specify `lacp` as either `active` or `passive`, LACP remains off (the default).

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Understanding LACP on Standalone Devices
- periodic (Interfaces)
link-protection (Chassis Cluster)

Syntax

```
link-protection {
 non-revertive;
}
```

Hierarchy Level

```
[edit chassis aggregated-devices ethernet lacp]
```

Release Information

Statement introduced in Junos OS Release 10.2.

Description

Enable Link Aggregation Control Protocol (LACP) link protection at the global (chassis) level.

By default LACP link protection reverts to a higher-priority (lower-numbered) link when the higher-priority link becomes operational or when a higher-priority link is added to the aggregated Ethernet bundle.

You can suppress link calculation by adding the non-revertive statement to the link protection configuration. In nonrevertive mode, when a link is active in sending and receiving LACP packets, adding a higher-priority link to the bundle does not change the status of the currently active link. It remains active.

Options

- **non-revertive**—Disable the ability to switch to a better priority link (if one is available) after a link is established as active and a collection or distribution is enabled.

Required Privilege Level

- interface—to view this statement in the configuration.
- interface-control—to add this statement to the configuration.

RELATED DOCUMENTATION

- cluster (Chassis)  | 500

Example: Configuring Aggregated Ethernet Device with LAG and LACP on a Security Device (CLI Procedure)
**macsec**

**Syntax**

```plaintext
macsec {
 cluster-control-port <idx> {
 connectivity-association connectivity-association-name;
 }
 cluster-data-port interface-name {
 connectivity-association connectivity-association-name;
 }
 connectivity-association connectivity-association-name {
 exclude-protocol protocol-name;
 include-sci;
 mka {
 key-server-priority priority-number;
 must-secure;
 transmit-interval milliseconds;
 }
 no-encryption;
 offset (0|30|50);
 pre-shared-key {
 cak hexadecimal-number;
 ckn hexadecimal-number;
 }
 replay-protect {
 replay-window-size number-of-packets;
 }
 security-mode security-mode;
 }
 traceoptions (Chassis Cluster) {
 file {
 filename;
 files number;
 match regular-expression;
 (world-readable | no-world-readable);
 size maximum-file-size;
 }
 flag flag;
 }
}
```

**Hierarchy Level**
[edit security]

Release Information
Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description
Configure Media Access Control Security (MACsec). Media Access Control Security (MACsec) is supported on control and fabric ports of SRX340, SRX345, and SRX4600 devices in chassis cluster mode to secure point-to-point Ethernet links between the peer devices in a cluster. Each point-to-point Ethernet link must be configured independently to secure using MACsec. You can enable MACsec encryption on device-to-device links using static connectivity association key (CAK) security mode.

Options
cluster-control-port <idx>—Specify chassis cluster control interface on which MACsec is enabled.
  Values: 0.

cluster-data-port interface-name—Specify chassis cluster fabric interface on which MACsec is enabled.

connectivity-association—Create or configure a MACsec connectivity association.

traceoptions—Define MACsec configuration tracing operations.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.

RELATED DOCUMENTATION
| Configuring Media Access Control Security (MACsec) | 420 |
| Understanding Media Access Control Security (MACsec) | 417 |
**mka**

**Syntax**

```plaintext
mka {
 must-secure;
 key-server-priority priority-number;
 transmit-interval interval;
}
```

**Hierarchy Level**

```
[edit security macsec connectivity-association]
```

**Release Information**

Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

**Description**

Specify parameters for the MACsec Key Agreement (MKA) protocol. You initially establish a MACsec-secured link using a pre-shared key when you are using static CAK security mode to enable MACsec. Once matching pre-shared keys are successfully exchanged, the MACsec Key Agreement (MKA) protocol is enabled. The MKA protocol is responsible for maintaining MACsec on the link, and decides which switch on the point-to-point link becomes the key server. The key server then creates an SAK that is shared with the switch at the other end of the point-to-point link only, and that SAK is used to secure all data traffic traversing the link.

**Options**

The remaining statements are explained separately.

**Required Privilege Level**

- admin—To view this statement in the configuration.
- admin-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Understanding Media Access Control Security (MACsec) | 417
- Configuring Media Access Control Security (MACsec) | 420
- macsec | 535
must-secure

Syntax

must-secure;

Hierarchy Level

[edit security macsec connectivity-association mka]

Release Information
Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description
Specifies that all traffic traversing the MACsec-secured link must be forwarded onward.

When the must-secure is enabled, all traffic that is not MACsec-secured that is received on the interface is dropped.

When the must-secure is disabled, all traffic from devices that support MACsec is MACsec-secured while traffic received from devices that do not support MACsec is forwarded through the network.

The must-secure is particularly useful in scenarios where multiple devices, such as a phone and a PC, are accessing the network through the same Ethernet interface. If one of the devices supports MACsec while the other device does not support MACsec, the device that does not support MACsec can continue to send and receive traffic over the network—provided the must-secure is disabled—while traffic to and from the device that supports MACsec is MACsec-secured. In this scenario, traffic to the device that is not MACsec-secured must be VLAN-tagged.

Default
The must-secure option is disabled.

Required Privilege Level
admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Understanding Media Access Control Security (MACsec) | 417
Configuring Media Access Control Security (MACsec) | 420
macsec | 535
network-management

Syntax

```
network-management {
 cluster-master;
}
```

Hierarchy Level

```
[edit chassis cluster]
```

Release Information
Statement introduced in Junos OS Release 11.1.

Description
Define parameters for network management. To manage an SRX Series Services Gateway cluster through a non-fxp0 interface, use this command to define the node as a virtual chassis in NSM. This command establishes a single DMI connection from the primary node to the NSM server. This connection is used to manage both nodes in the cluster. Note that the non-fxp0 interface (regardless of which node it is present on) is always controlled by the primary node in the cluster. The output of a `<get-system-information>` RPC returns a `<chassis-cluster>` tag in all SRX Series devices. When NSM receives this tag, it models SRX Series clusters as devices with autonomous control planes.

Options
cluster-master—Enable in-band management on the primary cluster node through NSM.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- cluster (Chassis) | 500
**no-encryption (MACsec)**

**Syntax**

```
no-encryption;
```

**Hierarchy Level**

```
[edit security macsec connectivity-association security-mode static-cak]
```

**Release Information**

Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

**Description**

Enable MACsec encryption within a secure channel.

You can enable MACsec without enabling encryption. If a connectivity association with a secure channel that has not enabled MACsec encryption is associated with an interface, traffic is forwarded across the Ethernet link in clear text. You are, therefore, able to view this unencrypted traffic when you are monitoring the link. The MACsec header is still applied to the frame, however, and all MACsec data integrity checks are run on both ends of the link to ensure the traffic has not been tampered with and does not represent a security threat.

Traffic traversing a MAC-enabled point-to-point Ethernet link traverses the link at the same speed regardless of whether encryption is enabled or disabled. You cannot increase the speed of traffic traversing a MACsec-enabled Ethernet link by disabling encryption.

When MACsec is configuring using static connectivity association key (CAK) security mode, the encryption setting is configured outside of the secure channel using the `no-encryption` configuration statement.

**Default**

MACsec encryption is disabled when MACsec is configured, by default.

**Required Privilege Level**

- `admin`—To view this statement in the configuration.
- `admin-control`—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Understanding Media Access Control Security (MACsec) | 417
- Configuring Media Access Control Security (MACsec) | 420
- macsec | 535
node (Chassis Cluster Redundancy Group)

Syntax

node (0 | 1) {
    priority number;
}

Hierarchy Level

[edit chassis cluster redundancy-group group-number ]

Release Information

Statement introduced in Junos OS Release 9.0.

Description

Identify each cluster node in a redundancy group and set its relative priority for mastership.

A redundancy group is collection of objects. A redundancy group contains objects on both nodes. A redundancy group is primary on one node and backup on the other at any time. When a redundancy group is said to be primary on a node, its objects on that node are active. The primacy of a redundancy group is dependent on the priority configured for the node, the node ID (in case of tied priorities), and the order in which the node comes up.

Options

node—Cluster node number, You can set with the set chassis cluster node node-number statement.

Values:

- 0—Node identifier 0
- 1—Node identifier 1

priority number—Priority value of the node. Each node is given a priority within a redundancy group. The eligible node with the highest priority is elected master. Initiating a failover with the request chassis cluster failover node or request chassis cluster failover redundancy-group command overrides the priority settings.

Range: 1-254

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION
redundancy-group (Chassis Cluster) | 558
ntp

Syntax

ntp {
    authentication-key key-number type (md5 | sha1 | sha256) value password;
    boot-server (address | hostname);
    broadcast <address> <key key-number> <routing-instance-name routing-instance-name> <ttl value> <version value>;
    broadcast-client;
    interval-range value;
    multicast-client <address>;
    peer address <key key-number> <prefer> <version value>;
    restrict address {
        mask network-mask;
        noquery;
    }
    server address <key key-number> <prefer> <routing-instance routing-instance> <version value>;
    source-address source-address <routing-instance routing-instance-name>;
    threshold value action (accept | reject);
    trusted-key [ key-numbers ];
}

Hierarchy Level

[edit system]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.1 for QFX Series switches.
routing-instance option for the server statement introduced in Junos OS Release 18.1.
restrict statement introduced in Junos OS Release 20.1.

Description

Configure NTP on the device. In both standalone and chassis cluster modes, the primary Routing Engine runs the NTP process to get the time from the external NTP server. Although the secondary Routing Engine runs the NTP process in an attempt to get the time from the external NTP server, this attempt fails because of network issues. For this reason, the secondary Routing Engine uses NTP to get the time from the primary Routing Engine.

Options
authentication-key **key_number**—Configure key (key ID, key type, and key value) to authenticate NTP packets with the devices (servers and clients). The authentication key has two fields:

- **type**—When authentication is specified, the key identifier (key ID) followed by the message digest is appended to the NTP packet header. The supported message digest formats are md5, sha1, sha256.
- **value**—If the key value is available in ASCII format and without special characters, it can be entered directly. If the key value contains special characters or is available in hex format, consider the following:

  For specifying the keys in hex format, prepend a "\x" for each two characters. For hex key example, af60112f...39af4ced,

  ```
 set system ntp authentication-key <ID> value "\xaf\x60\x11\x2f\....\x39\xaf\x4c\xed".
  ```

  If the key contains one of the characters from (null) 0x00, (space) 0x20, " 0x22, & 0x26, ( 0x28 ) 0x29 prepend a ""\". For example, \x22.

**Range**: 1 to 65534

**boot-server** (**address | hostname**)—Configure the server that NTP queries when the device boots to determine the local date and time.

When you boot the device, it issues an ntpdate request, which polls a network server to determine the local date and time. You must configure an NTP boot server that the device uses to determine the time when the device boots. Otherwise, NTP cannot synchronize to a time server if the server time significantly differs from the local device’s time.

If you configure an NTP boot server, then when the device boots, it immediately synchronizes with the boot server even if the NTP process is explicitly disabled or if the time difference between the client and the boot server exceeds the threshold value of 1000 seconds.

**Values**: Configure one of the following:

- **address**—IP address of an NTP boot server.
- **hostname**—Hostname of an NTP boot server. If you configure a hostname instead of an IP address, the ntpdate request resolves the hostname to an IP address when the device boots up.

**broadcast** **address** <**key key-number**> <**routing-instance-name routing-instance-name**> <**ttl value**> <**version value**>—Configure the device to operate in broadcast mode with the remote system at the specified address. In this mode, the device sends periodic broadcast messages to a client population at the specified broadcast or multicast address. Normally, you include this statement only when the device is operating as a transmitter.

**address**—Configure the broadcast address on one of the local networks or a multicast address assigned to NTP. You must specify an address, not a hostname. If the multicast address is used, it must be 224.0.1.1.
key **key-number**—(Optional) All packets sent to the address include authentication fields that are encrypted using the specified key number (any unsigned 32-bit integer except 0). The key corresponds to the key number you specified in the authentication-key statement.

**routing-instance-name routing-instance-name**—(Optional) Configure the routing instance name in which the interface has an address in the broadcast subnet.

**Default:** The default routing instance is used to broadcast packets.

ttl **value**—(Optional) Configure the time-to-live (TTL) value.

**Range:** 1 through 255

**Default:** 1

**version value**—(Optional) Specify the version number to be used in outgoing NTP packets.

**Range:** 1 through 4

**Default:** 4

**broadcast-client**—Configure the local device to listen for broadcast messages on the local network to discover other servers on the same subnet. To avoid accidental or malicious disruption in this mode, both the local and remote systems must use authentication and the same trusted key and key identifier.

**interval-range value**—Configure the poll interval range.

**Range:** 0 through 3

**multicast-client <address>**—Configure the local device to listen for multicast messages on the local network. To avoid accidental or malicious disruption in this mode, both the local and remote systems must use authentication and the same trusted key and key identifier.

**Syntax:** <address>—(Optional) Specify one or more IP addresses. If you specify addresses, the device joins those multicast groups.

**Default:** 224.0.1.1
peer address <key key-number> <prefer> <version value>—Configure the local device to operate in symmetric active mode with the remote system at the specified address. In this mode, the local device and the remote system can synchronize with each other. This configuration is useful in a network in which either the local device or the remote system might be a better source of time.

address—Address of the remote system. You must specify an address, not a hostname.

key key-number—(Optional) All packets sent to the address include authentication fields that are encrypted using the specified key number (any unsigned 32-bit integer except 0). The key corresponds to the key number you specified in the authentication-key statement.

prefer—(Optional) Mark the remote system as the preferred host, which means that if all other factors are equal, this remote system is chosen for synchronization among a set of correctly operating systems.

version value—(Optional) Specify the NTP version number to be used in outgoing NTP packets.
  Range: 1 through 4
  Default: 4

restrict address mask network-mask noquery—Restrict packets from hosts (including remote time servers) and subnets.

Syntax:
• address—Specify the IP address for a host or network.

• mask network-mask—Specify the network mask for a host or network.

• noquery—Deny ntpq and ntpdc queries from hosts and subnets. These queries can be used in amplification attacks.
server—Configure the local device to operate in client mode with the remote system at the specified address. In this mode, the device can be synchronized with the remote system, but the remote system can never be synchronized with the device.

If the NTP client time drifts so that the difference in time from the NTP server exceeds 128 milliseconds, the client is automatically stepped back into synchronization. If the offset between the NTP client and server exceeds the 1000-second threshold, the client still synchronizes with the server, but it also generates a system log message noting that the threshold was exceeded.

address—Address of the remote system. You must specify an address, not a hostname.

key key-number—(Optional) All packets sent to the address include authentication fields that are encrypted using the specified key number (any unsigned 32-bit integer except 0). The key corresponds to the key number you specified in the authentication-key statement.

prefer—(Optional) Mark the remote system as the preferred host, which means that if all other factors are equal, this remote system is chosen for synchronization among a set of correctly operating systems.

routing-instance routing-instance—(Optional) Routing instance through which the server is reachable.

version value—(Optional) Specify the NTP version number to be used in outgoing NTP packets.

  Range: 1 through 4
  Default: 4

source-address source-address <routing-instance [ routing-instance-name ]>—A valid IP address configured on one of the device’s interfaces to be used as the source address for messages sent to the NTP server, and optionally, the routing instance in which the source address is configured.

  Default: The primary address of the interface

threshold seconds action (accept | reject)—Configure the maximum threshold in seconds allowed for NTP adjustment and specify the mode for NTP abnormal adjustment.

  Range: 1 through 600 seconds
  Values: Configure one of the following:

  • accept—Enable log mode for abnormal NTP adjustment.
  • reject—Enable reject mode for abnormal NTP adjustment.

trusted-key [ key-numbers ]—Configure one or more keys you are allowed to use to authenticate other time servers, when you configure the local device to synchronize its time with other systems on the network. Each key can be any 32-bit unsigned integer except 0. The key corresponds to the key number you specify in the authentication-key statement.

By default, network time synchronization is unauthenticated. The device synchronizes to whatever system appears to have the most accurate time. We strongly encourage you to configure authentication of network time services.
Required Privilege Level

- system—To view this statement in the configuration.
- system-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Synchronizing and Coordinating Time Distribution Using NTP
- Understanding NTP Time Servers
- Configuring NTP Authentication Keys
- NTP Time Synchronization on SRX Series Devices | 304
- Configuring the NTP Time Server and Time Services
- Configuring the Switch to Listen for Broadcast Messages Using NTP
- Configuring the Switch to Listen for Multicast Messages Using NTP
**ntp threshold**

**Syntax**

```plaintext
threshold value<action (accept | reject)>;
```

**Hierarchy Level**

```
[edit system ntp]
```

**Release Information**

Statement introduced in Junos OS Release 15.1X49-D70.

**Description**

Assign a threshold value for Network Time Protocol (NTP) adjustment that is outside of the acceptable NTP update and specify whether to accept or reject NTP synchronization when the proposed time from the NTP server exceeds the configured threshold value. If **accept** is the specified action, the system synchronizes the device time with the NTP server, but logs the time difference between the configured threshold and the time proposed by the NTP server; if **reject** is the specified action, synchronization with the time proposed by the NTP server is rejected, but the system provides the option of manually synchronizing the device time with the time proposed by the NTP server and logs the time difference between the configured threshold and the time proposed by the NTP server. By logging the time difference and rejecting synchronization when the configured threshold is exceeded, this feature helps improve security on the NTP service.

If this command is not configured or by default, the NTP will allow time adjustments for up to 1000 seconds except for first time adjustment. After NTP synchronization starts, it will allow first time adjustment to happen without any time limit. After first time adjustment happens, 1000 seconds time limit will be enforced for future time adjustments.

**Options**

- **value**—Specify the maximum value in seconds allowed for NTP adjustment.
  
  **Range:** 1 through 600.
  
  **Default:** The default value is 400.

- **action**—Specify the actions for NTP abnormal adjustment.

  - **accept**—Enable log mode for abnormal NTP adjustment. When the proposed time from the NTP server is outside of the configured threshold value, the device time synchronizes with the NTP server, but the system logs the time difference between the configured threshold and the time proposed by the NTP server.

  - **reject**—Enable log and reject mode for abnormal NTP adjustment. When the proposed time from the NTP server is outside of the configured threshold value, the system rejects synchronization, but
provides the option for manually synchronizing the time and logs the time difference between the configured threshold and the time proposed by the NTP server.

**Required Privilege Level**

security—To view this statement in the configuration.
security-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

<table>
<thead>
<tr>
<th>ntp</th>
<th>543</th>
</tr>
</thead>
<tbody>
<tr>
<td>set date ntp</td>
<td>770</td>
</tr>
<tr>
<td>show system ntp threshold</td>
<td>772</td>
</tr>
<tr>
<td>NTP Time Synchronization on SRX Series Devices</td>
<td>304</td>
</tr>
</tbody>
</table>
offset

Syntax

```
offset (0 | 30 | 50);
```

Hierarchy Level

```
[edit security macsec connectivity-association]
[edit security macsec connectivity-association security-mode static-cakl]
```

Release Information

Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description

Specifies the number of octets in an Ethernet frame that are sent in unencrypted plain-text when encryption is enabled for MACsec.

Setting the offset to 30 allows a feature to see the IPv4 header and the TCP/UDP header while encrypting the remaining traffic. Setting the offset to 50 allows a feature to see the IPv6 header and the TCP/UDP header while encrypting the remaining traffic.

You would typically forward traffic with the first 30 or 50 octets unencrypted if a feature needed to see the data in the octets to perform a function, but you otherwise prefer to encrypt the remaining data in the frames traversing the link. Load balancing features, in particular, typically need to see the IP and TCP/UDP headers in the first 30 or 50 octets to properly load balance traffic.

You configure the `offset` in the `[edit security macsec connectivity-association]` hierarchy when you are enabling MACsec using static connectivity association key (CAK) or dynamic security mode.

Default

0

Options

0—specifies that no octets are unencrypted. When you set the offset to 0, all traffic on the interface where the connectivity association or secure channel is applied is encrypted.

30—specifies that the first 30 octets of each Ethernet frame are unencrypted.

NOTE: In IPv4 traffic, setting the offset to 30 allows a feature to see the IPv4 header and the TCP/UDP header while encrypting the rest of the traffic. An offset of 30, therefore, is typically used when a feature needs this information to perform a task on IPv4 traffic.
50—Specified that the first 50 octets of each Ethernet frame are unencrypted.

**NOTE:** In IPv6 traffic, setting the offset to 50 allows a feature to see the IPv6 header and the TCP/UDP header while encrypting the rest of the traffic. An offset of 50, therefore, is typically used when a feature needs this information to perform a task on IPv6 traffic.

**Required Privilege Level**
admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**
- Understanding Media Access Control Security (MACsec) | 417
- Configuring Media Access Control Security (MACsec) | 420
- macsec | 535
**preempt (Chassis Cluster)**

**Syntax**

```plaintext
preempt {
 delay seconds;
 limit limit;
 period seconds;
}
```

**Hierarchy Level**

```plaintext
[edit chassis cluster redundancy-group group-number]
```

**Release Information**

Statement introduced in Junos OS Release 9.0. Support for `delay`, `limit`, and `period` options are added in Junos OS Release 17.4R1.

**Description**

Allow preemption of the primary system based on the priority within a redundancy group.

Configuring preemption for RG0 is not allowed and is blocked when committed.

By configuring the preemptive delay timer and failover limit, you can limit the flapping of the redundancy group state between the secondary and the primary in a preemptive failover.

By default, preemption is disabled.

Example: Consider the following scenario where you have configured a preemptive period as 300 seconds and preemptive limit as 50.

When the preemptive limit is configured as 50, the count starts at 0 and increments with a first preemptive failover; this process continues until the count reaches the configured preemptive limit, that is 50, before the preemptive period expires. When the preemptive limit (50) is exceeded, you must manually reset the preempt count to allow preemptive failovers to occur again.

When you have configured the preemptive period as 300 seconds, and if the time difference between the first preemptive failover and the current failover has already exceeded 300 seconds, and the preemptive limit (50) is not yet reached, then the preemptive period will be reset. After resetting, the last failover is considered as the first preemptive failover of the new preemptive period and the process starts all over again.

**Options**

- `delay`—Time to wait before the node in secondary state transitions to primary state in a preemptive failover.
  - **Range:** 1 to 21,600 seconds
Default: 1

**limit**—Maximum number of preemptive failovers allowed in a configured preemptive period.

**Range:** 1 to 50

**period**—Time period during which the preemptive limit is applied.

**Range:** 1 to 1400 seconds

**Required Privilege Level**

- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- [redundancy-group (Chassis Cluster)](#) | 558
- [Understanding Chassis Cluster Redundancy Group Failover](#) | 237
pre-shared-key

**Syntax**

pre-shared-key {
    cak hexadecimal-number;
    ckn hexadecimal-number;
}

**Hierarchy Level**

[edit security macsec connectivity-association]

**Release Information**

Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

**Description**

Specifies the pre-shared key used to enable MACsec using static connectivity association key (CAK) security mode.

A pre-shared key includes a connectivity association key name (CKN) and a connectivity association key (CAK). A pre-shared key is exchanged between two devices at each end of a point-to-point link to enable MACsec using static CAK security mode. The MACsec Key Agreement (MKA) protocol is enabled after the pre-shared keys are successfully verified and exchanged. The pre-shared key—the CKN and CAK—must match on both ends of a link.

**Default**

No pre-shared keys exist, by default.

**Options**

The remaining statements are explained separately.

**Required Privilege Level**

admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

Understanding Media Access Control Security (MACsec) | 417
Configuring Media Access Control Security (MACsec) | 420
macsec | 535
priority (Protocols VRRP)

Syntax

```plaintext
priority priority;
```

Hierarchy Level

```plaintext
[edit interfaces interface-name unit logical-unit-number family inet address address vrrp-group group-id],
[edit interfaces interface-name unit logical-unit-number family inet6 address address vrrp-inet6-group group-id],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family inet address address vrrp-group group-id],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family inet6 address address vrrp-inet6-group group-id]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS 11.3 for the QFX Series.
Statement introduced in Junos OS Release 14.1x53-D20 for the OCX Series.
Statement introduced in Junos OS Release 18.1R1 for the SRX Series devices.

Description

Configure a Virtual Router Redundancy Protocol (VRRP) device’s priority for becoming the master default device. The device with the highest priority within the group becomes the master. VRRP is designed to eliminate the single point of failure inherent in the static default routed environment. VRRP specifies an election protocol that dynamically assigns responsibility for a virtual router to one of the VRRP routers on a LAN. The VRRP router controlling the IP address(es) associated with a virtual router is called the Master, and forwards packets sent to these IP addresses. The election process provides dynamic fail-over in the forwarding responsibility when the Master become unavailable. Any of the virtual router’s IP addresses on a LAN can then be used as the default first hop router by end-hosts. The advantage gained from using VRRP is a higher availability default path without requiring configuration of dynamic routing or router discovery protocols on every end-host.

Options

priority—Device’s priority for being elected to be the master device in the VRRP group. A larger value indicates a higher priority for being elected.

Range: 0 through 255

Default: 100. If two or more devices have the highest priority in the VRRP group, the device with the VRRP interface that has the highest IP address becomes the master, and the others serve as backups.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring Basic VRRP Support

Understanding VRRP on SRX Series Devices | 278

Example: Configuring VRRP/VRRPv3 on Chassis Cluster Redundant Ethernet Interfaces | 285
redundancy-group (Chassis Cluster)

Syntax

redundancy-group group-number {
    gratuitous-arp-count number;
    hold-down-interval number;
    interface-monitor interface-name {
        weight number;
    }
    ip-monitoring{
        family {
            inet {
                ipv4-address {
                    interface {
                        logical-interface-name;
                        secondary-ip-address ip-address;
                    }
                    weight number;
                }
            }
            global-threshold number;
            global-weight number;
            retry-count number;
            retry-interval seconds;
        }
        node (0 | 1 ) {
            priority number;
        }
    }
    preempt (Chassis Cluster){
        delay seconds;
        limit limit;
        period seconds;
    }
}

Hierarchy Level

[edit chassis cluster]

Release Information
Statement introduced in Junos OS Release 9.0.
**Description**

Define a redundancy group. Except for redundancy group 0, a redundancy group is a logical interface consisting of two physical Ethernet interfaces, one on each chassis. One interface is active, and the other is on standby. When the active interface fails, the standby interface becomes active. The logical interface is called a redundant Ethernet interface (reth).

Redundancy group 0 consists of the two Routing Engines in the chassis cluster and controls which Routing Engine is primary. You must define redundancy group 0 in the chassis cluster configuration.

**Options**

- **group-number**—Redundancy group identification number.

  **NOTE:** The maximum number of redundancy groups is equal to the number of redundant Ethernet interfaces that you configure.

  **Range:** 0 through 128

- **interface-monitor**—Specify a redundancy group interface to be monitored for failover and the relative weight of the interface.

- **ip-monitor**—Specify IP address of interface to be monitored for end-to-end connectivity.

- **gratuitous-arp-count**—Number of gratuitous ARPs to send on an active interface after failover

  **Range:** 1-16

- **hold-down-interval**—RG failover interval. RG0(300-1800) RG1+(0-1800) (seconds)

  **Range:** 0-1800

- **node**—Identify each cluster node in a redundancy group and set its relative priority for mastership.

- **preempt**—Allow preemption of the primary system based on the priority within a redundancy group.

The remaining statements are explained separately. See CLI Explorer.

**Required Privilege Level**

- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.

**RELATED DOCUMENTATION**

| ip-monitoring | 530 |
redundant-ether-options

Syntax

redundant-ether-options {
  (flow-control | no-flow-control);
  lACP {
    (active | passive);
    periodic (fast | slow);
  }
  link-speed speed;
  (loopback | no-loopback);
  minimum-links number;
  redundancy-group number;
  source-address-filter mac-address;
  (source-filtering | no-source-filtering);
}

Hierarchy Level

[edit interfaces interface-name]

Release Information
Statement introduced in Junos OS Release 9.2.

Description
Configure Ethernet redundancy options for a chassis cluster.

In a chassis cluster setup, a redundant Ethernet interface is a pseudointerface that includes at minimum one physical interface from each node of the cluster.

A reth is a special type of interface that has the characteristics of aggregated Ethernet interface.

Options
flow-control—Enable flow control.

link-speed—Link speed of individual interface that joins the reth interface.

  Values:
  • 100m—Links are 100 Mbps
  • 10g—Links are 10 Gbps
  • 10m—Links are 10 Mbps
  • 1g—Links are 1Gbps
**loopback**—Enable loopback.

**minimum-links**—Minimum number of active links.

  Default: 1
  Range: 1-8

**no-flow-control**—Do not enable flow control.

**no-loopback**—Do not enable loopback.

**no-source-filtering**—Do not enable source address filtering.

**redundancy-group**—Redundancy group of this interface.

  Range: 1-128

**source-filtering**—Enable source address filtering.

**Required Privilege Level**

  interface—To view this statement in the configuration.
  interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- [Example: Enabling Eight-Queue Class of Service on Redundant Ethernet Interfaces on SRX Series Devices in a Chassis Cluster](#) | 138
- [Example: Configuring Chassis Cluster Redundant Ethernet Interfaces](#) | 102
redundant-parent (Interfaces)

Syntax

redundant-parent redundant-ethernet-interface-name;

Hierarchy Level

[edit interfaces interface-name gigether-options]
[edit interfaces interface-name fastether-options]

Release Information

Statement introduced in Junos OS Release 10.2.

Description

Specify redundant Ethernet interfaces (reth) and assign local (child) interfaces to the reth interfaces. A redundant Ethernet interface contains a pair of Fast Ethernet interfaces or a pair of Gigabit Ethernet interfaces that are referred to as child interfaces of the redundant Ethernet interface.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Example: Configuring Chassis Cluster Redundant Ethernet Interfaces | 102
redundant-pseudo-interface-options

Syntax

redundant-pseudo-interface-options {
    redundancy-group redundancy-group-number;
}

Hierarchy Level

[edit interfaces lo0]

Release Information

Statement introduced in Junos OS Release 12.1X44-D10.

Description

Configure the loopback pseudointerface in a redundancy group.

Redundancy groups are used to bundle interfaces into a group for failover purpose in a chassis cluster setup. You can configure a loopback interface as an alternative physical interface to reach the peer gateway. Loopback interfaces can be configured on any redundancy group.

For example: An Internet Key Exchange (IKE) gateway operating in chassis cluster, needs an external interface to communicate with a peer device. When an external interface (a reth interface or a standalone interface) is used for communication; the interface might go down when the physical interfaces are down. Instead, use loopback interfaces as an alternative to physical interfaces.

Options

redundancy-group-number—Configure the redundancy group number.

Range: 0 through 255

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Understanding the Loopback Interface for a High Availability VPN
replay-protect

Syntax

replay-protect {
    replay-window-size number-of-packets;
}

Hierarchy Level

[edit security macsec connectivity-association]

Release Information
Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description
Enable replay protection for MACsec.

A replay window size specified using the `replay-window-size number-of-packets` statement must be specified to enable replay protection. When replay protection is enabled, the receiving interface checks the ID number of all packets that have traversed the MACsec-secured link. If a packet arrives out of sequence and the difference between the packet numbers exceeds the replay protection window size, the packet is dropped by the receiving interface. For instance, if the replay protection window size is set to five and a packet assigned the ID of 1006 arrives on the receiving link immediately after the packet assigned the ID of 1000, the packet that is assigned the ID of 1006 is dropped because it falls outside the parameters of the replay protection window. Replay protection is especially useful for fighting man-in-the-middle attacks.

A packet that is replayed by a man-in-the-middle attacker on the Ethernet link will arrive on the receiving link out of sequence, so replay protection helps ensure the replayed packet is dropped instead of forwarded through the network. Replay protection should not be enabled in cases where packets are expected to arrive out of order. You can require that all packets arrive in order by setting the replay window size to 0.

Replay protection should not be enabled in cases where packets are expected to arrive out of order.

Options
The remaining statements are explained separately.

Required Privilege Level
admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.
RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Understanding Media Access Control Security (MACsec)</th>
<th>417</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring Media Access Control Security (MACsec)</td>
<td>420</td>
</tr>
<tr>
<td>macsec</td>
<td>535</td>
</tr>
</tbody>
</table>
**replay-window-size**

**Syntax**

```
replay-window-size number-of-packets;
```

**Hierarchy Level**

```
[edit security macsec connectivity-association replay-protect]
```

**Release Information**
Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

**Description**
Specifies the size of the replay protection window.

This statement has to be configured to enable replay protection.

When MACsec is enabled on an Ethernet link, an ID number is assigned to each packet entering the link. The ID number of the packet is checked by the receiving interface after the packet has traversed the MACsec-enabled link.

When replay protection is enabled, the sequence of the ID number of received packets are checked. If the packet arrives out of sequence and the difference between the packet numbers exceeds the replay protection window size, the packet is dropped by the receiving interface. For instance, if the replay protection window size is set to five and a packet assigned the ID of 1006 arrives on the receiving link immediately after the packet assigned the ID of 1000, the packet that is assigned the ID of 1006 is dropped because it falls outside the parameters of the replay protection window.

Replay protection is especially useful for fighting man-in-the-middle attacks. A packet that is replayed by a man-in-the-middle attacker on the Ethernet link will arrive on the receiving link out of sequence, so replay protection helps ensure the replayed packet is dropped instead of forwarded through the network.

Replay protection should not be enabled in cases where packets are expected to arrive out of order.

**Default**
Replay protection is disabled.

**Options**

- **number-of-packets** — Specifies the size of the replay protection window, in packets.

  When this variable is set to 0, all packets that arrive out-of-order are dropped. The maximum out-of-order number-of-packets that can be configured is 65535.

**Required Privilege Level**
admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Understanding Media Access Control Security (MACsec)</th>
<th>417</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring Media Access Control Security (MACsec)</td>
<td>420</td>
</tr>
<tr>
<td>macsec</td>
<td>535</td>
</tr>
</tbody>
</table>
reth-count (Chassis Cluster)

Syntax

```
reth-count number;
```

Hierarchy Level

```
[edit chassis cluster]
```

Release Information
Statement introduced in Junos OS Release 9.0.

Description
Specify the number of redundant Ethernet (reth) interfaces allowed in the chassis cluster. You need to specify the total number of interfaces in the chassis cluster before redundant Ethernet interfaces are created. For example, the `set chassis cluster reth-count 2` allow you to create two reth interfaces (example: reth0 and reth1)

Note that the number of reth interfaces configured determines the number of redundancy groups that can be configured and each SRX series device has a maximum number of reths that it can support.

Options

- **number** — Number of redundant Ethernet interfaces allowed.

Range: 1 through 128

Default: 0

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- cluster (Chassis) | 500
retry-count (Chassis Cluster)

Syntax

retry-count number;

Hierarchy Level

[edit chassis cluster redundancy-group group-number ip-monitoring ]

Release Information

Statement introduced in Junos OS Release 10.1.

Description

Specify the number of consecutive ping attempts that must fail before an IP address monitored by the redundancy group is declared unreachable in IP address monitoring.

In the IP address monitoring, you can configure redundancy groups to monitor upstream resources by pinging specific IP addresses that are reachable through redundant Ethernet interfaces on either node in a cluster. In this configuration, the retry interval determines the ping interval for each IP address monitored by the redundancy group and the retry count sets the number of allowed consecutive ping failures for each IP address monitored by the redundancy group.

(See retry-interval (Chassis Cluster) for a related redundancy group IP address monitoring variable.)

Options

- number—Number of consecutive ping attempt failures before a monitored IP address is declared unreachable.

Default: 5

Range: 5-15

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- cluster (Chassis) | 500
retry-interval (Chassis Cluster)

Syntax

retry-interval interval;

Hierarchy Level

[edit chassis cluster redundancy-group group-number ip-monitoring ]

Release Information
Statement introduced in Junos OS Release 10.1.

Description
Specify the ping packet send frequency (in seconds) for each IP address monitored by the redundancy group.

In the IP address monitoring, you can configure redundancy groups to monitor upstream resources by pinging specific IP addresses that are reachable through redundant Ethernet interfaces on either node in a cluster. In this configuration, the retry interval determines the ping interval for each IP address monitored by the redundancy group and the retry count sets the number of allowed consecutive ping failures for each IP address monitored by the redundancy group.

(See retry-count (Chassis Cluster) for a related IP address monitoring configuration variable.)

Options

interval—Pause time (in seconds) between each ping sent to each IP address monitored by the redundancy group.

Default: 1

Range: 1-30

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

ip-monitoring | 530
route-active-on

Syntax

route-active-on (node0 | node1);

Hierarchy Level

[edit policy-options condition condition-name]

Release Information
Statement introduced in Junos OS Release 9.0.

Description
In chassis cluster configurations, the incoming traffic from the core network is sent to the interface that exists on the current active node. For a route advertised by BGP, a policy is applied on BGP configuration before exporting routes. An additional term in the policy match condition determines the current active device (node) before making the routing decision. In this way, the traffic is processed by the active node.

Options
node0—Route active on node 0
node1—Route active on node 1

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

cluster (Chassis) | 500
Example: Configuring Conditional Route Advertising in a Chassis Cluster | 149
security-mode

Syntax

```
security-mode security-mode;
```

Hierarchy Level

```
[edit security macsec connectivity-association]
```

Release Information

Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description

Configure the MACsec security mode for the connectivity association.

We recommend enabling MACsec on switch-to-switch Ethernet links using static connectivity association key (CAK) security mode. Static CAK security mode ensures security by frequently refreshing to a new random secure association key (SAK) and by only sharing the SAK between the two devices on the MACsec-secured point-to-point link. Additionally, some optional MACsec features—replay protection, SCI tagging, and the ability to exclude traffic from MACsec—are only available when you enable MACsec using static CAK security mode.

Options

```
security-mode — Specifies the MACsec security mode. Options include:
```

- **dynamic** — Dynamic mode.
  
  Dynamic security mode is used to enable MACsec on switch-to-host Ethernet links. In dynamic mode, a master key is retrieved from a RADIUS server by a switch and a host as part of the AAA handshake in separate transactions. The MKA protocol is enabled when the master key is exchanged between the switch and the host.

- **static-cak** — Static connectivity association key (CAK) mode.
  
  Static CAK security mode is used to enable MACsec on switch-to-switch Ethernet links. In static-cak mode, the switch at one end of the point-to-point link acts as the key server and regularly transmits a randomized key using a process that does not transmit any traffic outside of the MACsec-secured point-to-point link.

Required Privilege Level

admin—To view this statement in the configuration.

admin-control—To add this statement to the configuration.
RELATED DOCUMENTATION

Understanding Media Access Control Security (MACsec) | 417
Configuring Media Access Control Security (MACsec) | 420
macsec | 535
traceoptions (Chassis Cluster)

Syntax

traceoptions {
    file {
        filename;
        files number;
        match regular-expression;
        (world-readable | no-world-readable);
        size maximum-file-size;
    }
    flag flag;
    level {
        (alert | all | critical | debug | emergency | error | info | notice | warning);
    }
    no-remote-trace;
}

Hierarchy Level

[edit chassis cluster]

Release Information
Statement modified in Junos OS Release 9.5.

Description
Define chassis cluster redundancy process tracing operations.

A minimum traceoptions configuration must include both a target file and a flag. The target file determines where the trace output is recorded. The flag defines what type of data is collected.

Options

- **file filename** —Name of the file to receive the output of the tracing operation. Enclose the name within quotation marks. All files are placed in the directory `/var/log`.

- **files number** —(Optional) Maximum number of trace files. When a trace file named `trace-file` reaches its maximum size, it is renamed to `trace-file.0`, then `trace-file.1`, and so on, until the maximum number of trace files is reached. The oldest archived file is overwritten.

- If you specify a maximum number of files, you also must specify a maximum file size with the size option and a filename.

Range: 2 through 1000 files
Default: 10 files
• **match regular-expression**—(Optional) Refine the output to include lines that contain the regular expression.

• **size maximum-file-size**—(Optional) Maximum size of each trace file, in kilobytes (KB), megabytes (MB), or gigabytes (GB). When a trace file named `trace-file` reaches this size, it is renamed `trace-file.0`. When the `trace-file` again reaches its maximum size, `trace-file.0` is renamed `trace-file.1` and `trace-file` is renamed `trace-file.0`. This renaming scheme continues until the maximum number of trace files is reached. Then the oldest trace file is overwritten.

• If you specify a maximum file size, you also must specify a maximum number of trace files with the files option and filename.

**Syntax:** `x k` to specify KB, `x m` to specify MB, or `x g` to specify GB

**Range:** 0 KB through 1 GB

**Default:** 128 KB

• **world-readable** | **no-world-readable**—(Optional) By default, log files can be accessed only by the user who configures the tracing operation. The `world-readable` option enables any user to read the file. To explicitly set the default behavior, use the `no-world-readable` option.

• **flag**—Trace operation or operations to perform on chassis cluster redundancy processes. To specify more than one trace operation, include multiple `flag` statements.
  
  • **all**—Trace all the events
  
  • **configuration**—Trace configuration events
  
  • **routing-socket**—Trace logging of rtsock activity
  
  • **snmp**—Trace SNMP events

**Required Privilege Level**

trace—To view this statement in the configuration.

trace-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

| cluster (Chassis) | 500 |
transmit-interval (MACsec)

Syntax

```
transmit-interval interval;
```

Hierarchy Level

```
[edit security macsec connectivity-association mka]
```

Release Information

Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description

Specifies the transmit interval for MACsec Key Agreement (MKA) protocol data units (PDUs).

The MKA transmit interval setting sets the frequency for how often the MKA PDU is sent to the directly connected device to maintain MACsec on a point-to-point Ethernet link. A lower `interval` increases bandwidth overhead on the link; a higher `interval` optimizes the MKA protocol data unit exchange process.

The transmit interval settings must be identical on both ends of the link when MACsec using static connectivity association key (CAK) security mode is enabled.

We recommend increasing the interval to 6000 ms in high-traffic load environments.

Default

The default transmit interval is 10000 milliseconds (10 seconds).

```
NOTE: Configuring aggressive transmit interval will lead to broken chassis cluster.
```

Options

- `interval` — Specifies the transmit interval, in milliseconds.

Required Privilege Level

- `admin`—To view this statement in the configuration.
- `admin-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- Understanding Media Access Control Security (MACsec) | 417
use-active-child-mac-on-reth

Syntax

```
use-active-child-mac-on-reth;
```

Hierarchy Level

```
[edit chassis cluster]
```

Release Information
Statement introduced in Junos OS Release 19.4R1.

Description
Copy child's physical MAC address on RETH parent's current MAC address.

**NOTE:** The commands `use-active-child-mac-on-reth` and `use-actual-mac-on-physical-interfaces` need to be configured together for the feature to work.

Required Privilege Level
interface
use-actual-mac-on-physical-interfaces

Syntax

use-actual-mac-on-physical-interfaces;

Hierarchy Level

[edit chassis cluster]

Release Information

Statement introduced in Junos OS Release 19.4R1.

Description

Configure this command so that SR-IOV uses hypervisor’s provided MAC address for physical interfaces on KVM based systems.

NOTE: The commands use-active-child-mac-on-reth and use-actual-mac-on-physical-interfaces need to be configured together for the feature to work.

Required Privilege Level

interface
virtual-address

Syntax

virtual-address [ addresses ];

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number family inet address address vrrp-group group-id],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family inet address address vrrp-group group-id]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS 11.3 for the QFX Series.
Statement introduced in Junos OS Release 14.1x53-D20 for the OCX Series.
Statement introduced in Junos OS Release 18.1R1 for the SRX Series devices.

Description

Configure the addresses of the devices in a Virtual Router Redundancy Protocol (VRRP) IPv4 or IPv6 group. You can configure up to eight addresses.

Options

addresses—Addresses of one or more devices. Do not include a prefix length. If the address is the same as the interface's physical address, the interface becomes the master device for the group.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—to add this statement to the configuration.

RELATED DOCUMENTATION

Configuring Basic VRRP Support
Understanding VRRP on SRX Series Devices | 278
Example: Configuring VRRP/VRRPv3 on Chassis Cluster Redundant Ethernet Interfaces | 285
vrrp-group

Syntax

```plaintext
vrrp-group group-id {
 (accept-data | no-accept-data);
 advertise-interval seconds;
 advertisements-threshold number;
 authentication-key key;
 authentication-type (md5 | simple);
 fast-interval milliseconds;
 no-accept-data;
 no-preempt;
 preempt {
 hold-time seconds;
 }
 preferred;
 priority number;
 track {
 interface name {
 bandwidth-threshold bits-per-second priority-cost priority {
 priority-cost priority;
 }
 }
 priority-hold-time seconds;
 route route_address {
 routing-instance;
 }
 }
 virtual-address virtual-link-local-address;
 vrrp-inherit-from {
 active-group active-group;
 active-interface active-interface;
 }
}
```

Hierarchy Level

- [edit interfaces name unit name family inet address],
- [edit interfaces name unit name family inet inet6 address]

Release Information

Statement introduced before Junos OS Release 18.1R1 for SRX Series devices.
Description
The Routing Engine performs one-by-one state change for subsequent VRRP groups. Every time there is a state change, and the new state for a particular VRRP group is master, the Routing Engine generates appropriate VRRP announcement messages. When the first VRRP group detected by the Routing Engine changes state, and the new state is master, the Routing Engine generates appropriate VRRP announcement messages. The Packet Forwarding Engine is informed about the state change, so that hardware filters for that group are reprogrammed without delay. The new master then sends gratuitous ARP message to the VRRP groups.
Options

group-id—VRRP group identifier. If you enable MAC source address filtering on the interface, you must include the virtual MAC address in the list of source MAC addresses that you specify in the source-address-filter statement. MAC addresses ranging from 00:00:5e:00:53:00 through 00:00:5e:00:53:ff are reserved for VRRP, as defined in RFC 2338. The VRRP group number must be the decimal equivalent of the last hexadecimal byte of the virtual MAC address.

Range: 0 through 255

accept-data—Accept packets destined for virtual IP address

advertise-interval—Advertisement interval (seconds)

Range: 1 through 255

inet6-advertise-interval—Inet6 advertisement interval (milliseconds)

Range: 100-40000

advertisements-threshold—Number of vrrp advertisements missed before declaring master down

Range: 1 through 15

authentication-key—Authentication key

authentication-type—Authentication type

Values:
• md5—HMAC-MD5-96
• simple—Simple password

fast-interval—Fast advertisement interval (milliseconds)

Range: 10 through 40950

no-accept-data—Don’t accept packets destined for virtual IP address

no-preempt—Don’t allow preemption

preempt—Allow preemption

preferred—Preferred group on subnet

priority—Device election priority

Range: 0 through 255

track—Interfaces to track for VRRP group

virtual-address—One or more virtual IPv4 addresses

virtual-inet6-address—One or more virtual inet6 addresses

vrrp-inherit-from—VRRP group to follow for the vrrp-group or vrrp-inet6-group
The remaining statements are explained separately. See CLI Explorer.

**Required Privilege Level**
interface

**RELATED DOCUMENTATION**

- Understanding VRRP on SRX Series Devices | 278
- Example: Configuring VRRP/VRRPv3 on Chassis Cluster Redundant Ethernet Interfaces | 285
**weight**

**Syntax**

```
weight number;
```

**Hierarchy Level**

```
[edit chassis cluster redundancy-group group-number interface-monitor interface]
[edit chassis cluster redundancy-group group-number ip-monitoring IP-address]
```

**Release Information**

Statement modified in Junos OS Release 10.1.

**Description**

Specify the relative importance of the object to the operation of the redundancy group. This statement is primarily used with interface monitoring and IP address monitoring objects. The failure of an object—such as an interface—with a greater weight brings the group closer to failover. Every monitored object is assigned a weight.

- **interface-monitor objects**—If the object fails, its weight is deducted from the threshold of its redundancy group;
- **ip-monitoring objects**—If a monitored IP address becomes unreachable for any reason, the weight assigned to that monitored IP address is deducted from the redundancy group's global-threshold for IP address monitoring.

Every redundancy group has a default threshold of 255. If the threshold reaches 0, a failover is triggered. Failover is triggered even if the redundancy group is in manual failover mode and preemption is not enabled.

**Options**

`number`—Weight assigned to the interface or monitored IP address. A higher weight value indicates a greater importance.

**Range:** 0 through 255

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- `cluster (Chassis)` | 500
Operational Commands

IN THIS CHAPTER

- clear chassis cluster control-plane statistics | 587
- clear chassis cluster data-plane statistics | 588
- clear chassis cluster failover-count | 589
- clear chassis cluster ip-monitoring failure-count | 591
- clear chassis cluster ip-monitoring failure-count ip-address | 592
- clear chassis cluster statistics | 594
- request chassis cb | 595
- request chassis cluster configuration-synchronize | 597
- request chassis cluster failover node | 598
- request chassis cluster failover redundancy-group | 600
- request chassis cluster failover reset | 602
- request chassis fpc | 603
- request chassis cluster in-service-upgrade abort (ISSU) | 605
- request security internal-security-association refresh | 606
- request system scripts add | 608
- request system reboot (SRX Series) | 612
- request system software in-service-upgrade (Maintenance) | 614
- request system software rollback (SRX Series) | 618
- set chassis cluster disable reboot | 619
- set chassis cluster cluster-id node node-number reboot | 620
- show chassis cluster control-plane statistics | 622
- show chassis cluster data-plane interfaces | 625
- show chassis cluster data-plane statistics | 627
- show chassis cluster ethernet-switching interfaces | 630
- show chassis cluster ethernet-switching status | 632
- show chassis cluster information | 635
- show chassis cluster information configuration-synchronization | 641
- show chassis cluster information issu | 644
show chassis cluster interfaces | 646
show chassis cluster ip-monitoring status redundancy-group | 652
show chassis cluster statistics | 656
show chassis cluster status | 662
show chassis environment (Security) | 666
show chassis environment cb | 673
show chassis ethernet-switch | 677
show chassis fabric plane | 683
show chassis fabric plane-location | 691
show chassis fabric summary | 693
show chassis hardware (View) | 696
show chassis routing-engine (View) | 717
show chassis temperature-thresholds | 723
show configuration chassis cluster traceoptions | 726
show interfaces (SRX Series) | 728
set date ntp | 770
show system ntp threshold | 772
show security macsec connections | 774
show security macsec statistics (SRX Series Devices) | 776
show security mka statistics | 781
show security mka sessions (SRX Series Device | 784
show security internal-security-association | 787
show system license (View) | 789
show vrrp | 793
clear chassis cluster control-plane statistics

Syntax

```
clear chassis cluster control-plane statistics
```

Release Information

Command introduced in Junos OS Release 9.3.

Description

Clear the control plane statistics of a chassis cluster.

Required Privilege Level

clear

RELATED DOCUMENTATION

| show chassis cluster control-plane statistics | 622 |

List of Sample Output

clear chassis cluster control-plane statistics on page 587

Output Fields

When you enter this command, you are provided feedback on the status of your request.

Sample Output

clear chassis cluster control-plane statistics

```
user@host> clear chassis cluster control-plane statistics

Cleared control-plane statistics
```
clear chassis cluster data-plane statistics

Syntax

```
clear chassis cluster data-plane statistics
```

Release Information
Command introduced in Junos OS Release 9.3.

Description
Clear the data plane statistics of a chassis cluster.

Required Privilege Level
clear

RELATED DOCUMENTATION
```
| show chassis cluster data-plane statistics | 627 |
```

List of Sample Output
```
clear chassis cluster data-plane statistics on page 588
```

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output
```
clear chassis cluster data-plane statistics

user@host> clear chassis cluster data-plane statistics

Cleared data-plane statistics
```
clear chassis cluster failover-count

Syntax

```
clear chassis cluster failover-count
```

Release Information
Command introduced in Junos OS Release 9.3.

Description
Clear the failover count of all redundancy groups.

Required Privilege Level
clear

RELATED DOCUMENTATION

request chassis cluster failover node	598
request chassis cluster failover reset	602
show chassis cluster status	662

List of Sample Output

show chassis cluster status on page 589
clear chassis cluster failover-count on page 590
show chassis cluster status on page 590

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output

The following example displays the redundancy groups before and after the failover-counts are cleared.

**show chassis cluster status**

```
user@host> show chassis cluster status

Cluster ID: 3
Node name | Priority | Status | Preempt | Manual failover
--- | --- | --- | --- | ---
```

Redundancy group: 0, Failover count: 1
  node0  200  secondary  no  no
  node1  100  primary   no  no

Redundancy group: 1, Failover count: 2
  node0  100  primary   no  no
  node1  10   secondary no  no

clear chassis cluster failover-count
user@host> clear chassis cluster failover-count

Cleared failover-count for all redundancy-groups

show chassis cluster status
user@host> show chassis cluster status

Cluster ID: 3
Node name    Priority  Status     Preempt  Manual failover

Redundancy group: 0, Failover count: 0
  node0  200  secondary no  no
  node1  100  primary  no  no

Redundancy group: 1, Failover count: 0
  node0  100  primary  no  no
  node1  10   secondary no  no
clear chassis cluster ip-monitoring failure-count

Syntax

```
clear chassis cluster ip-monitoring failure-count
```

Release Information

Command introduced in Junos OS Release 10.1.

Description

Clear the failure count for all IP addresses.

Required Privilege Level

clear

RELATED DOCUMENTATION

```
| clear chassis cluster ip-monitoring failure-count ip-address | 592
```

Output Fields

When you enter this command, you are provided feedback on the status of your request.

Sample Output

```
user@host> clear chassis cluster ip-monitoring failure-count

node0:
--
Cleared failure count for all IPs

node1:
--
Cleared failure count for all IPs
```
clear chassis cluster ip-monitoring failure-count ip-address

Syntax

```
clear chassis cluster ip-monitoring failure-count ip-address 1.1.1.1
```

Release Information

Command introduced in Junos OS Release 10.1.

Description

Clear the failure count for a specified IP address.

**NOTE:** Entering an IP address at the end of this command is optional. If you do not specify an IP address, the failure count for all monitored IP addresses is cleared.

Required Privilege Level

clear

RELATED DOCUMENTATION

| clear chassis cluster failover-count | 589 |
| clear chassis cluster ip-monitoring failure-count | 591 |

Output Fields

When you enter this command, you are provided feedback on the status of your request.

Sample Output

```
user@host> clear chassis cluster ip-monitoring failure-count ip-address 1.1.1.1

node0:

Cleared failure count for IP: 1.1.1.1

node1:
```
Cleared failure count for IP: 1.1.1.1
clear chassis cluster statistics

Syntax

clear chassis cluster statistics

Release Information

Command introduced in Junos OS Release 9.3.

Description

Clear the control plane and data plane statistics of a chassis cluster.

Required Privilege Level

clear

RELATED DOCUMENTATION

| show chassis cluster statistics | 656 |

List of Sample Output

clear chassis cluster statistics on page 594

Output Fields

When you enter this command, you are provided feedback on the status of your request.

Sample Output

clear chassis cluster statistics

user@host> clear chassis cluster statistics

Cleared control-plane statistics
Cleared data-plane statistics
**request chassis cb**

**Syntax**

```
request chassis cb (offline | online) slot slot-number
```

**Release Information**

Command introduced in Junos OS Release 9.2.
Command introduced in Junos OS Release 17.2 for PTX10008 Routers.
Starting with Junos OS Release 12.1X47-D15, the SRX5K-SCBE (SCB2) is introduced and starting with Junos OS Release 15.1X49-D10, the SRX5K-SCB3 (SCB3) with enhanced midplane is introduced.

**Description**

Control the operation (take the CB offline or bring online) of the Control Board (CB).

**Options**

- **offline**—Take the Control Board offline.
- **online**—Bring the Control Board online.
- **slot slot-number**—Control Board slot number.

**Required Privilege Level**

maintenance

**RELATED DOCUMENTATION**

- `show chassis environment cb` | 673

**List of Sample Output**

- `request chassis cb (SRX Series) on page 595`
- `request chassis cb (PTX10008 Router) on page 596`

**Output Fields**

When you enter this command, you are provided feedback on the status of your request.

**Sample Output**

```
request chassis cb (SRX Series)

user@host> request chassis cb offline slot 2 node local
```
request chassis cb (PTX10008 Router)

user@host> request chassis cb offline slot 1

Offline initiated, use "show chassis environment cb" to verify
request chassis cluster configuration-synchronize

Syntax

request chassis cluster configuration-synchronize

Release Information

Command introduced in Junos OS Release 12.1X47-D10.

Description

Synchronize the configuration from the primary node to the secondary node when the secondary node joins the primary node in a cluster.

Required Privilege Level

maintenance

RELATED DOCUMENTATION

Understanding Automatic Chassis Cluster Synchronization Between Primary and Secondary Nodes	135
Verifying Chassis Cluster Configuration Synchronization Status	136
NTP Time Synchronization on SRX Series Devices	304

List of Sample Output

request chassis cluster configuration-synchronize on page 597

Output Fields

When you enter this command, you are provided feedback on the status of your request.

Sample Output

request chassis cluster configuration-synchronize

user@host> request chassis cluster configuration-synchronize

Performing configuration synchronization from remote node.
request chassis cluster failover node

Syntax

```
request chassis cluster failover node node-number
redundancy-group group-number
```

Release Information
Command introduced in Junos OS Release 9.0.

Description
For chassis cluster configurations, initiate manual failover in a redundancy group from one node to the other, which becomes the primary node, and automatically reset the priority of the group to 255. The failover stays in effect until the new primary node becomes unavailable, the threshold of the redundancy group reaches 0, or you use the `request chassis cluster failover reset` command.

After a manual failover, you must use the `request chassis cluster failover reset` command before initiating another failover.

Options

- **node node-number**—Number of the chassis cluster node to which the redundancy group fails over.
- **Range:** 0 through 1

- **redundancy-group group-number**—Number of the redundancy group on which to initiate manual failover. Redundancy group 0 is a special group consisting of the two Routing Engines in the chassis cluster.
  - **Range:** 0 through 255

Required Privilege Level
maintenance

RELATED DOCUMENTATION

```
clear chassis cluster failover-count | 589
request chassis cluster failover reset | 602
show chassis cluster status | 662
```

List of Sample Output
request chassis cluster failover node on page 599

Output Fields
When you enter this command, you are provided feedback on the status of your request.
Sample Output

request chassis cluster failover node

user@host> request chassis cluster failover node 0 redundancy-group 1

Initiated manual failover for redundancy group 1
request chassis cluster failover redundancy-group

Syntax

request chassis cluster failover node node-number redundancy-group redundancy-group-number

Release Information

Command introduced in Junos OS Release 9.0.

Description

For chassis cluster configurations, initiate manual failover in a redundancy group from one node to the other, which becomes the primary node, and automatically reset the priority of the group to 255. The failover stays in effect until the new primary node becomes unavailable, the threshold of the redundancy group reaches 0, or you use the request chassis cluster failover reset command.

After a manual failover, you must use the request chassis cluster failover reset command before initiating another failover.

Options

- node node-number—Number of the chassis cluster node to which the redundancy group fails over.
  - Range: 0 or 1
- redundancy-group group-number—Number of the redundancy group on which to initiate manual failover.
  - Redundancy group 0 is a special group consisting of the two Routing Engines in the chassis cluster.
  - Range: 0 through 255

Required Privilege Level

maintenance

RELATED DOCUMENTATION

| Initiating a Chassis Cluster Manual Redundancy Group Failover | 243 |
| Verifying Chassis Cluster Failover Status | 248 |

List of Sample Output

request chassis cluster failover redundancy-group on page 601

Output Fields

When you enter this command, you are provided feedback on the status of your request.
Sample Output

request chassis cluster failover redundancy-group

user@host> request chassis cluster failover redundancy-group 0 node 1

{primary:node0}

user@host> request chassis cluster failover redundancy-group 0 node 1

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Initiated manual failover for redundancy group 0
request chassis cluster failover reset

Syntax

request chassis cluster failover reset
  redundancy-group group-number

Release Information
Command introduced in Junos OS Release 9.0.

Description
In chassis cluster configurations, undo the previous manual failover and return the redundancy group to its original settings.

Options

redundancy-group group-number—Number of the redundancy group on which to reset manual failover. Redundancy group 0 is a special group consisting of the two Routing Engines in the chassis cluster.

Range: 0 through 255

Required Privilege Level
maintenance

RELATED DOCUMENTATION

clear chassis cluster failover-count | 589
request chassis cluster failover node | 598
show chassis cluster status | 662

List of Sample Output
request chassis cluster failover reset on page 602

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output

request chassis cluster failover reset

user@host> request chassis cluster failover reset redundancy-group 0
request chassis fpc

Syntax

request chassis fpc (offline | online | restart) slot slot-number

Release Information
Command modified in Junos OS Release 9.2.
Command introduced in Junos OS Release 17.2 for PTX10008 Routers.

Description
Control the operation of the Flexible PIC Concentrator (FPC).

NOTE: The SRX5K-SPC-2-10-40 (SPC1) and SRX5K-SPC-4-15-320 (SPC2) does not support the request chassis fpc command. SRX5K-SPC3 card supports request chassis fpc command.

Options
offline—Take the FPC offline.

online—Bring the FPC online.

restart—Restart the FPC.

slot slot-number—Specify the FPC slot number.

Required Privilege Level
maintenance

RELATED DOCUMENTATION

show chassis fpc (View)

Output Fields
When you enter this command, you are provided feedback on the status of your request.
Sample Output

request chassis fpc (SRX Series)
user@host> request chassis fpc online slot 0
FPC 0 already online

request chassis fpc (PTX10008 Router)
user@host> request chassis fpc online slot 1
FPC 0 already online
**request chassis cluster in-service-upgrade abort (ISSU)**

**Syntax**

```
request chassis cluster in-service-upgrade abort
```

**Release Information**
Command introduced in Junos OS Release 11.2.

**Description**
Abort an upgrade in a chassis cluster during an in-service software upgrade (ISSU). Use this command to end the ISSU on any nodes in a chassis cluster followed by `reboot` to abort the ISSU on that device.

**Options**
This command has no options.

**Required Privilege Level**
view

**RELATED DOCUMENTATION**

- Upgrading a Chassis Cluster Using In-Service Software Upgrade  | 443.

**List of Sample Output**

**Output Fields**
When you enter this command, you are provided feedback on the status of your request.

**Sample Output**

```
user@host> request chassis cluster in-service-upgrade abort

Exiting in-service-upgrade window
Chassis ISSU Aborted
```
request security internal-security-association refresh

Syntax

request security internal-security-association refresh node <node-id | all | local | primary>

Release Information

Command introduced in Junos OS Release 12.1X45-D10.

Description

Activate internal IPsec so an attacker cannot gain unauthorized information.

Required Privilege Level

maintenance

RELATED DOCUMENTATION

| show security internal-security-association | 787 |
| internal (Security IPsec) | 528 |

Output Fields

When you enter this command, you are provided feedback on the status of your request. Table 38 on page 606 shows the list of output fields.

Table 38: request security internal-security-association refresh Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE</td>
<td>Specify key for the routing engine.</td>
</tr>
<tr>
<td>direction</td>
<td>Direction of the manual security association. The direction must be bidirectional.</td>
</tr>
</tbody>
</table>

Sample Output

request security internal-security-association refresh
with security ipsec internal security-association enabled

user@host> request security internal-security-association refresh
with `security ipsec internal security-association disabled`

```
user@host> request security internal-security-association refresh
```

```
node0:

RE: no key
direction 0
delete __juniper_internal_ipsec_sa__, direction 0
direction 1
delete __juniper_internal_ipsec_sa__, direction 1

node1:

RE: no key
direction 0
delete __juniper_internal_ipsec_sa__, direction 0
direction 1
delete __juniper_internal_ipsec_sa__, direction 1
```
**request system scripts add**

**Syntax**

```
request system scripts add package-name <no-copy | unlink>
 <master>
 <backup>
```

**Release Information**

Command introduced before Junos OS Release 9.0. The options `master` and `backup` are introduced in Junos OS Release 15.1X49-D50.

**Description**

CLI command to install AI-Script install packages on SRX Series devices in a chassis cluster.

**Options**

- **package-name**—Specify AI-Script install package name.
- **no-copy**—(Optional) Do not save a copy of the AI script package file.
- **unlink**—(Optional) Remove the AI script package after successful installation.
- **master**—(Optional) Install AI script packages on the primary node.
- **backup**—(Optional) Install AI script packages on the secondary node.

**Additional Information**

This command eliminates the AI script installation on both primary node and secondary node separately.

**Required Privilege Level**

`maintenance`

**RELATED DOCUMENTATION**

- [Understanding Automatic Chassis Cluster Synchronization Between Primary and Secondary Nodes](#) | 135

**List of Sample Output**

- `request system scripts add package-name` on page 609
- `request system scripts add package-name` on page 610
Sample Output

```
request system scripts add package-name

user@host> request system scripts add jais-5.0R1.0-signed.tgz master

$: -a: unexpected operator
grep: /etc/db/pkg/jais/+COMMENT: No such file or directory
Installing package '/var/tmp/jais-5.0R4.0signed.tgz' ...
Verified jais-5.0R4.0.tgz signed by PackageProductionRSA_2016
Adding jais...
Available space: 798414 require: 1814
Installing AI-Scripts version: 5.0R4
Saving package file in /var/db/scripts/commit/jais-5.0R4.0signed.tgz ...
NOTICE: uncommitted changes have been saved in
/var/db/config/juniper.conf.pre-install
ln: //etc/rc.d/ais: Read-only file system
Model: srx5600
Model: srx5600
Linking in Junos ES manifest file.
Creating srx5800/srx5600 trend data file.
Creating SRX intelligence attachments file.
Creating SRX events attachments file.
Creating AI-Scripts FIFO
Starting AI-Scripts FIFO handler
77834: old priority 0, new priority 20
77842: old priority 0, new priority 20
RSI parameters are now being set
BIOS validation parameter is now being set
BIOS interval parameter is now being set
JMB cleanup age is now being set
JMB Event file is now being set
JMB User Event file is now being set
PHDC collect parameter is now being set
PHDC duration parameter is now being set
PHDC commands file is now being set
JMB Progress Logging parameter is now being set
iJMB generation parameters are now being set
AI-Scripts platform support flag is now being set
Interval event commands file is now being set
Interval event enabled parameter is now being set
All node log collect parameter is now being set
Disk Warning Threshold is now being set
```
Disk Full Threshold is now being set
RSI Lite Enabled is now being set
Removing any old files that need to be updated
Copying updated files
Restarting eventd ...
Event processing process started, pid 78147
Installation completed
Saving package file in /var/sw/pkg/jais-5.0R4.0-signed.tgz ...
Saving state for rollback ...

request system scripts add package-name
user@host>  request system scripts add jais-5.0R1.0-signed.tgz backup

Pushing bundle to node1
[: -a: unexpected operator
grep: /etc/db/pkg/jais/+COMMENT: No such file or directory
Installing package '/var/tmp/jais-5.0R4.0-signed.tgz' ...
Verified jais-5.0R4.0.tgz signed by PackageProductionRSA_2016
Adding jais...
Available space: 2619677 require: 1814
Installing AI-Scripts version: 5.0R4
chmod: /var/db/scripts/event/cron.slax: No such file or directory
chmod: /var/db/scripts/event/bit_event.slax: No such file or directory
chmod: /var/db/scripts/event/bit_event2.slax: No such file or directory
chmod: /var/db/scripts/op/ais_bit.slax: No such file or directory
Saving package file in /var/db/scripts/commit/jais-5.0R4.0-signed.tgz ...
NOTICE: uncommitted changes have been saved in /var/db/config/juniper.conf.pre-install
ln: //etc/rc.d/ais: Read-only file system
Mounted jais package on /dev/md2...
Verified manifest signed by PackageProductionRSA_2016
Verified jais-5.0R4.0 signed by PackageProductionRSA_2016
Model: srx5600
Model: srx5600
Linking in Junos ES manifest file.
Creating srx5800/srx5600 trend data file.
Creating SRX intelligence attachments file.
Creating SRX events attachments file.
Creating AI-Scripts FIFO
Starting AI-Scripts FIFO handler
99423: old priority 0, new priority 20
99428: old priority 0, new priority 20
99429: old priority 0, new priority 20
99430: old priority 0, new priority 20
RSI parameters are now being set
BIOS validation parameter is now being set
BIOS interval parameter is now being set
JMB cleanup age is now being set
JMB Event file is now being set
JMB User Event file is now being set
PHDC collect parameter is now being set
PHDC duration parameter is now being set
PHDC commands file is now being set
JMB Progress Logging parameter is now being set
iJMB generation parameters are now being set
AI-Scripts platform support flag is now being set
Interval event commands file is now being set
Interval event enabled parameter is now being set
All node log collect parameter is now being set
Disk Warning Threshold is now being set
Disk Full Threshold is now being set
RSI Lite Enabled is now being set
chmod: /var/db/scripts/event/cron.slax: No such file or directory
chmod: /var/db/scripts/event/bit_event.slax: No such file or directory
chmod: /var/db/scripts/event/bit_event2.slax: No such file or directory
chmod: /var/db/scripts/op/ais_bit.slax: No such file or directory
Removing any old files that need to be updated
Copying updated files
Restarting eventd ...
Event processing process started, pid 99730
Installation completed
Saving package file in /var/sw/pkg/jais-5.0R4.0-signed.tgz ...
Saving state for rollback ...
request system reboot (SRX Series)

Syntax

```
request system reboot <at time> <in minutes><media><message "text">
```

Release Information

Command introduced in Junos OS Release 10.1.
Command hypervisor option introduced in Junos OS Release 15.1X49-D10 for vSRX.
Command introduced in Junos OS Release 15.1X49-D50 for SRX1500 devices.

Description

Reboot the software.

Options

- at time (Optional)— Specify the time at which to reboot the device. You can specify time in one of the following ways:
  - now— Reboot the device immediately. This is the default.
  - +minutes— Reboot the device in the number of minutes from now that you specify.
  - yyyyMMddhhmm— Reboot the device at the absolute time on the date you specify. Enter the year, month, day, hour (in 24-hour format), and minute.
  - hh:mm— Reboot the device at the absolute time you specify, on the current day. Enter the time in 24-hour format, using a colon (:) to separate hours from minutes.
- in minutes(Optional)— Specify the number of minutes from now to reboot the device. This option is a synonym for the at +minutes option
- media type(Optional)— Specify the boot device to boot the device from:
  - disk/internal— Reboot from the internal media. This is the default.
  - usb— Reboot from the USB storage device.
  - compact flash— Reboot from the external CompactFlash card.

NOTE: The media command option is not available on vSRX.

- message “text” (Optional)— Provide a message to display to all system users before the device reboots.

Example: `request system reboot at 5 in 50 media internal message stop`

Required Privilege Level

maintenance
RELATED DOCUMENTATION

- request system software rollback (SRX Series) | 618
request system software in-service-upgrade (Maintenance)

Syntax

```plaintext
request system software in-service-upgrade image_name
<no-copy>
<no-old-master-upgrade>
<no-sync>
<no-tcp-syn-check>
<no-validate>
<unlink>
```

Release Information

For SRX5400, SRX5600, and SRX5800 devices, command introduced in Junos OS Release 9.6. For SRX5400 devices, the command is introduced in Junos OS Release 12.1X46-D20. For SRX300, SRX320, SRX340, and SRX345 devices, command introduced in Junos OS Release 15.1X49-D40. For SRX1500 devices, command introduced in Junos OS Release 15.1X49-D50. For SRX380 devices, command introduced in Junos OS Release 20.1R1. Starting with Junos OS Release 15.1X49-D80, SRX4100 and SRX4200 devices support ISSU. Starting with Junos OS Release 17.4R1, SRX4600 devices support ISSU. SRX300 Series devices and vSRX do not support ISSU.

Description

The in-service software upgrade (ISSU) feature allows a chassis cluster pair to be upgraded from supported Junos OS versions with a traffic impact similar to that of redundancy group failovers. Before upgrading, you must perform failovers so that all redundancy groups are active on only one device. We recommend that graceful restart for routing protocols be enabled before you initiate an ISSU.

For SRX300, SRX320, SRX340, SRX345, and SRX380 devices, you must use the `no-sync` parameter to perform an in-band cluster upgrade (ICU). This allows a chassis cluster pair to be upgraded with a minimal service disruption of approximately 30 seconds.

For SRX1500, SRX4100, and SRX4200 devices, the `no-sync` parameter is not supported when using ISSU to upgrade. The `no-sync` option specifies that the state is not synchronized from the primary node to the secondary node.

For SRX1500 devices, the `no-tcp-syn-check` parameter is not supported when using ISSU to upgrade.

Options

- `image_name`—Specify the location and name of the software upgrade package to be installed.
- `no-copy`—(Optional) Install the software upgrade package but do not save the copies of package files.
- `no-old-master-upgrade`—(Optional) Do not upgrade the old master after switchover.

This parameter applies to SRX5400, SRX5600, and SRX5800 devices only.
• **no-sync**—(Optional) Stop the flow state from synchronizing when the old secondary node has booted with a new Junos OS image.

This parameter applies to SRX300, SRX320, SRX340, SRX345, and SRX380 devices only. It is required for an ICU.

• **no-tcp-syn-check**—(Optional) Create a window wherein the TCP SYN check for the incoming packets is disabled. The default value for the window is 7200 seconds (2 hours).

This parameter applies to SRX300, SRX320, SRX340, SRX345, and SRX380 devices only.

• **no-validate**—(Optional) Disable the configuration validation step at installation. The system behavior is similar to that of the **request system software add** command.

This parameter applies to SRX300, SRX320, SRX340, SRX345, and SRX380 devices only.

• **unlink**—(Optional) Remove the software package after successful installation.

**Required Privilege Level**
maintenance

**RELATED DOCUMENTATION**

| request system software rollback (SRX Series) | 618 |

List of Sample Output

**request system software in-service-upgrade (SRX300, SRX320, SRX340, SRX345, and SRX380 Devices) on page 615**

**Output Fields**

When you enter this command, you are provided feedback on the status of your request.

**Sample Output**

**request system software in-service-upgrade (SRX300, SRX320, SRX340, SRX345, and SRX380 Devices)**

```
user@host> request system software in-service-upgrade
/var/tmp/junos-srxsme-15.1I20160520_0757-domestic.tgz no-sync
```

**ISSU: Validating package**

**WARNING:** in-service-upgrade shall reboot both the nodes in your cluster. Please ignore any subsequent reboot request message
ISSU: start downloading software package on secondary node
Pushing /var/tmp/junos-srxsme-15.1I20160520_0757-domestic.tgz to
node0:/var/tmp/junos-srxsme-15.1I20160520_0757-domestic.tgz
Formatting alternate root (/dev/da0s1a)...  
/dev/da0s1a: 2510.1MB (5140780 sectors) block size 16384, fragment size 2048
using 14 cylinder groups of 183.62MB, 11752 blks, 23552 inodes.
super-block backups (for fsck -b #) at:
32, 376096, 752160, 1128224, 1504288, 1880352, 2256416, 2632480, 3008544,
3384608, 3760672, 4136736, 4512800, 4888864
Installing package
'/altroot/cf/packages/install-tmp/junos-15.1I20160520_0757-domestic' ...
Verified junos-boot-srxsme-15.1I20160520_0757.tgz signed by
PackageDevelopmentEc_2016 method ECDSA256+SHA256
Verified junos-srxsme-15.1I20160520_0757-domestic signed by
PackageDevelopmentEc_2016 method ECDSA256+SHA256

WARNING: The software that is being installed has limited support.
WARNING: Run 'file show /etc/notices/unsupported.txt' for details.

Verified junos-boot-srxsme-15.1I20160520_0757.tgz signed by
PackageDevelopmentEc_2016 method ECDSA256+SHA256
Verified junos-srxsme-15.1I20160520_0757-domestic signed by
PackageDevelopmentEc_2016 method ECDSA256+SHA256

JUNOS 15.1I20160520_0757 will become active at next reboot
WARNING: A reboot is required to load this software correctly
WARNING: Use the 'request system reboot' command
WARNING: when software installation is complete

cp: cannot overwrite directory /altroot/cf/etc/ssh with non-directory /cf/etc/ssh

Saving state for rollback ...
ISSU: finished upgrading on secondary node node0
ISSU: start upgrading software package on primary node
Formatting alternate root (/dev/da0s1a)...  
/dev/da0s1a: 2510.1MB (5140780 sectors) block size 16384, fragment size 2048
using 14 cylinder groups of 183.62MB, 11752 blks, 23552 inodes.
super-block backups (for fsck -b #) at:
32, 376096, 752160, 1128224, 1504288, 1880352, 2256416, 2632480, 3008544,
3384608, 3760672, 4136736, 4512800, 4888864
Installing package
'/altroot/cf/packages/install-tmp/junos-15.1I20160520_0757-domestic' ...
Verified junos-boot-srxsme-15.1I20160520_0757.tgz signed by
PackageDevelopmentEc_2016 method ECDSA256+SHA256
Verified junos-srxsme-15.1I20160520_0757-domestic signed by
PackageDevelopmentEc_2016 method ECDSA256+SHA256
WARNING: The software that is being installed has limited support. 
WARNING: Run 'file show /etc/notices/unsupported.txt' for details.

Verified junos-boot-srxsme-15.1I20160520_0757.tgz signed by PackageDevelopmentEc_2016 method ECDSA256+SHA256
Verified junos-srxsme-15.1I20160520_0757-domestic signed by PackageDevelopmentEc_2016 method ECDSA256+SHA256
JUNOS 15.1I20160520_0757 will become active at next reboot
WARNING: A reboot is required to load this software correctly
WARNING: Use the 'request system reboot' command 
WARNING: when software installation is complete

cp: cannot overwrite directory /altroot/cf/etc/ssh with non-directory /cf/etc/ssh
Saving state for rollback ...

ISSU: failover all redundancy-groups 1...n to primary node
Successfully reset all redundancy-groups priority back to configured priority.
Successfully reset all redundancy-groups priority back to configured priority.
error: Command failed. None of the redundancy-groups has been failed over.
    Some redundancy-groups' priority on node1 are 0.
    e.g.: priority of redundancy-groups-1 on node1 is 0.
Use 'force' option at the end to ignore this check.
WARNING: Using force option may cause traffic loss.

ISSU: rebooting Secondary Node
Shutdown NOW!
ISSU: Waiting for secondary node node0 to reboot.
ISSU: node 0 went down
ISSU: Waiting for node 0 to come up
ISSU: node 0 came up
ISSU: secondary node node0 booted up.
ISSU: failover all redundancy-groups 1...n to remote node, before reboot.
Successfully reset all redundancy-groups priority back to configured priority.

Shutdown NOW!

{primary:node1}
user@host>

*** FINAL System shutdown message from user@host ***

System going down IMMEDIATELY
request system software rollback (SRX Series)

Syntax

```
request system software rollback <node-id>
```

Release Information

Command introduced in Junos OS Release 10.1.
Command introduced in Junos OS Release 15.1X49-D50 for SRX1500 devices.
Command introduced in Junos OS Release 17.4R1 for SRX4100 and SRX4200 devices.

Description

Revert to the software that was loaded at the last successful `request system software add` command. The upgraded FreeBSD 11.x (supported in Junos OS Release 17.4R1) Junos OS image provides an option to save a recovery image in an Operation, Administration, and Maintenance (OAM) partition, but that option will save only the Junos OS image, not the Linux image. If a user saves the Junos OS image and recovers it later, it might not be compatible with the Linux software loaded on the system.

Options

`node-id`—Identification number of the chassis cluster node. It can be 0 or 1.

Required Privilege Level

maintenance

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>request system reboot (SRX Series)</th>
<th>612</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upgrading Junos OS with Upgraded FreeBSD</td>
<td></td>
</tr>
<tr>
<td>Release Information for Junos OS with Upgraded FreeBSD</td>
<td></td>
</tr>
</tbody>
</table>
**set chassis cluster disable reboot**

**Syntax**

```bash
set chassis cluster disable <reboot>
```

**Release Information**

Statement introduced in Junos OS Release 9.0.

**Description**

After defining chassis cluster configuration, you can disable or remove a chassis cluster and change the SRX devices to standalone devices by running the `set chassis cluster disable reboot` command from the operational mode.

After the chassis cluster is disabled using this CLI command, you do not have a similar CLI option to enable it.

**Options**

- **reboot** — You can disable the chassis cluster and run the reboot command. When the reboot is completed, you can view the SRX device functioning in standalone mode.

**Required Privilege Level**

maintenance

**RELATED DOCUMENTATION**

- `set chassis cluster cluster-id node node-number reboot` | 620
- Disabling a Chassis Cluster | 461

**List of Sample Output**

*set chassis cluster disable reboot on page 619*

**Output Fields**

**Sample Output**

```bash
user@host> set chassis cluster disable reboot
Successfully disabled chassis cluster. Going to reboot now.
```
set chassis cluster cluster-id node node-number reboot

Syntax

    set chassis cluster cluster-id cluster-id node node-number reboot

Release Information

Support for extended cluster identifiers (more than 15 identifiers) added in Junos OS Release 12.1X45-D10.

Description

Sets the chassis cluster identifier (ID) and node ID on each device, and reboots the devices to enable clustering. The system uses the chassis cluster ID and chassis cluster node ID to apply the correct configuration for each node (for example, when you use the apply-groups command to configure the chassis cluster management interface). The chassis cluster ID and node ID statements are written to the EPROM, and the statements take effect when the system is rebooted.

Setting a cluster ID to 0 is equivalent to disabling a cluster. A cluster ID greater than 15 can only be set when the fabric and control link interfaces are connected back-to-back.

NOTE: If you have a cluster set up and running with an earlier release of Junos OS, you can upgrade to Junos OS Release 12.1X45-D10 or later and re-create a cluster with cluster IDs greater than 16. If for any reason you decide to revert to the previous version of Junos OS that did not support extended cluster IDs, the system comes up with standalone devices after you reboot. If the cluster ID set is less than 16 and you roll back to a previous release, the system comes back with the previous setup.

Options

cluster-id cluster-id—Identifies the cluster within the Layer 2 domain.

    Range: 0 through 255

node node—Identifies a node within a cluster.

    Range: 0 through 1

reboot—reboot the specified devices to configure the chassis cluster.

Required Privilege Level

maintenance

RELATED DOCUMENTATION
Output Fields
When you enter this command, you are provided feedback on the status of your request.
show chassis cluster control-plane statistics

Syntax

```plaintext
show chassis cluster control-plane statistics
```

Release Information


Description

Display information about chassis cluster control plane statistics.

Required Privilege Level

view

RELATED DOCUMENTATION

- clear chassis cluster control-plane statistics | 587

List of Sample Output

- show chassis cluster control-plane statistics on page 623
- show chassis cluster control-plane statistics (SRX5000 Line Devices) on page 624

Output Fields

Table 39 on page 622 lists the output fields for the `show chassis cluster control-plane statistics` command. Output fields are listed in the approximate order in which they appear.

Table 39: show chassis cluster control-plane statistics Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
</table>
| Control link statistics | Statistics of the control link used by chassis cluster traffic. Statistics for Control link 1 are displayed when you use dual control links (SRX5600 and SRX5800 devices only).
  | - **Heartbeat packets sent**—Number of heartbeat messages sent on the control link. |
  | - **Heartbeat packets received**—Number of heartbeat messages received on the control link. |
  | - **Heartbeat packet errors**—Number of heartbeat packets received with errors on the control link. |
### Table 39: show chassis cluster control-plane statistics Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Fabric link statistics</strong></td>
<td>Statistics of the fabric link used by chassis cluster traffic. Statistics for Child Link 1 are displayed when you use dual fabric links.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Probes sent</strong>—Number of probes sent on the fabric link.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Probes received</strong>—Number of probes received on the fabric link.</td>
</tr>
<tr>
<td><strong>Switch fabric link statistics</strong></td>
<td>Statistics of the switch fabric link used by chassis cluster traffic.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Probe state</strong>—State of the probe, UP or DOWN.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Probes sent</strong>—Number of probes sent.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Probes received</strong>—Number of probes received.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Probe recv error</strong>—Error in receiving probe.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Probe send error</strong>—Error in sending probe.</td>
</tr>
</tbody>
</table>

### Sample Output

**show chassis cluster control-plane statistics**

```
user@host> show chassis cluster control-plane statistics

Control link statistics:
 Control link 0:
 Heartbeat packets sent: 11646
 Heartbeat packets received: 8343
 Heartbeat packet errors: 0

Fabric link statistics:
 Child link 0
 Probes sent: 11644
 Probes received: 8266

Switch fabric link statistics:
 Probe state : DOWN
 Probes sent: 8145
 Probes received: 8013
 Probe recv errors: 0
 Probe send errors: 0
```
Sample Output

```
show chassis cluster control-plane statistics (SRX5000 Line Devices)
user@host> show chassis cluster control-plane statistics

Control link statistics:
 Control link 0:
 Heartbeat packets sent: 2061982
 Heartbeat packets received: 2060367
 Heartbeat packet errors: 0
 Control link 1:
 Heartbeat packets sent: 2061982
 Heartbeat packets received: 0
 Heartbeat packet errors: 0

Fabric link statistics:
 Child link 0
 Probes sent: 3844342
 Probes received: 3843841
 Child link 1
 Probes sent: 0
 Probes received: 0
```
show chassis cluster data-plane interfaces

Syntax

show chassis cluster data-plane interfaces

Release Information
Command introduced in Junos OS Release 10.2.

Description
Display the status of the data plane interface (also known as a fabric interface) in a chassis cluster configuration.

Required Privilege Level
view

RELATED DOCUMENTATION

cluster (Chassis) | 500

List of Sample Output
show chassis cluster data-plane interfaces on page 625

Output Fields
Table 40 on page 625 lists the output fields for the show chassis cluster data-plane interfaces command. Output fields are listed in the approximate order in which they appear.

Table 40: show chassis cluster data-plane interfaces Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fab0/fab1</td>
<td>Name of the logical fabric interface.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Name</strong>—Name of the physical Ethernet interface.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Status</strong>—State of the fabric interface: up or down.</td>
</tr>
</tbody>
</table>

Sample Output

show chassis cluster data-plane interfaces

user@host> show chassis cluster data-plane interfaces
<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-2/1/9</td>
<td>up</td>
</tr>
<tr>
<td>ge-2/2/5</td>
<td>up</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-8/1/9</td>
<td>up</td>
</tr>
<tr>
<td>ge-8/2/5</td>
<td>up</td>
</tr>
</tbody>
</table>
show chassis cluster data-plane statistics

Syntax

```
show chassis cluster data-plane statistics
```

Release Information
Command introduced in Junos OS Release 9.3.

Description
Display information about chassis cluster data plane statistics.

Required Privilege Level
view

RELATED DOCUMENTATION

- clear chassis cluster data-plane statistics | 588

List of Sample Output

show chassis cluster data-plane statistics on page 628

Output Fields

Table 41 on page 628 lists the output fields for the show chassis cluster data-plane statistics command. Output fields are listed in the approximate order in which they appear.
Table 41: show chassis cluster data-plane statistics Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
</table>
| Services Synchronized | • Service name—Name of the service.  
• Rtos sent—Number of runtime objects (RTOs) sent.  
• Rtos received—Number of RTOs received.  
• Translation context—Messages synchronizing Network Address Translation (NAT) translation context.  
• Incoming NAT—Messages synchronizing incoming Network Address Translation (NAT) service.  
• Resource manager—Messages synchronizing resource manager groups and resources.  
• Session create—Messages synchronizing session creation.  
• Session close—Messages synchronizing session close.  
• Session change—Messages synchronizing session change.  
• Gate create—Messages synchronizing creation of pinholes (temporary openings in the firewall).  
• Session ageout refresh request—Messages synchronizing request session after age-out.  
• Session ageout refresh reply—Messages synchronizing reply session after age-out.  
• IPsec VPN—Messages synchronizing VPN session.  
• Firewall user authentication—Messages synchronizing firewall user authentication session.  
• MGCP ALG—Messages synchronizing MGCP ALG sessions.  
• H323 ALG—Messages synchronizing H.323 ALG sessions.  
• SIP ALG—Messages synchronizing SIP ALG sessions.  
• SCCP ALG—Messages synchronizing SCCP ALG sessions.  
• PPTP ALG—Messages synchronizing PPTP ALG sessions.  
• RTSP ALG—Messages synchronizing RTSP ALG sessions. |

Sample Output

show chassis cluster data-plane statistics

user@host> show chassis cluster data-plane statistics
<table>
<thead>
<tr>
<th>Service name</th>
<th>RTOs sent</th>
<th>RTOs received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation context</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource manager</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session close</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gate create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPsec VPN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Firewall user authentication</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MGCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H323 ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SIP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPTP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RTSP ALG</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
**show chassis cluster ethernet-switching interfaces**

**Syntax**

```
show chassis cluster ethernet-switching interfaces
```

**Release Information**

Command introduced in Junos OS Release 11.1.

**Description**

Display the status of the switch fabric interfaces (swfab interfaces) in a chassis cluster.

**Required Privilege Level**

view

**RELATED DOCUMENTATION**

<table>
<thead>
<tr>
<th>cluster (Chassis)</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Ethernet Switching User Guide</em></td>
<td></td>
</tr>
</tbody>
</table>

**List of Sample Output**

*show chassis cluster ethernet-switching interfaces on page 630*

**Output Fields**

Table 42 on page 630 lists the output fields for the show chassis cluster ethernet-switching interfaces command. Output fields are listed in the approximate order in which they appear.

Table 42: show chassis cluster ethernet-switching interfaces Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>swfab switch fabric interface-name</code></td>
<td>Name of the switch fabric interface.</td>
</tr>
<tr>
<td>• Name—Name of the physical interface.</td>
<td></td>
</tr>
<tr>
<td>• Status—State of the switch fabric interface:</td>
<td></td>
</tr>
<tr>
<td>up or down.</td>
<td></td>
</tr>
</tbody>
</table>

**Sample Output**

*show chassis cluster ethernet-switching interfaces*

```
user@host> show chassis cluster ethernet-switching interfaces
```


<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/9</td>
<td>up</td>
</tr>
<tr>
<td>ge-0/0/10</td>
<td>up</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-7/0/9</td>
<td>up</td>
</tr>
<tr>
<td>ge-7/0/10</td>
<td>up</td>
</tr>
</tbody>
</table>
show chassis cluster ethernet-switching status

Syntax

```
show chassis cluster ethernet-switching status
```

Release Information

Command introduced in Junos OS Release 11.1.

Description

Display the Ethernet switching status of the chassis cluster.

Required Privilege Level

view

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>cluster (Chassis)</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet Switching User Guide</td>
<td></td>
</tr>
</tbody>
</table>

List of Sample Output

*show chassis cluster ethernet-switching status on page 633*

Output Fields

Table 43 on page 632 lists the output fields for the `show chassis cluster ethernet-switching status` command. Output fields are listed in the approximate order in which they appear.

Table 43: show chassis cluster ethernet-switching status Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Cluster ID</strong></td>
<td>ID number (1-255) of a cluster. Setting a cluster ID to 0 is equivalent to disabling a cluster. A cluster ID greater than 15 can only be set when the fabric and control link interfaces are connected back-to-back.</td>
</tr>
<tr>
<td><strong>Redundancy-Group</strong></td>
<td>You can create up to 128 redundancy groups in the chassis cluster.</td>
</tr>
<tr>
<td><strong>Node name</strong></td>
<td>Node (device) in the chassis cluster (node0 or node1).</td>
</tr>
<tr>
<td><strong>Priority</strong></td>
<td>Assigned priority for the redundancy group on that node.</td>
</tr>
</tbody>
</table>
Table 43: show chassis cluster ethernet-switching status Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>State of the redundancy group (Primary, Secondary, Lost, or Unavailable).</td>
</tr>
<tr>
<td></td>
<td>• <strong>Primary</strong>—Redundancy group is active and passing traffic.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Secondary</strong>—Redundancy group is passive and not passing traffic.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Lost</strong>—Node loses contact with the other node through the control link. Most likely to occur when both nodes are in a cluster and there is a control link failure, one node cannot exchange heartbeats, or when the other node is rebooted.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Unavailable</strong>—Node has not received a single heartbeat over the control link from the other node since the other node booted up. Most likely to occur when one node boots up before the other node, or if only one node is present in the cluster.</td>
</tr>
<tr>
<td>Preempt</td>
<td>• <strong>Yes</strong>: Mastership can be preempted based on priority.</td>
</tr>
<tr>
<td></td>
<td>• <strong>No</strong>: Change in priority will not preempt mastership.</td>
</tr>
<tr>
<td>Manual failover</td>
<td>• <strong>Yes</strong>: Mastership is set manually through the CLI.</td>
</tr>
<tr>
<td></td>
<td>• <strong>No</strong>: Mastership is not set manually through the CLI.</td>
</tr>
</tbody>
</table>

Sample Output

```
show chassis cluster ethernet-switching status

user@host> show chassis cluster ethernet-switching status

Monitor Failure codes:
 CS Cold Sync monitoring FL Fabric Connection monitoring
 GR GRES monitoring HW Hardware monitoring
 IF Interface monitoring IP IP monitoring
 LB Loopback monitoring MB Mbuf monitoring
 NH Nexthop monitoring NP NPC monitoring
 SP SPU monitoring SM Schedule monitoring
 CF Config Sync monitoring

Cluster ID: 1
Node Priority Status Preempt Manual Monitor-failures

Redundancy group: 0 , Failover count: 0
node0 1 primary no no None
node1 1 secondary no no None
```
Ethernet switching status:

Probe state is UP. Both nodes are in single ethernet switching domain(s).
show chassis cluster information

Syntax

show chassis cluster information

Release Information
Command introduced in Junos OS Release 12.1X47-D10.

Description
Display chassis cluster messages. The messages indicate each node's health condition and details of the monitored failure.

Required Privilege Level
view

RELATED DOCUMENTATION

| show chassis cluster status | 662 |

List of Sample Output

show chassis cluster information on page 636
show chassis cluster information (Monitoring Abnormal Case) on page 637
show chassis cluster information (Preempt Delay Timer) on page 639

Output Fields

Table 44 on page 635 lists the output fields for the show chassis cluster information command. Output fields are listed in the approximate order in which they appear.

Table 44: show chassis cluster information Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
<td>Node (device) in the chassis cluster (node0 or node1).</td>
</tr>
</tbody>
</table>
Table 44: show chassis cluster information Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Redundancy Group Information</strong></td>
<td>• Redundancy Group—ID number (0 - 255) of a redundancy group in the cluster.</td>
</tr>
<tr>
<td></td>
<td>• Current State—State of the redundancy group: <strong>primary</strong>, <strong>secondary</strong>, <strong>hold</strong>, or <strong>secondary-hold</strong>.</td>
</tr>
<tr>
<td></td>
<td>• Weight—Relative importance of the redundancy group.</td>
</tr>
<tr>
<td></td>
<td>• Time—Time when the redundancy group changed the state.</td>
</tr>
<tr>
<td></td>
<td>• From—State of the redundancy group before the change.</td>
</tr>
<tr>
<td></td>
<td>• To—State of the redundancy group after the change.</td>
</tr>
<tr>
<td></td>
<td>• Reason—Reason for the change of state of the redundancy group.</td>
</tr>
<tr>
<td><strong>Chassis cluster LED information</strong></td>
<td>• Current LED color—Current color state of the LED.</td>
</tr>
<tr>
<td></td>
<td>• Last LED change reason—Reason for change of state of the LED.</td>
</tr>
</tbody>
</table>

**Sample Output**

```
show chassis cluster information

user@host> show chassis cluster information

node0:

Redundancy Group Information:

 Redundancy Group 0 , Current State: primary, Weight: 255

 Time From To Reason
 Mar 27 17:44:19 hold secondary Hold timer expired
 Mar 27 17:44:27 secondary primary Better priority (200/200)

 Redundancy Group 1 , Current State: primary, Weight: 255

 Time From To Reason
 Mar 27 17:44:19 hold secondary Hold timer expired
 Mar 27 17:44:27 secondary primary Remote yield (0/0)

 Redundancy Group 2 , Current State: secondary, Weight: 255

 Time From To Reason
```
Mar 27 17:44:19 hold secondary Hold timer expired
Mar 27 17:44:27 secondary primary Remote yield (0/0)
Mar 27 17:50:24 primary secondary-hold Preempt/yield(100/200)
Mar 27 17:50:25 secondary-hold secondary Ready to become secondary

Chassis cluster LED information:
  Current LED color: Green
  Last LED change reason: No failures

node1:
-------------------------------------------------------------------------
Redundancy Group Information:

Redundancy Group 0 , Current State: secondary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar 27 17:44:27 hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
<td></td>
</tr>
</tbody>
</table>

Redundancy Group 1 , Current State: secondary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar 27 17:44:27 hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
<td></td>
</tr>
<tr>
<td>Mar 27 17:50:23 secondary</td>
<td>primary</td>
<td>Remote yield (100/0)</td>
<td></td>
</tr>
<tr>
<td>Mar 27 17:50:24 primary</td>
<td>secondary-hold</td>
<td>Preempt/yield(100/200)</td>
<td></td>
</tr>
<tr>
<td>Mar 27 17:50:25 secondary-hold secondary</td>
<td>secondary</td>
<td>Ready to become secondary</td>
<td></td>
</tr>
</tbody>
</table>

Redundancy Group 2 , Current State: primary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar 27 17:44:27 hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
<td></td>
</tr>
<tr>
<td>Mar 27 17:50:23 secondary</td>
<td>primary</td>
<td>Remote yield (200/0)</td>
<td></td>
</tr>
</tbody>
</table>

Chassis cluster LED information:
  Current LED color: Green
  Last LED change reason: No failures

---

Sample Output

show chassis cluster information (Monitoring Abnormal Case)

user@host> show chassis cluster information

The following output is specific to monitoring abnormal (unhealthy) case.
node0:

Redundancy Group Information:

Redundancy Group 0, Current State: secondary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 1 11:07:38</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Apr 1 11:07:41</td>
<td>secondary</td>
<td>primary</td>
<td>Only node present</td>
</tr>
<tr>
<td>Apr 1 11:29:20</td>
<td>primary</td>
<td>secondary-hold</td>
<td>Manual failover</td>
</tr>
<tr>
<td>Apr 1 11:34:20</td>
<td>secondary-hold</td>
<td>secondary</td>
<td>Ready to become secondary</td>
</tr>
</tbody>
</table>

Redundancy Group 1, Current State: primary, Weight: 0

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 1 11:07:38</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Apr 1 11:07:41</td>
<td>secondary</td>
<td>primary</td>
<td>Only node present</td>
</tr>
</tbody>
</table>

Redundancy Group 2, Current State: primary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 1 11:07:38</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Apr 1 11:07:41</td>
<td>secondary</td>
<td>primary</td>
<td>Only node present</td>
</tr>
</tbody>
</table>

Chassis cluster LED information:
Current LED color: Amber
Last LED change reason: Monitored objects are down

Failure Information:

IP Monitoring Failure Information:
Redundancy Group 1, Monitoring Status: Failed
IP Address	Status	Reason
1.1.1.1    | Unreachable | redundancy-group state unknown |

node1:

Redundancy Group Information:

Redundancy Group 0, Current State: primary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 1 11:08:40</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
</tbody>
</table>
Apr 1 11:29:20 secondary primary Remote is in secondary hold

Redundancy Group 1, Current State: secondary, Weight: 0

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 1 11:08:40</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
</tbody>
</table>

Redundancy Group 2, Current State: secondary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 1 11:08:40</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
</tbody>
</table>

Chassis cluster LED information:
- Current LED color: Amber
- Last LED change reason: Monitored objects are down

Failure Information:

IP Monitoring Failure Information:
- Redundancy Group 1, Monitoring Status: Failed

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Status</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.1</td>
<td>Unreachable</td>
<td>redundancy-group state unknown</td>
</tr>
</tbody>
</table>

Sample Output

**show chassis cluster information (Preempt Delay Timer)**

```
user@host> show chassis cluster information
```

code node0:

Redundancy Group Information:

- Redundancy Group 0, Current State: secondary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 4 12:30:02</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Aug 4 12:30:05</td>
<td>secondary</td>
<td>primary</td>
<td>Only node present</td>
</tr>
<tr>
<td>Aug 4 14:24:58</td>
<td>secondary-hold</td>
<td>secondary</td>
<td>Ready to become secondary</td>
</tr>
</tbody>
</table>
Redundancy Group 1, Current State: secondary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 4 14:07:57</td>
<td>secondary</td>
<td>primary</td>
<td>Remote is in secondary hold</td>
</tr>
<tr>
<td>Aug 4 14:20:23</td>
<td>primary</td>
<td>secondary-hold</td>
<td>Monitor failed: IF</td>
</tr>
<tr>
<td>Aug 4 14:20:24</td>
<td>secondary-hold</td>
<td>secondary</td>
<td>Ready to become secondary</td>
</tr>
<tr>
<td>Aug 4 14:20:54</td>
<td>secondary</td>
<td>primary</td>
<td>Remote is in secondary hold</td>
</tr>
<tr>
<td>Aug 4 14:21:30</td>
<td>primary</td>
<td>secondary-hold</td>
<td>Monitor failed: IF</td>
</tr>
<tr>
<td>Aug 4 14:21:31</td>
<td>secondary-hold</td>
<td>secondary</td>
<td>Ready to become secondary</td>
</tr>
</tbody>
</table>

Chassis cluster LED information:
- Current LED color: Green
- Last LED change reason: No failures

node1:

Redundancy Group Information:

Redundancy Group 0, Current State: primary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 4 12:33:47</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Aug 4 14:19:57</td>
<td>secondary</td>
<td>primary</td>
<td>Remote is in secondary hold</td>
</tr>
</tbody>
</table>

Redundancy Group 1, Current State: primary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 4 14:07:56</td>
<td>secondary-hold</td>
<td>secondary</td>
<td>Ready to become secondary</td>
</tr>
<tr>
<td>Aug 4 14:20:22</td>
<td>secondary</td>
<td>primary</td>
<td>Remote is in secondary hold</td>
</tr>
<tr>
<td>Aug 4 14:20:37</td>
<td>primary</td>
<td>primary-preempt-hold</td>
<td>Preempt (99/101)</td>
</tr>
<tr>
<td>Aug 4 14:20:52</td>
<td>primary-preempt-hold</td>
<td>secondary-hold</td>
<td>Primary preempt hold timer e</td>
</tr>
<tr>
<td>Aug 4 14:20:53</td>
<td>secondary-hold</td>
<td>secondary</td>
<td>Ready to become secondary</td>
</tr>
<tr>
<td>Aug 4 14:21:28</td>
<td>secondary</td>
<td>primary</td>
<td>Remote yield (99/0)</td>
</tr>
</tbody>
</table>

Chassis cluster LED information:
- Current LED color: Green
- Last LED change reason: No failures
show chassis cluster information configuration-synchronization

Syntax

```
show chassis cluster information configuration-synchronization
```

Release Information

Command introduced in Junos OS Release 12.1X47-D10.

Description

Display chassis cluster messages. The messages indicate the redundancy mode, automatic synchronization status, and if automatic synchronization is enabled on the device.

Required Privilege Level

view

RELATED DOCUMENTATION

- Understanding Automatic Chassis Cluster Synchronization Between Primary and Secondary Nodes | 135
- NTP Time Synchronization on SRX Series Devices | 304
- Example: Simplifying Network Management by Synchronizing the Primary and Backup Nodes with NTP | 305
- request chassis cluster configuration-synchronize | 597

List of Sample Output

show chassis cluster information configuration-synchronization on page 642

Output Fields

Table 45 on page 641 lists the output fields for the `show chassis cluster information configuration-synchronization` command. Output fields are listed in the approximate order in which they appear.

Table 45: show chassis cluster information configuration-synchronization Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node name</td>
<td>Node (device) in the chassis cluster (node0 or node1).</td>
</tr>
</tbody>
</table>
Table 45: show chassis cluster information configuration-synchronization Output Fields  (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
</table>
| Status     | • Activation status—State of automatic configuration synchronization: **Enabled** or **Disabled**.  
• Last sync operation—Status of the last synchronization.  
• Last sync result—Result of the last synchronization.  
• Last sync mgd messages—Management daemon messages of the last synchronization. |
| Events     | The timestamp of the event, the automatic configuration synchronization status, and the number of synchronization attempts. |

Sample Output

```bash
show chassis cluster information configuration-synchronization

user@host> show chassis cluster information configuration-synchronization

node0:
--
Configuration Synchronization:
 Status:
 Activation status: Enabled
 Last sync operation: Auto-Sync
 Last sync result: Not needed
 Last sync mgd messages:
 Events:

node1:
--
Configuration Synchronization:
 Status:
 Activation status: Enabled
 Last sync operation: Auto-Sync
 Last sync result: Succeeded
 Last sync mgd messages:
 mgd: rcp: /config/juniper.conf: No such file or directory
 Network security daemon: warning: You have enabled/disabled inet6 flow.
 Network security daemon: You must reboot the system for your change to take effect.
```
Network security daemon: If you have deployed a cluster, be sure to reboot all nodes.

mgd: commit complete

Events:
show chassis cluster information issu

Syntax

```
show chassis cluster information issu
```

Release Information
Command introduced in Junos OS Release 12.1X47-D10.

Description
Display chassis cluster messages. The messages indicate the progress of the in-service software upgrade (ISSU).

Required Privilege Level
view

RELATED DOCUMENTATION

| show chassis cluster status | 662 |

List of Sample Output
show chassis cluster information issu on page 645

Output Fields
Table 46 on page 644 lists the output fields for the show chassis cluster information issu command. Output fields are listed in the approximate order in which they appear.

Table 46: show chassis cluster information issu Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node name</td>
<td>Node (device) in the chassis cluster (node0 or node1).</td>
</tr>
<tr>
<td>CS Prereq</td>
<td>Status of all cold synchronization prerequisites:</td>
</tr>
<tr>
<td></td>
<td>• if_state sync—Status of if_state synchronization.</td>
</tr>
<tr>
<td></td>
<td>• fabric link—Status of fabric link synchronization.</td>
</tr>
<tr>
<td></td>
<td>• policy data sync—Status of policy data synchronization.</td>
</tr>
<tr>
<td></td>
<td>• cp ready—Status of the central point.</td>
</tr>
<tr>
<td></td>
<td>• VPN data sync—Status of the VPN data synchronization.</td>
</tr>
<tr>
<td>CS RTO sync</td>
<td>Status of cold synchronization runtime objects.</td>
</tr>
</tbody>
</table>
Table 46: show chassis cluster information issu Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS postreq</td>
<td>Status of cold synchronization postrequirements.</td>
</tr>
</tbody>
</table>

Sample Output

show chassis cluster information issu

user@host> show chassis cluster information issu

node0:
-----------------------------------------------------------------------------------------------
Cold Synchronization Progress:
    CS Prereq    10 of 10 SPUs completed
        1. if_state sync    10 SPUs completed
        2. fabric link      10 SPUs completed
        3. policy data sync 10 SPUs completed
        4. cp ready         10 SPUs completed
        5. VPN data sync     10 SPUs completed
    CS RTO sync       10 of 10 SPUs completed
    CS Postreq        10 of 10 SPUs completed

node1:
-----------------------------------------------------------------------------------------------
Cold Synchronization Progress:
    CS Prereq    10 of 10 SPUs completed
        1. if_state sync    10 SPUs completed
        2. fabric link      10 SPUs completed
        3. policy data sync 10 SPUs completed
        4. cp ready         10 SPUs completed
        5. VPN data sync     10 SPUs completed
    CS RTO sync       10 of 10 SPUs completed
    CS Postreq        10 of 10 SPUs completed
**show chassis cluster interfaces**

**Syntax**

```
show chassis cluster interfaces
```

**Release Information**

Command modified in Junos OS Release 9.0. Output changed to support dual control ports in Junos OS Release 10.0. Output changed to support control interfaces in Junos OS Release 11.2. Output changed to support redundant pseudo interfaces in Junos OS Release 12.1X44-D10. For SRX5000 line devices, output changed to support the internal security association (SA) option in Junos OS Release 12.1X45-D10. Output changed to support MACsec status on control and fabric interfaces in Junos OS Release 15.1X49-D60. For vSRX, output changed to support the internal security association (SA) option in Junos OS Release 19.4R1.

**Description**

Display the status of the control interface in a chassis cluster configuration.

**Required Privilege Level**

view

**RELATED DOCUMENTATION**

- cluster (Chassis) | 500

**List of Sample Output**

- show chassis cluster interfaces (SRX5000 line devices with RE3) on page 648
- show chassis cluster interfaces (SRX5000 line devices with RE2) on page 648
- show chassis cluster interfaces on page 649
- show chassis cluster interfaces (SRX5400, SRX5600, and SRX5800 Devices with SRX5000 line SRX5K-SCB3 [SCB3] with Enhanced Midplanes and SRX5K-MPC3-100G10G [IOC3] or SRX5K-MPC3-40G10G [IOC3]) on page 650
- show chassis cluster interfaces (vSRX) on page 651

**Output Fields**

Table 47 on page 646 lists the output fields for the `show chassis cluster interfaces` command. Output fields are listed in the approximate order in which they appear.

**Table 47: show chassis cluster interfaces Output Fields**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control link status</td>
<td>State of the chassis cluster control interface: up or down.</td>
</tr>
</tbody>
</table>
Table 47: show chassis cluster interfaces Output Fields *(continued)*

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Control interfaces</strong></td>
<td>• <strong>Index</strong>—Index number of the chassis cluster control interface.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Interface</strong>—Name of the chassis cluster control interface. The control interface names differ based on the routing engine. For RE2, the control interfaces are displayed as em0 and em1 and for RE3, the control interfaces are displayed as ixlV0 and igb0.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Monitored-Status</strong>—Monitored state of the interface: <strong>up</strong> or <strong>down</strong>.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Internal SA</strong>—State of the internal SA option on the chassis cluster control link: <strong>enabled</strong> or <strong>disabled</strong>.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This field is available only on SRX5000 line devices.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Security</strong>—State of MACsec on chassis cluster control interfaces.</td>
</tr>
<tr>
<td>Fabric link status</td>
<td>State of the fabric interface: <strong>up</strong> or <strong>down</strong>.</td>
</tr>
<tr>
<td><strong>Fabric interfaces</strong></td>
<td>• <strong>Name</strong>—Name of the fabric interface.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Child-interface</strong>—Name of the child fabric interface.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Status</strong>—State of the interface: <strong>up</strong> or <strong>down</strong>.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Security</strong>—State of MACsec on chassis cluster fabric interfaces.</td>
</tr>
<tr>
<td><strong>Redundant-ethernet Information</strong></td>
<td>• <strong>Name</strong>—Name of the redundant Ethernet interface.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Status</strong>—State of the interface: <strong>up</strong> or <strong>down</strong>.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Redundancy-group</strong>—Identification number (1–255) of the redundancy group associated with the redundant Ethernet interface.</td>
</tr>
<tr>
<td><strong>Redundant-pseudo-interface Information</strong></td>
<td>• <strong>Name</strong>—Name of the redundant pseudointerface.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Status</strong>—State of the redundant pseudointerface: <strong>up</strong> or <strong>down</strong>.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Redundancy-group</strong>—Identification number (1–255) of the redundancy group associated with the redundant pseudointerface.</td>
</tr>
<tr>
<td><strong>Interface Monitoring</strong></td>
<td>• <strong>Interface</strong>—Name of the interface to be monitored.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Weight</strong>—Relative importance of the interface to redundancy group operation.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Status</strong>—State of the interface: <strong>up</strong> or <strong>down</strong>.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Redundancy-group</strong>—Identification number of the redundancy group associated with the interface.</td>
</tr>
</tbody>
</table>
**Sample Output**

*show chassis cluster interfaces (SRX5000 line devices with RE3)*

```bash
user@host> show chassis cluster interfaces
```

Control link status: Down

Control interfaces:

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Monitored-Status</th>
<th>Internal-SA</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ixlv0</td>
<td>Down</td>
<td>Enabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>1</td>
<td>igb0</td>
<td>Down</td>
<td>Enabled</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Fabric link status: Down

Fabric interfaces:

<table>
<thead>
<tr>
<th>Name</th>
<th>Child-interface</th>
<th>Status</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>fab0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fab0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Redundant-ethernet Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>reth0</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth1</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth2</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth3</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth4</td>
<td>Down</td>
<td>Not configured</td>
</tr>
</tbody>
</table>

Redundant-pseudo-interface Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0</td>
<td>Up</td>
<td>0</td>
</tr>
</tbody>
</table>

---

**Sample Output**

*show chassis cluster interfaces (SRX5000 line devices with RE2)*

```bash
user@host> show chassis cluster interfaces
```

Control link status: Up
Control interfaces:

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Monitored-Status</th>
<th>Internal-SA</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>em0</td>
<td>Up</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>1</td>
<td>em1</td>
<td>Down</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Fabric link status: Up

Fabric interfaces:

<table>
<thead>
<tr>
<th>Name</th>
<th>Child-interface</th>
<th>Status</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>fab0</td>
<td>xe-1/0/3</td>
<td>Up / Down</td>
<td>Disabled</td>
</tr>
<tr>
<td>fab1</td>
<td>xe-7/0/3</td>
<td>Up / Down</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Redundant-ethernet Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>reth0</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>reth1</td>
<td>Up</td>
<td>2</td>
</tr>
<tr>
<td>reth2</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth3</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth4</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth5</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth6</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth7</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth8</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth9</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth10</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth11</td>
<td>Down</td>
<td>Not configured</td>
</tr>
</tbody>
</table>

Redundant-pseudo-interface Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0</td>
<td>Up</td>
<td>1</td>
</tr>
</tbody>
</table>

Interface Monitoring:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Weight</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/1/9</td>
<td>100</td>
<td>Up</td>
<td>0</td>
</tr>
<tr>
<td>ge-0/1/9</td>
<td>100</td>
<td>Up</td>
<td></td>
</tr>
</tbody>
</table>

---

**Sample Output**

```
show chassis cluster interfaces

user@host> show chassis cluster interfaces
```
The following output is specific to fabric monitoring failure:

Control link status: Up

Control interfaces:

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Monitored-Status</th>
<th>Internal-SA</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>em0</td>
<td>Up</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Fabric link status: Down

Fabric interfaces:

<table>
<thead>
<tr>
<th>Name</th>
<th>Child-interface</th>
<th>Status</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>fab0</td>
<td>ge-0/0/2</td>
<td>Down/Down</td>
<td>Disabled</td>
</tr>
<tr>
<td>fab1</td>
<td>ge-9/0/2</td>
<td>Up/Up</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Redundant-pseudo-interface Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0</td>
<td>Up</td>
<td>0</td>
</tr>
</tbody>
</table>

---

**Sample Output**

```bash
show chassis cluster interfaces
```

show chassis cluster interfaces
(SRX5400, SRX5600, and SRX5800 Devices with SRX5000 line SRX5K-SCB3 [SCB3] with Enhanced Midplanes and SRX5K-MPC3-100G10G [IOC3] or SRX5K-MPC3-40G10G [IOC3])

user@host> show chassis cluster interfaces

The following output is specific to SRX5400, SRX5600, and SRX5800 devices in a chassis cluster cluster, when the PICs containing fabric links on the SRX5K-MPC3-40G10G (IOC3) are powered off to turn on alternate PICs. If no alternate fabric links are configured on the PICs that are turned on, RTO synchronous communication between the two nodes stops and the chassis cluster session state will not back up, because the fabric link is missing.

Control link status: Up

Control interfaces:

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Monitored-Status</th>
<th>Internal-SA</th>
<th>Security</th>
</tr>
</thead>
</table>
## Sample Output

**show chassis cluster interfaces (vSRX)**

```bash
testuser@host> show chassis cluster interfaces
```

The following output is specific to view control link status with internal SAs.

### Control link status: Up

#### Control interfaces:

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Status</th>
<th>Internal SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>305</td>
<td>0 em0</td>
<td>Up</td>
<td>enabled</td>
</tr>
<tr>
<td>306</td>
<td>1 em1</td>
<td>Down</td>
<td>enabled</td>
</tr>
</tbody>
</table>
show chassis cluster ip-monitoring status redundancy-group

Syntax

```
show chassis cluster ip-monitoring status
<redundancy-group group-number>
```

Release Information


Description

Display the status of all monitored IP addresses for a redundancy group.

Options

- `none`— Display the status of monitored IP addresses for all redundancy groups on the node.
- `redundancy-group group-number`— Display the status of monitored IP addresses under the specified redundancy group.

Required Privilege Level

`view`

RELATED DOCUMENTATION

| clear chassis cluster failover-count |

List of Sample Output

- [show chassis cluster ip-monitoring status on page 654](#)
- [show chassis cluster ip-monitoring status redundancy-group on page 655](#)

Output Fields

Table 48 on page 652 lists the output fields for the `show chassis cluster ip-monitoring status` command.

Table 48: show chassis cluster ip-monitoring status Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redundancy-group</td>
<td>ID number (0 - 255) of a redundancy group in the cluster.</td>
</tr>
<tr>
<td>Global threshold</td>
<td>Failover value for all IP addresses monitored by the redundancy group.</td>
</tr>
</tbody>
</table>
### Table 48: show chassis cluster ip-monitoring status Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current threshold</td>
<td>Value equal to the global threshold minus the total weight of the unreachable IP address.</td>
</tr>
<tr>
<td>IP Address</td>
<td>Monitored IP address in the redundancy group.</td>
</tr>
<tr>
<td>Status</td>
<td>Current reachability state of the monitored IP address.</td>
</tr>
<tr>
<td></td>
<td>Values for this field are: reachable, unreachable, and unknown. The status is &quot;unknown&quot; if Packet Forwarding Engines (PFEs) are not yet up and running.</td>
</tr>
<tr>
<td>Failure count</td>
<td>Number of attempts to reach an IP address.</td>
</tr>
<tr>
<td>Reason</td>
<td>Explanation for the reported status. See Table 49 on page 653.</td>
</tr>
<tr>
<td>Weight</td>
<td>Combined weight (0 - 255) assigned to all monitored IP addresses. A higher weight value indicates greater importance.</td>
</tr>
</tbody>
</table>

Expanded reason output fields for unreachable IP addresses added in Junos OS Release 10.1. You might see any of the following reasons displayed.

### Table 49: show chassis cluster ip-monitoring status redundancy group Reason Fields

<table>
<thead>
<tr>
<th>Reason</th>
<th>Reason Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No route to host</td>
<td>The router could not resolve the ARP, which is needed to send the ICMP packet to the host with the monitored IP address.</td>
</tr>
<tr>
<td>No auxiliary IP found</td>
<td>The redundant Ethernet interface does not have an auxiliary IP address configured.</td>
</tr>
<tr>
<td>Reth child not up</td>
<td>A child interface of a redundant Ethernet interface is down.</td>
</tr>
<tr>
<td>redundancy-group state unknown</td>
<td>Unable to obtain the state (primary, secondary, secondary-hold, disable) of a redundancy-group.</td>
</tr>
<tr>
<td>No reth child MAC address</td>
<td>Could not extract the MAC address of the redundant Ethernet child interface.</td>
</tr>
<tr>
<td>Secondary link not monitored</td>
<td>The secondary link might be down (the secondary child interface of a redundant Ethernet interface is either down or non-functional).</td>
</tr>
</tbody>
</table>
Table 49: show chassis cluster ip-monitoring status redundancy group Reason Fields (continued)

<table>
<thead>
<tr>
<th>Reason</th>
<th>Reason Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>The IP address has just been configured and the router still does not know the</td>
</tr>
<tr>
<td></td>
<td>status of this IP.</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>Do not know the exact reason for the failure.</td>
</tr>
</tbody>
</table>

Sample Output

show chassis cluster ip-monitoring status

```
user@host> show chassis cluster ip-monitoring status

node0:

Redundancy group: 1
Global threshold: 200
Current threshold: -120

<table>
<thead>
<tr>
<th>IP address</th>
<th>Status</th>
<th>Failure count</th>
<th>Reason</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.254.5.44</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
<td>220</td>
</tr>
<tr>
<td>2.2.2.1</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
<td>100</td>
</tr>
</tbody>
</table>

node1:

Redundancy group: 1
Global threshold: 200
Current threshold: -120

<table>
<thead>
<tr>
<th>IP address</th>
<th>Status</th>
<th>Failure count</th>
<th>Reason</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.254.5.44</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
<td>220</td>
</tr>
</tbody>
</table>
| 2.2.2.1 | reachable | 0 | n/a | 100 |```
Sample Output

```
show chassis cluster ip-monitoring status redundancy-group

user@host> show chassis cluster ip-monitoring status redundancy-group 1

node0:

Redundancy group: 1

<table>
<thead>
<tr>
<th>IP address</th>
<th>Status</th>
<th>Failure count</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.254.5.44</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>2.2.2.1</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>1.1.1.5</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>1.1.1.4</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>1.1.1.1</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
</tr>
</tbody>
</table>

node1:

Redundancy group: 1

<table>
<thead>
<tr>
<th>IP address</th>
<th>Status</th>
<th>Failure count</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.254.5.44</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>2.2.2.1</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>1.1.1.5</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>1.1.1.4</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>1.1.1.1</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
</tr>
</tbody>
</table>
```
show chassis cluster statistics

Syntax

```
show chassis cluster statistics
```

Release Information

Description

Display information about chassis cluster services and interfaces.

Required Privilege Level

view

RELATED DOCUMENTATION

| clear chassis cluster statistics | 594 |

List of Sample Output

- show chassis cluster statistics on page 658
- show chassis cluster statistics (SRX5000 Line Devices) on page 659
- show chassis cluster statistics (SRX5000 Line Devices) on page 660

Output Fields

Table 50 on page 657 lists the output fields for the show chassis cluster statistics command. Output fields are listed in the approximate order in which they appear.
Table 50: show chassis cluster statistics Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
</table>
| **Control link statistics** | Statistics of the control link used by chassis cluster traffic. Statistics for **Control link 1** are displayed when you use dual control links (SRX5000 lines only). Note that the output for the SRX5000 lines will always show **Control link 0** and **Control link 1** statistics, even though only one control link is active or working.
 - **Heartbeat packets sent**—Number of heartbeat messages sent on the control link.
 - **Heartbeat packets received**—Number of heartbeat messages received on the control link.
 - **Heartbeat packet errors**—Number of heartbeat packets received with errors on the control link. |
| **Fabric link statistics** | Statistics of the fabric link used by chassis cluster traffic. Statistics for **Child Link 1** are displayed when you use dual fabric links.
 - **Probes sent**—Number of probes sent on the fabric link.
 - **Probes received**—Number of probes received on the fabric link. |
Table 50: show chassis cluster statistics Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Services Synchronized</td>
<td>• Service name—Name of the service.</td>
</tr>
<tr>
<td></td>
<td>• Rtos sent—Number of runtime objects (RTOs) sent.</td>
</tr>
<tr>
<td></td>
<td>• Rtos received—Number of RTOs received.</td>
</tr>
<tr>
<td></td>
<td>• Translation context—Messages synchronizing Network Address Translation (NAT) translation context.</td>
</tr>
<tr>
<td></td>
<td>• Incoming NAT—Messages synchronizing incoming Network Address Translation (NAT) service.</td>
</tr>
<tr>
<td></td>
<td>• Resource manager—Messages synchronizing resource manager groups and resources.</td>
</tr>
<tr>
<td></td>
<td>• Session create—Messages synchronizing session creation.</td>
</tr>
<tr>
<td></td>
<td>• Session close—Messages synchronizing session close.</td>
</tr>
<tr>
<td></td>
<td>• Session change—Messages synchronizing session change.</td>
</tr>
<tr>
<td></td>
<td>• Gate create—Messages synchronizing creation of pinholes (temporary openings in the firewall).</td>
</tr>
<tr>
<td></td>
<td>• Session ageout refresh request—Messages synchronizing request session after age-out.</td>
</tr>
<tr>
<td></td>
<td>• Session ageout refresh reply—Messages synchronizing reply session after age-out.</td>
</tr>
<tr>
<td></td>
<td>• IPsec VPN—Messages synchronizing VPN session.</td>
</tr>
<tr>
<td></td>
<td>• Firewall user authentication—Messages synchronizing firewall user authentication session.</td>
</tr>
<tr>
<td></td>
<td>• MGCP ALG—Messages synchronizing MGCP ALG sessions.</td>
</tr>
<tr>
<td></td>
<td>• H323 ALG—Messages synchronizing H.323 ALG sessions.</td>
</tr>
<tr>
<td></td>
<td>• SIP ALG—Messages synchronizing SIP ALG sessions.</td>
</tr>
<tr>
<td></td>
<td>• SCCP ALG—Messages synchronizing SCCP ALG sessions.</td>
</tr>
<tr>
<td></td>
<td>• PPTP ALG—Messages synchronizing PPTP ALG sessions.</td>
</tr>
<tr>
<td></td>
<td>• RTSP ALG—Messages synchronizing RTSP ALG sessions.</td>
</tr>
<tr>
<td></td>
<td>• MAC address learning—Messages synchronizing MAC address learning.</td>
</tr>
</tbody>
</table>

Sample Output

```
show chassis cluster statistics

user@host> show chassis cluster statistics
```
Control link statistics:

 Control link 0:
 Heartbeat packets sent: 798
 Heartbeat packets received: 784
 Heartbeat packets errors: 0

Fabric link statistics:

 Child link 0
 Probes sent: 793
 Probes received: 0

Services Synchronized:

<table>
<thead>
<tr>
<th>Service name</th>
<th>RTOs sent</th>
<th>RTOs received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation context</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource manager</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session close</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gate create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPSec VPN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Firewall user authentication</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MGCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H323 ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SIP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPTP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RTSP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC address learning</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Sample Output

show chassis cluster statistics (SRX5000 Line Devices)

user@host> show chassis cluster statistics

Control link statistics:

 Control link 0:
 Heartbeat packets sent: 258689
 Heartbeat packets received: 258684
 Heartbeat packets errors: 0

Control link 1:
Heartbeat packets sent: 258689
Heartbeat packets received: 258684
Heartbeat packets errors: 0

Fabric link statistics:
 Child link 0
 Probes sent: 258681
 Probes received: 258681
 Child link 1
 Probes sent: 258501
 Probes received: 258501

Services Synchronized:

<table>
<thead>
<tr>
<th>Service name</th>
<th>RTOs sent</th>
<th>RTOs received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation context</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource manager</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session create</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Session close</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gate create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPSec VPN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Firewall user authentication</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MGCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H323 ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SIP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPTP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RPC ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RTSP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RAS ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC address learning</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GPRS GTP</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Sample Output

show chassis cluster statistics (SRX5000 Line Devices)

user@host> show chassis cluster statistics

Control link statistics:
 Control link 0:
Heartbeat packets sent: 82371
Heartbeat packets received: 82321
Heartbeat packets errors: 0

Control link 1:
Heartbeat packets sent: 0
Heartbeat packets received: 0
Heartbeat packets errors: 0

Fabric link statistics:
Child link 0
Probes sent: 258681
Probes received: 258681

Child link 1
Probes sent: 258501
Probes received: 258501

Services Synchronized:

<table>
<thead>
<tr>
<th>Service name</th>
<th>RTOs sent</th>
<th>RTOs received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation context</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource manager</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session create</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Session close</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gate create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPSec VPN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Firewall user authentication</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MGCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H323 ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SIP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPTP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RPC ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RTSP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RAS ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC address learning</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GPRS GTP</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
show chassis cluster status

Syntax

```plaintext
show chassis cluster status
<redundancy-group group-number >
```

Release Information
Support for monitoring failures added in Junos OS Release 12.1X47-D10.

Description
Display the current status of the Chassis Cluster. You can use this command to check the status of chassis cluster nodes, redundancy groups, and failover status.

Options

- none—Display the status of all redundancy groups in the chassis cluster.
- redundancy-group group-number—(Optional) Display the status of the specified redundancy group.

Required Privilege Level
view

RELATED DOCUMENTATION

redundancy-group (Chassis Cluster)	558
clear chassis cluster failover-count	589
request chassis cluster failover node	598
request chassis cluster failover reset	602

List of Sample Output

- show chassis cluster status on page 663
- show chassis cluster status with preemptive delay on page 664
- show chassis cluster status redundancy-group 1 on page 665

Output Fields

Table 51 on page 663 lists the output fields for the show chassis cluster status command. Output fields are listed in the approximate order in which they appear.
Table 51: show chassis cluster status Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster ID</td>
<td>ID number (1-15) of a cluster is applicable for releases upto Junos OS Release 12.1X45-D10. ID number (1-255) is applicable for Releases 12.1X45-D10 and later. Setting a cluster ID to 0 is equivalent to disabling a cluster.</td>
</tr>
<tr>
<td>Redundancy-Group</td>
<td>You can create up to 128 redundancy groups in the chassis cluster.</td>
</tr>
<tr>
<td>Node name</td>
<td>Node (device) in the chassis cluster (node0 or node1).</td>
</tr>
<tr>
<td>Priority</td>
<td>Assigned priority for the redundancy group on that node.</td>
</tr>
<tr>
<td>Status</td>
<td>State of the redundancy group (Primary, Secondary, Lost, or Unavailable).</td>
</tr>
<tr>
<td></td>
<td>* Primary—Redundancy group is active and passing traffic.</td>
</tr>
<tr>
<td></td>
<td>* Secondary—Redundancy group is passive and not passing traffic.</td>
</tr>
<tr>
<td></td>
<td>* Lost—Node loses contact with the other node through the control link. Most likely to occur when both nodes are in a cluster and there is a control link failure, one node cannot exchange heartbeats, or when the other node is rebooted.</td>
</tr>
<tr>
<td></td>
<td>* Unavailable—Node has not received a single heartbeat over the control link from the other node since the other node booted up. Most likely to occur when one node boots up before the other node, or if only one node is present in the cluster.</td>
</tr>
<tr>
<td>Preempt</td>
<td>* Yes: Primary state can be preempted based on priority.</td>
</tr>
<tr>
<td></td>
<td>* No: Change in priority will not preempt the primary state.</td>
</tr>
<tr>
<td>Manual failover</td>
<td>* Yes: Primary state is set manually through the CLI with the request chassis cluster failover node or request chassis cluster failover redundancy-group command. This overrides Priority and Preempt.</td>
</tr>
<tr>
<td></td>
<td>* No: Primary state is not set manually through the CLI.</td>
</tr>
<tr>
<td>Monitor-failures</td>
<td>* None: Cluster working properly.</td>
</tr>
<tr>
<td></td>
<td>* Monitor Failure code: Cluster is not working properly and the respective failure code is displayed.</td>
</tr>
</tbody>
</table>

Sample Output

show chassis cluster status

user@host> show chassis cluster status
Monitor Failure codes:

- **CS**: Cold Sync monitoring
- **FL**: Fabric Connection monitoring
- **GR**: GRES monitoring
- **HW**: Hardware monitoring
- **IF**: Interface monitoring
- **IP**: IP monitoring
- **LB**: Loopback monitoring
- **MB**: Mbuf monitoring
- **NH**: Nexthop monitoring
- **NP**: NPC monitoring
- **SP**: SPU monitoring
- **SM**: Schedule monitoring
- **CF**: Config Sync monitoring

Cluster ID: 1

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual</th>
<th>Monitor-failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>200</td>
<td>primary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
<tr>
<td>node1</td>
<td>1</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
</tbody>
</table>

Redundancy group: 1, Failover count: 1

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual</th>
<th>Monitor-failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>101</td>
<td>primary-preempt-hold</td>
<td>yes</td>
<td>no</td>
<td>None</td>
</tr>
<tr>
<td>node1</td>
<td>1</td>
<td>secondary</td>
<td>yes</td>
<td>no</td>
<td>None</td>
</tr>
</tbody>
</table>

Sample Output

```
show chassis cluster status with preemptive delay

user@host> show chassis cluster status
```

Cluster ID: 1

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual</th>
<th>Monitor-failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>200</td>
<td>primary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
<tr>
<td>node1</td>
<td>100</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
</tbody>
</table>

Redundancy group: 1, Failover count: 3

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual</th>
<th>Monitor-failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>200</td>
<td>primary-preempt-hold</td>
<td>yes</td>
<td>no</td>
<td>None</td>
</tr>
<tr>
<td>node1</td>
<td>100</td>
<td>secondary</td>
<td>yes</td>
<td>no</td>
<td>None</td>
</tr>
</tbody>
</table>
Sample Output

```
show chassis cluster status redundancy-group 1

user@host>  show chassis cluster status redundancy-group 1

Monitor Failure codes:
  CS  Cold Sync monitoring     FL  Fabric Connection monitoring
  GR  GRES monitoring         HW  Hardware monitoring
  IF  Interface monitoring    IP  IP monitoring
  LB  Loopback monitoring     MB  Mbuf monitoring
  NH  Nexthop monitoring      NP  NPC monitoring
  SP  SPU monitoring          SM  Schedule monitoring
  CF  Config Sync monitoring

Cluster ID: 1
Node  Priority Status  Preempt Manual  Monitor-failures

Redundancy group: 1 , Failover count: 1
node0  101      primary      no    no    None
node1  1        secondary    no    no    None
```
show chassis environment (Security)

Syntax

```
show chassis environment
```

Release Information

Command introduced in Junos OS Release 9.2.

Description

Display environmental information about the services gateway chassis, including the temperature and information about the fans, power supplies, and Routing Engine.

Options

- **none**—Display environmental information about the device.
- **cb slot-number**—Display chassis environmental information for the Control Board.
- **fpc fpc-slot**—Display chassis environmental information for a specified Flexible PIC Concentrator.
- **fpm**—Display chassis environmental information for the craft interface (FPM).
- **node**—Display node specific chassis information.
- **pem slot-number**—Display chassis environmental information for the specified Power Entry Module.
- **routing-engine slot-number**—Display chassis environmental information for the specified Routing Engine.

Required Privilege Level

view

RELATED DOCUMENTATION

| show chassis hardware (View) | 696 |

List of Sample Output

- show chassis environment on page 667
- show chassis environment fpc (SRX5800, SRX5400, and SRX5600) on page 671

Output Fields

Table 52 on page 667 lists the output fields for the `show chassis environment` command. Output fields are listed in the approximate order in which they appear.
Table 52: show chassis environment Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp</td>
<td>Temperature of air flowing through the chassis in degrees Celsius (C) and Fahrenheit (F).</td>
</tr>
<tr>
<td>Fan</td>
<td>Fan status: OK, Testing (during initial power-on), Failed, or Absent.</td>
</tr>
</tbody>
</table>

Sample Output

show chassis environment

user@host> **show chassis environment**

<table>
<thead>
<tr>
<th>Class</th>
<th>Item</th>
<th>Status</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp</td>
<td>PEM 0</td>
<td>OK</td>
<td>40 degrees C / 104 degrees F</td>
</tr>
<tr>
<td></td>
<td>PEM 1</td>
<td>OK</td>
<td>40 degrees C / 104 degrees F</td>
</tr>
<tr>
<td></td>
<td>PEM 2</td>
<td>OK</td>
<td>40 degrees C / 104 degrees F</td>
</tr>
<tr>
<td></td>
<td>PEM 3</td>
<td>OK</td>
<td>45 degrees C / 113 degrees F</td>
</tr>
<tr>
<td></td>
<td>Routing Engine 0</td>
<td>OK</td>
<td>31 degrees C / 87 degrees F</td>
</tr>
<tr>
<td></td>
<td>Routing Engine 0 CPU</td>
<td>OK</td>
<td>27 degrees C / 80 degrees F</td>
</tr>
<tr>
<td></td>
<td>Routing Engine 1</td>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Routing Engine 1 CPU</td>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CB 0 Intake</td>
<td>OK</td>
<td>28 degrees C / 82 degrees F</td>
</tr>
<tr>
<td></td>
<td>CB 0 Exhaust A</td>
<td>OK</td>
<td>27 degrees C / 80 degrees F</td>
</tr>
<tr>
<td></td>
<td>CB 0 Exhaust B</td>
<td>OK</td>
<td>29 degrees C / 84 degrees F</td>
</tr>
<tr>
<td></td>
<td>CB 0 ACBC</td>
<td>OK</td>
<td>29 degrees C / 84 degrees F</td>
</tr>
<tr>
<td></td>
<td>CB 0 SF A</td>
<td>OK</td>
<td>36 degrees C / 96 degrees F</td>
</tr>
<tr>
<td></td>
<td>CB 0 SF B</td>
<td>OK</td>
<td>31 degrees C / 87 degrees F</td>
</tr>
<tr>
<td></td>
<td>CB 1 Intake</td>
<td>OK</td>
<td>27 degrees C / 80 degrees F</td>
</tr>
<tr>
<td></td>
<td>CB 1 Exhaust A</td>
<td>OK</td>
<td>26 degrees C / 78 degrees F</td>
</tr>
<tr>
<td></td>
<td>CB 1 Exhaust B</td>
<td>OK</td>
<td>29 degrees C / 84 degrees F</td>
</tr>
<tr>
<td></td>
<td>CB 1 ACBC</td>
<td>OK</td>
<td>27 degrees C / 80 degrees F</td>
</tr>
<tr>
<td></td>
<td>CB 1 SF A</td>
<td>OK</td>
<td>36 degrees C / 96 degrees F</td>
</tr>
<tr>
<td></td>
<td>CB 1 SF B</td>
<td>OK</td>
<td>31 degrees C / 87 degrees F</td>
</tr>
<tr>
<td></td>
<td>CB 2 Intake</td>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CB 2 Exhaust A</td>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CB 2 Exhaust B</td>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CB 2 ACBC</td>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CB 2 XF A</td>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CB 2 XF B</td>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FPC 0 Intake</td>
<td>OK</td>
<td>47 degrees C / 116 degrees F</td>
</tr>
<tr>
<td>Device</td>
<td>Status</td>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>FPC 0 Exhaust A</td>
<td>OK</td>
<td>44 degrees C / 111 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 0 Exhaust B</td>
<td>OK</td>
<td>52 degrees C / 125 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 0 xlp0 TSen</td>
<td>OK</td>
<td>51 degrees C / 123 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 0 xlp0 Chip</td>
<td>OK</td>
<td>46 degrees C / 114 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 0 xlp1 TSen</td>
<td>OK</td>
<td>51 degrees C / 123 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 0 xlp1 Chip</td>
<td>OK</td>
<td>47 degrees C / 116 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 0 xlp2 TSen</td>
<td>OK</td>
<td>44 degrees C / 111 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 0 xlp2 Chip</td>
<td>OK</td>
<td>42 degrees C / 107 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 0 xlp3 TSen</td>
<td>OK</td>
<td>48 degrees C / 118 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 0 xlp3 Chip</td>
<td>OK</td>
<td>43 degrees C / 109 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 1 Intake</td>
<td>OK</td>
<td>41 degrees C / 105 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 1 Exhaust A</td>
<td>OK</td>
<td>41 degrees C / 105 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 1 Exhaust B</td>
<td>OK</td>
<td>51 degrees C / 123 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 1 LU TSen</td>
<td>OK</td>
<td>46 degrees C / 114 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 1 LU Chip</td>
<td>OK</td>
<td>45 degrees C / 113 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 1 XM TSen</td>
<td>OK</td>
<td>46 degrees C / 114 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 1 XM Chip</td>
<td>OK</td>
<td>52 degrees C / 125 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 1 xlp0 TSen</td>
<td>OK</td>
<td>49 degrees C / 120 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 1 xlp0 Chip</td>
<td>OK</td>
<td>42 degrees C / 107 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 1 xlp1 TSen</td>
<td>OK</td>
<td>49 degrees C / 120 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 1 xlp1 Chip</td>
<td>OK</td>
<td>44 degrees C / 111 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 1 xlp2 TSen</td>
<td>OK</td>
<td>38 degrees C / 100 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 1 xlp2 Chip</td>
<td>OK</td>
<td>39 degrees C / 102 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 1 xlp3 TSen</td>
<td>OK</td>
<td>44 degrees C / 111 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 1 xlp3 Chip</td>
<td>OK</td>
<td>42 degrees C / 107 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 2 Intake</td>
<td>OK</td>
<td>29 degrees C / 84 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 2 Exhaust A</td>
<td>OK</td>
<td>34 degrees C / 93 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 2 Exhaust B</td>
<td>OK</td>
<td>40 degrees C / 104 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 2 I3 0 TSensor</td>
<td>OK</td>
<td>42 degrees C / 107 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 2 I3 0 Chip</td>
<td>OK</td>
<td>41 degrees C / 105 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 2 I3 1 TSensor</td>
<td>OK</td>
<td>40 degrees C / 104 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 2 I3 1 Chip</td>
<td>OK</td>
<td>39 degrees C / 102 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 2 I3 2 TSensor</td>
<td>OK</td>
<td>38 degrees C / 100 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 2 I3 2 Chip</td>
<td>OK</td>
<td>37 degrees C / 98 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 2 I3 3 TSensor</td>
<td>OK</td>
<td>35 degrees C / 95 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 2 I3 3 Chip</td>
<td>OK</td>
<td>35 degrees C / 95 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 2 IA 0 TSensor</td>
<td>OK</td>
<td>45 degrees C / 113 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 2 IA 0 Chip</td>
<td>OK</td>
<td>42 degrees C / 107 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 2 IA 1 TSensor</td>
<td>OK</td>
<td>41 degrees C / 105 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 2 IA 1 Chip</td>
<td>OK</td>
<td>43 degrees C / 109 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 9 Intake</td>
<td>OK</td>
<td>29 degrees C / 84 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 9 Exhaust A</td>
<td>OK</td>
<td>41 degrees C / 105 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 9 Exhaust B</td>
<td>OK</td>
<td>48 degrees C / 118 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 9 LU TSen</td>
<td>OK</td>
<td>48 degrees C / 118 degrees F</td>
<td></td>
</tr>
<tr>
<td>Device Name</td>
<td>Status</td>
<td>Temperature (°C) / (°F)</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>--------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>FPC 9 LU Chip</td>
<td>OK</td>
<td>47 degrees C / 116 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 9 XM TSen</td>
<td>OK</td>
<td>48 degrees C / 118 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 9 XM Chip</td>
<td>OK</td>
<td>54 degrees C / 129 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 9 xlp0 TSen</td>
<td>OK</td>
<td>45 degrees C / 113 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 9 xlp0 Chip</td>
<td>OK</td>
<td>42 degrees C / 107 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 9 xlp1 TSen</td>
<td>OK</td>
<td>49 degrees C / 120 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 9 xlp1 Chip</td>
<td>OK</td>
<td>46 degrees C / 114 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 9 xlp2 TSen</td>
<td>OK</td>
<td>37 degrees C / 98 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 9 xlp2 Chip</td>
<td>OK</td>
<td>40 degrees C / 104 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 9 xlp3 TSen</td>
<td>OK</td>
<td>45 degrees C / 113 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 9 xlp3 Chip</td>
<td>OK</td>
<td>41 degrees C / 105 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 10 Intake</td>
<td>OK</td>
<td>32 degrees C / 89 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 10 Exhaust A</td>
<td>OK</td>
<td>44 degrees C / 111 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 10 Exhaust B</td>
<td>OK</td>
<td>53 degrees C / 127 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 10 LU 0 TSen</td>
<td>OK</td>
<td>43 degrees C / 109 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 10 LU 0 Chip</td>
<td>OK</td>
<td>52 degrees C / 125 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 10 LU 1 TSen</td>
<td>OK</td>
<td>43 degrees C / 109 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 10 LU 1 Chip</td>
<td>OK</td>
<td>44 degrees C / 111 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 10 LU 2 TSen</td>
<td>OK</td>
<td>43 degrees C / 109 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 10 LU 2 Chip</td>
<td>OK</td>
<td>50 degrees C / 122 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 10 LU 3 TSen</td>
<td>OK</td>
<td>43 degrees C / 109 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 10 LU 3 Chip</td>
<td>OK</td>
<td>58 degrees C / 136 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 10 XM 0 TSen</td>
<td>OK</td>
<td>43 degrees C / 109 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 10 XM 0 Chip</td>
<td>OK</td>
<td>53 degrees C / 127 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 10 XF 0 TSen</td>
<td>OK</td>
<td>43 degrees C / 109 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 10 XF 0 Chip</td>
<td>OK</td>
<td>64 degrees C / 147 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 10 PLX Switch TSen</td>
<td>OK</td>
<td>43 degrees C / 109 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 10 PLX Switch Chip</td>
<td>OK</td>
<td>44 degrees C / 111 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 11 Intake</td>
<td>OK</td>
<td>32 degrees C / 89 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 11 Exhaust A</td>
<td>OK</td>
<td>41 degrees C / 105 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 11 Exhaust B</td>
<td>OK</td>
<td>56 degrees C / 132 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 11 LU 0 TSen</td>
<td>OK</td>
<td>45 degrees C / 113 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 11 LU 0 Chip</td>
<td>OK</td>
<td>50 degrees C / 122 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 11 LU 1 TSen</td>
<td>OK</td>
<td>45 degrees C / 113 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 11 LU 1 Chip</td>
<td>OK</td>
<td>47 degrees C / 116 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 11 LU 2 TSen</td>
<td>OK</td>
<td>45 degrees C / 113 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 11 LU 2 Chip</td>
<td>OK</td>
<td>52 degrees C / 125 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 11 LU 3 TSen</td>
<td>OK</td>
<td>45 degrees C / 113 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 11 LU 3 Chip</td>
<td>OK</td>
<td>60 degrees C / 140 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 11 XM 0 TSen</td>
<td>OK</td>
<td>45 degrees C / 113 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 11 XM 0 Chip</td>
<td>OK</td>
<td>56 degrees C / 132 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 11 XF 0 TSen</td>
<td>OK</td>
<td>45 degrees C / 113 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 11 XF 0 Chip</td>
<td>OK</td>
<td>65 degrees C / 149 degrees F</td>
<td></td>
</tr>
<tr>
<td>FPC 11 PLX Switch TSen</td>
<td>OK</td>
<td>45 degrees C / 113 degrees F</td>
<td></td>
</tr>
</tbody>
</table>
FPC 11 PLX Switch Chip OK 46 degrees C / 114 degrees F
Fans Top Fan Tray Temp OK 34 degrees C / 93 degrees F
Top Tray Fan 1 OK Spinning at normal speed
Top Tray Fan 2 OK Spinning at normal speed
Top Tray Fan 3 OK Spinning at normal speed
Top Tray Fan 4 OK Spinning at normal speed
Top Tray Fan 5 OK Spinning at normal speed
Top Tray Fan 6 OK Spinning at normal speed
Top Tray Fan 7 OK Spinning at normal speed
Top Tray Fan 8 OK Spinning at normal speed
Top Tray Fan 9 OK Spinning at normal speed
Top Tray Fan 10 OK Spinning at normal speed
Top Tray Fan 11 OK Spinning at normal speed
Top Tray Fan 12 OK Spinning at normal speed
Bottom Fan Tray Temp OK 31 degrees C / 87 degrees F
Bottom Tray Fan 1 OK Spinning at normal speed
Bottom Tray Fan 2 OK Spinning at normal speed
Bottom Tray Fan 3 OK Spinning at normal speed
Bottom Tray Fan 4 OK Spinning at normal speed
Bottom Tray Fan 5 OK Spinning at normal speed
Bottom Tray Fan 6 OK Spinning at normal speed
Bottom Tray Fan 7 OK Spinning at normal speed
Bottom Tray Fan 8 OK Spinning at normal speed
Bottom Tray Fan 9 OK Spinning at normal speed
Bottom Tray Fan 10 OK Spinning at normal speed
Bottom Tray Fan 11 OK Spinning at normal speed
Bottom Tray Fan 12 OK Spinning at normal speed

When you enter the `show chassis environment pem` command, the sample output is shown for DC PEM.

```
user@host> show chassis environment pem
	node0:
       ------------------------------------------
       PEM 0 status:
       State                 Online
       Temperature         OK
       DC Input:            OK
       DC Output     Voltage (V) Current (A) Power (W) Load (%)
                        50 12  600 24
       PEM 1 status:
       State                 Online
       Temperature         OK
```
show chassis environment fpc (SRX5800, SRX5400, and SRX5600)

user@host> show chassis environment fpc

FPC 1 status:
State Online
Temperature Intake 34 degrees C / 93 degrees F
Temperature Exhaust A 48 degrees C / 118 degrees F
Temperature Exhaust B 48 degrees C / 118 degrees F
Temperature CPU0 DTS 55 degrees C / 131 degrees F
Temperature CPU1 DTS 60 degrees C / 140 degrees F
Temperature CPU2 DTS 54 degrees C / 129 degrees F
Temperature CPU3 DTS 70 degrees C / 158 degrees F
Temperature Talus 0 106 degrees C / 222 degrees F
Temperature Middle 0 40 degrees C / 104 degrees F
Temperature Talus 1 76 degrees C / 168 degrees F
Temperature Middle 1 67 degrees C / 152 degrees F
Power
 TALUS0-1.20V 1199 mV 14187 mA 17010 mW
 TALUS0-0.90V 900 mV 5000 mA 4500 mW
 BIAS0-3.30V 3299 mV 3769 mA 12433 mW
 PIC0_CPU_memory_CD-1.20 1199 mV 3781 mA 4533 mW
 USB0-5.00V 5000 mV 155 mA 775 mW
 PIC0_CPU_memory_AB-1.20 1200 mV 5820 mA 6984 mW
<table>
<thead>
<tr>
<th>Component</th>
<th>Voltage (mV)</th>
<th>Current (mA)</th>
<th>Power (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCH0-1.05V</td>
<td>1050</td>
<td>3582</td>
<td>3761</td>
</tr>
<tr>
<td>TALUS1-1.20V</td>
<td>1199</td>
<td>13640</td>
<td>16354</td>
</tr>
<tr>
<td>TALUS1-0.90V</td>
<td>899</td>
<td>4679</td>
<td>4206</td>
</tr>
<tr>
<td>BIAS1-3.30V</td>
<td>3300</td>
<td>3175</td>
<td>10477</td>
</tr>
<tr>
<td>PIC1_CPU_memory_GH-1.20</td>
<td>1200</td>
<td>4648</td>
<td>5577</td>
</tr>
<tr>
<td>USB1-5.00V</td>
<td>4999</td>
<td>346</td>
<td>1729</td>
</tr>
<tr>
<td>PIC1_CPU_memory_EF-1.20</td>
<td>1200</td>
<td>5218</td>
<td>6261</td>
</tr>
<tr>
<td>PCH1-1.05V</td>
<td>1050</td>
<td>3328</td>
<td>3494</td>
</tr>
<tr>
<td>TPS53641-CPU0</td>
<td>1750</td>
<td>46062</td>
<td>80608</td>
</tr>
<tr>
<td>TPS53641-CPU1</td>
<td>1739</td>
<td>47437</td>
<td>82492</td>
</tr>
<tr>
<td>TPS53641-CPU2</td>
<td>1750</td>
<td>45250</td>
<td>79187</td>
</tr>
<tr>
<td>TPS53641-CPU3</td>
<td>1739</td>
<td>46875</td>
<td>81515</td>
</tr>
<tr>
<td>ETH-1.00V</td>
<td>994</td>
<td>2674</td>
<td>2657</td>
</tr>
<tr>
<td>TALUS0_Core-0.85V</td>
<td>849</td>
<td>37750</td>
<td>32049</td>
</tr>
<tr>
<td>TALUS1_Core-0.85V</td>
<td>849</td>
<td>26750</td>
<td>22710</td>
</tr>
<tr>
<td>Power_Brick1-12.00V</td>
<td>12001</td>
<td>21000</td>
<td>252021</td>
</tr>
<tr>
<td>Power_Brick2-12.00V</td>
<td>11998</td>
<td>23125</td>
<td>277453</td>
</tr>
<tr>
<td>PIM4820_48V0-48.00V</td>
<td>58392</td>
<td>10286</td>
<td>600620</td>
</tr>
<tr>
<td>I2C Slave Revision</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

show chassis environment cb

Syntax

```
show chassis environment cb
<slot>
```

Release Information

Command introduced in Junos OS Release 9.2.
Starting with Junos OS Release 12.1X47-D15, the SRX5K-SCBE (SCB2) is introduced and starting with Junos OS Release 15.1X49-D10, the SRX5K-SCB3 (SCB3) with enhanced midplane is introduced.

Description

Display environmental information about the Control Boards (CBs) installed on SRX Series devices.

Options

`slot`—(Optional) Display environmental information about the specified CB.

Required Privilege Level

view

RELATED DOCUMENTATION

| request chassis cb | 595 |

List of Sample Output

- `show chassis environment cb (SRX5600 devices with SRX5K-SCB3 [SCB3] and Enhanced Midplanes)` on page 674
- `show chassis environment cb node 1 (SRX5600 devices with SRX5K-SCB3 [SCB3] and Enhanced Midplanes)` on page 675

Output Fields

Table 53 on page 674 lists the output fields for the `show chassis environment cb` command. Output fields are listed in the approximate order in which they appear.
Table 53: show chassis environment cb Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Status of the CB. If two CBs are installed and online, one is functioning as the master, and the other is the standby.</td>
</tr>
<tr>
<td></td>
<td>• Online—CB is online and running.</td>
</tr>
<tr>
<td></td>
<td>• Offline—CB is powered down.</td>
</tr>
<tr>
<td>Temperature</td>
<td>Temperature in Celsius (C) and Fahrenheit (F) of the air flowing past the CB.</td>
</tr>
<tr>
<td></td>
<td>• Temperature Intake—Measures the temperature of the air intake to cool the power supplies.</td>
</tr>
<tr>
<td></td>
<td>• Temperature Exhaust—Measures the temperature of the hot air exhaust.</td>
</tr>
<tr>
<td>Power</td>
<td>Power required and measured on the CB. The left column displays the required power, in volts. The right column displays the measured power, in millivolts.</td>
</tr>
<tr>
<td>BUS Revision</td>
<td>Revision level of the generic bus device.</td>
</tr>
<tr>
<td>FPGA Revision</td>
<td>Revision level of the field-programmable gate array (FPGA).</td>
</tr>
<tr>
<td>PMBus device</td>
<td>Enhanced SCB on SRX Series devices allows the system to save power by supplying only the amount of voltage that is required. Configurable PMBus devices are used to provide the voltage for each individual device. There is one PMBus device for each XF ASIC so that the output can be customized to each device. The following PMBus device information is displayed for devices with Enhanced MX SCB:</td>
</tr>
<tr>
<td></td>
<td>• Expected voltage</td>
</tr>
<tr>
<td></td>
<td>• Measured voltage</td>
</tr>
<tr>
<td></td>
<td>• Measured current</td>
</tr>
<tr>
<td></td>
<td>• Calculated power</td>
</tr>
</tbody>
</table>

Sample Output

`show chassis environment cb (SRX5600 devices with SRX5K-SCB3 [SCB3] and Enhanced Midplanes)`

```
user@host> show chassis environment cb node 0
	node0:                                                                                     
----------------------------------------------------------------------------------------------
CB 0 status:                                                                                   
State          Online Master
```
Temperature 34 degrees C / 93 degrees F

<table>
<thead>
<tr>
<th>Power 1</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 V</td>
<td>1002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2 V</td>
<td>1198</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5 V</td>
<td>1501</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8 V</td>
<td>1801</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5 V</td>
<td>2507</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3 V</td>
<td>3300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0 V</td>
<td>5014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0 V RE</td>
<td>4982</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.0 V</td>
<td>11988</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.0 V RE</td>
<td>11930</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power 2</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6 V bias MidPlane</td>
<td>4801</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.3 V bias PEM</td>
<td>11292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.3 V bias FPD</td>
<td>11272</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.3 V bias POE 0</td>
<td>11214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.3 V bias POE 1</td>
<td>11253</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bus Revision 96
FPGA Revision 16

PMBus	Expected	Measured	Measured	Calculated
XF ASIC A | 1033 mV | 1033 mV | 15500 mA | 16011 mW |
XF ASIC B | 1034 mV | 1033 mV | 15000 mA | 15495 mW |

show chassis environment cb node 1 (SRX5600 devices with SRX5K-SCB3 [SCB3] and Enhanced Midplanes)

user@host> show chassis environment cb node 1

cbnode1:

CB 0 status:
State Online Master
Temperature 35 degrees C / 95 degrees F
Power 1
1.0 V 1002
1.2 V 1198
1.5 V 1504
1.8 V 1801
2.5 V 2507
3.3 V 3325
5.0 V 5014
5.0 V RE 4943
12.0 V 12007
<table>
<thead>
<tr>
<th>PMBus</th>
<th>Expected</th>
<th>Measured</th>
<th>Measured</th>
<th>Calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>device</td>
<td>voltage</td>
<td>voltage</td>
<td>current</td>
<td>power</td>
</tr>
<tr>
<td>XF ASIC A</td>
<td>958 mV</td>
<td>959 mV</td>
<td>13500 mA</td>
<td>12946 mW</td>
</tr>
<tr>
<td>XF ASIC B</td>
<td>1033 mV</td>
<td>1031 mV</td>
<td>16500 mA</td>
<td>17011 mW</td>
</tr>
</tbody>
</table>
show chassis ethernet-switch

Syntax

show chassis ethernet-switch

Release Information

Command introduced in Junos OS Release 9.2.

Description

Display information about the ports on the Control Board (CB) Ethernet switch on an SRX Series device.

Required Privilege Level

view

RELATED DOCUMENTATION

| cluster (Chassis) | 500

List of Sample Output

show chassis ethernet-switch on page 678

Output Fields

Table 54 on page 677 lists the output fields for the show chassis ethernet-switch command. Output fields are listed in the approximate order in which they appear.

Table 54: show chassis ethernet-switch Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
</table>
| Link is good on port n connected to device or Fast Ethernet port n connected to device | Information about the link between each port on the CB's Ethernet switch and one of the following devices:
- FPC0 (Flexible PIC Concentrator 0) through FPC7
- Local controller
- Routing Engine
- Other Routing Engine (on a system with two Routing Engines)
- SPMB (Switch Processor Mezzanine Board) |
| Speed is | Speed at which the Ethernet link is running. |
| Duplex is | Duplex type of the Ethernet link: full or half. |
Table 54: show chassis ethernet-switch Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonegotiate is Enabled (or Disabled)</td>
<td>By default, built-in Fast Ethernet ports on a PIC autonegotiate whether to operate at 10 Mbps or 100 Mbps. All other interfaces automatically choose the correct speed based on the PIC type and whether the PIC is configured to operate in multiplexed mode.</td>
</tr>
</tbody>
</table>

Sample Output

```
show chassis ethernet-switch
user@host> show chassis ethernet-switch

node0: 衍生化 summary for switch 0
Link is good on GE port 0 connected to device: FPC0
  Speed is 1000Mb
  Duplex is full
  Autonegotiate is Enabled
  Flow Control TX is Disabled
  Flow Control RX is Disabled

Link is good on GE port 1 connected to device: FPC1
  Speed is 1000Mb
  Duplex is full
  Autonegotiate is Enabled
  Flow Control TX is Disabled
  Flow Control RX is Disabled

Link is good on GE port 2 connected to device: FPC2
  Speed is 1000Mb
  Duplex is full
  Autonegotiate is Enabled
  Flow Control TX is Disabled
  Flow Control RX is Disabled

Link is good on GE port 3 connected to device: FPC3
  Speed is 1000Mb
  Duplex is full
  Autonegotiate is Enabled
  Flow Control TX is Disabled
```
Flow Control RX is Disabled

Link is good on GE port 4 connected to device: FPC4
 Speed is 1000Mb
 Duplex is full
 Autonegotiate is Enabled
 Flow Control TX is Disabled
 Flow Control RX is Disabled

Link is down on GE port 5 connected to device: FPC5

Link is down on GE port 6 connected to device: FPC6

Link is good on GE port 7 connected to device: FPC7
 Speed is 1000Mb
 Duplex is full
 Autonegotiate is Enabled
 Flow Control TX is Disabled
 Flow Control RX is Disabled

Link is good on GE port 8 connected to device: FPC8
 Speed is 1000Mb
 Duplex is full
 Autonegotiate is Enabled
 Flow Control TX is Disabled
 Flow Control RX is Disabled

Link is good on GE port 9 connected to device: FPC9
 Speed is 1000Mb
 Duplex is full
 Autonegotiate is Enabled
 Flow Control TX is Disabled
 Flow Control RX is Disabled

Link is down on GE port 10 connected to device: FPC10

Link is down on GE port 11 connected to device: FPC11

Link is good on GE port 12 connected to device: Other RE
 Speed is 1000Mb
 Duplex is full
 Autonegotiate is Enabled
 Flow Control TX is Disabled
 Flow Control RX is Disabled
Link is good on GE port 13 connected to device: RE-GigE
 Speed is 1000Mb
 Duplex is full
 Autonegotiate is Enabled
 Flow Control TX is Disabled
 Flow Control RX is Disabled

Link is down on GE port 14 connected to device: Debug-GigE

node1:

Displaying summary for switch 0
Link is good on GE port 0 connected to device: FPC0
 Speed is 1000Mb
 Duplex is full
 Autonegotiate is Enabled
 Flow Control TX is Disabled
 Flow Control RX is Disabled

Link is good on GE port 1 connected to device: FPC1
 Speed is 1000Mb
 Duplex is full
 Autonegotiate is Enabled
 Flow Control TX is Disabled
 Flow Control RX is Disabled

Link is good on GE port 2 connected to device: FPC2
 Speed is 1000Mb
 Duplex is full
 Autonegotiate is Enabled
 Flow Control TX is Disabled
 Flow Control RX is Disabled

Link is good on GE port 3 connected to device: FPC3
 Speed is 1000Mb
 Duplex is full
 Autonegotiate is Enabled
 Flow Control TX is Disabled
 Flow Control RX is Disabled

Link is good on GE port 4 connected to device: FPC4
 Speed is 1000Mb
 Duplex is full
Autonegotiate is Enabled
Flow Control TX is Disabled
Flow Control RX is Disabled

Link is down on GE port 5 connected to device: FPC5

Link is down on GE port 6 connected to device: FPC6

Link is good on GE port 7 connected to device: FPC7
 Speed is 1000Mb
 Duplex is full
 Autonegotiate is Enabled
 Flow Control TX is Disabled
 Flow Control RX is Disabled

Link is good on GE port 8 connected to device: FPC8
 Speed is 1000Mb
 Duplex is full
 Autonegotiate is Enabled
 Flow Control TX is Disabled
 Flow Control RX is Disabled

Link is good on GE port 9 connected to device: FPC9
 Speed is 1000Mb
 Duplex is full
 Autonegotiate is Enabled
 Flow Control TX is Disabled
 Flow Control RX is Disabled

Link is down on GE port 10 connected to device: FPC10

Link is down on GE port 11 connected to device: FPC11

Link is good on GE port 12 connected to device: Other RE
 Speed is 1000Mb
 Duplex is full
 Autonegotiate is Enabled
 Flow Control TX is Disabled
 Flow Control RX is Disabled

Link is good on GE port 13 connected to device: RE-GigE
 Speed is 1000Mb
 Duplex is full
 Autonegotiate is Enabled
Flow Control TX is Disabled
Flow Control RX is Disabled

Link is down on GE port 14 connected to device: Debug-GigE
show chassis fabric plane

Syntax

show chassis fabric plane

Release Information
Command introduced in Junos OS Release 9.2.

Description
Show state of fabric management plane.

Required Privilege Level
view

RELATED DOCUMENTATION

| show chassis fabric plane-location | 691 |

List of Sample Output

show chassis fabric plane (SRX5600 and SRX5800 Devices with SRX5000 Line SCB II [SRX5K-SCBE] and SRX5K-RE-1800X4) on page 684

Output Fields

Table 55 on page 683 lists the output fields for the **show chassis fabric plane** command. Output fields are listed in the approximate order in which they appear.

Table 55: show chassis fabric plane Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plane</td>
<td>Number of the plane.</td>
<td>none</td>
</tr>
<tr>
<td>Plane state</td>
<td>State of each plane:</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>• ACTIVE—SIB is operational and running.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• FAULTY—SIB is in alarmed state where the SIB’s plane is not operational for the following reasons:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• On-board fabric ASIC is not operational.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fiber-optic connector faults.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• FPC connector faults.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SIB midplane connector faults.</td>
<td></td>
</tr>
</tbody>
</table>
Table 55: show chassis fabric plane Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of output</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPC</td>
<td>Slot number of each Flexible PIC Concentrator (FPC).</td>
<td>none</td>
</tr>
</tbody>
</table>
| **PFE** | Slot number of each Packet Forwarding Engine and the state of the links to the FPC:
- **Links ok**: Link between SIB and FPC is active.
- **Link error**: Link between SIB and FPC is not operational.
- **Unused**: No FPC is present. | none |
| **State** | State of the fabric plane:
- **Online**: Fabric plane is operational and running and links on the SIB are operational.
- **Offline**: Fabric plane state is Offline because the plane does not have four or more F2S and one F13 online.
- **Empty**: Fabric plane state is Empty if all SIBs in the plane are absent.
- **Spare**: Fabric plane is redundant and can be operational if the operational fabric plane encounters an error.
- **Check**: Fabric plane is in alarmed state due to the following reason and the cause of the error must be resolved:
 - One or more SIBs (belonging to the fabric plane) in the Online or Spare states has transitioned to the Check state.
 - Check state of the SIB can be caused by link errors or destination errors.
- **Fault**: Fabric plane is in alarmed state if one or more SIBs belonging to the plane are in the Fault state. A SIB can be in the Fault state because of the following reasons:
 - On-board fabric ASIC is not operational.
 - Fiber-optic connector faults.
 - FPC connector faults.
 - SIB midplane connector faults.
 - Link errors have exceeded the threshold. | none |

Sample Output

```
show chassis fabric plane
```
node0:
--
Fabric management PLANE state
Plane 0
 Plane state: ACTIVE
 FPC 0
 PFE 0 :Links ok
 FPC 2
 PFE 0 :Links ok
 FPC 3
 PFE 0 :Links ok
 FPC 4
 PFE 0 :Links ok
 FPC 7
 PFE 0 :Links ok
 FPC 8
 PFE 0 :Links ok
 FPC 9
 PFE 0 :Links ok
 FPC 10
 PFE 0 :Links ok
Plane 1
 Plane state: ACTIVE
 FPC 0
 PFE 0 :Links ok
 FPC 2
 PFE 0 :Links ok
 FPC 3
 PFE 0 :Links ok
 FPC 4
 PFE 0 :Links ok
 FPC 7
 PFE 0 :Links ok
 FPC 8
 PFE 0 :Links ok
 FPC 9
 PFE 0 :Links ok
 FPC 10
 PFE 0 :Links ok
Plane 2
 Plane state: ACTIVE
FPC 0
 PFE 0 :Links ok
FPC 2
 PFE 0 :Links ok
FPC 3
 PFE 0 :Links ok
FPC 4
 PFE 0 :Links ok
FPC 7
 PFE 0 :Links ok
FPC 8
 PFE 0 :Links ok
FPC 9
 PFE 0 :Links ok
FPC 10
 PFE 0 :Links ok

Plane 3
 Plane state: ACTIVE
 FPC 0
 PFE 0 :Links ok
 FPC 2
 PFE 0 :Links ok
 FPC 3
 PFE 0 :Links ok
 FPC 4
 PFE 0 :Links ok
 FPC 7
 PFE 0 :Links ok
 FPC 8
 PFE 0 :Links ok
 FPC 9
 PFE 0 :Links ok
 FPC 10
 PFE 0 :Links ok

Plane 4
 Plane state: SPARE
 FPC 0
 PFE 0 :Links ok
 FPC 2
 PFE 0 :Links ok
 FPC 3
 PFE 0 :Links ok
 FPC 4
 PFE 0 :Links ok
FPC 7
PFE 0 :Links ok
FPC 8
PFE 0 :Links ok
FPC 9
PFE 0 :Links ok
FPC 10
PFE 0 :Links ok

Plane 5
Plane state: SPARE
FPC 0
PFE 0 :Links ok
FPC 2
PFE 0 :Links ok
FPC 3
PFE 0 :Links ok
FPC 4
PFE 0 :Links ok
FPC 7
PFE 0 :Links ok
FPC 8
PFE 0 :Links ok
FPC 9
PFE 0 :Links ok
FPC 10
PFE 0 :Links ok

node1:
--
Fabric management PLANE state
Plane 0
Plane state: ACTIVE
FPC 0
PFE 0 :Links ok
FPC 1
PFE 0 :Links ok
FPC 2
PFE 0 :Links ok
FPC 3
PFE 0 :Links ok
FPC 4
PFE 0 :Links ok
FPC 7
PFE 0 :Links ok
Plane 1
 Plane state: ACTIVE
 FPC 0
 PFE 0 :Links ok
 FPC 1
 PFE 0 :Links ok
 FPC 2
 PFE 0 :Links ok
 FPC 3
 PFE 0 :Links ok
 FPC 4
 PFE 0 :Links ok
 FPC 7
 PFE 0 :Links ok
 FPC 8
 PFE 0 :Links ok
 FPC 10
 PFE 0 :Links ok

Plane 2
 Plane state: ACTIVE
 FPC 0
 PFE 0 :Links ok
 FPC 1
 PFE 0 :Links ok
 FPC 2
 PFE 0 :Links ok
 FPC 3
 PFE 0 :Links ok
 FPC 4
 PFE 0 :Links ok
 FPC 7
 PFE 0 :Links ok
 FPC 8
 PFE 0 :Links ok
 FPC 10
 PFE 0 :Links ok

Plane 3
 Plane state: ACTIVE
 FPC 0
 PFE 0 :Links ok
FPC 1
 PFE 0 :Links ok
FPC 2
 PFE 0 :Links ok
FPC 3
 PFE 0 :Links ok
FPC 4
 PFE 0 :Links ok
FPC 7
 PFE 0 :Links ok
FPC 8
 PFE 0 :Links ok
FPC 10
 PFE 0 :Links ok

Plane 4
 Plane state: SPARE
 FPC 0
 PFE 0 :Links ok
 FPC 1
 PFE 0 :Links ok
 FPC 2
 PFE 0 :Links ok
 FPC 3
 PFE 0 :Links ok
 FPC 4
 PFE 0 :Links ok
 FPC 7
 PFE 0 :Links ok
 FPC 8
 PFE 0 :Links ok
 FPC 10
 PFE 0 :Links ok

Plane 5
 Plane state: SPARE
 FPC 0
 PFE 0 :Links ok
 FPC 1
 PFE 0 :Links ok
 FPC 2
 PFE 0 :Links ok
 FPC 3
 PFE 0 :Links ok
 FPC 4
 PFE 0 :Links ok
show chassis fabric plane-location

Syntax

show chassis fabric plane-location

Release Information

Command introduced in Junos OS Release 9.2.

Description

Show fabric plane location.

Required Privilege Level

view

RELATED DOCUMENTATION

show chassis fabric plane | 683

List of Sample Output

show chassis fabric plane-location(SRX5600 and SRX5800 Devices with SRX5000 Line SCB II [SRX5K-SCBE] and SRX5K-RE-1800X4) on page 691

Output Fields

Table 56 on page 691 lists the output fields for the show chassis fabric plane-location command. Output fields are listed in the approximate order in which they appear.

Table 56: show chassis fabric plane-location Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plane n</td>
<td>Plane number.</td>
</tr>
<tr>
<td>Control Board n</td>
<td>Control Board number.</td>
</tr>
</tbody>
</table>

Sample Output

show chassis fabric plane-location
(SRX5600 and SRX5800 Devices with SRX5000 Line SCB II [SRX5K-SCBE] and SRX5K-RE-1800X4)

user@host> show chassis fabric plane-location
Fabric Plane Locations

Plane 0 Control Board 0
Plane 1 Control Board 0
Plane 2 Control Board 1
Plane 3 Control Board 1
Plane 4 Control Board 2
Plane 5 Control Board 2
show chassis fabric summary

Syntax

show chassis fabric summary

Release Information
Command introduced in Junos OS Release 9.2.

Description
Show summary fabric management state.

Options
This command has no options.

Required Privilege Level
view

RELATED DOCUMENTATION

| show chassis fabric plane | 683 |
| show chassis fabric plane-location | 691 |

List of Sample Output
show chassis fabric summary(SRX5600 and SRX5800 devices with SRX5000 line SCB II (SRX5K-SCBE) and SRX5K-RE-1800X4) on page 695

Output Fields
Table 57 on page 693 lists the output fields for the show chassis fabric summary command. Output fields are listed in the approximate order in which they appear.

Table 57: show chassis fabric summary Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plane</td>
<td>Plane number.</td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
</tr>
<tr>
<td>State</td>
<td>State of the SIB or FPC:</td>
</tr>
<tr>
<td></td>
<td>• Online—Switch Interface Board (SIB) is operational and running.</td>
</tr>
<tr>
<td></td>
<td>• Empty—SIB is powered down.</td>
</tr>
<tr>
<td></td>
<td>• Check—SIB is in the Check state because of the following reasons:</td>
</tr>
<tr>
<td></td>
<td>• SIB is not inserted properly.</td>
</tr>
<tr>
<td></td>
<td>• Some destination errors are detected on the SIB. In this case, the Packet Forwarding Engine stops using the SIB to send traffic to the affected destination Packet Forwarding Engine.</td>
</tr>
<tr>
<td></td>
<td>• Some link errors are detected on the channel between the SIB and a Packet Forwarding Engine. Link errors can be detected at initialization time or runtime:</td>
</tr>
<tr>
<td></td>
<td>• Link errors caused by a link training failure at initialization time—The Packet Forwarding Engine does not use the SIB to send traffic. The <code>show chassis fabric fpcs</code> command shows Plane disabled as status for this link.</td>
</tr>
<tr>
<td></td>
<td>• Link errors caused by CRC errors detected at runtime—The Packet Forwarding Engine continues to use the SIB to send traffic. The <code>show chassis fabric fpcs</code> command shows Link error as the status for this link.</td>
</tr>
<tr>
<td></td>
<td>For information about link and destination errors, issue the <code>show chassis fabric fpc</code> commands.</td>
</tr>
<tr>
<td></td>
<td>• Spare—SIB is redundant and will move to active state if one of the working SIBs fails.</td>
</tr>
<tr>
<td>Errors</td>
<td>Indicates whether there is any error on the SIB.</td>
</tr>
<tr>
<td></td>
<td>• None—No errors</td>
</tr>
<tr>
<td></td>
<td>• Link Errors—Fabric link errors were found on the SIB RX link.</td>
</tr>
<tr>
<td></td>
<td>• Cell drops—Fabric cell drops were found on the SIB ASIC.</td>
</tr>
<tr>
<td></td>
<td>• Link, Cell drops—Both link errors and cell drops were detected on at least one of the FPC’s fabric links.</td>
</tr>
</tbody>
</table>
| | **NOTE:** The **Errors** column is empty only when the FPC or SIB is offline.
Table 57: show chassis fabric summary Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uptime</td>
<td>Elapsed time the plane has been online.</td>
</tr>
</tbody>
</table>

Sample Output

```
show chassis fabric summary
(SRX5600 and SRX5800 devices with SRX5000 line SCB II (SRX5K-SCBE) and SRX5K-RE-1800X4)

user@host> show chassis fabric summary

node0:
------------------------------------------------------------------------
<table>
<thead>
<tr>
<th>Plane</th>
<th>State</th>
<th>Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Online</td>
<td>14 minutes, 10 seconds</td>
</tr>
<tr>
<td>1</td>
<td>Online</td>
<td>14 minutes, 5 seconds</td>
</tr>
<tr>
<td>2</td>
<td>Online</td>
<td>14 minutes</td>
</tr>
<tr>
<td>3</td>
<td>Online</td>
<td>13 minutes, 55 seconds</td>
</tr>
<tr>
<td>4</td>
<td>Spare</td>
<td>13 minutes, 50 seconds</td>
</tr>
<tr>
<td>5</td>
<td>Spare</td>
<td>13 minutes, 44 seconds</td>
</tr>
</tbody>
</table>
------------------------------------------------------------------------

node1:
------------------------------------------------------------------------
<table>
<thead>
<tr>
<th>Plane</th>
<th>State</th>
<th>Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Online</td>
<td>14 minutes, 7 seconds</td>
</tr>
<tr>
<td>1</td>
<td>Online</td>
<td>14 minutes, 2 seconds</td>
</tr>
<tr>
<td>2</td>
<td>Online</td>
<td>13 minutes, 57 seconds</td>
</tr>
<tr>
<td>3</td>
<td>Online</td>
<td>13 minutes, 51 seconds</td>
</tr>
<tr>
<td>4</td>
<td>Spare</td>
<td>13 minutes, 46 seconds</td>
</tr>
<tr>
<td>5</td>
<td>Spare</td>
<td>13 minutes, 41 seconds</td>
</tr>
</tbody>
</table>
------------------------------------------------------------------------
```
show chassis hardware (View)

Syntax

```
show chassis hardware
<clei-models | detail | extensive | models | node (node-id | all | local | primary)>
```

Release Information
Command introduced in Junos OS Release 9.2. Command modified in Junos OS Release 9.2 to include node option.

Description
Display chassis hardware information.

Options
- clei-models—(Optional) Display Common Language Equipment Identifier Code (CLEI) barcode and model number for orderable field-replaceable units (FRUs).
- detail | extensive—(Optional) Display the specified level of output.
- models—(Optional) Display model numbers and part numbers for orderable FRUs.
- node—(Optional) For chassis cluster configurations, display chassis hardware information on a specific node (device) in the cluster.
 - node-id —Identification number of the node. It can be 0 or 1.
 - local —Display information about the local node.
 - primary —Display information about the primary node.

Required Privilege Level
view

RELATED DOCUMENTATION

- Understanding Traffic Processing on Security Devices
- Interface Naming Conventions

Output Fields

Table 58 on page 697 lists the output fields for the show chassis hardware command. Output fields are listed in the approximate order in which they appear.
Table 58: show chassis hardware Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Chassis component—Information about the backplane; power supplies; fan trays; Routing Engine; each Physical Interface Module (PIM)—reported as FPC and PIC—and each fan, blower, and impeller.</td>
</tr>
<tr>
<td>Version</td>
<td>Revision level of the chassis component.</td>
</tr>
<tr>
<td>Part Number</td>
<td>Part number for the chassis component.</td>
</tr>
<tr>
<td>Serial Number</td>
<td>Serial number of the chassis component. The serial number of the backplane is also the serial number of the device chassis. Use this serial number when you need to contact Juniper Networks Customer Support about the device chassis.</td>
</tr>
<tr>
<td>Assb ID or Assembly ID</td>
<td>Identification number that describes the FRU hardware.</td>
</tr>
<tr>
<td>FRU model number</td>
<td>Model number of FRU hardware component.</td>
</tr>
<tr>
<td>CLEI code</td>
<td>Common Language Equipment Identifier code. This value is displayed only for hardware components that use ID EEPROM format v2. This value is not displayed for components that use ID EEPROM format v1.</td>
</tr>
<tr>
<td>EEPROM Version</td>
<td>ID EEPROM version used by hardware component: 0x01 (version 1) or 0x02 (version 2).</td>
</tr>
</tbody>
</table>
Table 58: show chassis hardware Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td></td>
</tr>
</tbody>
</table>
Table 58: show chassis hardware Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief description of the hardware item:</td>
<td></td>
</tr>
<tr>
<td>• Type of power supply.</td>
<td></td>
</tr>
<tr>
<td>• Switch Control Board (SCB)</td>
<td></td>
</tr>
</tbody>
</table>

Starting with Junos OS Release 12.1X47-D15 and Junos OS Release 17.3R1, the SRX5K-SCBE (SCB2) is introduced.

• There are three SCB slots in SRX5800 devices. The third slot can be used for an SCB or an FPC. When an SRX5K-SCB was used, the third SCB slot was used as an FPC. SCB redundancy is provided in chassis cluster mode.
• With an SCB2, a third SCB is supported. If a third SCB is plugged in, it provides intra-chassis fabric redundancy.
• The Ethernet switch in the SCB2 provides the Ethernet connectivity among all the FPCs and the Routing Engine. The Routing Engine uses this connectivity to distribute forwarding and routing tables to the FPCs. The FPCs use this connectivity to send exception packets to the Routing Engine.
• Fabric connects all FPCs in the data plane. The Fabric Manager executes on the Routing Engine and controls the fabric system in the chassis. Packet Forwarding Engines on the FPC and fabric planes on the SCB are connected through HSL2 channels.
• SCB2 supports HSL2 with both 3.11 Gbps and 6.22 Gbps (SerDes) link speed and various HSL2 modes. When an FPC is brought online, the link speed and HSL2 mode are determined by the type of FPC.

Starting with Junos OS Release 15.1X49-D10 and Junos OS Release 17.3R1, the SRX5K-SCB3 (SCB3) with enhanced midplane is introduced.

• All existing SCB software that is supported by SCB2 is supported on SCB3.
• SRX5K-RE-1800X4 mixed Routing Engine use is not supported.
• SCB3 works with the SRX5K-MPC (IOC2), SRX5K-MPC3-100G10G (IOC3), SRX5K-MPC3-40G10G (IOC3), and SRX5K-SPC-4-15-320 (SPC2) with current midplanes and the new enhanced midplanes.
• Mixed SCB use is not supported. If an SCB2 and an SCB3 are used, the system will only power on the master Routing Engine’s SCB and will power off the other SCBs. Only the SCB in slot 0 is powered on and a system log is generated.
• SCB3 supports up to 400 Gbps per slot with old midplanes and up to 500 Gbps per slot with new midplanes.
• SCB3 supports fabric intra-chassis redundancy.
• SCB3 supports the same chassis cluster function as the SRX5K-SCB (SCB1) and the SRX5K-SCBE (SCB2), except for in-service software upgrade (ISSU).
Table 58: show chassis hardware Output Fields *(continued)*

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>and in-service hardware upgrade (ISHU).</td>
</tr>
<tr>
<td></td>
<td>• SCB3 has a second external Ethernet port.</td>
</tr>
<tr>
<td></td>
<td>• Fabric bandwidth increasing mode is not supported.</td>
</tr>
</tbody>
</table>

Starting in Junos OS 19.3R1, SRX5K-SCB4 is supported on SRX5600 and SRX5800 devices along with SRX5K-SPC3.

SRX5K-SCB4:

- Interoperate with SRX5K-RE3-128G, SRX5K-RE-1800X4, IOC2, IOC3, IOC4, SPC2, and SPC3. SCB4 is compatible with all midplanes and interoperate with existing PEMs, fan trays, and front panel displays.
- Does not interoperate with SCB, SCB2, and SCB3.
- Supports 480-Gbps link speed per slot.
- Supports 1-Gigabit Ethernet interfaces speed with SRX5K-RE-1800X4 and 1-Gigabit, 2.5-Gigabit, and 10-Gigabit Ethernet speeds with SRX5K-RE3-128G.
- Support ISHU and ISSU in chassis cluster.
- Supports fabric bandwidth mode and redundant fabric mode on SRX5600 and SRX5800 devices. The bandwidth mode is the new default mode which is necessary to configure redundant mode in setting up the chassis cluster successfully.
Table 58: show chassis hardware Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Type of Flexible PIC Concentrator (FPC), Physical Interface Card (PIC), Modular Interface Cards (MICs), and PIMs.</td>
</tr>
</tbody>
</table>
Table 58: show chassis hardware Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
</table>

- **IOCs**
 Starting with Junos OS Release 15.1X49-D10 and Junos OS Release 17.3R1, the SRX5K-MPC3-100G10G (IOC3) and the SRX5K-MPC3-40G10G (IOC3) are introduced.

- IOC3 has two types of IOC3 MPCs, which have different built-in MICs: the 24x10GE + 6x40GE MPC and the 2x100GE + 4x10GE MPC.

- IOC3 supports SCB3 and SRX5000 line backplane and enhanced backplane.

- IOC3 can only work with SRX5000 line SCB2 and SCB3. If an SRX5000 line SCB is detected, IOC3 is offline, an FPC misconfiguration alarm is raised, and a system log message is generated.

- IOC3 inter-operates with SCB2 and SCB3.

- IOC3 inter-operates with the SRX5K-SPC-4-15-320 (SPC2) and the SRX5K-MPC (IOC2).

- The maximum power consumption for one IOC3 is 645W. An enhanced power module must be used.

- The IOC3 does not support the following command to set a PIC to go offline or online:

  ```
  request chassis pic fpc-slot <fpc-slot> pic-slot <pic-slot> <offline | online>
  ```

- IOC3 supports 240 Gbps of throughput with the enhanced SRX5000 line backplane.

- Chassis cluster functions the same as for the SRX5000 line IOC2.

- IOC3 supports intra-chassis and inter-chassis fabric redundancy mode.

- IOC3 supports ISSU and ISHU in chassis cluster mode.

- IOC3 supports intra-FPC and Inter-FPC Express Path (previously known as services offloading) with IPv4.

- NAT of IPv4 and IPv6 in normal mode and IPv4 for Express Path mode.

- All four PICs on the 24x10GE + 6x40GE cannot be powered on. A maximum of two PICs can be powered on at the same time.

 Use the `set chassis fpc <slot> pic <pic> power off` command to choose the PICs you want to power on.

- Fabric bandwidth increasing mode is not supported on IOC3.

- **SRX Clustering Module (SCM)**

- **Fan tray**

Starting in Junos OS Release 19.3R1, the SRX5K-IOC4-10G and SRX5K-IOC4-MRAT line cards are supported along with SRX5K-SPC3 on the SRX5000 series devices.
Table 58: show chassis hardware Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Supports 480-Gbps speed.</td>
</tr>
<tr>
<td></td>
<td>• Supports 40X10GE Interfaces with SCB3.</td>
</tr>
<tr>
<td></td>
<td>• 40 10-Gigabit Ethernet port provides 10-Gigabit Ethernet MACsec support.</td>
</tr>
<tr>
<td></td>
<td>• Supports reth and aggregated interfaces on the chassis cluster.</td>
</tr>
<tr>
<td></td>
<td>• Supports ISSU and logical system on the chassis cluster.</td>
</tr>
<tr>
<td></td>
<td>• Does not support SCB2.</td>
</tr>
<tr>
<td></td>
<td>• SRX5K-IOC4-MRAT with SCB3 supports 10-Gigabit, 40-Gigabit, and 100-Gigabit Ethernet Interfaces.</td>
</tr>
<tr>
<td></td>
<td>• For hosts, the Routing Engine type.</td>
</tr>
</tbody>
</table>

Starting with Junos OS Release 12.1X47-D15 and Junos OS Release 17.3R1, the SRX5K-RE-1800X4 Routing Engine is introduced.

• The SRX5K-RE-1800X4 has an Intel Quad core Xeon processor, 16 GB of DRAM, and a 128-GB solid-state drive (SSD).
 The number 1800 refers to the speed of the processor (1.8 GHz). The maximum required power for this Routing Engine is 90W.

 NOTE: The SRX5K-RE-1800X4 provides significantly better performance than the previously used Routing Engine, even with a single core.

Starting in Junos OS Release 19.3R1, SRX5K-RE3-128G Routing Engine is supported along with SRX5K-SPC3 on the SRX5000 series devices.

SRX5K-RE3-128G:

• Provides improved control plane performance and scalability.
 SRX5K-RE3-128G has Intel's Haswell-EP based processor with six cores.
• Supports two 200G SSDs to store log files and 128-GB of memory for storing routing and forwarding tables and for other routing engines.
• Interoperates with SCB3, SCB4, SRX5K-RE3-128G, SPC2, SPC3, IOC2, IOC3, and IOC4.
• Does not support SCB2 and SRX5K-RE-1800X4.
show chassis hardware

show chassis hardware (SRX5800)

user@host> **show chassis hardware**

dnode0:

<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td></td>
<td></td>
<td>JN1267B0FAGA</td>
<td>SRX5800</td>
</tr>
<tr>
<td>Midplane</td>
<td>REV 42</td>
<td>760-063937</td>
<td>ACRL3065</td>
<td>Enhanced SRX5800 Backplane</td>
</tr>
<tr>
<td>FPM Board</td>
<td>REV 05</td>
<td>760-061272</td>
<td>CAHE4860</td>
<td>Front Panel Display</td>
</tr>
<tr>
<td>PDM</td>
<td>Rev 01</td>
<td>740-063049</td>
<td>QCS2209509D</td>
<td>Power Distribution Module</td>
</tr>
<tr>
<td>PEM 0</td>
<td>Rev 04</td>
<td>740-034724</td>
<td>QCS171002016</td>
<td>PS 4.1kW; 200-240V AC in</td>
</tr>
<tr>
<td>PEM 1</td>
<td>Rev 11</td>
<td>740-027760</td>
<td>QCS1825N07S</td>
<td>PS 4.1kW; 200-240V AC in</td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td>REV 01</td>
<td>750-095568</td>
<td>CALK8884</td>
<td>SRX5k RE-2000x6</td>
</tr>
<tr>
<td>Routing Engine 1</td>
<td>REV 01</td>
<td>750-095568</td>
<td>CADZ9076</td>
<td>SRX5k RE-2000x6</td>
</tr>
<tr>
<td>CB 0</td>
<td>REV 26</td>
<td>750-031391</td>
<td>CALV3002</td>
<td>SRX5k SCB4</td>
</tr>
<tr>
<td>CB 1</td>
<td>REV 26</td>
<td>750-031391</td>
<td>CALV3009</td>
<td>SRX5k SCB4</td>
</tr>
<tr>
<td>FPC 2</td>
<td>REV 28</td>
<td>750-073435</td>
<td>CALS4630</td>
<td>SPC3</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SRX5k vCPP Broadwell</td>
</tr>
<tr>
<td>PIC 0</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Cp-Flow</td>
</tr>
<tr>
<td>PIC 1</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>FPC 3</td>
<td>REV 17</td>
<td>750-044175</td>
<td>CABE7777</td>
<td>SRX5k SPC II</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SRX5k DPC PPC</td>
</tr>
<tr>
<td>PIC 0</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 1</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 2</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 3</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>FPC 4</td>
<td>REV 08</td>
<td>750-061262</td>
<td>CAFD8147</td>
<td>SRX5k IOC II</td>
</tr>
<tr>
<td>CPU</td>
<td>REV 02</td>
<td>711-061263</td>
<td>CAFV7488</td>
<td>SRX5k MPC PMB</td>
</tr>
<tr>
<td>MIC 0</td>
<td>REV 03</td>
<td>750-055732</td>
<td>CAFV9369</td>
<td>20x 1GE(LAN) SFP</td>
</tr>
<tr>
<td>PIC 0</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>10x 1GE(LAN) SFP</td>
</tr>
<tr>
<td>Xcvr 0</td>
<td>REV 02</td>
<td>740-011613</td>
<td>PNB1GJR</td>
<td>SFP-SX</td>
</tr>
<tr>
<td>PIC 1</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>10x 1GE(LAN) SFP</td>
</tr>
<tr>
<td>FPC 5</td>
<td>REV 10</td>
<td>750-062242</td>
<td>CAXX2328</td>
<td>SRX5k IOC3 2CGE+4XGE</td>
</tr>
</tbody>
</table>
Hardware inventory:

<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td></td>
<td></td>
<td>JN1267B01AGA</td>
<td>SRX5800</td>
</tr>
<tr>
<td>Midplane</td>
<td>REV 42</td>
<td>760-063937</td>
<td>ACRL3068</td>
<td>Enhanced SRX5800 Backplane</td>
</tr>
<tr>
<td>FPM Board</td>
<td>REV 05</td>
<td>760-061272</td>
<td>CAJX9988</td>
<td>Front Panel Display</td>
</tr>
<tr>
<td>PDM</td>
<td>Rev 01</td>
<td>740-063049</td>
<td>QCS2209507A</td>
<td>Power Distribution Module</td>
</tr>
<tr>
<td>PEM 0</td>
<td>Rev 11</td>
<td>740-027760</td>
<td>QCS1822N0EY</td>
<td>PS 4.1kW; 200-240V AC in</td>
</tr>
<tr>
<td>PEM 1</td>
<td>Rev 03</td>
<td>740-034724</td>
<td>QCS17202203F</td>
<td>PS 4.1kW; 200-240V AC in</td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td>REV 01</td>
<td>750-095568</td>
<td>CALK8904</td>
<td>SRX5k RE-2000x6</td>
</tr>
<tr>
<td>Routing Engine 1</td>
<td>REV 01</td>
<td>750-095568</td>
<td>CADZ9076</td>
<td>SRX5k RE-2000x6</td>
</tr>
<tr>
<td>CB 0</td>
<td>REV 26</td>
<td>750-031391</td>
<td>CALV3010</td>
<td>SRX5k SCB4</td>
</tr>
<tr>
<td>CB 1</td>
<td>REV 26</td>
<td>750-031391</td>
<td>CALV3000</td>
<td>SRX5k SCB4</td>
</tr>
<tr>
<td>FPC 2</td>
<td>REV 28</td>
<td>750-073435</td>
<td>CAKZ9620</td>
<td>SPC3</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SRX5k vCPP Broadwell</td>
</tr>
<tr>
<td>PIC 0</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Cp-Flow</td>
</tr>
<tr>
<td>PIC 1</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>FPC 3</td>
<td>REV 18</td>
<td>750-054877</td>
<td>CACH4082</td>
<td>SRX5k SPC II</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SRX5k DPC PPC</td>
</tr>
<tr>
<td>PIC 0</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 1</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 2</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 3</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
</tbody>
</table>
show chassis hardware (SRX5600 and SRX5800 devices for SRX5K-MPC)

user@host> show chassis hardware

Hardware inventory:

<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td>JN12170EAAGA</td>
<td>SRX 5800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midplane</td>
<td>REV 01</td>
<td>710-041799</td>
<td>ACAAX3849</td>
<td>SRX 5800 Backplane</td>
</tr>
<tr>
<td>FPM Board</td>
<td>REV 01</td>
<td>710-024632</td>
<td>CAAX7297</td>
<td>Front Panel Display</td>
</tr>
<tr>
<td>PDM</td>
<td>Rev 03</td>
<td>740-013110</td>
<td>QCS170250DU</td>
<td>Power Distribution Module</td>
</tr>
<tr>
<td>PEM 0</td>
<td>Rev 03</td>
<td>740-034724</td>
<td>QCS17020203F</td>
<td>PS 4.1kW; 200-240V AC inn</td>
</tr>
<tr>
<td>PEM 1</td>
<td>Rev 03</td>
<td>740-034724</td>
<td>QCS17020203C</td>
<td>PS 4.1kW; 200-240V AC inn</td>
</tr>
<tr>
<td>PEM 2</td>
<td>Rev 04</td>
<td>740-034724</td>
<td>QCS17100200A</td>
<td>PS 4.1kW; 200-240V AC inn</td>
</tr>
<tr>
<td>PEM 3</td>
<td>Rev 03</td>
<td>740-034724</td>
<td>QCS17080200M</td>
<td>PS 4.1kW; 200-240V AC inn</td>
</tr>
<tr>
<td>Component</td>
<td>Revision</td>
<td>Part Number</td>
<td>Model</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td>REV 11</td>
<td>740-023530</td>
<td>SRX5k RE-13-20</td>
<td></td>
</tr>
<tr>
<td>CB 0</td>
<td>REV 09</td>
<td>710-024802</td>
<td>SRX5k SCB</td>
<td></td>
</tr>
<tr>
<td>CB 1</td>
<td>REV 09</td>
<td>710-024802</td>
<td>SRX5k SCB</td>
<td></td>
</tr>
<tr>
<td>FPC 0</td>
<td>REV 07</td>
<td>750-044175</td>
<td>SRX5k SPC II</td>
<td></td>
</tr>
<tr>
<td>CPU</td>
<td>Built-in</td>
<td>Built-in</td>
<td>SRX5k DPC PPC</td>
<td></td>
</tr>
<tr>
<td>PIC 0</td>
<td>Built-in</td>
<td>Built-in</td>
<td>SPU Cp</td>
<td></td>
</tr>
<tr>
<td>PIC 1</td>
<td>Built-in</td>
<td>Built-in</td>
<td>SPU Flow</td>
<td></td>
</tr>
<tr>
<td>PIC 2</td>
<td>Built-in</td>
<td>Built-in</td>
<td>SPU Flow</td>
<td></td>
</tr>
<tr>
<td>PIC 3</td>
<td>Built-in</td>
<td>Built-in</td>
<td>SPU Flow</td>
<td></td>
</tr>
<tr>
<td>FPC 1</td>
<td>REV 07</td>
<td>750-044175</td>
<td>SRX5k SPC II</td>
<td></td>
</tr>
<tr>
<td>CPU</td>
<td>Built-in</td>
<td>Built-in</td>
<td>SRX5k DPC PPC</td>
<td></td>
</tr>
<tr>
<td>PIC 0</td>
<td>Built-in</td>
<td>Built-in</td>
<td>SPU Flow</td>
<td></td>
</tr>
<tr>
<td>PIC 1</td>
<td>Built-in</td>
<td>Built-in</td>
<td>SPU Flow</td>
<td></td>
</tr>
<tr>
<td>PIC 2</td>
<td>Built-in</td>
<td>Built-in</td>
<td>SPU Flow</td>
<td></td>
</tr>
<tr>
<td>PIC 3</td>
<td>Built-in</td>
<td>Built-in</td>
<td>SPU Flow</td>
<td></td>
</tr>
<tr>
<td>FPC 2</td>
<td>REV 28</td>
<td>750-020751</td>
<td>SRX5k DPC 4X 10GE</td>
<td></td>
</tr>
<tr>
<td>CPU</td>
<td>REV 04</td>
<td>710-024633</td>
<td>SRX5k DPC PMB</td>
<td></td>
</tr>
<tr>
<td>PIC 0</td>
<td>Built-in</td>
<td>Built-in</td>
<td>1x 10GE(LAN/WAN) RichQ</td>
<td></td>
</tr>
<tr>
<td>Xcvr 0</td>
<td>REV 02</td>
<td>740-014289</td>
<td>T10A00404 XFP-10G-SR</td>
<td></td>
</tr>
<tr>
<td>PIC 1</td>
<td>Built-in</td>
<td>Built-in</td>
<td>1x 10GE(LAN/WAN) RichQ</td>
<td></td>
</tr>
<tr>
<td>PIC 2</td>
<td>Built-in</td>
<td>Built-in</td>
<td>1x 10GE(LAN/WAN) RichQ</td>
<td></td>
</tr>
<tr>
<td>PIC 3</td>
<td>Built-in</td>
<td>Built-in</td>
<td>1x 10GE(LAN/WAN) RichQ</td>
<td></td>
</tr>
<tr>
<td>FPC 6</td>
<td>REV 02</td>
<td>750-044175</td>
<td>SRX5k SPC II</td>
<td></td>
</tr>
<tr>
<td>CPU</td>
<td>Built-in</td>
<td>Built-in</td>
<td>SRX5k DPC PPC</td>
<td></td>
</tr>
<tr>
<td>FPC 9</td>
<td>REV 10</td>
<td>750-044175</td>
<td>SRX5k SPC II</td>
<td></td>
</tr>
<tr>
<td>CPU</td>
<td>Built-in</td>
<td>Built-in</td>
<td>SRX5k DPC PPC</td>
<td></td>
</tr>
<tr>
<td>PIC 0</td>
<td>Built-in</td>
<td>Built-in</td>
<td>SPU Flow</td>
<td></td>
</tr>
<tr>
<td>PIC 1</td>
<td>Built-in</td>
<td>Built-in</td>
<td>SPU Flow</td>
<td></td>
</tr>
<tr>
<td>PIC 2</td>
<td>Built-in</td>
<td>Built-in</td>
<td>SPU Flow</td>
<td></td>
</tr>
<tr>
<td>PIC 3</td>
<td>Built-in</td>
<td>Built-in</td>
<td>SPU Flow</td>
<td></td>
</tr>
<tr>
<td>FPC 10</td>
<td>REV 22</td>
<td>750-043157</td>
<td>SRX5k IOC II</td>
<td></td>
</tr>
<tr>
<td>CPU</td>
<td>REV 08</td>
<td>711-043360</td>
<td>SRX5k MPC PMB</td>
<td></td>
</tr>
<tr>
<td>MIC 0</td>
<td>REV 01</td>
<td>750-049488</td>
<td>Y22084 10x 10GE SFP+</td>
<td></td>
</tr>
<tr>
<td>PIC 0</td>
<td>Built-in</td>
<td>Built-in</td>
<td>10x 10GE SFP+</td>
<td></td>
</tr>
<tr>
<td>Xcvr 0</td>
<td>REV 01</td>
<td>740-031980</td>
<td>AMBOH3 SFP++10G-SR</td>
<td></td>
</tr>
<tr>
<td>Xcvr 1</td>
<td>REV 01</td>
<td>740-031980</td>
<td>AM20B6F SFP++10G-SR</td>
<td></td>
</tr>
<tr>
<td>MIC 1</td>
<td>REV 19</td>
<td>750-049486</td>
<td>CAAH3504 1x 100GE CFP</td>
<td></td>
</tr>
<tr>
<td>PIC 2</td>
<td>Built-in</td>
<td>Built-in</td>
<td>1x 100GE CFP</td>
<td></td>
</tr>
<tr>
<td>Xcvr 0</td>
<td>REV 01</td>
<td>740-035329</td>
<td>X000D375 CFP-100G-SR10</td>
<td></td>
</tr>
<tr>
<td>FPC 11</td>
<td>REV 07.04.07</td>
<td>750-043157</td>
<td>SRX5k IOC II</td>
<td></td>
</tr>
<tr>
<td>CPU</td>
<td>REV 08</td>
<td>711-043360</td>
<td>SRX5k MPC PMB</td>
<td></td>
</tr>
<tr>
<td>MIC 0</td>
<td>REV 19</td>
<td>750-049486</td>
<td>CAAH0979 1x 100GE CFP</td>
<td></td>
</tr>
<tr>
<td>PIC 0</td>
<td>Built-in</td>
<td>Built-in</td>
<td>1x 100GE CFP</td>
<td></td>
</tr>
</tbody>
</table>
show chassis hardware (with 20-Gigabit Ethernet MIC with SFP)

user@host> show chassis hardware

<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td></td>
<td></td>
<td>JN108DA5AAGA</td>
<td>SRX 5800</td>
</tr>
<tr>
<td>Midplane</td>
<td>REV 02</td>
<td>710-013698</td>
<td>TR0037</td>
<td>SRX 5600 Midplane</td>
</tr>
<tr>
<td>FPM Board</td>
<td>REV 02</td>
<td>710-014974</td>
<td>JY4635</td>
<td>Front Panel Display</td>
</tr>
<tr>
<td>PDM</td>
<td>Rev 02</td>
<td>740-013110</td>
<td>QCS10465005</td>
<td>Power Distribution Module</td>
</tr>
<tr>
<td>PEM 0</td>
<td>Rev 03</td>
<td>740-023514</td>
<td>QCS11154040</td>
<td>PS 1.7kW; 200-240VAC in</td>
</tr>
<tr>
<td>PEM 2</td>
<td>Rev 02</td>
<td>740-023514</td>
<td>QCS10504014</td>
<td>PS 1.7kW; 200-240VAC in</td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td>REV 05</td>
<td>740-015113</td>
<td>1000681023</td>
<td>RE-S-1300</td>
</tr>
<tr>
<td>CB 0</td>
<td>REV 05</td>
<td>710-013385</td>
<td>JY4775</td>
<td>SRX5k SCB</td>
</tr>
<tr>
<td>FPC 1</td>
<td>REV 17</td>
<td>750-020751</td>
<td>WZ6349</td>
<td>SRX5k DPC 4x 10GE</td>
</tr>
<tr>
<td>CPU</td>
<td>REV 02</td>
<td>710-024633</td>
<td>WZ0718</td>
<td>SRX5k DPC PMB</td>
</tr>
<tr>
<td>PIC 0</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>1x 10GE(LAN/WAN) RichQ</td>
</tr>
<tr>
<td>Xcvr 0</td>
<td>NON-JNPR</td>
<td>C724XM088</td>
<td></td>
<td>XFP-10G-SR</td>
</tr>
<tr>
<td>PIC 1</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>1x 10GE(LAN/WAN) RichQ</td>
</tr>
<tr>
<td>Xcvr 0</td>
<td>REV 02</td>
<td>740-011571</td>
<td>C831XJ08S</td>
<td>XFP-10G-SR</td>
</tr>
<tr>
<td>PIC 2</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>1x 10GE(LAN/WAN) RichQ</td>
</tr>
<tr>
<td>PIC 3</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>1x 10GE(LAN/WAN) RichQ</td>
</tr>
<tr>
<td>FPC 3</td>
<td>REV 22</td>
<td>750-043157</td>
<td>ZH8189</td>
<td>SRX5k IOC II</td>
</tr>
<tr>
<td>CPU</td>
<td>REV 06</td>
<td>711-043360</td>
<td>YX3912</td>
<td>SRX5k MPC PMB</td>
</tr>
<tr>
<td>MIC 0</td>
<td>REV 01</td>
<td>750-055732</td>
<td>CACF9115</td>
<td>20x 1GE(LAN) SFP</td>
</tr>
<tr>
<td>PIC 0</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>10x 1GE(LAN) SFP</td>
</tr>
<tr>
<td>Xcvr 2</td>
<td>REV 02</td>
<td>740-013111</td>
<td>B358549</td>
<td>SFP-T</td>
</tr>
<tr>
<td>Xcvr 9</td>
<td>REV 02</td>
<td>740-011613</td>
<td>PNB1FQS</td>
<td>SFP-SX</td>
</tr>
<tr>
<td>PIC 1</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>10x 1GE(LAN) SFP</td>
</tr>
<tr>
<td>Xcvr 9</td>
<td>REV 02</td>
<td>740-011613</td>
<td>PNB1FFF</td>
<td>SFP-SX</td>
</tr>
<tr>
<td>FPC 5</td>
<td>REV 01</td>
<td>750-027945</td>
<td>JW9665</td>
<td>SRX5k FIOC</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPC 8</td>
<td>REV 08</td>
<td>750-023996</td>
<td>XA7234</td>
<td>SRX5k SPC</td>
</tr>
<tr>
<td>CPU</td>
<td>REV 02</td>
<td>710-024633</td>
<td>XA1599</td>
<td>SRX5k DPC PMB</td>
</tr>
<tr>
<td>PIC 0</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>SPU Cp-Flow</td>
</tr>
</tbody>
</table>
show chassis hardware
(SRX5600 and SRX5800 devices with SRX5000 line
SRX5K-SCBE [SCB2] and SRX5K-RE-1800X4 [RE2])

user@host> show chassis hardware

node0:

Hardware inventory:
<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td></td>
<td>JN1251EA1AGB</td>
<td>SRX5600</td>
<td></td>
</tr>
<tr>
<td>Midplane</td>
<td>REV 01</td>
<td>760-063936</td>
<td>ACRE2657</td>
<td>Enhanced SRX5600 Midplane</td>
</tr>
<tr>
<td>FPM Board</td>
<td>REV 01</td>
<td>710-024631</td>
<td>CABY3551</td>
<td>Front Panel Display</td>
</tr>
<tr>
<td>PEM 0</td>
<td>Rev 03</td>
<td>740-034701</td>
<td>QCS13380901P</td>
<td>PS 1.4-2.6kW; 90-264V AC</td>
</tr>
<tr>
<td>PEM 1</td>
<td>Rev 03</td>
<td>740-034701</td>
<td>QCS133809019</td>
<td>PS 1.4-2.6kW; 90-264V AC</td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td>REV 02</td>
<td>740-056658</td>
<td>9009210105</td>
<td>SRX5k RE-1800X4</td>
</tr>
<tr>
<td>Routing Engine 1</td>
<td>REV 02</td>
<td>740-056658</td>
<td>9013115551</td>
<td>SRX5k RE-1800X4</td>
</tr>
<tr>
<td>CB 0</td>
<td>REV 01</td>
<td>750-062257</td>
<td>CADW3663</td>
<td>SRX5k SCB3</td>
</tr>
<tr>
<td>CB 1</td>
<td>REV 01</td>
<td>750-062257</td>
<td>CADZ3263</td>
<td>SRX5k SCB3</td>
</tr>
<tr>
<td>FPC 0</td>
<td>REV 18</td>
<td>750-054877</td>
<td>CABG6043</td>
<td>SRX5k SPC II</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SRX5k DPC PPC</td>
</tr>
<tr>
<td>PIC 0</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Cp</td>
</tr>
<tr>
<td>PIC 1</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 2</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 3</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>FPC 1</td>
<td>REV 01</td>
<td>750-062243</td>
<td>CAEE5918</td>
<td>SRX5k IOC3 24XGE+6XLG</td>
</tr>
<tr>
<td>CPU</td>
<td>REV 02</td>
<td>711-062244</td>
<td>CADX8509</td>
<td>RMPC PMB</td>
</tr>
<tr>
<td>PIC 0</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>12x 10GE SFP+</td>
</tr>
<tr>
<td>Xcvr 0</td>
<td>REV 01</td>
<td>740-031980</td>
<td>273363A01891</td>
<td>SFP+-10G-SR</td>
</tr>
<tr>
<td>Xcvr 1</td>
<td>REV 01</td>
<td>740-031980</td>
<td>273363A01915</td>
<td>SFP+-10G-SR</td>
</tr>
<tr>
<td>Xcvr 2</td>
<td>REV 01</td>
<td>740-031980</td>
<td>ANAO8BK6</td>
<td>SFP+-10G-SR</td>
</tr>
<tr>
<td>Xcvr 3</td>
<td>REV 01</td>
<td>740-031980</td>
<td>AP407GA</td>
<td>SFP+-10G-SR</td>
</tr>
<tr>
<td>Xcvr 9</td>
<td>REV 01</td>
<td>740-021308</td>
<td>MUC20G1</td>
<td>SFP+-10G-SR</td>
</tr>
<tr>
<td>PIC 1</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>12x 10GE SFP+</td>
</tr>
<tr>
<td>PIC 2</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>3x 40GE QSFP+</td>
</tr>
<tr>
<td>PIC 3</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>3x 40GE QSFP+</td>
</tr>
<tr>
<td>WAN MEZZ</td>
<td>REV 15</td>
<td>750-049136</td>
<td>CAEE5845</td>
<td>MPC5E 24XGE OTN Mezz</td>
</tr>
<tr>
<td>FPC 3</td>
<td>REV 11</td>
<td>750-043157</td>
<td>CACL7452</td>
<td>SRX5k IOC II</td>
</tr>
<tr>
<td>CPU</td>
<td>REV 04</td>
<td>711-043360</td>
<td>CACP1977</td>
<td>SRX5k MPC PMB</td>
</tr>
<tr>
<td>Item</td>
<td>Version</td>
<td>Part number</td>
<td>Serial number</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>-------------</td>
<td>-------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>MIC 0</td>
<td>REV 04</td>
<td>750-049488</td>
<td>CABL4759</td>
<td>10x 10GE SFP+</td>
</tr>
<tr>
<td>PIC 0</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td>10x 10GE SFP+</td>
</tr>
<tr>
<td>Xcvr 0</td>
<td>REV 01</td>
<td>740-021308</td>
<td>CF36KMSY</td>
<td>SFP++-10G-SR</td>
</tr>
<tr>
<td>Xcvr 1</td>
<td>REV 01</td>
<td>740-021308</td>
<td>MUCOMF2</td>
<td>SFP++-10G-SR</td>
</tr>
<tr>
<td>Xcvr 2</td>
<td>REV 01</td>
<td>740-021308</td>
<td>CF36KM01S</td>
<td>SFP++-10G-SR</td>
</tr>
<tr>
<td>Xcvr 3</td>
<td>REV 01</td>
<td>740-021308</td>
<td>MUC229N</td>
<td>SFP++-10G-SR</td>
</tr>
<tr>
<td>FPC 5</td>
<td>REV 07</td>
<td>750-044175</td>
<td>CAAD0764</td>
<td>SRX5k SPC II</td>
</tr>
<tr>
<td>CPU</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td>SRX5k DPC PPC</td>
</tr>
<tr>
<td>PIC 0</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 1</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 2</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 3</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td>SPU Flow</td>
</tr>
<tr>
<td>Fan Tray</td>
<td></td>
<td></td>
<td></td>
<td>Enhanced Fan Tray</td>
</tr>
</tbody>
</table>

node1:

<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td></td>
<td></td>
<td>JN124FE77AGB</td>
<td>SRX5600</td>
</tr>
<tr>
<td>Midplane</td>
<td>REV 01</td>
<td>760-063936</td>
<td>ACRE2970</td>
<td>Enhanced SRX5600 Midplane</td>
</tr>
<tr>
<td>FPM Board</td>
<td>REV 01</td>
<td>710-024631</td>
<td>CABY3552</td>
<td>Front Panel Display</td>
</tr>
<tr>
<td>PEM 0</td>
<td>Rev 03</td>
<td>740-034701</td>
<td>QCS133809028</td>
<td>PS 1.4-2.6kW; 90-264V AC</td>
</tr>
<tr>
<td>PEM 1</td>
<td>Rev 03</td>
<td>740-034701</td>
<td>QCS133809027</td>
<td>PS 1.4-2.6kW; 90-264V AC</td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td>REV 02</td>
<td>740-056658</td>
<td>9009218294</td>
<td>SRX5k RE-1800X4</td>
</tr>
<tr>
<td>Routing Engine 1</td>
<td>REV 02</td>
<td>740-056658</td>
<td>9013104758</td>
<td>SRX5k RE-1800X4</td>
</tr>
<tr>
<td>CB 0</td>
<td>REV 01</td>
<td>750-062257</td>
<td>CAEB8180</td>
<td>SRX5k SCB3</td>
</tr>
<tr>
<td>CB 1</td>
<td>REV 01</td>
<td>750-062257</td>
<td>CAD23334</td>
<td>SRX5k SCB3</td>
</tr>
<tr>
<td>FPC 0</td>
<td>REV 18</td>
<td>750-054877</td>
<td>CACJ9834</td>
<td>SRX5k SPC II</td>
</tr>
<tr>
<td>CPU</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td>SRX5k DPC PPC</td>
</tr>
<tr>
<td>PIC 0</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td>SPU Cp</td>
</tr>
<tr>
<td>PIC 1</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 2</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 3</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td>SPU Flow</td>
</tr>
<tr>
<td>FPC 1</td>
<td>REV 01</td>
<td>750-062243</td>
<td>CAEB0981</td>
<td>SRX5k IOC3 24XGE+6XLG</td>
</tr>
<tr>
<td>CPU</td>
<td>REV 02</td>
<td>711-062244</td>
<td>CAEA4644</td>
<td>RMPC PMB</td>
</tr>
<tr>
<td>PIC 0</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td>12x 10GE SFP+</td>
</tr>
<tr>
<td>Xcvr 0</td>
<td>REV 01</td>
<td>740-031980</td>
<td>AP41BLH</td>
<td>SFP++-10G-SR</td>
</tr>
<tr>
<td>Xcvr 1</td>
<td>REV 01</td>
<td>740-031980</td>
<td>AQ400SL</td>
<td>SFP++-10G-SR</td>
</tr>
<tr>
<td>Xcvr 2</td>
<td>REV 01</td>
<td>740-031980</td>
<td>AP422LJ</td>
<td>SFP++-10G-SR</td>
</tr>
<tr>
<td>Xcvr 3</td>
<td>REV 01</td>
<td>740-021308</td>
<td>AMG0RBT</td>
<td>SFP++-10G-SR</td>
</tr>
<tr>
<td>Xcvr 9</td>
<td>REV 01</td>
<td>740-021308</td>
<td>MUC2FRG</td>
<td>SFP++-10G-SR</td>
</tr>
<tr>
<td>PIC 1</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td>12x 10GE SFP+</td>
</tr>
</tbody>
</table>
show chassis hardware
(SRX5400, SRX5600, and SRX5800 devices with SRX5000 line SRX5K-SCB3 [SCB3] with enhanced midplanes and SRX5K-MPC3-100G10G [IOC3] or SRX5K-MPC3-40G10G [IOC3])

user@host> show chassis hardware

node0:

<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td></td>
<td></td>
<td>JN1250870AGB</td>
<td>SRX5600</td>
</tr>
<tr>
<td>Midplane</td>
<td>REV 01</td>
<td>760-063936</td>
<td>ACRE2578</td>
<td>Enhanced SRX5600 Midplane</td>
</tr>
<tr>
<td>PEM 0</td>
<td>Rev 03</td>
<td>740-034701</td>
<td>QCS13090900T</td>
<td>PS 1.4-2.6kW; 90-264V A</td>
</tr>
<tr>
<td>PEM 1</td>
<td>Rev 03</td>
<td>740-034701</td>
<td>QCS13090904T</td>
<td>PS 1.4-2.6kW; 90-264V A</td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td>REV 01</td>
<td>740-056658</td>
<td>9009196496</td>
<td>SRX5k RE-1800X4</td>
</tr>
</tbody>
</table>
Hardware inventory:

<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td></td>
<td>JN124FEC0AGB</td>
<td></td>
<td>SRX5600</td>
</tr>
<tr>
<td>Midplane</td>
<td>REV 01</td>
<td>760-063936</td>
<td>ACRE2946</td>
<td>Enhanced SRX5600 Midplane</td>
</tr>
<tr>
<td>FPM Board</td>
<td>test</td>
<td>710-017254</td>
<td>test</td>
<td>Front Panel Display</td>
</tr>
<tr>
<td>PEM 0</td>
<td>Rev 01</td>
<td>740-038514</td>
<td>QCS114111003</td>
<td>DC 2.6kW Power Entry Module</td>
</tr>
<tr>
<td>PEM 1</td>
<td>Rev 01</td>
<td>740-038514</td>
<td>QCS12031100J</td>
<td>DC 2.6kW Power Entry Module</td>
</tr>
<tr>
<td>Routing Engine</td>
<td>REV 01</td>
<td>740-056658</td>
<td>9009186342</td>
<td>SRX5k RE-1800X4</td>
</tr>
<tr>
<td>CB 0</td>
<td>REV 01</td>
<td>750-062257</td>
<td>CAEB8178</td>
<td>SRX5k SCB3</td>
</tr>
</tbody>
</table>
show chassis hardware (SRX4200)

user@host> show chassis hardware

<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td></td>
<td></td>
<td>DK2816AR0020</td>
<td>SRX4200</td>
</tr>
<tr>
<td>Mainboard</td>
<td>REV 01</td>
<td>650-071675</td>
<td>16061032317</td>
<td>SRX4200</td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SRX Routing Engine</td>
</tr>
<tr>
<td>FPC 0</td>
<td></td>
<td></td>
<td>BUILTIN</td>
<td>FEB</td>
</tr>
<tr>
<td>PIC 0</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>8x10G-SFP</td>
</tr>
<tr>
<td>Xcvr 0</td>
<td>REV 01</td>
<td>740-038153</td>
<td>MOC11511530020</td>
<td>SFP+-10G-CU3M</td>
</tr>
<tr>
<td>Xcvr 1</td>
<td>REV 01</td>
<td>740-038153</td>
<td>MOC11511530020</td>
<td>SFP+-10G-CU3M</td>
</tr>
<tr>
<td>Xcvr 2</td>
<td>REV 01</td>
<td>740-038153</td>
<td>MOC11511530020</td>
<td>SFP+-10G-CU3M</td>
</tr>
<tr>
<td>Xcvr 3</td>
<td>REV 01</td>
<td>740-038153</td>
<td>MOC11511530020</td>
<td>SFP+-10G-CU3M</td>
</tr>
<tr>
<td>Xcvr 4</td>
<td>REV 01</td>
<td>740-021308</td>
<td>04DZ06A00364</td>
<td>SFP+-10G-SR</td>
</tr>
<tr>
<td>Xcvr 5</td>
<td>REV 01</td>
<td>740-031980</td>
<td>233363A03066</td>
<td>SFP+-10G-SR</td>
</tr>
<tr>
<td>Xcvr 6</td>
<td>REV 01</td>
<td>740-021308</td>
<td>AL70SWE</td>
<td>SFP+-10G-SR</td>
</tr>
<tr>
<td>Xcvr 7</td>
<td>REV 01</td>
<td>740-031980</td>
<td>ALN0N6C</td>
<td>SFP+-10G-SR</td>
</tr>
<tr>
<td>Component</td>
<td>Revision</td>
<td>Part Number</td>
<td>Vendor Part Number</td>
<td>Type</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------</td>
<td>-------------------</td>
<td>-----------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Xcvr 8</td>
<td>REV 01</td>
<td>740-030076</td>
<td>APF16220018NK1</td>
<td>SFP+-10G-CU1M</td>
</tr>
<tr>
<td>Power Supply 0</td>
<td>REV 04</td>
<td>740-041741</td>
<td>1GA26241849</td>
<td>JPSU-650W-AC-AFO</td>
</tr>
<tr>
<td>Power Supply 1</td>
<td>REV 04</td>
<td>740-041741</td>
<td>1GA26241846</td>
<td>JPSU-650W-AC-AFO</td>
</tr>
<tr>
<td>Fan Tray 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airflow - AFO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fan Tray 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airflow - AFO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fan Tray 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airflow - AFO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fan Tray 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airflow - AFO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

show chassis hardware (vSRX 3.0)

Starting in Junos OS Release 20.1R1, when vSRX 3.0 performs resource management, the vCPUs and RAM available to the instance are assigned based on what has been allocated prior to launching the instance. A maximum of 32 cores will be assigned to SRXPFE, for flow processing. Any allocation of cores in excess of 32 will automatically be assigned to the Routing Engine. For example, if 36 cores are allocated to the VM during the creation process, 32 cores are assigned for flow processing and 4 cores will be assigned to the RE. For memory allocations, up to 64G of vRAM would be used by the SRXPFE. Any allocated memory in excess of 64G would be assigned to system memory and would not be used for maintaining flow sessions information.
Table 59: Recommended vCPU and vRAM Combinations

<table>
<thead>
<tr>
<th>vCPU Number</th>
<th>vRAM Size (G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>32</td>
</tr>
</tbody>
</table>

NOTE: On a deployed vSRX, only memory scale up is supported. Scaling down memory on a deployed vSRX, is not supported. If you need to scale down memory, then a fresh install is required.

user@host> show chassis hardware

Hardware inventory:
Item Version Part number Serial number Description
Chassis 806dddb1a141 VSRX
Midplane
System IO
Routing Engine VSRX-2CPU-8G memory
FPC 0 FPC
PIC 0 VSRX DPDK GE
Power Supply 0

show chassis hardware clei-models

show chassis hardware clei-models
(SRX5600 and SRX5800 devices with SRX5000 line SRX5K-SCBE [SCB2] and SRX5K-RE-1800X4 [RE2])

user@host> show chassis hardware clei-models node 1

node1:
--
<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>CLEI code</th>
<th>FRU model number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midplane</td>
<td>REV 01</td>
<td>710-024803</td>
<td></td>
<td>SRX5800-BP-A</td>
</tr>
<tr>
<td>FPM Board</td>
<td>REV 01</td>
<td>710-024632</td>
<td></td>
<td>SRX5800-CRAFT-A</td>
</tr>
<tr>
<td>PEM 0</td>
<td>Rev 04</td>
<td>740-034724</td>
<td></td>
<td>SRX5800-PWR-4100-AC</td>
</tr>
<tr>
<td>PEM 1</td>
<td>Rev 05</td>
<td>740-034724</td>
<td></td>
<td>SRX5800-PWR-4100-AC</td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td>REV 01</td>
<td>740-056658</td>
<td>COUCATBAA</td>
<td>SRX5K-RE-1800X4</td>
</tr>
<tr>
<td>CB 0</td>
<td>REV 01</td>
<td>750-056587</td>
<td>COUCATBAA</td>
<td>SRX5K-SCBE</td>
</tr>
<tr>
<td>CB 1</td>
<td>REV 01</td>
<td>750-056587</td>
<td>COUCATBAA</td>
<td>SRX5K-SCBE</td>
</tr>
<tr>
<td>CB 2</td>
<td>REV 01</td>
<td>750-056587</td>
<td>COUCATBAA</td>
<td>SRX5K-SCBE</td>
</tr>
<tr>
<td>FPC 0</td>
<td>REV 18</td>
<td>750-054877</td>
<td>COUCATLBA</td>
<td>SRX5K-SPC-4-15-320</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td></td>
<td>BUILTIN</td>
<td></td>
</tr>
<tr>
<td>FPC 1</td>
<td>REV 18</td>
<td>750-054877</td>
<td>COUCATLBA</td>
<td>SRX5K-SPC-4-15-320</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td></td>
<td>BUILTIN</td>
<td></td>
</tr>
<tr>
<td>FPC 2</td>
<td>REV 18</td>
<td>750-054877</td>
<td>COUCATLBA</td>
<td>SRX5K-SPC-4-15-320</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td></td>
<td>BUILTIN</td>
<td></td>
</tr>
<tr>
<td>FPC 3</td>
<td>REV 11</td>
<td>750-043157</td>
<td>COUIBCWBA</td>
<td>SRX5K-MPC</td>
</tr>
<tr>
<td>MIC 0</td>
<td>REV 05</td>
<td>750-049486</td>
<td>COUIBCYBA</td>
<td>SRX-MIC-1X100G-CFP</td>
</tr>
<tr>
<td>MIC 1</td>
<td>REV 04</td>
<td>750-049488</td>
<td>COUIBCTXBA</td>
<td>SRX-MIC-10XG-SFPP</td>
</tr>
<tr>
<td>FPC 4</td>
<td>REV 18</td>
<td>750-054877</td>
<td>COUCATLBA</td>
<td>SRX5K-SPC-4-15-320</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td></td>
<td>BUILTIN</td>
<td></td>
</tr>
<tr>
<td>FPC 7</td>
<td>REV 18</td>
<td>750-054877</td>
<td>COUCATLBA</td>
<td>SRX5K-SPC-4-15-320</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td></td>
<td>BUILTIN</td>
<td></td>
</tr>
<tr>
<td>FPC 8</td>
<td>REV 11</td>
<td>750-043157</td>
<td>COUIBCWBA</td>
<td>SRX5K-MPC</td>
</tr>
<tr>
<td>MIC 0</td>
<td>REV 05</td>
<td>750-049486</td>
<td>COUIBCYBA</td>
<td>SRX-MIC-1X100G-CFP</td>
</tr>
<tr>
<td>FPC 9</td>
<td>REV 18</td>
<td>750-054877</td>
<td>COUCATLBA</td>
<td>SRX5K-SPC-4-15-320</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td></td>
<td>BUILTIN</td>
<td></td>
</tr>
<tr>
<td>FPC 10</td>
<td>REV 18</td>
<td>750-054877</td>
<td>COUCATLBA</td>
<td>SRX5K-SPC-4-15-320</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td></td>
<td>BUILTIN</td>
<td></td>
</tr>
<tr>
<td>Fan Tray 0</td>
<td>REV 04</td>
<td>740-035409</td>
<td></td>
<td>SRX5800-HC-FAN</td>
</tr>
<tr>
<td>Fan Tray 1</td>
<td>REV 04</td>
<td>740-035409</td>
<td></td>
<td>SRX5800-HC-FAN</td>
</tr>
</tbody>
</table>
show chassis routing-engine (View)

Syntax

show chassis routing-engine

Release Information

Command introduced in Junos OS Release 9.5.

Description

Display the Routing Engine status of the chassis cluster.

Required Privilege Level

view

RELATED DOCUMENTATION

cluster (Chassis) | 500

request system snapshot (Maintenance)

List of Sample Output

show chassis routing-engine (Sample 1 - SRX550M) on page 718
show chassis routing-engine (Sample 2 - vSRX) on page 719
show chassis routing-engine (Sample 3- SRX5400) on page 720
show chassis routing-engine (Sample 4- SRX4100) on page 720
show chassis routing-engine (Sample 5- SRX1500) on page 721

Output Fields

Table 60 on page 717 lists the output fields for the show chassis routing-engine command. Output fields are listed in the approximate order in which they appear.

Table 60: show chassis routing-engine Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Routing Engine temperature. (Not available for vSRX deployments.)</td>
</tr>
<tr>
<td>CPU temperature</td>
<td>CPU temperature. (Not available for vSRX deployments.)</td>
</tr>
</tbody>
</table>
Table 60: show chassis routing-engine Output Fields *(continued)*

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total memory</td>
<td>Total memory available on the system.</td>
</tr>
<tr>
<td></td>
<td>NOTE: Starting with Junos OS Release 15.1x49-D70 and Junos OS Release 17.3R1,</td>
</tr>
<tr>
<td></td>
<td>there is a change in the method for calculating the memory utilization by a</td>
</tr>
<tr>
<td></td>
<td>Routing Engine. The inactive memory is now subtracted from the total available</td>
</tr>
<tr>
<td></td>
<td>memory. There is thus, a decrease in the reported value for used memory; as the</td>
</tr>
<tr>
<td></td>
<td>inactive memory is now considered as free.</td>
</tr>
<tr>
<td>Control plane memory</td>
<td>Memory available for the control plane.</td>
</tr>
<tr>
<td>Data plane memory</td>
<td>Memory reserved for data plane processing.</td>
</tr>
<tr>
<td>CPU utilization</td>
<td>Current CPU utilization statistics on the control plane core.</td>
</tr>
<tr>
<td>User</td>
<td>Current CPU utilization in user mode on the control plane core.</td>
</tr>
<tr>
<td>Background</td>
<td>Current CPU utilization in nice mode on the control plane core.</td>
</tr>
<tr>
<td>Kernel</td>
<td>Current CPU utilization in kernel mode on the control plane core.</td>
</tr>
<tr>
<td>Interrupt</td>
<td>Current CPU utilization in interrupt mode on the control plane core.</td>
</tr>
<tr>
<td>Idle</td>
<td>Current CPU utilization in idle mode on the control plane core.</td>
</tr>
<tr>
<td>Model</td>
<td>Routing Engine model.</td>
</tr>
<tr>
<td>Start time</td>
<td>Routing Engine start time.</td>
</tr>
<tr>
<td>Uptime</td>
<td>Length of time the Routing Engine has been up (running) since the last start.</td>
</tr>
<tr>
<td>Last reboot reason</td>
<td>Reason for the last reboot of the Routing Engine.</td>
</tr>
<tr>
<td>Load averages</td>
<td>The average number of threads waiting in the run queue or currently executing</td>
</tr>
<tr>
<td></td>
<td>over 1-, 5-, and 15-minute periods.</td>
</tr>
</tbody>
</table>

Sample Output

`show chassis routing-engine (Sample 1 - SRX550M)`

`user@host> show chassis routing-engine`
Routing Engine status:

<table>
<thead>
<tr>
<th>Resource</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>38 degrees C / 100 degrees F</td>
</tr>
<tr>
<td>CPU Temperature</td>
<td>36 degrees C / 96 degrees F</td>
</tr>
<tr>
<td>Total memory</td>
<td>512 MB Max 435 MB used (85%)</td>
</tr>
<tr>
<td>Control plane memory</td>
<td>344 MB Max 296 MB used (86%)</td>
</tr>
<tr>
<td>Data plane memory</td>
<td>168 MB Max 138 MB used (82%)</td>
</tr>
<tr>
<td>CPU utilization</td>
<td></td>
</tr>
<tr>
<td>User</td>
<td>8 percent</td>
</tr>
<tr>
<td>Background</td>
<td>0 percent</td>
</tr>
<tr>
<td>Kernel</td>
<td>4 percent</td>
</tr>
<tr>
<td>Interrupt</td>
<td>0 percent</td>
</tr>
<tr>
<td>Idle</td>
<td>88 percent</td>
</tr>
<tr>
<td>Model</td>
<td>RE-SRX5500-LOWMEM</td>
</tr>
<tr>
<td>Serial ID</td>
<td>AAAP8652</td>
</tr>
<tr>
<td>Start time</td>
<td>2009-09-21 00:04:54 PDT</td>
</tr>
<tr>
<td>Uptime</td>
<td>52 minutes, 47 seconds</td>
</tr>
<tr>
<td>Last reboot reason</td>
<td>0x200:chassis control reset</td>
</tr>
<tr>
<td>Load averages:</td>
<td></td>
</tr>
<tr>
<td>1 minute</td>
<td>0.12</td>
</tr>
<tr>
<td>5 minute</td>
<td>0.15</td>
</tr>
<tr>
<td>15 minute</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Sample Output

```
show chassis routing-engine (Sample 2 - vSRX)

user@host> show chassis routing-engine
```

Routing Engine status:

<table>
<thead>
<tr>
<th>Resource</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total memory</td>
<td>1024 MB Max 358 MB used (35%)</td>
</tr>
<tr>
<td>Control plane memory</td>
<td>1024 MB Max 358 MB used (35%)</td>
</tr>
<tr>
<td>5 sec CPU utilization:</td>
<td></td>
</tr>
<tr>
<td>User</td>
<td>2 percent</td>
</tr>
<tr>
<td>Background</td>
<td>0 percent</td>
</tr>
<tr>
<td>Kernel</td>
<td>4 percent</td>
</tr>
<tr>
<td>Interrupt</td>
<td>6 percent</td>
</tr>
<tr>
<td>Idle</td>
<td>88 percent</td>
</tr>
<tr>
<td>Model</td>
<td>VSRX RE</td>
</tr>
<tr>
<td>Start time</td>
<td>2015-03-03 07:04:18 UTC</td>
</tr>
<tr>
<td>Uptime</td>
<td>2 days, 11 hours, 51 minutes, 11 seconds</td>
</tr>
<tr>
<td>Last reboot reason</td>
<td>Router rebooted after a normal shutdown.</td>
</tr>
<tr>
<td>Load averages:</td>
<td></td>
</tr>
<tr>
<td>1 minute</td>
<td>0.07</td>
</tr>
<tr>
<td>5 minute</td>
<td>0.04</td>
</tr>
<tr>
<td>15 minute</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Sample Output

show chassis routing-engine (Sample 3- SRX5400)

```
user@host> show chassis routing-engine
```

<table>
<thead>
<tr>
<th>Routing Engine status:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot 0:</td>
</tr>
<tr>
<td>Current state</td>
</tr>
<tr>
<td>Election priority</td>
</tr>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>CPU temperature</td>
</tr>
<tr>
<td>DRAM</td>
</tr>
<tr>
<td>Memory utilization</td>
</tr>
<tr>
<td>5 sec CPU utilization:</td>
</tr>
<tr>
<td>User</td>
</tr>
<tr>
<td>Background</td>
</tr>
<tr>
<td>Kernel</td>
</tr>
<tr>
<td>Interrupt</td>
</tr>
<tr>
<td>Idle</td>
</tr>
<tr>
<td>Model</td>
</tr>
<tr>
<td>Serial ID</td>
</tr>
<tr>
<td>Start time</td>
</tr>
<tr>
<td>Uptime</td>
</tr>
<tr>
<td>Last reboot reason</td>
</tr>
<tr>
<td>Load averages:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Sample Output

show chassis routing-engine (Sample 4- SRX4100)

```
user@host> show chassis routing-engine
```

<table>
<thead>
<tr>
<th>Routing Engine status:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>CPU temperature</td>
</tr>
<tr>
<td>Total memory</td>
</tr>
<tr>
<td>Memory utilization</td>
</tr>
<tr>
<td>5 sec CPU utilization:</td>
</tr>
<tr>
<td>User</td>
</tr>
<tr>
<td>Background</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>1 min CPU utilization:</td>
</tr>
<tr>
<td>User</td>
</tr>
<tr>
<td>Background</td>
</tr>
<tr>
<td>Kernel</td>
</tr>
<tr>
<td>Interrupt</td>
</tr>
<tr>
<td>Idle</td>
</tr>
<tr>
<td>5 min CPU utilization:</td>
</tr>
<tr>
<td>User</td>
</tr>
<tr>
<td>Background</td>
</tr>
<tr>
<td>Kernel</td>
</tr>
<tr>
<td>Interrupt</td>
</tr>
<tr>
<td>Idle</td>
</tr>
<tr>
<td>15 min CPU utilization:</td>
</tr>
<tr>
<td>User</td>
</tr>
<tr>
<td>Background</td>
</tr>
<tr>
<td>Kernel</td>
</tr>
<tr>
<td>Interrupt</td>
</tr>
<tr>
<td>Idle</td>
</tr>
<tr>
<td>Model</td>
</tr>
<tr>
<td>Serial ID</td>
</tr>
<tr>
<td>Uptime</td>
</tr>
<tr>
<td>Last reboot reason</td>
</tr>
<tr>
<td>Load averages:</td>
</tr>
</tbody>
</table>

The Total memory 64 GB is distributed between the routing engine in the form of virtual machine for the TVP platforms (SRX1500, SRX4100, SRX4200) and the rest for the packet forwarding engine (PFE). TVP has a different architecture differentiating PFE from Junos and additional API compatibility. The above mentioned devices are the only ones with this TVP architecture in SRX. The `show chassis routing-engine` command displays only the Routing Engine memory.

Sample Output

`show chassis routing-engine (Sample 5- SRX1500)`

```
user@host> show chassis routing-engine

Routing Engine status:
Temperature 42 degrees C / 107 degrees F
```
CPU temperature 42 degrees C / 107 degrees F
Total memory 1954 MB Max 528 MB used (27 percent)
Memory utilization 23 percent
5 sec CPU utilization:
 User 0 percent
 Background 0 percent
 Kernel 0 percent
 Interrupt 0 percent
 Idle 100 percent
1 min CPU utilization:
 User 0 percent
 Background 0 percent
 Kernel 0 percent
 Interrupt 0 percent
 Idle 99 percent
5 min CPU utilization:
 User 0 percent
 Background 0 percent
 Kernel 0 percent
 Interrupt 0 percent
 Idle 99 percent
15 min CPU utilization:
 User 0 percent
 Background 0 percent
 Kernel 0 percent
 Interrupt 0 percent
 Idle 96 percent
Model SRX Routing Engine
Serial ID BUILTIN
Uptime 52 minutes, 27 seconds
Last reboot reason 0x4000:VJUNOS reboot
Load averages:
 1 minute 5 minute 15 minute
 0.00 0.00 0.00
show chassis temperature-thresholds

Syntax

show chassis temperature-thresholds

Release Information

Command introduced in Junos OS Release 9.0

Description

Display chassis temperature threshold settings, in degrees Celsius.

Required Privilege Level

View

List of Sample Output

show chassis temperature-thresholds on page 724

Output Fields

Table 61 on page 723 lists the output fields for the show chassis temperature-thresholds command. Output fields are listed in the approximate order in which they appear.

Table 61: show chassis temperature-thresholds Output Fields

<table>
<thead>
<tr>
<th>Field name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Chassis component. If per FRU per slot thresholds are configured, the components about which information is displayed include the chassis, the Routing Engines, FPCs, and FEBs. If per FRU per slot thresholds are not configured, the components about which information is displayed include the chassis and the Routing Engines.</td>
</tr>
<tr>
<td>Chassis Default</td>
<td>Default values of the chassis in degrees Celsius.</td>
</tr>
<tr>
<td>Routing Engine</td>
<td>Default values of the routing engine in degrees Celsius.</td>
</tr>
</tbody>
</table>
Table 61: show chassis temperature-thresholds Output Fields (continued)

<table>
<thead>
<tr>
<th>Field name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan speed</td>
<td>The fan speed changes at the threshold when going from a low speed to a higher speed. When the fan speed changes from a higher speed to a lower speed, the temperature changes two degrees below the threshold.</td>
</tr>
<tr>
<td>Temperature</td>
<td>Temperature threshold settings, in degrees Celsius, for the fans to operate at normal and high speeds.</td>
</tr>
<tr>
<td>threshold</td>
<td>• Normal—The fans operate at normal speed if the component is at or below this temperature and all the fans are present and functioning normally.</td>
</tr>
<tr>
<td>fans</td>
<td>• High—The fans operate at high speed if the component has exceeded this temperature or a fan has failed or is missing.</td>
</tr>
<tr>
<td>An alarm</td>
<td>An alarm is not triggered until the temperature exceeds the threshold settings for a yellow alarm or a red alarm.</td>
</tr>
<tr>
<td>Yellow alarm</td>
<td>Temperature threshold settings, in degrees Celsius, that trigger a yellow alarm.</td>
</tr>
<tr>
<td>Temperature</td>
<td>• Normal—The temperature that must be exceeded on the component to trigger a yellow alarm when the fans are running at full speed.</td>
</tr>
<tr>
<td>threshold</td>
<td>• Bad fan—The temperature that must be exceeded on the component to trigger a yellow alarm when one or more fans have failed or are missing.</td>
</tr>
<tr>
<td>Red alarm</td>
<td>Temperature threshold settings, in degrees Celsius, that trigger a red alarm.</td>
</tr>
<tr>
<td>Temperature</td>
<td>• Normal—The temperature that must be exceeded on the component to trigger a red alarm when the fans are running at full speed.</td>
</tr>
<tr>
<td>threshold</td>
<td>• Bad fan—The temperature that must be exceeded on the component to trigger a red alarm when one or more fans have failed or are missing.</td>
</tr>
<tr>
<td>Fire shutdown</td>
<td>Temperature threshold settings, in degrees Celsius, for the device to shut down.</td>
</tr>
</tbody>
</table>

Sample Output

```bash
show chassis temperature-thresholds

user@host> show chassis temperature-thresholds

<table>
<thead>
<tr>
<th>Fire Shutdown</th>
<th>Fan speed (degrees C)</th>
<th>Yellow alarm (degrees C)</th>
<th>Red alarm (degrees C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
<table>
<thead>
<tr>
<th>Item</th>
<th>Normal</th>
<th>High</th>
<th>Normal</th>
<th>Bad fan</th>
<th>Normal</th>
<th>Bad</th>
</tr>
</thead>
<tbody>
<tr>
<td>fan</td>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chassis default</td>
<td>48</td>
<td>54</td>
<td>65</td>
<td>55</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65</td>
<td></td>
<td>100</td>
<td></td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td>70</td>
<td>80</td>
<td>95</td>
<td>95</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td></td>
<td>110</td>
<td></td>
<td>112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPC 0</td>
<td>55</td>
<td>60</td>
<td>75</td>
<td>65</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td></td>
<td>95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPC 2</td>
<td>55</td>
<td>60</td>
<td>75</td>
<td>65</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td></td>
<td>95</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
show configuration chassis cluster traceoptions

Syntax

```
show configuration chassis cluster traceoptions
```

Release Information

Command introduced in Junos OS Release 12.1.

Description

Display tracing options for the chassis cluster redundancy process.

Required Privilege Level

`view`

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>cluster (Chassis)</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>traceoptions (Chassis Cluster)</td>
<td>574</td>
</tr>
</tbody>
</table>

List of Sample Output

`show configuration chassis cluster traceoptions` on page 727

Output Fields

Table 62 on page 726 lists the output fields for the `show configuration chassis cluster traceoptions` command. Output fields are listed in the approximate order in which they appear.

Table 62: show configuration chassis cluster traceoptions Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>file</td>
<td>Name of the file that receives the output of the tracing operation.</td>
</tr>
<tr>
<td>size</td>
<td>Size of each trace file.</td>
</tr>
<tr>
<td>files</td>
<td>Maximum number of trace files.</td>
</tr>
</tbody>
</table>
Sample Output

show configuration chassis cluster traceoptions

user@host> show configuration chassis cluster traceoptions

file chassis size 10k files 300;
level all;
show interfaces (SRX Series)

Syntax

```
show interfaces {
  <brief | detail | extensive | terse>
  controller interface-name
  descriptions interface-name
  destination-class (all | destination-class-name logical-interface-name)
  diagnostics optics interface-name
  far-end-interval interface-fpc/pic/port
  filters interface-name
  flow-statistics interface-name
  interval interface-name
  load-balancing (detail | interface-name)
  mac-database mac-address mac-address
  mc-ae id identifier unit number revertive-info
  media interface-name
  policers interface-name
  queue both-ingress-egress egress forwarding-class forwarding-class ingress l2-statistics
  redundancy (detail | interface-name)
  routing brief detail summary interface-name
  routing-instance (all | instance-name)
  snmp-index snmp-index
  source-class (all | destination-class-name logical-interface-name)
  statistics interface-name
  switch-port switch-port number
  transport pm (all | optics | otn) (all | current | currentday | interval | previousday) (all | interface-name)
  zone interface-name
}
```

Release Information

Command modified in Junos OS Release 9.5.

Description

Display status information and statistics about interfaces on SRX Series appliance running Junos OS.

On SRX Series appliance, on configuring identical IPs on a single interface, you will not see a warning message; instead, you will see a syslog message.

Options

- **interface-name**—(Optional) Display standard information about the specified interface. Following is a list of typical interface names. Replace pim with the PIM slot and port with the port number.
- **at-pim/0/port**—ATM-over-ADSL or ATM-over-SHDSL interface.
- **ce1-pim/0/port**—Channelized E1 interface.
- **cl-0/0/8**—3G wireless modem interface for SRX320 devices.
- **ct1-pim/0/port**—Channelized T1 interface.
- **d10**—Dialer Interface for initiating ISDN and USB modem connections.
- **e1-pim/0/port**—E1 interface.
- **e3-pim/0/port**—E3 interface.
- **fe-pim/0/port**—Fast Ethernet interface.
- **ge-pim/0/port**—Gigabit Ethernet interface.
- **se-pim/0/port**—Serial interface.
- **t1-pim/0/port**—T1 (also called DS1) interface.
- **t3-pim/0/port**—T3 (also called DS3) interface.
- **wx-slot/0/0**—WAN acceleration interface, for the WXC Integrated Services Module (ISM 200).

- **brief | detail | extensive | terse**—(Optional) Display the specified level of output.
- **controller**—(Optional) Show controller information.
- **descriptions**—(Optional) Display interface description strings.
- **destination-class**—(Optional) Show statistics for destination class.
- **diagnostics**—(Optional) Show interface diagnostics information.
- **far-end-interval**—(Optional) Show far end interval statistics.
- **filters**—(Optional) Show interface filters information.
- **flow-statistics**—(Optional) Show security flow counters and errors.
- **interval**—(Optional) Show interval statistics.
- **load-balancing**—(Optional) Show load-balancing status.
- **mac-database**—(Optional) Show media access control database information.
- **mc-ae**—(Optional) Show MC-AE configured interface information.
- **media**—(Optional) Display media information.
- **policers**—(Optional) Show interface policers information.
- **queue**—(Optional) Show queue statistics for this interface.
- **redundancy**—(Optional) Show redundancy status.
- **routing**—(Optional) Show routing status.
- **routing-instance**—(Optional) Name of routing instance.
- **snmp-index**—(Optional) SNMP index of interface.
- **source-class**—(Optional) Show statistics for source class.
- **statistics**—(Optional) Display statistics and detailed output.
- **switch-port**—(Optional) Front end port number (0..15).
- **transport**—(Optional) Show interface transport information.
- **zone**—(Optional) Interface's zone.

Required Privilege Level

`view`

RELATED DOCUMENTATION

List of Sample Output
- `show interfaces Gigabit Ethernet on page 739`
- `show interfaces brief (Gigabit Ethernet) on page 740`
- `show interfaces detail (Gigabit Ethernet) on page 741`
- `show interfaces extensive (Gigabit Ethernet) on page 743`
- `show interfaces terse on page 746`
- `show interfaces controller (Channelized E1 IQ with Logical E1) on page 747`
- `show interfaces controller (Channelized E1 IQ with Logical DS0) on page 748`
- `show interfaces descriptions on page 748`
- `show interfaces destination-class all on page 748`
- `show interfaces diagnostics optics on page 749`
- `show interfaces far-end-interval coc12-5/2/0 on page 750`
- `show interfaces far-end-interval coc1-5/2/1:1 on page 751`
- `show interfaces filters on page 751`
- `show interfaces flow-statistics (Gigabit Ethernet) on page 752`
- `show interfaces interval (Channelized OC12) on page 753`
- `show interfaces interval (E3) on page 754`
- `show interfaces interval (SONET/SDH) on page 754`
- `show interfaces load-balancing on page 755`
- `show interfaces load-balancing detail on page 755`
- `show interfaces mac-database (All MAC Addresses on a Port) on page 756`
- `show interfaces mac-database (All MAC Addresses on a Service) on page 756`
- `show interfaces mac-database mac-address on page 757`
- `show interfaces mc-ae on page 758`
- `show interfaces media (SONET/SDH) on page 758`
- `show interfaces policers on page 759`
- `show interfaces policers interface-name on page 759`
Output Fields

Table 63 on page 731 lists the output fields for the `show interfaces` command. Output fields are listed in the approximate order in which they appear.

Table 63: show interfaces Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical interface</td>
<td>Name of the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Enabled</td>
<td>State of the interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface index</td>
<td>Index number of the physical interface, which reflects its initialization sequence.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>SNMP ifIndex</td>
<td>SNMP index number for the physical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Link-level type</td>
<td>Encapsulation being used on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>MTU</td>
<td>Maximum transmission unit size on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Link mode</td>
<td>Link mode: Full-duplex or Half-duplex.</td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>Speed at which the interface is running.</td>
<td>All levels</td>
</tr>
<tr>
<td>BPDU error</td>
<td>Bridge protocol data unit (BPDU) error: Detected or None</td>
<td></td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
<td>Level of Output</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>Loopback</td>
<td>Loopback status: Enabled or Disabled. If loopback is enabled, type of loopback: Local or Remote.</td>
<td>All levels</td>
</tr>
<tr>
<td>Source filtering</td>
<td>Source filtering status: Enabled or Disabled.</td>
<td>All levels</td>
</tr>
<tr>
<td>Flow control</td>
<td>Flow control status: Enabled or Disabled.</td>
<td>All levels</td>
</tr>
<tr>
<td>Auto-negotiation</td>
<td>(Gigabit Ethernet interfaces) Autonegotiation status: Enabled or Disabled.</td>
<td>All levels</td>
</tr>
<tr>
<td>Remote-fault</td>
<td>(Gigabit Ethernet interfaces) Remote fault status:</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• Online—Autonegotiation is manually configured as online.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Offline—Autonegotiation is manually configured as offline.</td>
<td></td>
</tr>
<tr>
<td>Device flags</td>
<td>Information about the physical device.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface flags</td>
<td>Information about the interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Link flags</td>
<td>Information about the physical link.</td>
<td>All levels</td>
</tr>
<tr>
<td>CoS queues</td>
<td>Number of CoS queues configured.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Current address</td>
<td>Configured MAC address.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Last flapped</td>
<td>Date, time, and how long ago the interface went from down to up. The format is Last flapped: year-month-day hour:minute:second:timezone (hour:minute:second ago). For example, Last flapped: 2002-04-26 10:52:40 PDT (04:33:20 ago).</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Input Rate</td>
<td>Input rate in bits per second (bps) and packets per second (pps).</td>
<td>None</td>
</tr>
<tr>
<td>Output Rate</td>
<td>Output rate in bps and pps.</td>
<td>None</td>
</tr>
<tr>
<td>Active alarms and Active defects</td>
<td>Ethernet-specific defects that can prevent the interface from passing packets. When a defect persists for a certain amount of time, it is promoted to an alarm. These fields can contain the value None or Link.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td></td>
<td>• None—There are no active defects or alarms.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Link—Interface has lost its link state, which usually means that the cable is unplugged, the far-end system has been turned off, or the PIC is malfunctioning.</td>
<td></td>
</tr>
</tbody>
</table>
Table 63: show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics last cleared</td>
<td>Time when the statistics for the interface were last set to zero.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Traffic statistics</td>
<td>Number and rate of bytes and packets received and transmitted on the physical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• Input bytes—Number of bytes received on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output bytes—Number of bytes transmitted on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input packets—Number of packets received on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output packets—Number of packets transmitted on the interface.</td>
<td></td>
</tr>
<tr>
<td>Input errors</td>
<td>Input errors on the interface.</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• Errors—Sum of the incoming frame aborts and FCS errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Drops—Number of packets dropped by the input queue of the I/O Manager ASIC.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If the interface is saturated, this number increments once for every packet that is dropped by the ASIC's RED mechanism.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Framing errors—Number of packets received with an invalid frame checksum (FCS).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Runts—Number of frames received that are smaller than the runt threshold.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Policed discards—Number of frames that the incoming packet match code discarded because they were not recognized or not of interest. Usually, this field reports protocols that Junos OS does not handle.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• L3 incompletes—Number of incoming packets discarded because they failed Layer 3 (usually IPv4) sanity checks of the header. For example, a frame with less than 20 bytes of available IP header is discarded. L3 incomplete errors can be ignored by configuring the ignore-l3-incompletes statement.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• L2 channel errors—Number of times the software did not find a valid logical interface for an incoming frame.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• L2 mismatch timeouts—Number of malformed or short packets that caused the incoming packet handler to discard the frame as unreadable.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• FIFO errors—Number of FIFO errors in the receive direction that are reported by the ASIC on the PIC. If this value is ever nonzero, the PIC is probably malfunctioning.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Resource errors—Sum of transmit drops.</td>
<td></td>
</tr>
</tbody>
</table>
Table 63: show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output errors</td>
<td>Output errors on the interface.</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• Carrier transitions—Number of times the interface has gone from down to up. This number does not normally increment quickly, increasing only when the cable is unplugged, the far-end system is powered down and then up, or another problem occurs. If the number of carrier transitions increments quickly (perhaps once every 10 seconds), the cable, the far-end system, or the PIC or PIM is malfunctioning.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Errors—Sum of the outgoing frame aborts and FCS errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Drops—Number of packets dropped by the output queue of the I/O Manager ASIC. If the interface is saturated, this number increments once for every packet that is dropped by the ASIC’s RED mechanism.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Collisions—Number of Ethernet collisions. The Gigabit Ethernet PIC supports only full-duplex operation, so for Gigabit Ethernet PICs, this number should always remain 0. If it is nonzero, there is a software bug.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Aged packets—Number of packets that remained in shared packet SDRAM so long that the system automatically purged them. The value in this field should never increment. If it does, it is most likely a software bug or possibly malfunctioning hardware.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• FIFO errors—Number of FIFO errors in the send direction as reported by the ASIC on the PIC. If this value is ever nonzero, the PIC is probably malfunctioning.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HS link CRC errors—Number of errors on the high-speed links between the ASICs responsible for handling the interfaces.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MTU errors—Number of packets whose size exceeded the MTU of the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Resource errors—Sum of transmit drops.</td>
<td></td>
</tr>
<tr>
<td>Ingress queues</td>
<td>Total number of ingress queues supported on the specified interface.</td>
<td>extensive</td>
</tr>
<tr>
<td>Queue counters and queue number</td>
<td>CoS queue number and its associated user-configured forwarding class name.</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• Queued packets—Number of queued packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Transmitted packets—Number of transmitted packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Dropped packets—Number of packets dropped by the ASIC’s RED mechanism.</td>
<td></td>
</tr>
</tbody>
</table>
Table 63: show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC statistics</td>
<td>Receive and Transmit statistics reported by the PIC's MAC subsystem, including the following:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• Total octets and total packets—Total number of octets and packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Unicast packets, Broadcast packets, and Multicast packets—Number of unicast, broadcast, and multicast packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CRC/Align errors—Total number of packets received that had a length (excluding framing bits, but including FCS octets) of between 64 and 1518 octets, inclusive, and had either a bad FCS with an integral number of octets (FCS Error) or a bad FCS with a nonintegral number of octets (Alignment Error).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• FIFO error—Number of FIFO errors that are reported by the ASIC on the PIC. If this value is ever nonzero, the PIC or a cable is probably malfunctioning.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MAC control frames—Number of MAC control frames.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MAC pause frames—Number of MAC control frames with pause operational code.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Oversized frames—There are two possible conditions regarding the number of oversized frames:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Packet length exceeds 1518 octets, or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Packet length exceeds MRU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Jabber frames—Number of frames that were longer than 1518 octets (excluding framing bits, but including FCS octets), and had either an FCS error or an alignment error. This definition of jabber is different from the definition in IEEE-802.3 section 8.2.1.5 (10BASE5) and section 10.3.1.4 (10BASE2). These documents define jabber as the condition in which any packet exceeds 20 ms. The allowed range to detect jabber is from 20 ms to 150 ms.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fragment frames—Total number of packets that were less than 64 octets in length (excluding framing bits, but including FCS octets) and had either an FCS error or an alignment error. Fragment frames normally increment because both runts (which are normal occurrences caused by collisions) and noise hits are counted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• VLAN tagged frames—Number of frames that are VLAN tagged. The system uses the TPID of 0x8100 in the frame to determine whether a frame is tagged or not.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Code violations—Number of times an event caused the PHY to indicate “Data reception error” or “invalid data symbol error.”</td>
<td></td>
</tr>
</tbody>
</table>
Table 63: show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter statistics</td>
<td>Receive and Transmit statistics reported by the PIC’s MAC address filter subsystem. The filtering is done by the content-addressable memory (CAM) on the PIC. The filter examines a packet’s source and destination MAC addresses to determine whether the packet should enter the system or be rejected.</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• Input packet count—Number of packets received from the MAC hardware that the filter processed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input packet rejects—Number of packets that the filter rejected because of either the source MAC address or the destination MAC address.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input DA rejects—Number of packets that the filter rejected because the destination MAC address of the packet is not on the accept list. It is normal for this value to increment. When it increments very quickly and no traffic is entering the device from the far-end system, either there is a bad ARP entry on the far-end system, or multicast routing is not on and the far-end system is sending many multicast packets to the local device (which the router is rejecting).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input SA rejects—Number of packets that the filter rejected because the source MAC address of the packet is not on the accept list. The value in this field should increment only if source MAC address filtering has been enabled. If filtering is enabled, if the value increments quickly, and if the system is not receiving traffic that it should from the far-end system, it means that the user-configured source MAC addresses for this interface are incorrect.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output packet count—Number of packets that the filter has given to the MAC hardware.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output packet pad count—Number of packets the filter padded to the minimum Ethernet size (60 bytes) before giving the packet to the MAC hardware. Usually, padding is done only on small ARP packets, but some very small IP packets can also require padding. If this value increments rapidly, either the system is trying to find an ARP entry for a far-end system that does not exist or it is misconfigured.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output packet error count—Number of packets with an indicated error that the filter was given to transmit. These packets are usually aged packets or are the result of a bandwidth problem on the FPC hardware. On a normal system, the value of this field should not increment.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CAM destination filters, CAM source filters—Number of entries in the CAM dedicated to destination and source MAC address filters. There can only be up to 64 source entries. If source filtering is disabled, which is the default, the values for these fields should be 0.</td>
<td></td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
<td>Level of Output</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>Autonegotiation information</td>
<td>Information about link autonegotiation.</td>
<td>extensive</td>
</tr>
<tr>
<td>• Negotiation status:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Incomplete—Ethernet interface has the speed or link mode configured.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• No autonegotiation—Remote Ethernet interface has the speed or link mode configured, or does not perform autonegotiation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Complete—Ethernet interface is connected to a device that performs autonegotiation and the autonegotiation process is successful.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packet Forwarding Engine configuration</td>
<td>Information about the configuration of the Packet Forwarding Engine:</td>
<td>extensive</td>
</tr>
<tr>
<td>• Destination slot—FPC slot number.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoS information</td>
<td>Information about the CoS queue for the physical interface.</td>
<td>extensive</td>
</tr>
<tr>
<td>• CoS transmit queue—Queue number and its associated user-configured forwarding class name.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Bandwidth %—Percentage of bandwidth allocated to the queue.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Bandwidth bps—Bandwidth allocated to the queue (in bps).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Buffer %—Percentage of buffer space allocated to the queue.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Buffer usec—Amount of buffer space allocated to the queue, in microseconds. This value is nonzero only if the buffer size is configured in terms of time.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Priority—Queue priority: low or high.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Limit—Displayed if rate limiting is configured for the queue. Possible values are none and exact. If exact is configured, the queue transmits only up to the configured bandwidth, even if excess bandwidth is available. If none is configured, the queue transmits beyond the configured bandwidth if bandwidth is available.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface transmit statistics</td>
<td>Status of the interface-transmit-statistics configuration: Enabled or Disabled.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Queue counters (Egress)</td>
<td>CoS queue number and its associated user-configured forwarding class name.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>• Queued packets—Number of queued packets.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Transmitted packets—Number of transmitted packets.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Dropped packets—Number of packets dropped by the ASIC’s RED mechanism.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
<td>Level of Output</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>Logical Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical interface</td>
<td>Name of the logical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Index</td>
<td>Index number of the logical interface, which reflects its initialization sequence.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>SNMP ifIndex</td>
<td>SNMP interface index number for the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Flags</td>
<td>Information about the logical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Encapsulation</td>
<td>Encapsulation on the logical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Traffic statistics</td>
<td>Number and rate of bytes and packets received and transmitted on the specified interface set.</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• Input bytes, Output bytes—Number of bytes received and transmitted on the interface set. The value in this field also includes the Layer 2 overhead bytes for ingress or egress traffic on Ethernet interfaces if you enable accounting of Layer 2 overhead at the PIC level or the logical interface level.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input packets, Output packets—Number of packets received and transmitted on the interface set.</td>
<td></td>
</tr>
<tr>
<td>Local statistics</td>
<td>Number and rate of bytes and packets destined to the device.</td>
<td>extensive</td>
</tr>
<tr>
<td>Transit statistics</td>
<td>Number and rate of bytes and packets transiting the switch.</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>NOTE: For Gigabit Ethernet intelligent queuing 2 (IQ2) interfaces, the logical interface egress statistics might not accurately reflect the traffic on the wire when output shaping is applied. Traffic management output shaping might drop packets after they are tallied by the Output bytes and Output packets interface counters. However, correct values display for both of these egress statistics when per-unit scheduling is enabled for the Gigabit Ethernet IQ2 physical interface, or when a single logical interface is actively using a shared scheduler.</td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td>Security zones that interface belongs to.</td>
<td>extensive</td>
</tr>
<tr>
<td>Flow Input statistics</td>
<td>Statistics on packets received by flow module.</td>
<td>extensive</td>
</tr>
</tbody>
</table>
Table 63: show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Output statistics</td>
<td>Statistics on packets sent by flow module.</td>
<td>extensive</td>
</tr>
<tr>
<td>Flow error statistics</td>
<td>Statistics on errors in the flow module.</td>
<td>extensive</td>
</tr>
<tr>
<td>(Packets dropped due to)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol family.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>MTU</td>
<td>Maximum transmission unit size on the logical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Route Table</td>
<td>Route table in which the logical interface address is located. For example, 0 refers to the routing table inet.0.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Flags</td>
<td>Information about protocol family flags.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Addresses, Flags</td>
<td>Information about the address flags.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Destination</td>
<td>IP address of the remote side of the connection.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Local</td>
<td>IP address of the logical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Broadcast</td>
<td>Broadcast address of the logical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>

Sample Output

show interfaces Gigabit Ethernet

user@host> show interfaces ge-0/0/1

Physical interface: ge-0/0/1, Enabled, Physical link is Down
Interface index: 135, SNMP ifIndex: 510
Remote fault: Online
Device flags : Present Running Down
Interface flags: Hardware-Down SNMP-Traps Internal: 0x0
Link flags : None
CoS queues : 8 supported, 8 maximum usable queues
Current address: 00:1f:12:e4:b1:01, Hardware address: 00:1f:12:e4:b1:01
Last flapped : 2015-05-12 08:36:59 UTC (1w1d 22:42 ago)
Input rate : 0 bps (0 pps)
Output rate : 0 bps (0 pps)
Active alarms : LINK
Active defects : LINK
Interface transmit statistics: Disabled

Logical interface ge-0/0/1.0 (Index 71) (SNMP ifIndex 514)
 Flags: Device-Down SNMP-Traps 0x0 Encapsulation: ENET2
 Input packets : 0
 Output packets: 0
 Security: Zone: public
 Protocol inet, MTU: 1500
 Flags: Sendbroadcast-pkt-to-re
 Addresses, Flags: Dest-route-down Is-Preferred Is-Primary
 Destination: 1.1.1/24, Local: 1.1.1.1, Broadcast: 1.1.1.255

Sample Output

```
show interfaces brief (Gigabit Ethernet)

user@host> show interfaces ge-3/0/2 brief

Physical interface: ge-3/0/2, Enabled, Physical link is Up
  Link-level type: 52, MTU: 1522, Speed: 1000mbps, Loopback: Disabled,
  Source filtering: Disabled, Flow control: Enabled, Auto-negotiation: Enabled,
  Remote fault: Online
  Device flags   : Present Running
  Interface flags: SNMP-Traps Internal: 0x4000
  Link flags     : None

Logical interface ge-3/0/2.0
  Flags: SNMP-Traps 0x4000
    VLAN-Tag [ 0x8100.512 0x8100.513 ] In(pop-swap 0x8100.530) Out(swap-push
    0x8100.512 0x8100.513)
    Encapsulation: VLAN-CCC
```
Logical interface ge-3/0/2.32767
Flags: SNMP-Traps 0x4000 VLAN-Tag [0x0000.0] Encapsulation: ENET2

Sample Output

show interfaces detail (Gigabit Ethernet)

user@host> show interfaces ge-0/0/1 detail

Physical interface: ge-0/0/1, Enabled, Physical link is Down
Interface index: 135, SNMP ifIndex: 510, Generation: 138
Link-level type: Ethernet, MTU: 1514, Link-mode: Full-duplex, Speed: 1000mbps,
BPDU Error: None, MAC-REWRITE Error: None, Loopback: Disabled, Source filtering: Disabled,
Flow control: Enabled, Auto-negotiation: Enabled, Remote fault: Online
Device flags : Present Running Down
Interface flags: Hardware-Down SNMP-Traps Internal: 0x0
Link flags : None
CoS queues : 8 supported, 8 maximum usable queues
Hold-times : Up 0 ms, Down 0 ms
Current address: 00:1f:12:e4:b1:01, Hardware address: 00:1f:12:e4:b1:01
Last flapped : 2015-05-12 08:36:59 UTC (1w2d 00:00 ago)
Statistics last cleared: Never
Traffic statistics:
Input bytes : 0 0 bps
Output bytes : 0 0 bps
Input packets: 0 0 pps
Output packets: 0 0 pps
Egress queues: 8 supported, 4 in use
Queue counters: Queued packets Transmitted packets Dropped packets
0 best-effort 0 0 0
1 expedited-fo 0 0 0
2 assured-frow 0 0 0
3 network-cont 0 0 0
Queue number: Mapped forwarding classes
0 best-effort
1 expedited-forwarding
2 assured-forwarding
3 network-control
Active alarms : LINK
Active defects: LINK

Interface transmit statistics: Disabled

Logical interface ge-0/0/1.0 (Index 71) (SNMP ifIndex 514) (Generation 136)
Flags: Device-Down SNMP-Traps 0x0 Encapsulation: ENET2
Traffic statistics:
 Input bytes: 0
 Output bytes: 0
 Input packets: 0
 Output packets: 0
Local statistics:
 Input bytes: 0
 Output bytes: 0
 Input packets: 0
 Output packets: 0
Transit statistics:
 Input bytes: 0 0 bps
 Output bytes: 0 0 bps
 Input packets: 0 0 pps
 Output packets: 0 0 pps
Security: Zone: public
Flow Statistics:
Flow Input statistics:
 Self packets: 0
 ICMP packets: 0
 VPN packets: 0
 Multicast packets: 0
 Bytes permitted by policy: 0
 Connections established: 0
Flow Output statistics:
 Multicast packets: 0
 Bytes permitted by policy: 0
Flow error statistics (Packets dropped due to):
 Address spoofing: 0
 Authentication failed: 0
 Incoming NAT errors: 0
 Invalid zone received packet: 0
 Multiple user authentications: 0
 Multiple incoming NAT: 0
 No parent for a gate: 0
 No one interested in self packets: 0
 No minor session: 0
 No more sessions: 0
 No NAT gate: 0
No route present: 0
No SA for incoming SPI: 0
No tunnel found: 0
No session for a gate: 0
No zone or NULL zone binding 0
Policy denied: 0
Security association not active: 0
TCP sequence number out of window: 0
Syn-attack protection: 0
User authentication errors: 0
Protocol inet, MTU: 1500, Generation: 150, Route table: 0
Flags: Sendbcast-pkt-to-re
Addresses, Flags: Dest-route-down Is-Preferred Is-Primary
 Destination: 1.1.1/24, Local: 1.1.1.1, Broadcast: 1.1.1.255, Generation: 150

Sample Output

show interfaces extensive (Gigabit Ethernet)

user@host> show interfaces ge-0/0/1.0 extensive

Physical interface: ge-0/0/1, Enabled, Physical link is Down
Interface index: 135, SNMP ifIndex: 510, Generation: 138
Link-level type: Ethernet, MTU: 1514, Link-mode: Full-duplex, Speed: 1000mbps,
BPDU Error: None, MAC-REWRITE Error: None, Loopback: Disabled,
Source filtering: Disabled, Flow control: Enabled, Auto-negotiation: Enabled,
Remote fault: Online
Device flags : Present Running Down
Interface flags: Hardware-Down SNMP-Traps Internal: 0x0
Link flags : None
CoS queues : 8 supported, 8 maximum usable queues
Hold-times : Up 0 ms, Down 0 ms
Current address: 00:1f:12:e4:b1:01, Hardware address: 00:1f:12:e4:b1:01
Last flapped : 2015-05-12 08:36:59 UTC (1w1d 22:57 ago)
Statistics last cleared: Never
Traffic statistics:
 Input bytes : 0 0 bps
 Output bytes: 0 0 bps
 Input packets: 0 0 pps
 Output packets: 0 0 pps
 Input errors:
Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Policed discards: 0, L3 incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0, FIFO errors: 0, Resource errors: 0

Output errors:
Carrier transitions: 0, Errors: 0, Drops: 0, Collisions: 0, Aged packets: 0, FIFO errors: 0, HS link CRC errors: 0, MTU errors: 0, Resource errors: 0

Egress queues: 8 supported, 4 in use

<table>
<thead>
<tr>
<th>Queue counters</th>
<th>Queued packets</th>
<th>Transmitted packets</th>
<th>Dropped packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 best-effort</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 expedited-fo</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 assured-forw</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 network-cont</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Queue number: Mapped forwarding classes
0 best-effort
1 expedited-forwarding
2 assured-forwarding
3 network-control

Active alarms: LINK
Active defects: LINK

MAC statistics:
<table>
<thead>
<tr>
<th>Statistics</th>
<th>Receive</th>
<th>Transmit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total octets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unicast packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Broadcast packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Multicast packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CRC/Align errors</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FIFO errors</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC control frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC pause frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oversized frames</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Jabber frames</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fragment frames</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>VLAN tagged frames</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Code violations</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Filter statistics:
<table>
<thead>
<tr>
<th>Statistics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input packet count</td>
<td>0</td>
</tr>
<tr>
<td>Input packet rejects</td>
<td>0</td>
</tr>
<tr>
<td>Input DA rejects</td>
<td>0</td>
</tr>
<tr>
<td>Input SA rejects</td>
<td>0</td>
</tr>
<tr>
<td>Output packet count</td>
<td></td>
</tr>
<tr>
<td>Output packet pad count</td>
<td>0</td>
</tr>
<tr>
<td>Output packet error count</td>
<td>0</td>
</tr>
</tbody>
</table>

CAM destination filters: 2, CAM source filters: 0

Autonegotiation information:
Negotiation status: Incomplete
Packet Forwarding Engine configuration:
 Destination slot: 0
CoS information:
 Direction: Output
 CoS transmit queue Bandwidth Buffer Priority
 Limit % bps % usec
 0 best-effort 95 950000000 95 0 low
 none
 3 network-control 5 500000000 5 0 low
 none
Interface transmit statistics: Disabled

Logical interface ge-0/0/1.0 (Index 71) (SNMP ifIndex 514) (Generation 136)
 Flags: Device-Down SNMP-Traps 0x0 Encapsulation: ENET2
 Traffic statistics:
 Input bytes: 0
 Output bytes: 0
 Input packets: 0
 Output packets: 0
 Local statistics:
 Input bytes: 0
 Output bytes: 0
 Input packets: 0
 Output packets: 0
 Transit statistics:
 Input bytes: 0 0 bps
 Output bytes: 0 0 bps
 Input packets: 0 0 pps
 Output packets: 0 0 pps
 Security: Zone: public
 Flow Statistics:
 Flow Input statistics:
 Self packets: 0
 ICMP packets: 0
 VPN packets: 0
 Multicast packets: 0
 Bytes permitted by policy: 0
 Connections established: 0
 Flow Output statistics:
 Multicast packets: 0
 Bytes permitted by policy: 0
 Flow error statistics (Packets dropped due to):
Sample Output

show interfaces terse

user@host> show interfaces terse

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-0/0/0.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>10.209.4.61/18</td>
<td></td>
</tr>
<tr>
<td>gr-0/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip-0/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>st0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>st0.1</td>
<td>up</td>
<td>up</td>
<td>ready inet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sample Output

show interfaces controller (Channelized E1 IQ with Logical E1)

user@host> show interfaces controller ce1-1/2/6

<table>
<thead>
<tr>
<th>Controller</th>
<th>Admin Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>ce1-1/2/6</td>
<td>up</td>
</tr>
<tr>
<td>el-1/2/6</td>
<td>up</td>
</tr>
</tbody>
</table>
show interfaces controller (Channelized E1 IQ with Logical DS0)

user@host> show interfaces controller ce1-1/2/3

<table>
<thead>
<tr>
<th>Controller</th>
<th>Admin Link</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>ce1-1/2/3</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>ds-1/2/3:1</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>ds-1/2/3:2</td>
<td>up</td>
<td>up</td>
</tr>
</tbody>
</table>

Sample Output

show interfaces descriptions

user@host> show interfaces descriptions

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin Link</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>so-1/0/0</td>
<td>up</td>
<td>up M20-3#1</td>
</tr>
<tr>
<td>so-2/0/0</td>
<td>up</td>
<td>up GSR-12#1</td>
</tr>
<tr>
<td>ge-3/0/0</td>
<td>up</td>
<td>up SMB-OSPF_Area300</td>
</tr>
<tr>
<td>so-3/3/0</td>
<td>up</td>
<td>up GSR-13#1</td>
</tr>
<tr>
<td>so-3/3/1</td>
<td>up</td>
<td>up GSR-13#2</td>
</tr>
<tr>
<td>ge-4/0/0</td>
<td>up</td>
<td>up T320-7#1</td>
</tr>
<tr>
<td>ge-5/0/0</td>
<td>up</td>
<td>up T320-7#2</td>
</tr>
<tr>
<td>so-7/1/0</td>
<td>up</td>
<td>up M160-6#1</td>
</tr>
<tr>
<td>ge-8/0/0</td>
<td>up</td>
<td>up T320-7#3</td>
</tr>
<tr>
<td>ge-9/0/0</td>
<td>up</td>
<td>up T320-7#4</td>
</tr>
<tr>
<td>so-10/0/0</td>
<td>up</td>
<td>up M160-6#2</td>
</tr>
<tr>
<td>so-13/0/0</td>
<td>up</td>
<td>up M20-3#2</td>
</tr>
<tr>
<td>so-14/0/0</td>
<td>up</td>
<td>up GSR-12#2</td>
</tr>
<tr>
<td>ge-15/0/0</td>
<td>up</td>
<td>up SMB-OSPF_Area100</td>
</tr>
<tr>
<td>ge-15/0/1</td>
<td>up</td>
<td>up GSR-13#3</td>
</tr>
</tbody>
</table>

Sample Output

show interfaces destination-class all

user@host> show interfaces destination-class all
Sample Output

`show interfaces diagnostics optics`

```
user@host> show interfaces diagnostics optics ge-2/0/0
```

Physical interface: ge-2/0/0

- **Laser bias current**: 7.408 mA
- **Laser output power**: 0.3500 mW / -4.56 dBm
- **Module temperature**: 23 degrees C / 73 degrees F
- **Module voltage**: 3.3450 V
- **Receiver signal average optical power**: 0.0002 mW / -36.99 dBm
- **Laser bias current high alarm**: Off
- **Laser bias current low alarm**: Off
- **Laser bias current high warning**: Off
- **Laser bias current low warning**: Off
- **Laser output power high alarm**: Off
- **Laser output power low alarm**: Off
- **Laser output power high warning**: Off
- **Laser output power low warning**: Off
- **Module temperature high alarm**: Off
- **Module temperature low alarm**: Off
- **Module temperature high warning**: Off
- **Module temperature low warning**: Off
- **Module voltage high alarm**: Off
- **Module voltage low alarm**: Off
- **Module voltage high warning**: Off
Module voltage low warning: Off
Laser rx power high alarm: Off
Laser rx power low alarm: On
Laser rx power high warning: Off
Laser rx power low warning: On
Laser bias current high alarm threshold: 17.000 mA
Laser bias current low alarm threshold: 1.000 mA
Laser bias current high warning threshold: 14.000 mA
Laser bias current low warning threshold: 2.000 mA
Laser output power high alarm threshold: 0.6310 mW / -2.00 dBm
Laser output power low alarm threshold: 0.0670 mW / -11.74 dBm
Laser output power high warning threshold: 0.6310 mW / -2.00 dBm
Laser output power low warning threshold: 0.0790 mW / -11.02 dBm
Module temperature high alarm threshold: 95 degrees C / 203 degrees F
Module temperature low alarm threshold: -25 degrees C / -13 degrees F
Module temperature high warning threshold: 90 degrees C / 194 degrees F
Module temperature low warning threshold: -20 degrees C / -4 degrees F
Module voltage high alarm threshold: 3.900 V
Module voltage low alarm threshold: 2.700 V
Module voltage high warning threshold: 3.700 V
Module voltage low warning threshold: 2.900 V
Laser rx power high alarm threshold: 1.2590 mW / 1.00 dBm
Laser rx power low alarm threshold: 0.0100 mW / -20.00 dBm
Laser rx power high warning threshold: 0.7940 mW / -1.00 dBm
Laser rx power low warning threshold: 0.0158 mW / -18.01 dBm

Sample Output

```bash
show interfaces far-end-interval coc12-5/2/0

user@host> show interfaces far-end-interval coc12-5/2/0

Physical interface: coc12-5/2/0, SNMP ifIndex: 121
05:30-current:
   ES-L: 1, SES-L: 1, UAS-L: 0
05:15-05:30:
   ES-L: 0, SES-L: 0, UAS-L: 0
05:00-05:15:
   ES-L: 0, SES-L: 0, UAS-L: 0
04:45-05:00:
   ES-L: 0, SES-L: 0, UAS-L: 0
```
04:30-04:45:
 ES-L: 0, SES-L: 0, UAS-L: 0
04:15-04:30:
 ES-L: 0, SES-L: 0, UAS-L: 0
04:00-04:15:
...

show interfaces far-end-interval coc1-5/2/1:1

user@host> run show interfaces far-end-interval coc1-5/2/1:1

Physical interface: coc1-5/2/1:1, SNMP ifIndex: 342
05:30-current:
 ES-L: 1, SES-L: 1, UAS-L: 0, ES-P: 0, SES-P: 0, UAS-P: 0
05:15-05:30:
 ES-L: 0, SES-L: 0, UAS-L: 0, ES-P: 0, SES-P: 0, UAS-P: 0
05:00-05:15:
 ES-L: 0, SES-L: 0, UAS-L: 0, ES-P: 0, SES-P: 0, UAS-P: 0
04:45-05:00:
 ES-L: 0, SES-L: 0, UAS-L: 0, ES-P: 0, SES-P: 0, UAS-P: 0
04:30-04:45:
 ES-L: 0, SES-L: 0, UAS-L: 0, ES-P: 0, SES-P: 0, UAS-P: 0
04:15-04:30:
 ES-L: 0, SES-L: 0, UAS-L: 0, ES-P: 0, SES-P: 0, UAS-P: 0
04:00-04:15:

Sample Output

show interfaces filters

user@host> show interfaces filters

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Input Filter</th>
<th>Output Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-0/0/0.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>iso</td>
<td></td>
</tr>
<tr>
<td>ge-5/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td>f-any</td>
</tr>
<tr>
<td>ge-5/0/0.0</td>
<td>up</td>
<td>up</td>
<td>any</td>
<td>f-inet</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>multiservice</td>
<td></td>
</tr>
<tr>
<td>gr-0/3/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sample Output

show interfaces flow-statistics (Gigabit Ethernet)

user@host> show interfaces flow-statistics ge-0/0/1.0

Logical interface ge-0/0/1.0 (Index 70) (SNMP ifIndex 49)
 Flags: SNMP-Traps Encapsulation: ENET2
 Input packets : 5161
 Output packets: 83
 Security: Zone: zone2
 Allowed host-inbound traffic : bootp bfd bgp dns dvmrp ldp msdp nhrp ospf pgm pim rip router-discovery rsvp sap vrrp dhcp finger ftp tftp ident-reset http https ike netconf ping rlogin rpm rsh snmp snmp-trap ssh telnet traceroute xnm-clear-text xnm-ssl
 lsping
 Flow Statistics :
 Flow Input statistics :
 Self packets : 0
 ICMP packets : 0
 VPN packets : 2564
 Bytes permitted by policy : 3478
 Connections established : 1
 Flow Output statistics:
 Multicast packets : 0
 Bytes permitted by policy : 16994
 Flow error statistics (Packets dropped due to):
Sample Output

show interfaces interval (Channelized OC12)

user@host> show interfaces interval t3-0/3/0:0

Physical interface: t3-0/3/0:0, SNMP ifIndex: 23
17:43-current:
 LCV: 0, PCV: 0, CCV: 0, LES: 0, PES: 0, PSES: 0, CES: 0, CSES: 0,
 SEFS: 0, UAS: 0
17:28-17:43:
 LCV: 0, PCV: 0, CCV: 0, LES: 0, PES: 0, PSES: 0, CES: 0, CSES: 0,
 SEFS: 0, UAS: 0
17:13-17:28:
 LCV: 0, PCV: 0, CCV: 0, LES: 0, PES: 0, PSES: 0, CES: 0, CSES: 0,
show interfaces interval (E3)

user@host> show interfaces interval e3-0/3/0

Physical interface: e3-0/3/0, SNMP ifIndex: 23
17:43-current:
 LCV: 0, PCV: 0, CCV: 0, LES: 0, PES: 0, PSES: 0, CES: 0, CSES: 0,
 SEFS: 0, UAS: 0
17:28-17:43:
 LCV: 0, PCV: 0, CCV: 0, LES: 0, PES: 0, PSES: 0, CES: 0, CSES: 0,
 SEFS: 0, UAS: 0
17:13-17:28:
 LCV: 0, PCV: 0, CCV: 0, LES: 0, PES: 0, PSES: 0, CES: 0, CSES: 0,
 SEFS: 0, UAS: 0
16:58-17:13:
 LCV: 0, PCV: 0, CCV: 0, LES: 0, PES: 0, PSES: 0, CES: 0, CSES: 0,
 SEFS: 0, UAS: 0
16:43-16:58:
 LCV: 0, PCV: 0, CCV: 0, LES: 0, PES: 0, PSES: 0, CES: 0, CSES: 0,
 SEFS: 0, UAS: 0

Interval Total:
 LCV: 230, PCV: 1145859, CCV: 455470, LES: 0, PES: 230, PSES: 230,

show interfaces interval (SONET/SDH)

user@host> show interfaces interval so-0/1/0

Physical interface: so-0/1/0, SNMP ifIndex: 19
20:02-current:
 ES-S: 0, SES-S: 0, SEFS-S: 0, ES-L: 0, SES-L: 0, UAS-L: 0, ES-P: 0,
 SES-P: 0, UAS-P: 0
19:47-20:02:
ES-S: 267, SES-S: 267, SEFS-S: 267, ES-L: 267, SES-L: 267, UAS-L: 267,
ES-P: 267, SES-P: 267, UAS-P: 267

19:32-19:47:
ES-S: 56, SES-S: 56, SEFS-S: 56, ES-L: 56, SES-L: 56, UAS-L: 46, ES-P: 56,
SES-P: 56, UAS-P: 46

19:17-19:32:
ES-S: 0, SES-S: 0, SEFS-S: 0, ES-L: 0, SES-L: 0, UAS-L: 0, ES-P: 0,
SES-P: 0, UAS-P: 0

19:02-19:17:
.....

| Sample Output |

show interfaces load-balancing

```
user@host> show interfaces load-balancing

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Last change</th>
<th>Member count</th>
</tr>
</thead>
<tbody>
<tr>
<td>ams0</td>
<td>Up</td>
<td>1d 00:50</td>
<td>2</td>
</tr>
<tr>
<td>ams1</td>
<td>Up</td>
<td>00:00:59</td>
<td>2</td>
</tr>
</tbody>
</table>
```

show interfaces load-balancing detail

```
user@host> show interfaces load-balancing detail

Load-balancing interfaces detail
Interface : ams0
State     : Up
Last change : 1d 00:51
Member count : 2
Members :
  Interface   Weight State
  mams-2/0/0  10   Active
  mams-2/1/0  10   Active
```
show interfaces mac-database (All MAC Addresses on a Port)

user@host> show interfaces mac-database xe-0/3/3

Physical interface: xe-0/3/3, Enabled, Physical link is Up
 Interface index: 372, SNMP ifIndex: 788
 Link-level type: Ethernet, MTU: 1514, LAN-PHY mode, Speed: 10Gbps, Loopback: None, Source filtering: Disabled, Flow control: Enabled
 Device flags : Present Running
 Interface flags: SNMP-Traps Internal: 0x4000
 Link flags : None

Logical interface xe-0/3/3.0 (Index 364) (SNMP ifIndex 829)
 Flags: SNMP-Traps 0x4004000 Encapsulation: ENET2

<table>
<thead>
<tr>
<th>MAC address</th>
<th>Input frames</th>
<th>Input bytes</th>
<th>Output frames</th>
<th>Output bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00:00:00:00:00</td>
<td>1</td>
<td>56</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:02</td>
<td>7023810</td>
<td>323095260</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:03</td>
<td>7023810</td>
<td>323095260</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:04</td>
<td>7023810</td>
<td>323095260</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:05</td>
<td>7023810</td>
<td>323095260</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:06</td>
<td>7023810</td>
<td>323095260</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:07</td>
<td>7023810</td>
<td>323095260</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:08</td>
<td>7023809</td>
<td>323095214</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:09</td>
<td>7023809</td>
<td>323095214</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:0a</td>
<td>7023809</td>
<td>323095214</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:0b</td>
<td>7023809</td>
<td>323095214</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c8:01:01:02</td>
<td>30424784</td>
<td>1399540064</td>
<td>37448598</td>
<td>1722635508</td>
</tr>
<tr>
<td>00:00:c8:01:01:03</td>
<td>30424784</td>
<td>1399540064</td>
<td>37448598</td>
<td>1722635508</td>
</tr>
<tr>
<td>00:00:c8:01:01:04</td>
<td>30424716</td>
<td>1399536936</td>
<td>37448523</td>
<td>1722632058</td>
</tr>
<tr>
<td>00:00:c8:01:01:05</td>
<td>30424789</td>
<td>1399540294</td>
<td>37448598</td>
<td>1722635508</td>
</tr>
<tr>
<td>00:00:c8:01:01:06</td>
<td>30424788</td>
<td>1399540248</td>
<td>37448597</td>
<td>1722635462</td>
</tr>
<tr>
<td>00:00:c8:01:01:07</td>
<td>30424783</td>
<td>1399540018</td>
<td>37448597</td>
<td>1722635462</td>
</tr>
<tr>
<td>00:00:c8:01:01:08</td>
<td>30424783</td>
<td>1399540018</td>
<td>37448596</td>
<td>1722635416</td>
</tr>
<tr>
<td>00:00:c8:01:01:09</td>
<td>8836796</td>
<td>406492616</td>
<td>8836795</td>
<td>406492570</td>
</tr>
<tr>
<td>00:00:c8:01:01:0a</td>
<td>30424712</td>
<td>1399536752</td>
<td>37448521</td>
<td>1722631966</td>
</tr>
<tr>
<td>00:00:c8:01:01:0b</td>
<td>30424715</td>
<td>1399536890</td>
<td>37448523</td>
<td>1722632058</td>
</tr>
</tbody>
</table>

Number of MAC addresses : 21

show interfaces mac-database (All MAC Addresses on a Service)

user@host> show interfaces mac-database xe-0/3/3

show interfaces mac-database (All MAC Addresses on a Port)

user@host> show interfaces mac-database xe-0/3/3
Logical interface xe-0/3/3.0 (Index 364) (SNMP ifIndex 829)
Flags: SNMP-Traps 0x4004000 Encapsulation: ENET2

<table>
<thead>
<tr>
<th>MAC address</th>
<th>Input frames</th>
<th>Input bytes</th>
<th>Output frames</th>
<th>Output bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00:00:00:00:00</td>
<td>1</td>
<td>56</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:02</td>
<td>7023810</td>
<td>323095260</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:03</td>
<td>7023810</td>
<td>323095260</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:04</td>
<td>7023810</td>
<td>323095260</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:05</td>
<td>7023810</td>
<td>323095260</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:06</td>
<td>7023810</td>
<td>323095260</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:07</td>
<td>7023810</td>
<td>323095260</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:08</td>
<td>7023809</td>
<td>323095214</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:09</td>
<td>7023809</td>
<td>323095214</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:0a</td>
<td>7023809</td>
<td>323095214</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:0b</td>
<td>7023809</td>
<td>323095214</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c8:01:01:02</td>
<td>31016568</td>
<td>1426762128</td>
<td>38040381</td>
<td>1749857526</td>
</tr>
<tr>
<td>00:00:c8:01:01:03</td>
<td>31016568</td>
<td>1426762128</td>
<td>38040382</td>
<td>1749857572</td>
</tr>
<tr>
<td>00:00:c8:01:01:04</td>
<td>31016499</td>
<td>1426758954</td>
<td>38040306</td>
<td>1749854076</td>
</tr>
<tr>
<td>00:00:c8:01:01:05</td>
<td>31016573</td>
<td>1426762358</td>
<td>38040381</td>
<td>1749857526</td>
</tr>
<tr>
<td>00:00:c8:01:01:06</td>
<td>31016573</td>
<td>1426762358</td>
<td>38040381</td>
<td>1749857526</td>
</tr>
<tr>
<td>00:00:c8:01:01:07</td>
<td>31016567</td>
<td>1426762082</td>
<td>38040380</td>
<td>1749857480</td>
</tr>
<tr>
<td>00:00:c8:01:01:08</td>
<td>31016567</td>
<td>1426762082</td>
<td>38040379</td>
<td>1749857434</td>
</tr>
<tr>
<td>00:00:c8:01:01:09</td>
<td>9428580</td>
<td>433714680</td>
<td>9428580</td>
<td>433714680</td>
</tr>
<tr>
<td>00:00:c8:01:01:0a</td>
<td>31016496</td>
<td>1426758816</td>
<td>38040304</td>
<td>1749853984</td>
</tr>
<tr>
<td>00:00:c8:01:01:0b</td>
<td>31016498</td>
<td>1426758908</td>
<td>38040307</td>
<td>1749854122</td>
</tr>
</tbody>
</table>

show interfaces mac-database mac-address

user@host> show interfaces mac-database xe-0/3/3 mac-address 00:00:c8:01:01:09

Physical interface: xe-0/3/3, Enabled, Physical link is Up
Interface index: 372, SNMP ifIndex: 788
Link-level type: Ethernet, MTU: 1514, LAN-PHY mode, Speed: 10Gbps, Loopback:
None, Source filtering: Disabled, Flow control: Enabled
Device flags : Present Running
Interface flags: SNMP-Traps Internal: 0x4000
Link flags : None

Logical interface xe-0/3/3.0 (Index 364) (SNMP ifIndex 829)
Flags: SNMP-Traps 0x4004000 Encapsulation: ENET2
MAC address: 00:00:c8:01:01:09, Type: Configured,
Input bytes : 202324652
Output bytes : 202324560
Input frames : 4398362
Output frames : 4398360
<table>
<thead>
<tr>
<th>Policer type</th>
<th>Discarded frames</th>
<th>Discarded bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output aggregate</td>
<td>3992386</td>
<td>183649756</td>
</tr>
</tbody>
</table>

Sample Output

```bash
show interfaces mc-ae

user@host> show interfaces mc-ae ae0 unit 512

Member Links : ae0
Local Status : active
Peer Status : active
Logical Interface : ae0.512
Core Facing Interface : Label Ethernet Interface
ICL-PL : Label Ethernet Interface

show interfaces media (SONET/SDH)
The following example displays the output fields unique to the show interfaces media command for a SONET interface (with no level of output specified):

user@host> show interfaces media so-4/1/2

Physical interface: so-4/1/2, Enabled, Physical link is Up
Interface index: 168, SNMP ifIndex: 495
Link-level type: PPP, MTU: 4474, Clocking: Internal, SONET mode, Speed: OC48,
Loopback: None, FCS: 16, Payload scrambler: Enabled
Device flags : Present Running
Interface flags: Point-To-Point SNMP-Traps 16384
Link flags : Keepalives
Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3
Keepalive: Input: 1783 (00:00:00 ago), Output: 1786 (00:00:08 ago)
LCP state: Opened
NCP state: inet: Not-configured, inet6: Not-configured, iso: Not-configured,
mpls: Not-configured
CHAP state: Not-configured
CoS queues : 8 supported
Input rate : 0 bps (0 pps)
```
Output rate : 0 bps (0 pps)
SONET alarms : None
SONET defects : None
SONET errors:
Received path trace: routerb so-1/1/2
Transmitted path trace: routera so-4/1/2

Sample Output

show interfaces policers

user@host> show interfaces policers

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin Link</th>
<th>Proto</th>
<th>Input Policer</th>
<th>Output Policer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-0/0/0.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>so-2/0/0.0-in-policer so-2/0/0.0-out-policer iso</td>
</tr>
<tr>
<td>gr-0/3/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip-0/3/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mt-0/3/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pd-0/3/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pe-0/3/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>so-2/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>so-2/0/0.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>so-2/0/0.0-in-policer so-2/0/0.0-out-policer iso</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>so-2/1/0</td>
<td>up</td>
<td>down</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>so-2/1/0.0</td>
<td>up</td>
<td>down</td>
<td>inet</td>
<td>so-2/1/0.0-in-policer so-2/1/0.0-out-policer iso</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

show interfaces policers interface-name

user@host> show interfaces policers so-2/1/0

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin Link</th>
<th>Proto</th>
<th>Input Policer</th>
<th>Output Policer</th>
</tr>
</thead>
<tbody>
<tr>
<td>so-2/1/0</td>
<td>up</td>
<td>down</td>
<td></td>
<td></td>
</tr>
<tr>
<td>so-2/1/0.0</td>
<td>up</td>
<td>down</td>
<td>inet</td>
<td>so-2/1/0.0-in-policer so-2/1/0.0-out-policer iso</td>
</tr>
</tbody>
</table>
| | | | | | inet6
Sample Output

show interfaces queue

The following truncated example shows the CoS queue sizes for queues 0, 1, and 3. Queue 1 has a queue buffer size (guaranteed allocated memory) of 9192 bytes.

user@host> show interfaces queue

Physical interface: ge-0/0/0, Enabled, Physical link is Up
 Interface index: 134, SNMP ifIndex: 509
 Forwarding classes: 8 supported, 8 in use
 Egress queues: 8 supported, 8 in use
 Queue: 0, Forwarding classes: class0
 Queued:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Transmitted:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Tail-dropped packets : 0 0 pps
 RL-dropped packets : 0 0 pps
 RL-dropped bytes : 0 0 bps
 RED-dropped packets : 0 0 pps
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps
 RED-dropped bytes: 0 0 bps
 Low : 0 0 bps
 Medium-low : 0 0 bps
 Medium-high : 0 0 bps
 High : 0 0 bps
 Queue Buffer Usage:
 Reserved buffer : 118750000 bytes
 Queue-depth bytes :
 Current : 0

Queue: 1, Forwarding classes: class1

Queue Buffer Usage:
 Reserved buffer : 9192 bytes
Sample Output

show interfaces redundancy

user@host> show interfaces redundancy

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Last change</th>
<th>Primary</th>
<th>Secondary</th>
<th>Current status</th>
</tr>
</thead>
<tbody>
<tr>
<td>rsp0</td>
<td>Not present</td>
<td></td>
<td>sp-1/0/0</td>
<td>sp-0/2/0</td>
<td>both down</td>
</tr>
<tr>
<td>rsp1</td>
<td>On secondary</td>
<td>1d 23:56</td>
<td>sp-1/2/0</td>
<td>sp-0/3/0</td>
<td>primary down</td>
</tr>
<tr>
<td>rsp2</td>
<td>On primary</td>
<td>10:10:27</td>
<td>sp-1/3/0</td>
<td>sp-0/2/0</td>
<td>secondary down</td>
</tr>
<tr>
<td>rlsq0</td>
<td>On primary</td>
<td>00:06:24</td>
<td>lsq-0/3/0</td>
<td>lsq-1/0/0</td>
<td>both up</td>
</tr>
</tbody>
</table>

show interfaces redundancy (Aggregated Ethernet)

user@host> show interfaces redundancy

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Last change</th>
<th>Primary</th>
<th>Secondary</th>
<th>Current status</th>
</tr>
</thead>
<tbody>
<tr>
<td>rlsq0</td>
<td>On secondary</td>
<td>00:56:12</td>
<td>lsq-4/0/0</td>
<td>lsq-3/0/0</td>
<td>both up</td>
</tr>
<tr>
<td>ae0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ae1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ae2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ae3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ae4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
show interfaces redundancy detail

user@host> show interfaces redundancy detail

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Primary</th>
<th>Secondary</th>
<th>Current status</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>rlsq0</td>
<td>On primary</td>
<td>lsq-0/2/0</td>
<td>lsq-1/2/0</td>
<td>both up</td>
<td>hot-standby</td>
</tr>
<tr>
<td>rlsq0:0</td>
<td>On primary</td>
<td>lsq-0/2/0:0</td>
<td>lsq-1/2/0:0</td>
<td>both up</td>
<td>warm-standby</td>
</tr>
</tbody>
</table>

Sample Output

show interfaces routing brief

user@host> show interfaces routing brief

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>so-5/0/3.0</td>
<td>Down</td>
<td>ISO enabled</td>
</tr>
<tr>
<td>so-5/0/2.0</td>
<td>Up</td>
<td>MPLS enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISO enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INET 192.168.2.120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INET enabled</td>
</tr>
<tr>
<td>so-5/0/1.0</td>
<td>Up</td>
<td>MPLS enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISO enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INET 192.168.2.130</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INET enabled</td>
</tr>
<tr>
<td>at-1/0/0.3</td>
<td>Up</td>
<td>CCC enabled</td>
</tr>
<tr>
<td>at-1/0/0.2</td>
<td>Up</td>
<td>CCC enabled</td>
</tr>
<tr>
<td>at-1/0/0.0</td>
<td>Up</td>
<td>ISO enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INET 192.168.90.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INET enabled</td>
</tr>
<tr>
<td>lo0.0</td>
<td>Up</td>
<td>ISO 47.0005.80ff.f800.0000.0108.0001.1921.6800.5061.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISO enabled</td>
</tr>
</tbody>
</table>
show interfaces routing detail

user@host> show interfaces routing detail

so-5/0/3.0
Index: 15, Refcount: 2, State: Up <Broadcast PointToPoint Multicast> Change:<>
Metric: 0, Up/down transitions: 0, Full-duplex
Link layer: HDLC serial line Encapsulation: PPP Bandwidth: 155Mbps
ISO address (null)
 State: <Broadcast PointToPoint Multicast> Change: <>
 Preference: 0 (120 down), Metric: 0, MTU: 4470 bytes

so-5/0/2.0
Index: 14, Refcount: 7, State: <Up Broadcast PointToPoint Multicast> Change:<>
Metric: 0, Up/down transitions: 0, Full-duplex
Link layer: HDLC serial line Encapsulation: PPP Bandwidth: 155Mbps
MPLS address (null)
 State: <Up Broadcast PointToPoint Multicast> Change: <>
 Preference: 0 (120 down), Metric: 0, MTU: 4458 bytes
ISO address (null)
 State: <Up Broadcast PointToPoint Multicast> Change: <>
 Preference: 0 (120 down), Metric: 0, MTU: 4470 bytes
INET address 192.168.2.120
 State: <Up Broadcast PointToPoint Multicast Localup> Change: <>
 Preference: 0 (120 down), Metric: 0, MTU: 4470 bytes
 Local address: 192.168.2.120
 Destination: 192.168.2.110/32
INET address (null)
 State: <Up Broadcast PointToPoint Multicast> Change: <>
 Preference: 0 (120 down), Metric: 0, MTU: 4470 bytes

...
Sample Output

show interfaces snmp-index

```
user@host> show interfaces snmp-index 33
```

Physical interface: so-2/1/1, Enabled, Physical link is Down

- Interface index: 149, SNMP ifIndex: 33
- Link-level type: PPP, MTU: 4474, Clocking: Internal, SONET mode, Speed: OC48,
- Loopback: None, FCS: 16, Payload scrambler: Enabled
- Device flags : Present Running Down
- Interface flags: Hardware-Down Point-To-Point SNMP-Traps 16384
- Link flags : Keepalives
- CoS queues : 8 supported
- Input rate : 0 bps (0 pps)
- Output rate : 0 bps (0 pps)
- SONET alarms : LOL, PLL, LOS
- SONET defects : LOL, PLL, LOF, LOS, SEF, AIS-L, AIS-P

Sample Output

show interfaces source-class all

```
user@host> show interfaces source-class all
```

Logical interface so-0/1/0.0

<table>
<thead>
<tr>
<th>Source class</th>
<th>Packets (packet-per-second)</th>
<th>Bytes (bits-per-second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gold</td>
<td>1928095</td>
<td>161959980</td>
</tr>
<tr>
<td>(889)</td>
<td>(597762)</td>
<td></td>
</tr>
<tr>
<td>bronze</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(0)</td>
<td>(0)</td>
<td></td>
</tr>
</tbody>
</table>
Logical interface so-0/1/3.0

<table>
<thead>
<tr>
<th>Source class</th>
<th>Packets (packet-per-second)</th>
<th>Bytes (bits-per-second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gold</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bronze</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>silver</td>
<td>116113</td>
<td>9753492</td>
</tr>
</tbody>
</table>

Physical interface: fe-1/3/1, Enabled, Physical link is Up

Interface index: 144, SNMP ifIndex: 1042

Description: ford fe-1/3/1

Link-level type: Ethernet, MTU: 1514, Speed: 100mbps, Loopback: Disabled,
Source filtering: Disabled, Flow control: Enabled

Device flags : Present Running
Interface flags: SNMP-Traps Internal: 0x4000
CoS queues : 4 supported, 4 maximum usable queues
Current address: 00:90:69:93:04:dc, Hardware address: 00:90:69:93:04:dc
Last flapped : 2006-04-18 03:08:59 PDT (00:01:24 ago)
Statistics last cleared: Never
Input rate : 0 bps (0 pps)
Output rate : 0 bps (0 pps)
Input errors: 0, Output errors: 0
Active alarms : None
Active defects : None

Logical interface fe-1/3/1.0 (Index 69) (SNMP ifIndex 50)

Flags: SNMP-Traps Encapsulation: ENET2
Protocol inet, MTU: 1500

<table>
<thead>
<tr>
<th>Destination class</th>
<th>Packets (packet-per-second)</th>
<th>Bytes (bits-per-second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>silver1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Silver 2: 0 destinations, 0 addresses, 0 flags (is-default, is-preferred, is-primary)
Silver 3: 0 destinations, 0 addresses, 0 flags (is-default, is-preferred, is-primary)

Addresses, Flags: Is-Default Is-Preferred Is-Primary
Destination: 10.27.245/24, Local: 10.27.245.2, Broadcast: 10.27.245.255
Protocol iso, MTU: 1497
Flags: Is-Primary

Sample Output

show interfaces switch-port

user@host# show interfaces ge-slot/0/0 switch-port port-number

Port 0, Physical link is Up
 Speed: 100mbps, Auto-negotiation: Enabled
Statistics:
 Statistics: Receive Transmit
 Total bytes 28437086 21792250
 Total packets 409145 88008
 Unicast packets 9987 83817
 Multicast packets 145002 0
 Broadcast packets 254156 4191
 Multiple collisions 23 10
 FIFO/CRC/Align errors 0 0
 MAC pause frames 0 0
 Oversized frames 0
 Runt frames 0
 Jabber frames 0
 Fragment frames 0
 Discarded frames 0

Autonegotiation information:
 Negotiation status: Complete
Link partner:
 Link mode: Full-duplex, Flow control: None, Remote fault: OK, Link partner Speed: 100 Mbps
 Local resolution:
 Flow control: None, Remote fault: Link OK
Sample Output

show interfaces transport pm

```bash
user@host> show interfaces transport pm all current et-0/1/0
```

<table>
<thead>
<tr>
<th>Physical interface: et-0/1/0, SNMP ifIndex 515</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elapse time: 900 Seconds</td>
</tr>
<tr>
<td>14:45-current</td>
</tr>
<tr>
<td>Near End</td>
</tr>
<tr>
<td>Suspect Flag: False</td>
</tr>
<tr>
<td>Reason: None</td>
</tr>
<tr>
<td>PM COUNT THRESHOLD TCA-ENABLED TCA-RAISED</td>
</tr>
<tr>
<td>OTU-BBE 0 800 No No</td>
</tr>
<tr>
<td>OTU-ES 0 135 No No</td>
</tr>
<tr>
<td>OTU-SES 0 90 No No</td>
</tr>
<tr>
<td>OTU-UAS 427 90 No No</td>
</tr>
<tr>
<td>Far End Suspect Flag: True</td>
</tr>
<tr>
<td>Reason: Unknown</td>
</tr>
<tr>
<td>PM COUNT THRESHOLD TCA-ENABLED TCA-RAISED</td>
</tr>
<tr>
<td>OTU-BBE 0 800 No No</td>
</tr>
<tr>
<td>OTU-ES 0 135 No No</td>
</tr>
<tr>
<td>OTU-SES 0 90 No No</td>
</tr>
<tr>
<td>OTU-UAS 0 90 No No</td>
</tr>
<tr>
<td>Near End Suspect Flag: False</td>
</tr>
<tr>
<td>Reason: None</td>
</tr>
<tr>
<td>PM COUNT THRESHOLD TCA-ENABLED TCA-RAISED</td>
</tr>
<tr>
<td>ODU-BBE 0 800 No No</td>
</tr>
<tr>
<td>ODU-ES 0 135 No No</td>
</tr>
<tr>
<td>ODU-SES 0 90 No No</td>
</tr>
<tr>
<td>ODU-UAS 427 90 No No</td>
</tr>
<tr>
<td>Far End Suspect Flag: True</td>
</tr>
<tr>
<td>Reason: Unknown</td>
</tr>
<tr>
<td>PM COUNT THRESHOLD TCA-ENABLED TCA-RAISED</td>
</tr>
<tr>
<td>ODU-BBE 0 800 No No</td>
</tr>
<tr>
<td>ODU-ES 0 135 No No</td>
</tr>
<tr>
<td>ODU-SES 0 90 No No</td>
</tr>
<tr>
<td>ODU-UAS 0 90 No No</td>
</tr>
<tr>
<td>FEC Suspect Flag: False</td>
</tr>
<tr>
<td>Reason: None</td>
</tr>
<tr>
<td>PM COUNT THRESHOLD TCA-ENABLED TCA-RAISED</td>
</tr>
<tr>
<td>FEC-CorrectedErr 2008544300 0 NA NA</td>
</tr>
<tr>
<td>FEC-UncorrectedWords 0 0 NA NA</td>
</tr>
</tbody>
</table>

| BER Suspect Flag: False |
| Reason: None |
| PM MIN MAX AVG THRESHOLD TCA-ENABLED |
| TCA-RAISED |
| BER 3.6e-5 5.8e-5 3.6e-5 10.0e-3 No |
Yes

Physical interface: et-0/1/0, SNMP ifIndex 515

14:45-current

Suspect Flag: True Reason: Object Disabled

<table>
<thead>
<tr>
<th>PM</th>
<th>CURRENT</th>
<th>MIN</th>
<th>MAX</th>
<th>AVG</th>
<th>THRESHOLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCA-ENABLED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCA-RAISED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(MAX)</td>
<td>(MIN) (MAX)</td>
<td>(MIN) (MAX)</td>
<td>(MIN) (MAX)</td>
<td>(MIN)</td>
<td></td>
</tr>
<tr>
<td>Lane chromatic dispersion</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lane differential group delay</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>q Value</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>SNR</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Tx output power (0.01dBm)</td>
<td>-5000</td>
<td>-5000</td>
<td>-5000</td>
<td>-5000</td>
<td>-300</td>
</tr>
<tr>
<td>Rx input power (0.01dBm)</td>
<td>-3642</td>
<td>-3665</td>
<td>-3626</td>
<td>-3637</td>
<td>-1800</td>
</tr>
<tr>
<td>Module temperature (Celsius)</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>-5</td>
</tr>
<tr>
<td>Tx laser bias current (0.1mA)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rx laser bias current (0.1mA)</td>
<td>1270</td>
<td>1270</td>
<td>1270</td>
<td>1270</td>
<td>0</td>
</tr>
<tr>
<td>Carrier frequency offset (MHz)</td>
<td>-186</td>
<td>-186</td>
<td>-186</td>
<td>-186</td>
<td>-5000</td>
</tr>
</tbody>
</table>

Sample Output

show security zones

user@host> show security zones

Functional zone: management
 Description: This is the management zone.
 Policy configurable: No
 Interfaces bound: 1
 Interfaces:
 ge-0/0/0.0
Security zone: Host
Description: This is the host zone.
Send reset for non-SYN session TCP packets: Off
Policy configurable: Yes
Interfaces bound: 1
Interfaces:
 fxp0.0
Security zone: abc
 Description: This is the abc zone.
 Send reset for non-SYN session TCP packets: Off
 Policy configurable: Yes
 Interfaces bound: 1
 Interfaces:
 ge-0/0/1.0
Security zone: def
 Description: This is the def zone.
 Send reset for non-SYN session TCP packets: Off
 Policy configurable: Yes
 Interfaces bound: 1
 Interfaces:
 ge-0/0/2.0
set date ntp

Syntax

```
set date ntp <servers | force | key key | node node-number | routing-instance routing-instance-name | source-address source-address>
```

Release Information

Command introduced in Junos OS Release 15.1X49-D70.

Description

Set the date and local time. If reject mode is enabled and the system rejected the update from the NTP server because it exceeds the configured threshold value, an administrator has two options to overrule the reject mode action: manually set the date and time in YYYYMMDDhhmm.ss format, or force synchronization of device time with the NTP server update by specifying the **force** option.

Options

- **servers**—Specify the IP address of one or more NTP servers.
- **force**—Force system date and time to update to NTP server values. The device date and time are synchronized with the NTP proposed date and time even if reject is set as the action and the difference between the device time and NTP proposed time exceeds the default or the configured threshold value.
- **key key**—Specify a key number to authenticate the NTP server used to synchronize the date and time. You must specify the same key number used to authenticate the server, configured at the `[edit system ntp authentication-key number]` hierarchy level.
- **node node-name**—Specify system date and time using NTP servers on specific node.
- **routing-instance routing-instance-name**—Specify the routing instance through which server is available.
- **source-address source-address**—Specify the source address that the SRX Series devices use to contact the remote NTP server.

Required Privilege Level

`view`

RELATED DOCUMENTATION

- `show system ntp threshold` | 772
- `ntp` | 543
- `ntp threshold` | 549
List of Sample Output

Set date ntp force on page 771

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output

Set date ntp force

user@host> set date ntp force

18 Jul 16:52:43 ntpdate[3319]: NTP update request has been accepted, The time offset is 147605840.624994 sec from the time server 66.129.255.62 which is larger than the maximum threshold of 400 sec allowed.
show system ntp threshold

Syntax

show system ntp threshold

Release Information

Command introduced in Junos OS Release 15.1X49-D70.

Description

Display the current threshold and reject mode configured information.

Required Privilege Level

view

RELATED DOCUMENTATION

set date ntp	770
ntp threshold	549
ntp	543
NTP Time Synchronization on SRX Series Devices	304

List of Sample Output

show system ntp threshold on page 773

Output Fields

lists the output fields for the Table 64 on page 772 show system ntp threshold command. Output fields are listed in the approximate order in which they appear.

Table 64: show system ntp threshold Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTP threshold</td>
<td>Assign a threshold value for Network Time Protocol (NTP) adjustment that is outside of the acceptable NTP update and specify whether to accept or reject NTP synchronization when the proposed time from the NTP server exceeds the configured threshold value.</td>
</tr>
<tr>
<td>Success Criteria</td>
<td>Verifies the NTP threshold and provide the status of NTP adjustment mode (accept or reject).</td>
</tr>
</tbody>
</table>
Sample Output

show system ntp threshold

user@host> show system ntp threshold

NTP threshold: 400 sec
NTP adjustment reject mode is enabled
Success Criteria: verify threshold and reject mode can appear after user configuration.
show security macsec connections

Syntax

 show security macsec connections
 <interface interface-name>

Release Information
Command introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description
Display the status of the active MACsec connections on the device.

Options
none—Display MACsec connection information for all interfaces on the device.

interface interface-name—(Optional) Display MACsec connection information for the specified interface only.

Required Privilege Level
view

RELATED DOCUMENTATION

| show security mka statistics | 781 |

List of Sample Output
show security macsec connections on page 775

Output Fields
Table 65 on page 774 lists the output fields for the show security macsec connections command. Output fields are listed in the approximate order in which they appear.

Table 65: show security macsec connections Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface name</td>
<td>Name of the interface.</td>
</tr>
</tbody>
</table>

Fields for Interface
Table 65: show security macsec connections Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA name</td>
<td>Name of the connectivity association.</td>
</tr>
<tr>
<td></td>
<td>A connectivity association is named using the <code>connectivity-association</code> statement when you are enabling MACsec.</td>
</tr>
<tr>
<td>Cipher suite</td>
<td>Name of the cipher suite used for encryption.</td>
</tr>
<tr>
<td>Key server offset</td>
<td>Offset setting.</td>
</tr>
<tr>
<td></td>
<td>The offset is set using the <code>offset</code> statement when configuring the connectivity association when using static connectivity association key (CAK) or dynamic security mode.</td>
</tr>
<tr>
<td>Replay protect</td>
<td>Replay protection setting. Replay protection is enabled when this output is on and disabled when this output is off.</td>
</tr>
<tr>
<td></td>
<td>You can enable replay protection using the <code>replay-protect</code> statement in the connectivity association.</td>
</tr>
</tbody>
</table>

Sample Output

show security macsec connections

user@host> show security macsec connections

Interface name: fxp1
 CA name: ca1
 Cipher suite: GCM-AES-128 Encryption: on
 Key server offset: 0 Include SCI: no
 Replay protect: off Replay window: 0
show security macsec statistics (SRX Series Devices)

Syntax

```
show security macsec statistics
  <brief | detail>
  <interface interface-name>
```

Release Information
Command introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description
Display Media Access Control Security (MACsec) statistics.

Options

- **none**—Display MACsec statistics in brief form for all interfaces on the switch.
- **brief | detail**—(Optional) Display the specified level of output. Using the **brief** option is equivalent to entering the command with no options (the default). The **detail** option displays additional fields that are not visible in the **brief** output.

```
NOTE: The field names that only appear in this command output when you enter the **detail** option are mostly useful for debugging purposes by Juniper Networks support personnel.
```

```
interface interface-name**—(Optional) Display MACsec statistics for the specified interface only.
```

Required Privilege Level
view

RELATED DOCUMENTATION

- [Understanding Media Access Control Security (MACsec)](#) | 417
- [Configuring Media Access Control Security (MACsec)](#) | 420
- [macsec](#) | 535
- [show interfaces (Gigabit Ethernet)](#) | 784
- [show security mka sessions (SRX Series Device)](#) | 784

List of Sample Output
show security macsec statistics interface on page 779
Output Fields

Table 66 on page 777 lists the output fields for the `show security macsec statistics` command. Output fields are listed in the approximate order in which they appear.

The field names that appear in this command output only when you enter the `detail` option are mostly useful for debugging purposes by Juniper Networks support personnel. Those field names are, therefore, not included in this table.

Table 66: show security macsec statistics Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface name</td>
<td>Name of the interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Fields for Secure Channel transmitted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encrypted packets</td>
<td>Total number of packets transmitted out of the interface in the secure channel that were secured and encrypted using MACsec. Data packets are sent in the secure channel when MACsec is enabled, and are secured using a connectivity association key (CAK).</td>
<td>All levels</td>
</tr>
<tr>
<td>Encrypted bytes</td>
<td>Total number of bytes transmitted out of the interface in the secure channel that were secured and encrypted using MACsec. Data packets are sent in the secure channel when MACsec is enabled, and are secured using a connectivity association key (CAK).</td>
<td>All levels</td>
</tr>
<tr>
<td>Protected packets</td>
<td>Total number of packets transmitted out of the interface in the secure channel that were secured but not encrypted using MACsec. Data packets are sent in the secure channel when MACsec is enabled, and are secured using a connectivity association key (CAK).</td>
<td>All levels</td>
</tr>
<tr>
<td>Protected bytes</td>
<td>Total number of bytes transmitted out of the interface in the secure channel that were secured but not encrypted using MACsec. Data packets are sent in the secure channel when MACsec is enabled, and are secured using a connectivity association key (CAK).</td>
<td>All levels</td>
</tr>
<tr>
<td>Fields for Secure Association transmitted</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 66: show security macsec statistics Output Fields *(continued)*

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
</table>
| **Encrypted packets** | Total number of packets transmitted out of the interface in the connectivity association that were secured and encrypted using MACsec.
The total includes the data packets transmitted in the secure channel and the control packets secured using a connectivity association key (CAK). | All levels |
| **Protected packets** | Total number of packets transmitted out of the interface in the connectivity association that were secured but not encrypted using MACsec.
The total includes the data packets transmitted in the secure channel and the control packets secured using a connectivity association key (CAK). | All levels |

Fields for Secure Channel received

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
</table>
| **Accepted packets** | The number of received packets that have been accepted by the secure channel on the interface. The secure channel is used to send all data plane traffic on a MACsec-enabled link.
A packet is considered accepted for this counter when it has been received by this interface and it has passed the MACsec integrity check.
This counter increments for traffic that is and is not encrypted using MACsec. | All levels |
| **Validated bytes** | The number of bytes that have been validated by the MACsec integrity check and received on the secure channel on the interface. The secure channel is used to send all data plane traffic on a MACsec-enabled link.
This counter does not increment when MACsec encryption is disabled. | All levels |
Table 66: show security macsec statistics Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decrypted bytes</td>
<td>The number of bytes received in the secure channel on the interface that have been decrypted. The secure channel is used to send all data plane traffic on a MACsec-enabled link. An encrypted byte has to be decrypted before it can be received on the receiving interface. The decrypted bytes counter is incremented for received traffic that was encrypted using MACsec.</td>
<td>All levels</td>
</tr>
<tr>
<td>Fields for Secure Association received</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accepted packets</td>
<td>The number of received packets that have been accepted in the connectivity association on the interface. The counter includes all control and data plane traffic accepted on the interface. A packet is considered accepted for this counter when it has been received by this interface and it has passed the MACsec integrity check.</td>
<td>All levels</td>
</tr>
<tr>
<td>Validated bytes</td>
<td>The number of bytes that have been validated by the MACsec integrity check and received on the connectivity association on the interface. The counter includes all control and data plane traffic accepted on the interface. This counter does not increment when MACsec encryption is disabled.</td>
<td>All levels</td>
</tr>
<tr>
<td>Decrypted bytes</td>
<td>The number of bytes received in the connectivity association on the interface that have been decrypted. The counter includes all control and data plane traffic accepted on the interface. An encrypted byte has to be decrypted before it can be received on the receiving interface. The decrypted bytes counter is incremented for received traffic that was encrypted using MACsec.</td>
<td>All levels</td>
</tr>
</tbody>
</table>

Sample Output

```
show security macsec statistics interface

user@host> show security macsec statistics interface fxp1 detail
```
Interface name: fxpl
Secure Channel transmitted
 Encrypted packets: 2397305
 Encrypted bytes: 129922480
 Protected packets: 0
 Protected bytes: 0
Secure Association transmitted
 Encrypted packets: 2397305
 Protected packets: 0
Secure Channel received
 Accepted packets: 2395850
 Validated bytes: 0
 Decrypted bytes: 131715088
Secure Association received
 Accepted packets: 2395850
 Validated bytes: 0
 Decrypted bytes: 0
show security mka statistics

Syntax

```
show security mka statistics
<interface interface-name>
```

Release Information

Command introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description

Display MACsec Key Agreement (MKA) protocol statistics.

The output for this command does not include statistics for MACsec data traffic. For MACsec data traffic statistics, see show security macsec statistics (SRX Series Devices).

Options

- `interface interface-name`—(Optional) Display the MKA information for the specified interface only.

Required Privilege Level

view

RELATED DOCUMENTATION

- Understanding Media Access Control Security (MACsec) | 417
- Configuring Media Access Control Security (MACsec) | 420
- macsec | 535
- show interfaces (Gigabit Ethernet)
- show security macsec statistics (SRX Series Devices) | 776

List of Sample Output

show security mka statistics on page 783

Output Fields

Table 67 on page 782 lists the output fields for the show security mka statistics command. Output fields are listed in the approximate order in which they appear.
Table 67: show security mka statistics Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Received packets</td>
<td>Number of received MKA control packets. This counter increments for received MKA control packets only. This counter does not increment when data packets are received.</td>
</tr>
<tr>
<td>Transmitted packets</td>
<td>Number of transmitted MKA packets. This counter increments for transmitted MKA control packets only. This counter does not increment when data packets are transmitted.</td>
</tr>
<tr>
<td>Version mismatch packets</td>
<td>Number of version mismatch packets.</td>
</tr>
<tr>
<td>CAK mismatch packets</td>
<td>Number of Connectivity Association Key (CAK) mismatch packets. This counter increments when the connectivity association key (CAK) and connectivity association key name (CKN), which are user-configured values that have to match to enable MACsec, do not match for an MKA control packet.</td>
</tr>
<tr>
<td>ICV mismatch packets</td>
<td>Number of ICV mismatched packets. This counter increments when the connectivity association key (CAK) value does not match on both ends of a MACsec-secured Ethernet link.</td>
</tr>
<tr>
<td>Duplicate message identifier packets</td>
<td>Number of duplicate message identifier packets.</td>
</tr>
<tr>
<td>Duplicate message number packets</td>
<td>Number of duplicate message number packets.</td>
</tr>
<tr>
<td>Duplicate address packets</td>
<td>Number of duplicate source MAC address packets.</td>
</tr>
<tr>
<td>Invalid destination address packets</td>
<td>Number of invalid destination MAC address packets.</td>
</tr>
<tr>
<td>Formatting error packets</td>
<td>Number of formatting error packets.</td>
</tr>
<tr>
<td>Old Replayed message number packets</td>
<td>Number of old replayed message number packets.</td>
</tr>
</tbody>
</table>
Sample Output

```
show security mka statistics

user@host> show security mka statistics

Interface name: fxp1
Received packets: 3
Transmitted packets: 14
Version mismatch packets: 0
CAK mismatch packets: 0
ICV mismatch packets: 0
Duplicate message identifier packets: 0
Duplicate message number packets: 0
Duplicate address packets: 0
Invalid destination address packets: 0
Formatting error packets: 0
Old Replayed message number packets: 0
```
show security mka sessions (SRX Series Device)

Syntax

```
show security mka sessions
  <interface interface-name>
```

Release Information
Command introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description
Display MACsec Key Agreement (MKA) session information.

Options
- `interface interface-name`—(Optional) Display the MKA information for the specified interface only.

Required Privilege Level
view

RELATED DOCUMENTATION

- Understanding Media Access Control Security (MACsec) | 417
- Configuring Media Access Control Security (MACsec) | 420
- macsec | 535
- `show interfaces (Gigabit Ethernet)`
- `show security macsec statistics (SRX Series Devices)` | 776

List of Sample Output
show security mka sessions on page 785

Output Fields
Table 68 on page 784 lists the output fields for the `show security mka sessions` command. Output fields are listed in the approximate order in which they appear.

Table 68: show security mka sessions Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface name</td>
<td>Name of the interface.</td>
</tr>
<tr>
<td>Member identifier</td>
<td>Name of the member identifier.</td>
</tr>
</tbody>
</table>
Table 68: show security mka sessions Output Fields
(continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAK name</td>
<td>Name of the Connectivity Association Key (CAK). The CAK is configured using the <code>cak</code> keyword when configuring the pre-shared key.</td>
</tr>
<tr>
<td>Transmit interval</td>
<td>The transmit interval.</td>
</tr>
<tr>
<td>Outbound SCI</td>
<td>Name of the outbound secure channel identifier.</td>
</tr>
<tr>
<td>Message number</td>
<td>Number of the last data message.</td>
</tr>
<tr>
<td>Key server</td>
<td>Key server status. The switch is the key server when this output is <code>yes</code>. The switch is not the key server when this output is <code>no</code>.</td>
</tr>
<tr>
<td>Key number</td>
<td>Key number.</td>
</tr>
<tr>
<td>Key server priority</td>
<td>The key server priority. The key server priority can be set using the <code>key-server-priority</code> statement.</td>
</tr>
<tr>
<td>Latest SAK AN</td>
<td>Name of the latest secure association key (SAK) association number.</td>
</tr>
<tr>
<td>Latest SAK KI</td>
<td>Name of the latest secure association key (SAK) key identifier.</td>
</tr>
<tr>
<td>Previous SAK AN</td>
<td>Name of the previous secure association key (SAK) association number.</td>
</tr>
<tr>
<td>Previous SAK KI</td>
<td>Name of the previous secure association key (SAK) key identifier.</td>
</tr>
</tbody>
</table>

Sample Output

```
show security mka sessions
user@host> show security mka sessions

Interface name: fxp1
    Member identifier: 71235CA1B78D0AF7B3F29CFB
    CAK name: AAAA
```
Transmit interval: 10000(ms)
Outbound SCI: 30:7C:5E:44:98:42/1
Message number: 2326 Key number: 2
Key server: yes Key server priority: 16
Latest SAK AN: 1 Latest SAK KI: 71235CA1B78D0AF7B3F29CFB/2
Previous SAK AN: 0 Previous SAK KI: 71235CA1B78D0AF7B3F29CFB/1
show security internal-security-association

Syntax

 show security internal-security-association

Release Information

Command introduced in Junos OS Release 12.1X47-D10.

Description

Provide secure login by enabling the internal security association in a chassis cluster configuration.

Required Privilege Level

view

RELATED DOCUMENTATION

| Chassis Cluster User Guide for SRX Series Devices |

List of Sample Output

show security internal-security-association on page 787

Output Fields

Table 69 on page 787 lists the output fields for the show security internal-security-association command. Output fields are listed in the approximate order in which they appear.

Table 69: show security internal-security-association Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal SA Status</td>
<td>State of the internal SA option on the chassis cluster control link: enabled or disabled.</td>
</tr>
<tr>
<td>Iked Encryption Status</td>
<td>State of the iked encryption.</td>
</tr>
</tbody>
</table>

Sample Output

show security internal-security-association

user@host>show security internal-security-association
node0:

Internal SA Status : Enabled
Iked Encryption Status : Enabled

node1:

Internal SA Status : Enabled
Iked Encryption Status : Enabled
show system license (View)

Syntax

show system license
<installed | keys | status | usage>

Release Information
Command introduced in Junos OS Release 9.5. Logical system status option added in Junos OS Release 11.2.

Description
Display licenses and information about how licenses are used.

Options

none—Display all license information.

installed—(Optional) Display installed licenses only.

keys—(Optional) Display a list of license keys. Use this information to verify that each expected license key is present.

status—(Optional) Display license status for a specified logical system or for all logical systems.

usage—(Optional) Display the state of licensed features.

Required Privilege Level
view

RELATED DOCUMENTATION

- Adding New Licenses (CLI Procedure)

List of Sample Output

show system license on page 790
show system license installed on page 791
show system license keys on page 791
show system license usage on page 792
show system license status logical-system all on page 792

Output Fields

Table 70 on page 790 lists the output fields for the show system license command. Output fields are listed in the approximate order in which they appear.
Table 70: show system license Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature name</td>
<td>Name assigned to the configured feature. You use this information to verify that all the features for which you installed licenses are present.</td>
</tr>
<tr>
<td>Licenses used</td>
<td>Number of licenses used by the device. You use this information to verify that the number of licenses used matches the number configured. If a licensed feature is configured, the feature is considered used.</td>
</tr>
<tr>
<td>Licenses installed</td>
<td>Information about the installed license key:</td>
</tr>
<tr>
<td></td>
<td>- License identifier—Identifier associated with a license key.</td>
</tr>
<tr>
<td></td>
<td>- License version—Version of a license. The version indicates how the license is validated, the type of signature, and the signer of the license key.</td>
</tr>
<tr>
<td></td>
<td>- Valid for device—Device that can use a license key.</td>
</tr>
<tr>
<td></td>
<td>- Features—Feature associated with a license.</td>
</tr>
<tr>
<td>Licenses needed</td>
<td>Number of licenses required for features being used but not yet properly licensed.</td>
</tr>
<tr>
<td>Expiry</td>
<td>Time remaining in the grace period before a license is required for a feature being used.</td>
</tr>
<tr>
<td>Logical system</td>
<td>Displays whether a license is enabled for a logical system.</td>
</tr>
<tr>
<td>license status</td>
<td></td>
</tr>
</tbody>
</table>

Sample Output

show system license

user@host> show system license

<table>
<thead>
<tr>
<th>Feature name</th>
<th>Licenses used</th>
<th>Licenses installed</th>
<th>Licenses needed</th>
<th>Expiry</th>
</tr>
</thead>
<tbody>
<tr>
<td>av_key_kaspersky_engine</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2012-03-30</td>
</tr>
<tr>
<td>wf_key_surfcontrol_cpa</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2012-03-30</td>
</tr>
<tr>
<td>dynamic-vpn</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>permanent</td>
</tr>
<tr>
<td>ax411-wlan-ap</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>permanent</td>
</tr>
</tbody>
</table>
show system license installed

user@host> show system license installed

License identifier: JUNOS301998
License version: 2
Valid for device: AG4909AA0080
Features:
 av_key_kaspersky_engine - Kaspersky AV
 date-based, 2011-03-30 01:00:00 IST - 2012-03-30 01:00:00 IST

License identifier: JUNOS302000
License version: 2
Valid for device: AG4909AA0080
Features:
 wf_key_surfcontrol_cpa - Web Filtering
 date-based, 2011-03-30 01:00:00 IST - 2012-03-30 01:00:00 IST

show system license keys

user@host> show system license keys

XXXXXXXXXX xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx
xxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx
show system license usage

user@host> show system license usage

<table>
<thead>
<tr>
<th>Feature name</th>
<th>Licenses used</th>
<th>Licenses installed</th>
<th>Licenses needed</th>
<th>Expiry</th>
</tr>
</thead>
<tbody>
<tr>
<td>av_key_kaspersky_engine</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2012-03-30 01:00:00 IST</td>
</tr>
<tr>
<td>wf_key_surfcontrol_cpa</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2012-03-30 01:00:00 IST</td>
</tr>
<tr>
<td>dynamic-vpn</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>permanent</td>
</tr>
<tr>
<td>ax411-wlan-ap</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>permanent</td>
</tr>
</tbody>
</table>

show system license status logical-system all

user@host> show system license status logical-system all

Logical system license status:

<table>
<thead>
<tr>
<th>logical system name</th>
<th>license status</th>
</tr>
</thead>
<tbody>
<tr>
<td>root-logical-system</td>
<td>enabled</td>
</tr>
<tr>
<td>LSY0</td>
<td>enabled</td>
</tr>
<tr>
<td>LSY1</td>
<td>enabled</td>
</tr>
<tr>
<td>LSY2</td>
<td>enabled</td>
</tr>
</tbody>
</table>
show vrrp

Syntax

show vrrp
 <brief | detail | extensive | summary>
 <interface interface-name>
 <logical-system logical-system-name>
 <nsr>
 <track track-interfaces>

Release Information
Statement introduced in Junos OS Release 18.1R1 for the SRX Series devices.

Description
Display information and status about VRRP groups.

Options
none—(Same as brief) Display brief status information about all VRRP interfaces.
brief | detail | extensive | summary—(Optional) Display the specified level of output.
interface interface-name —(Optional) Display information and status about the specified VRRP interface.
logical-system—(Optional) Display information and status about the specified logical system.
nsr—(Optional) Display information and status about the master routing engine.
track track-interfaces—(Optional) Display information and status about VRRP track interfaces.

Required Privilege Level
view

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Configuring VRRP for IPv6 (CLI Procedure)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding VRRP on SRX Series Devices</td>
</tr>
<tr>
<td>Example: Configuring VRRP/VRRPv3 on Chassis Cluster Redundant Ethernet Interfaces</td>
</tr>
</tbody>
</table>

List of Sample Output
show vrrp on page 800
show vrrp brief on page 800
show vrrp detail (IPv6) on page 801
show vrrp detail (Route Track) on page 801
Output Fields

Table 71 on page 794 lists the output fields for the `show vrrp` command. Output fields are listed in the approximate order in which they appear.

Table 71: show vrrp Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of the logical interface.</td>
<td>none, brief, extensive, summary</td>
</tr>
<tr>
<td>Interface index</td>
<td>Physical interface index number, which reflects its initialization sequence.</td>
<td>extensive</td>
</tr>
<tr>
<td>Groups</td>
<td>Total number of VRRP groups configured on the interface.</td>
<td>extensive</td>
</tr>
<tr>
<td>Active</td>
<td>Total number of VRRP groups that are active (that is, whose interface state is either up or down).</td>
<td>extensive</td>
</tr>
</tbody>
</table>
| Interface VRRP PDU statistics | Nonerrored statistics for the logical interface:
 - Advertisement sent—Number of VRRP advertisement protocol data units (PDUs) that the interface has transmitted.
 - Advertisement received—Number of VRRP advertisement PDUs received by the interface.
 - Packets received—Number of VRRP packets received for VRRP groups on the interface.
 - No group match received—Number of VRRP packets received for VRRP groups that do not exist on the interface. | extensive |

```
### Table 71: show vrrp Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Interface VRRP PDU error statistics</strong></td>
<td>Errored statistics for the logical interface:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• <strong>Invalid IPAH next type received</strong>—Number of packets received that use the IP Authentication Header protocol (IPAH) and that do not encapsulate VRRP packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Invalid VRRP ttl value received</strong>—Number of packets received whose IP time-to-live (TTL) value is not 255.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Invalid VRRP version received</strong>—Number of packets received whose VRRP version is not 2.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Invalid VRRP pdu type received</strong>—Number of packets received whose VRRP PDU type is not 1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Invalid VRRP authentication type received</strong>—Number of packets received whose VRRP authentication is not none, simple, or md5.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Invalid VRRP IP count received</strong>—Number of packets received whose VRRP IP count exceeds 8.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Invalid VRRP checksum received</strong>—Number of packets received whose VRRP checksum does not match the calculated value.</td>
<td></td>
</tr>
<tr>
<td>Physical interface</td>
<td>Name of the physical interface.</td>
<td>detail, extensive</td>
</tr>
<tr>
<td>Unit</td>
<td>Logical unit number.</td>
<td>All levels</td>
</tr>
<tr>
<td>Address</td>
<td>Address of the physical interface.</td>
<td>none, brief, detail, extensive</td>
</tr>
<tr>
<td>Index</td>
<td>Physical interface index number, which reflects its initialization sequence.</td>
<td>detail, extensive</td>
</tr>
<tr>
<td>SNMP ifIndex</td>
<td>SNMP index number for the physical interface.</td>
<td>detail, extensive</td>
</tr>
<tr>
<td>VRRP-Traps</td>
<td>Status of VRRP traps: <strong>Enabled</strong> or <strong>Disabled</strong>.</td>
<td>detail, extensive</td>
</tr>
<tr>
<td>Type and Address</td>
<td>Identifier for the address and the address itself:</td>
<td>none, brief, summary</td>
</tr>
<tr>
<td></td>
<td>• lcl—Configured local interface address.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• mas—Address of the master device. This address is displayed only when the local interface is acting as a backup device.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• vip—Configured virtual IP addresses.</td>
<td></td>
</tr>
</tbody>
</table>
Table 71: show vrrp Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
</table>
| Interface state or Int state | State of the physical interface:  
  - **down**—The device is present and the link is unavailable.  
  - **not present**—The interface is configured, but no physical device is present.  
  - **unknown**—The VRRP process has not had time to query the kernel about the state of the interface.  
  - **up**—The device is present and the link is established. | none, brief, extensive, summary |
| Group                 | VRRP group number.                                                                  | none, brief, extensive, summary |
| State                 | VRRP state:  
  - **backup**—The interface is acting as the backup device interface.  
  - **bringup**—VRRP is just starting, and the physical device is not yet present.  
  - **idle**—VRRP is configured on the interface and is disabled. This can occur when VRRP is first enabled on an interface whose link is established.  
  - **initializing**—VRRP is initializing.  
  - **master**—The interface is acting as the master device interface.  
  - **transition**—The interface is changing between being the backup and being the master device. | extensive |
| Priority              | Configured VRRP priority for the interface.                                         | detail, extensive          |
| Advertisement interval | Configured VRRP advertisement interval.                                              | detail, extensive          |
| Authentication type   | Configured VRRP authentication type: none, simple, or md5.                          | detail, extensive          |
| Preempt               | Whether preemption is allowed on the interface: yes or no.                          | detail, extensive          |
| Accept-data mode      | Whether the interface is configured to accept packets destined for the virtual IP address: yes or no. | detail, extensive          |
| VIP count             | Number of virtual IP addresses that have been configured on the interface.          | detail, extensive          |
| VIP                   | List of virtual IP addresses configured on the interface.                           | detail, extensive          |
### Table 71: show vrrp Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advertisement</td>
<td>Time until the advertisement timer expires.</td>
<td>detail, extensive</td>
</tr>
<tr>
<td>timer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master router</td>
<td>IP address of the interface that is acting as the master. If the VRRP interface is</td>
<td>detail, extensive</td>
</tr>
<tr>
<td></td>
<td>down, the output is N/A.</td>
<td></td>
</tr>
<tr>
<td>Virtual router</td>
<td>Time that the virtual device has been up.</td>
<td>detail, extensive</td>
</tr>
<tr>
<td>uptime</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master router</td>
<td>Time that the master device has been up.</td>
<td>detail, extensive</td>
</tr>
<tr>
<td>uptime</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virtual MAC</td>
<td>MAC address associated with the virtual IP address.</td>
<td>detail, extensive</td>
</tr>
<tr>
<td>Tracking</td>
<td>Whether tracking is enabled or disabled.</td>
<td>detail, extensive</td>
</tr>
<tr>
<td>Current priority</td>
<td>Current operational priority for being the VRRP master.</td>
<td>detail, extensive</td>
</tr>
<tr>
<td>Configured</td>
<td>Configured base priority for being the VRRP master.</td>
<td>detail, extensive</td>
</tr>
<tr>
<td>priority</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Priority hold-time</td>
<td>Minimum time interval, in seconds, between successive changes to the current</td>
<td>detail, extensive</td>
</tr>
<tr>
<td></td>
<td>priority. Disabled indicates no minimum interval.</td>
<td></td>
</tr>
<tr>
<td>Remaining-time</td>
<td>(track option only) Displays the time remaining in the priority hold-time interval.</td>
<td>detail</td>
</tr>
<tr>
<td>Interface tracking</td>
<td>Whether interface tracking is enabled or disabled. When enabled, the output also</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>displays the number of tracked interfaces.</td>
<td></td>
</tr>
<tr>
<td>Interface/Tracked</td>
<td>Name of the tracked interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Int state/Interface</td>
<td>Current operational state of the tracked interface: up or down.</td>
<td>detail, extensive</td>
</tr>
<tr>
<td>state</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Int speed/Speed</td>
<td>Current operational speed, in bits per second, of the tracked interface.</td>
<td>detail, extensive</td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
<td>Level of Output</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Incurred priority cost</td>
<td>Operational priority cost incurred due to the state and speed of this tracked interface. This cost is applied to the configured priority to obtain the current priority.</td>
<td>detail, extensive</td>
</tr>
<tr>
<td>Threshold</td>
<td>Speed below which the corresponding priority cost is incurred. In other words, when the speed of the interface drops below the threshold speed, the corresponding priority cost is incurred. An entry of <strong>down</strong> means that the corresponding priority cost is incurred when the interface is down.</td>
<td>detail, extensive</td>
</tr>
<tr>
<td>Route tracking</td>
<td>Whether route tracking is enabled or disabled. When enabled, the output also displays the number of tracked routes.</td>
<td>detail, extensive</td>
</tr>
<tr>
<td>Route count</td>
<td>The number of routes being tracked.</td>
<td>detail, extensive</td>
</tr>
<tr>
<td>Route</td>
<td>The IP address of the route being tracked.</td>
<td>detail, extensive</td>
</tr>
<tr>
<td>VRF name</td>
<td>The VPN routing and forwarding (VRF) routing instance that the tracked route is in.</td>
<td>detail, extensive</td>
</tr>
<tr>
<td>Route state</td>
<td>The state of the route being tracked: <strong>up</strong>, <strong>down</strong>, or <strong>unknown</strong>.</td>
<td>detail, extensive</td>
</tr>
<tr>
<td>Priority cost</td>
<td>Configured priority cost. This value is incurred when the interface speed drops below the corresponding threshold or when the tracked route goes down.</td>
<td>detail, extensive</td>
</tr>
<tr>
<td>Active</td>
<td>Whether the threshold is active (*). If the threshold is active, the corresponding priority cost is incurred.</td>
<td>detail, extensive</td>
</tr>
<tr>
<td>Group VRRP PDU statistics</td>
<td>Number of VRRP advertisements sent and received by the group.</td>
<td>extensive</td>
</tr>
</tbody>
</table>
## Table 71: show vrrp Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Group VRRP PDU error statistics</strong></td>
<td>Errored statistics for the VRRP group:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• <strong>Bad authentication type received</strong>—Number of VRRP PDUs received with an invalid authentication type. The received authentication can be none, simple, or md5 and must be the same for all devices in the VRRP group.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Bad password received</strong>—Number of VRRP PDUs received with an invalid key (password). The password for simple authentication must be the same for all devices in the VRRP group</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Bad MD5 digest received</strong>—Number of VRRP PDUs received for which the MD5 digest computed from the VRRP PDU differs from the digest expected by the VRRP instance configured on the device.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Bad advertisement timer received</strong>—Number of VRRP PDUs received with an advertisement time interval that is inconsistent with the one in use among the devices in the VRRP group.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Bad VIP count received</strong>—Number of VRRP PDUs whose virtual IP address counts differ from the count that has been configured on the VRRP instance.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Bad VIPADDR received</strong>—Number of VRRP PDUs whose virtual IP addresses differ from the list of virtual IP addresses configured on the VRRP instance.</td>
<td></td>
</tr>
<tr>
<td><strong>Group state transition statistics</strong></td>
<td>State transition statistics for the VRRP group:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• <strong>Idle to master transitions</strong>—Number of times that the VRRP instance transitioned from the idle state to the master state.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Idle to backup transitions</strong>—Number of times that the VRRP instance transitioned from the idle state to the backup state.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Backup to master transitions</strong>—Number of times that the VRRP instance transitioned from the backup state to the master state.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Master to backup transitions</strong>—Number of times that the VRRP instance transitioned from the master state to the backup state.</td>
<td></td>
</tr>
<tr>
<td><strong>Vlan-id</strong></td>
<td>ID of Vlan</td>
<td>detail</td>
</tr>
</tbody>
</table>
Table 71: show vrrp Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR state</td>
<td>VRRP information:</td>
<td>none, brief</td>
</tr>
<tr>
<td></td>
<td>• backup—The interface is acting as the backup device interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• bringup—VRRP is just starting, and the physical device is not yet present.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• idle—VRRP is configured on the interface and is disabled. This can occur</td>
<td></td>
</tr>
<tr>
<td></td>
<td>when VRRP is first enabled on an interface whose link is established.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• initializing—VRRP is initializing.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• master—The interface is acting as the master device interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• transition—The interface is changing between being the backup and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>being the master device.</td>
<td></td>
</tr>
<tr>
<td>Timer</td>
<td>VRRP timer information:</td>
<td>none, brief</td>
</tr>
<tr>
<td></td>
<td>• A—Time, in seconds, until the advertisement timer expires.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• D—Time, in seconds, until the Master is Dead timer expires.</td>
<td></td>
</tr>
</tbody>
</table>

Sample Output

show vrrp

User@host> show vrrp

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Group</th>
<th>VR state</th>
<th>Timer</th>
<th>Type</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/0.121</td>
<td>up</td>
<td>1</td>
<td>master</td>
<td>1.052</td>
<td>lcl</td>
<td>ge2001:db8::12:1:1:1</td>
</tr>
<tr>
<td>ge2001:db8::12:1:1:1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge2001:db8::12:1:1:99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-0/0/2.131</td>
<td>up</td>
<td>1</td>
<td>master</td>
<td>0.364</td>
<td>lcl</td>
<td>ge2001:db8::13:1:1:1</td>
</tr>
<tr>
<td>ge2001:db8::13:1:1:1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

show vrrp brief

The output for the show vrrp brief command is identical to that for the show vrrp command. For sample output, see show vrrp on page 800.
show vrrp detail (IPv6)

user@host> show vrrp detail

Physical interface: ge-0/0/0, Unit: 121, Vlan-id: 212, Address: ge2001:db8::12:1:1:1/120
  Index: 67, SNMP ifIndex: 45, VRRP-Traps: enabled
  Interface state: up, Group: 1, State: master
  Priority: 200, Advertisement interval: 1, Authentication type: none
  Advertisement timer: 1.121s, Master router: ge2001:db8:0:1:12:1:1:1
  Virtual router uptime: 00:03:47, Master router uptime: 00:03:41
  Virtual MAC: 00:00:5e:00:02:01
  Tracking: disabled

Physical interface: ge-0/0/2, Unit: 131, Vlan-id: 213, Address: ge2001:db8::13:1:1:1/120
  Index: 69, SNMP ifIndex: 47, VRRP-Traps: enabled
  Interface state: up, Group: 1, State: master
  Priority: 200, Advertisement interval: 1, Authentication type: none
  Advertisement timer: 0.327s, Master router: ge2001:db8:0:1:13:1:1:1
  Virtual router uptime: 00:03:47, Master router uptime: 00:03:41
  Virtual MAC: 00:00:5e:00:02:01
  Tracking: disabled

show vrrp detail (Route Track)

user@host> show vrrp detail

Physical interface: ge-1/1/0, Unit: 0, Address: 192.0.2.30/24
  Index: 67, SNMP ifIndex: 379, VRRP-Traps: enabled
  Interface state: up, Group: 100, State: master
  Priority: 150, Advertisement interval: 1, Authentication type: none
  Preempt: yes, Accept-data mode: no, VIP count: 1, VIP: 192.0.2.100
  Advertisement timer: 1.218s, Master router: 192.0.2.30
  Virtual router uptime: 00:04:28, Master router uptime: 00:00:13
  Virtual MAC: 00:00:5e:00:01:64
  Tracking: enabled
  Current priority: 150, Configured priority: 150
  Priority hold-time: disabled
  Interface tracking: disabled
  Route tracking: enabled, Route count: 1
show vrrp extensive

user@host>  show vrrp extensive

Interface: ge-0/0/0.121, Interface index: 67, Groups: 1, Active : 1
  Interface VRRP PDU statistics
    Advertisement sent : 188
    Advertisement received : 0
    Packets received : 0
    No group match received : 0
  Interface VRRP PDU error statistics
    Invalid IPAH next type received : 0
    Invalid VRRP TTL value received : 0
    Invalid VRRP version received : 0
    Invalid VRRP PDU type received : 0
    Invalid VRRP authentication type received: : 0
    Invalid VRRP IP count received : 0
    Invalid VRRP checksum received

Physical interface: ge-0/0/0, Unit: 121, Vlan-id: 212, Address:
  ge2001:db8::12:1:1:1/120
    Index: 67, SNMP ifIndex: 45, VRRP-Traps: enabled
    Interface state: up, Group: 1, State: master
    Priority: 200, Advertisement interval: 1, Authentication type: none
    Advertisement timer: 1.034s, Master router: ge2001:db8:0:1:12:1:1:1
    Virtual router uptime: 00:04:04, Master router uptime: 00:03:58
    Virtual MAC: 00:00:5e:00:02:01
    Tracking: disabled
  Group VRRP PDU statistics
    Advertisement sent : 188
    Advertisement received : 0
  Group VRRP PDU error statistics
    Bad authentication type received: : 0
    Bad password received : 0
    Bad MD5 digest received : 0
    Bad advertisement timer received: : 0
    Bad VIP count received : 0
    Bad VIPADDR received : 0
  Group state transition statistics
Idle to master transitions : 0
Idle to backup transitions : 1
Backup to master transitions : 1
Master to backup transitions : 0

Interface: ge-0/0/2.131, Interface index: 69, Groups: 1, Active : 1

Interface VRRP PDU statistics
Advertisement sent : 186
Advertisement received : 0
Packets received : 0
No group match received : 0

Interface VRRP PDU error statistics
Invalid IPAH next type received : 0
Invalid VRRP TTL value received : 0
Invalid VRRP version received : 0
Invalid VRRP PDU type received : 0
Invalid VRRP authentication type received : 0
Invalid VRRP IP count received : 0
Invalid VRRP checksum received : 0

Physical interface: ge-0/0/2, Unit: 131, Vlan-id: 213, Address: ge2001:db8::13:1:1:1/120
Index: 69, SNMP ifIndex: 47, VRRP-Traps: enabled
Interface state: up, Group: 1, State: master
Priority: 200, Advertisement interval: 1, Authentication type: none
Advertisement timer: 0.396s, Master router: ge2001:db8:0:1:13:1:1:1
Virtual router uptime: 00:04:04, Master router uptime: 00:03:58
Virtual MAC: 00:00:5e:00:02:01
Tracking: disabled

Group VRRP PDU statistics
Advertisement sent : 186
Advertisement received : 0

Group VRRP PDU error statistics
Bad authentication type received : 0
Bad password received : 0
Bad MD5 digest received : 0
Bad advertisement timer received : 0
Bad VIP count received : 0
Bad VIPADDR received : 0

Group state transition statistics
Idle to master transitions : 0
Idle to backup transitions : 1
Backup to master transitions : 1
Master to backup transitions : 0

show vrrp interface
user@host> show vrrp interface

Interface: ge-0/0/0.121, Interface index: 67, Groups: 1, Active : 1
Interface VRRP PDU statistics
Advertisement sent : 205
Advertisement received : 0
Packets received : 0
No group match received : 0
Interface VRRP PDU error statistics
Invalid IPAH next type received : 0
Invalid VRRP TTL value received : 0
Invalid VRRP version received : 0
Invalid VRRP PDU type received : 0
Invalid VRRP authentication type received : 0
Invalid VRRP IP count received : 0
Invalid VRRP checksum received : 0

Physical interface: ge-0/0/0, Unit: 121, Vlan-id: 212, Address: ge2001:db8::12:1:1:1/120
Index: 67, SNMP ifIndex: 45, VRRP-Traps: enabled
Interface state: up, Group: 1, State: master
Priority: 200, Advertisement interval: 1, Authentication type: none
Advertisement timer: 0.789s, Master router: ge2001:db8:0:1:12:1:1:1
Virtual router uptime: 00:04:26, Master router uptime: 00:04:20
Virtual MAC: 00:00:5e:00:02:01
Tracking: disabled
Group VRRP PDU statistics
Advertisement sent : 205
Advertisement received : 0
Group VRRP PDU error statistics
Bad authentication type received: 0
Bad password received : 0
Bad MD5 digest received : 0
Bad advertisement timer received: 0
Bad VIP count received : 0
Bad VIPADDR received : 0
Group state transition statistics
show vrrp summary

user@host> show vrrp summary

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Group</th>
<th>VR state</th>
<th>Type</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-3/2/6.0</td>
<td>up</td>
<td>1</td>
<td>backup</td>
<td>lcl</td>
<td>10.57.0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>vip</td>
<td>10.57.0.100</td>
</tr>
</tbody>
</table>

show vrrp track detail

user@host> show vrrp track detail

Tracked interface: ae1.211
State: up, Speed: 400m
Incurred priority cost: 0
Threshold  Priority cost  Active
400m        10            
300m        60            
200m        110           
100m        160           
down        190           
Tracking VRRP interface: ae0.210, Group: 1
VR State: master
Current priority: 200, Configured priority: 200
Priority hold-time: disabled, Remaining-time: 50.351

show vrrp track summary

user@host> show vrrp track summary

<table>
<thead>
<tr>
<th>Track if</th>
<th>State</th>
<th>Speed</th>
<th>VRPP if</th>
<th>Group</th>
<th>VR State</th>
<th>Current priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>ae1.211</td>
<td>up</td>
<td>400m</td>
<td>ae0.210</td>
<td>1</td>
<td>master</td>
<td>200</td>
</tr>
</tbody>
</table>
Chassis Cluster Support on SRX100, SRX210, SRX220, SRX240, SRX550M, SRX650 and SRX1400 Devices
Chassis Cluster Support on SRX100, SRX210, SRX220, SRX240, SRX550M, SRX650, and SRX1400 Devices

This topic includes the supported information for SRX100, SRX210, SRX220, SRX240, SRX550M, SRX650, SRX1400, SRX3400, and SRX3600 devices.

SRX Series Chassis Cluster Configuration Overview

Following are the prerequisites for configuring a chassis cluster:

- On SRX550M, any existing configurations associated with interfaces that transform to the fxp0 management port and the control port should be removed. For more information, see "Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming" on page 41.

- For SRX550M chassis clusters, the placement and type of GPIMs, XGPIMs, XPIMs, and Mini-PIMs (as applicable) must match in the two devices.

Figure 1 on page 36 shows a chassis cluster flow diagram for SRX550M devices.
Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming for SRX550M Devices

For SRX550M devices, control interfaces are dedicated Gigabit Ethernet ports.
Table 5 on page 42 shows the slot numbering, as well as the physical port and logical interface numbering, for both of the SRX Series devices that become node 0 and node 1 of the chassis cluster after the cluster is formed.

Table 72: Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming

<table>
<thead>
<tr>
<th>Model</th>
<th>Chassis</th>
<th>Maximum Slots Per Node</th>
<th>Slot Numbering in a Cluster</th>
<th>Management Physical Port/Logical Interface</th>
<th>Control Physical Port/Logical Interface</th>
<th>Fabric Physical Port/Logical Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>550M</td>
<td>Node 0</td>
<td>9 (PIM slots)</td>
<td>0–8</td>
<td>ge-0/0/0</td>
<td>ge-0/0/1</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>fxp1</td>
<td>fab0</td>
</tr>
<tr>
<td></td>
<td>Node 1</td>
<td>9–17</td>
<td>ge-9/0/0</td>
<td>ge-9/0/1</td>
<td>Any Ethernet port</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>fxp1</td>
<td>fab1</td>
</tr>
</tbody>
</table>

After you enable chassis clustering, the two chassis joined together cease to exist as individuals and now represent a single system. As a single system, the cluster now has twice as many slots.)

SRX550M—Although the devices must be of the same type, they can contain different Physical Interface Modules (PIMs).

For SRX550M devices, connect the ge-0/0/1 on node 0 to the ge-9/0/1 on node 1.

**Flow and Processing**

Flowd monitoring is supported on SRX100, SRX210, SRX240, SRX550M, and SRX650 devices.

**Installation and Upgrade**

- For SRX550M devices, the **reboot** parameter is not available, because the devices in a cluster are automatically rebooted following an in-band cluster upgrade (ICU).

**Monitoring**

- The maximum number of monitoring IPs that can be configured per cluster is 64 for SRX550M devices.
- On SRX550M devices, logs cannot be sent to NSM when logging is configured in the stream mode. Logs cannot be sent because the security log does not support configuration of the source IP address for the fxp0 interface and the security log destination in stream mode cannot be routed through the fxp0
interface. This implies that you cannot configure the security log server in the same subnet as the fpx0 interface and route the log server through the fpx0 interface.

Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming for SRX100, SRX210, SRX220, SRX240, SRX550M, and SRX650

Information about chassis cluster slot numbering is also provided in Figure 45 on page 810, Figure 46 on page 810, Figure 47 on page 810, Figure 48 on page 811, Figure 49 on page 811, and Figure 50 on page 811.

Figure 45: Chassis Cluster Slot Numbering for SRX100 Devices

Figure 46: Chassis Cluster Slot Numbering for SRX210 Devices

Figure 47: Chassis Cluster Slot Numbering for SRX220 Devices
Layer 2 switching must not be enabled on an SRX Series device when chassis clustering is enabled. If you have enabled Layer 2 switching, make sure you disable it before enabling chassis clustering.

The factory default configuration for SRX100, SRX210, and SRX220 devices automatically enables Layer 2 Ethernet switching. Because Layer 2 Ethernet switching is not supported in chassis cluster mode, if you use the factory default configuration for these devices, you must delete the Ethernet switching configuration before you enable chassis clustering. See Disabling Switching on SRX100, SRX210, and SRX220 Devices Before Enabling Chassis Clustering.

In chassis cluster mode, the interfaces on the secondary node are renumbered internally. For example, the management interface port on the front panel of each SRX210 device is still labeled fe-0/0/6, but internally, the node 1 port is referred to as fe-2/0/6.

For SRX650 devices, control interfaces are dedicated Gigabit Ethernet ports.
For SRX100, SRX220, and SRX210 devices, after you enable chassis clustering and reboot the system, the built-in interface named fe-0/0/6 is repurposed as the management interface and is automatically renamed fxp0.

For SRX550 devices, control interfaces are dedicated Gigabit Ethernet ports.

For SRX210 devices, after you enable chassis clustering and reboot the system, the built-in interface named fe-0/0/7 is repurposed as the control interface and is automatically renamed fxp1.

In chassis cluster mode, the interfaces on the secondary node are renumbered internally. For example, the management interface port on the front panel of each SRX210 device is still labeled fe-0/0/6, but internally, the node 1 port is referred to as fe-2/0/6.

For SRX240 devices, control interfaces are dedicated Gigabit Ethernet ports. For SRX100 and SRX220 devices, after you enable chassis clustering and reboot the system, the built-in interface named fe-0/0/7 is repurposed as the control interface and is automatically renamed fxp1.

NOTE: For SRX210 Services Gateways, the base and enhanced versions of a model can be used to form a cluster. For example:

- SRX210B and SRX210BE
- SRX210H and SRX210HE

However, the following combinations cannot be used to form a cluster:

- SRX210B and SRX210H
- SRX210B and SRX210HE
- SRX210BE and SRX210H
- SRX210BE and SRX210HE

Table 73: Interface Names for SRX550M

<table>
<thead>
<tr>
<th>SRX Series Services Gateway</th>
<th>Renumbering Constant</th>
<th>Node 0 Interface Name</th>
<th>Node 1 Interface Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX550M</td>
<td>9</td>
<td>ge-0/0/0</td>
<td>ge-9/0/0</td>
</tr>
</tbody>
</table>

Figure 51 on page 813, Figure 52 on page 813, Figure 53 on page 813, Figure 54 on page 813, Figure 55 on page 814, Figure 56 on page 814, Figure 57 on page 814 and all show pairs of SRX Series devices with the fabric links and control links connected.
Figure 51: Connecting SRX100 Devices in a Chassis Cluster

Figure 52: Connecting SRX110 Devices in a Chassis Cluster

Figure 53: Connecting SRX210 Devices in a Chassis Cluster

Figure 54: Connecting SRX220 Devices in a Chassis Cluster
The fabric link connection for the SRX100 and SRX210 must be a pair of either Fast Ethernet or Gigabit Ethernet interfaces. The fabric link connection must be any pair of either Gigabit Ethernet or 10-Gigabit Ethernet interfaces on all SRX Series devices.

For some SRX Series devices, such as the SRX100 and SRX200 line devices, do not have a dedicated port for fxp0. For SRX100, SRX210, the fxp0 interface is repurposed from a built-in interface.

Figure 56 on page 814 show pairs of SRX Series devices with the fabric links and control links connected.
### Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming for SRX3600, SRX3400, and SRX1400

Table 74 on page 815 shows the slot numbering, as well as the physical port and logical interface numbering, for both of the SRX Series devices that become node 0 and node 1 of the chassis cluster after the cluster is formed.

#### Table 74: Chassis Cluster Slot Numbering, and Physical Port and Logical Interface Naming for SRX1400, SRX3400, and SRX3600

<table>
<thead>
<tr>
<th>Model</th>
<th>Chassis</th>
<th>Maximum Slots Per Node</th>
<th>Slot Numbering in a Cluster</th>
<th>Management Physical Port/Logical Interface</th>
<th>Control Physical Port/Logical Interface</th>
<th>Fabric Physical Port/Logical Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX3600</td>
<td>Node 0</td>
<td>13 (CFM slots)</td>
<td>0 – 12</td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>em0</td>
<td>fab0</td>
</tr>
<tr>
<td></td>
<td>Node 1</td>
<td>13 – 25</td>
<td></td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>em0</td>
<td>fab1</td>
</tr>
<tr>
<td>SRX3400</td>
<td>Node 0</td>
<td>8 (CFM slots)</td>
<td>0 – 7</td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>em0</td>
<td>fab0</td>
</tr>
<tr>
<td></td>
<td>Node 1</td>
<td>8 – 15</td>
<td></td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>em0</td>
<td>fab1</td>
</tr>
</tbody>
</table>
### Table 74: Chassis Cluster Slot Numbering, and Physical Port and Logical Interface Naming for SRX1400, SRX3400, and SRX3600 (continued)

<table>
<thead>
<tr>
<th>Model</th>
<th>Chassis</th>
<th>Maximum Slots Per Node</th>
<th>Slot Numbering in a Cluster</th>
<th>Management Physical Port/Logical Interface</th>
<th>Control Physical Port/Logical Interface</th>
<th>Fabric Physical Port/Logical Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX1400</td>
<td>Node 0</td>
<td>4 (FPC slots)</td>
<td>0 – 3</td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>em0</td>
<td>fab0</td>
</tr>
<tr>
<td></td>
<td>Node 1</td>
<td>4 – 7</td>
<td></td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>em0</td>
<td>fab1</td>
</tr>
</tbody>
</table>

Information about chassis cluster slot numbering is also provided in [Figure 58 on page 817](#), [Figure 59 on page 818](#) and [Figure 60 on page 818](#).
Figure 58: Chassis Cluster Slot Numbering for SRX3600 Devices
You can connect two control links (SRX1400, SRX4600, SRX5000 and SRX3000 lines only) and two fabric links between the two devices in the cluster to reduce the chance of control link and fabric link failure. See "Understanding Chassis Cluster Dual Control Links" on page 155 and “Understanding Chassis Cluster Dual Fabric Links” on page 163.

Figure 19 on page 57, Figure 20 on page 57 and Figure 63 on page 819 show pairs of SRX Series devices with the fabric links and control links connected.

Figure 61 on page 819 and Figure 62 on page 819 show pairs of SRX Series devices with the fabric links and control links connected.
For dual control links on SRX3000 line devices, the Routing Engine must be in slot 0 and the SRX Clustering Module (SCM) in slot 1. The opposite configuration (SCM in slot 0 and Routing Engine in slot 1) is not supported.
Supported Fabric Interface Types for SRX Series Devices (SRX210, SRX240, SRX220, SRX100, SRX550M and SRX650 Devices)

For SRX210 devices, the fabric link can be any pair of Gigabit Ethernet interfaces or Fast Ethernet interfaces (as applicable). Interfaces on SRX210 devices are Fast Ethernet or Gigabit Ethernet (the paired interfaces must be of a similar type) and all interfaces on SRX100 devices are Fast Ethernet interfaces.

For SRX550 devices, the fabric link can be any pair of Gigabit Ethernet interfaces or Fast Ethernet interfaces (as applicable).

For SRX Series chassis clusters made up of SRX550M devices, SFP interfaces on Mini-PIMs cannot be used as the fabric link.

For SRX Series chassis clusters, the fabric link can be any pair of Ethernet interfaces spanning the cluster; the fabric link can be any pair of Gigabit Ethernet interface.

Table 75 on page 820 shows the fabric interface types that are supported for SRX Series devices.

Table 75: Supported Fabric Interface Types for SRX Series Devices

<table>
<thead>
<tr>
<th></th>
<th>SRX550</th>
<th>SRX650</th>
<th>SRX240</th>
<th>SRX220</th>
<th>SRX100</th>
<th>SRX210</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast Ethernet</td>
<td>Fast Ethernet</td>
<td>Fast Ethernet</td>
<td>Fast Ethernet</td>
<td>Fast Ethernet</td>
<td>Fast Ethernet</td>
<td></td>
</tr>
<tr>
<td>Gigabit Ethernet</td>
<td>Gigabit Ethernet</td>
<td>Gigabit Ethernet</td>
<td>Gigabit Ethernet</td>
<td>Gigabit Ethernet</td>
<td>Gigabit Ethernet</td>
<td></td>
</tr>
</tbody>
</table>

Redundant Ethernet Interfaces

Table 76: Maximum Number of Redundant Ethernet Interfaces Allowed (SRX100, SRX220, SRX240, SRX210, SRX550, and SRX650)

<table>
<thead>
<tr>
<th>Device</th>
<th>Maximum Number of reth Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX100</td>
<td>8</td>
</tr>
<tr>
<td>SRX210</td>
<td>8</td>
</tr>
<tr>
<td>SRX220</td>
<td>8</td>
</tr>
<tr>
<td>SRX240</td>
<td>24</td>
</tr>
<tr>
<td>SRX650</td>
<td>68</td>
</tr>
</tbody>
</table>
Point-to-Point Protocol over Ethernet (PPPoE) over redundant Ethernet (reth) interface is supported on SRX100, SRX210, SRX220, SRX240, SRX550M, and SRX650 devices in chassis cluster mode. This feature allows an existing PPPoE session to continue without starting a new PPPoE session in the event of a failover.

For SRX100, SRX220, and SRX240 devices, the total number of logical interfaces that you can configure across all the redundant Ethernet (reth) interfaces in a chassis cluster deployment is 1024.

For SRX550M devices,

- the total number of logical interfaces that you can configure across all the redundant Ethernet (reth) interfaces in a chassis cluster deployment is 1024.
- the number of child interfaces is restricted to 16 on the reth interface (eight per node).
- the speed mode and link mode configuration is available for member interfaces of a reth interface.
- the devices in a chassis cluster can be upgraded with a minimal service disruption of approximately 30 seconds using ICU with the no-sync option. The chassis cluster ICU feature allows both devices in a cluster to be upgraded from supported Junos OS versions.
- ICU feature cannot be used to downgrade to a build earlier than Junos OS 11.2 R2.
- do not support ISSU.
- you must use the no-sync parameter to perform an in-band cluster upgrade (ICU). This allows a chassis cluster pair to be upgraded with a minimal service disruption of approximately 30 seconds.
- ICU is available with the no-sync option only.
- ICU requires that both nodes be running a dual-root partitioning scheme with one exception being the SRX1500. ICU will not continue if it fails to detect dual-root partitioning on either of the nodes. Requirement of the dual-root partitioning is applicable.
- no-tcp-syn-check—(Optional) Create a window wherein the TCP SYN check for the incoming packets is disabled. The default value for the window is 7200 seconds (2 hours).
- no-validate—(Optional) Disable the configuration validation step at installation. The system behavior is similar to that of the request system software add command.

For SRX550M devices, the impact on traffic is as follows:

- Drop in traffic (30 seconds approximately)
- Loss of security flow sessions
IP address monitoring cannot be used on a chassis cluster running in transparent mode. The maximum number of monitoring IP addresses that can be configured per cluster is 32 for the SRX1400 device and the SRX3000 line of devices.

**Control Links**

- For SRX100, SRX210, and SRX220 devices, the control link uses the fe-0/0/7 interface.
- For SRX210 devices, the total number of logical interfaces that you can configure across all the redundant Ethernet (reth) interfaces in a chassis cluster deployment is 1024.
- For SRX240, SRX550M, SRX650M, devices, the control link uses the **ge-0/0/1** interface.

Table 77: SRX Series Services Gateways Interface Settings (SRX100, SRX210, SRX220, SRX240, SRX550M)

<table>
<thead>
<tr>
<th>Command</th>
<th>SRX100</th>
<th>SRX210</th>
<th>SRX220</th>
<th>SRX550M</th>
<th>SRX240</th>
</tr>
</thead>
<tbody>
<tr>
<td>set interfaces fab0</td>
<td>fe-0/0/1</td>
<td>ge-0/0/1</td>
<td>ge-0/0/0 to ge-0/0/5</td>
<td>ge-0/0/2</td>
<td>ge-0/0/2</td>
</tr>
<tr>
<td>fabric-options member-interfaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set interfaces fab1</td>
<td>fe-1/0/1</td>
<td>ge-2/0/1</td>
<td>ge-0/0/0 to ge-0/0/5</td>
<td>ge-9/0/2</td>
<td>ge-5/0/2</td>
</tr>
<tr>
<td>fabric-options member-interfaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set chassis cluster redundancy-group 1 interface-monitor</td>
<td>fe-0/0/0 weight 255</td>
<td>fe-0/0/3 weight 255</td>
<td>ge-0/0/0 weight 255</td>
<td>ge-1/0/0 weight 255</td>
<td>ge-0/0/5 weight 255</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set chassis cluster redundancy-group 1 interface-monitor</td>
<td>fe-0/0/2 weight 255</td>
<td>fe-0/0/2 weight 255</td>
<td>ge-0/0/0 weight 255</td>
<td>ge-10/0/0 weight 255</td>
<td>ge-0/0/5 weight 255</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set chassis cluster redundancy-group 1 interface-monitor</td>
<td>fe-1/0/0 weight 255</td>
<td>fe-2/0/3 weight 255</td>
<td>ge-0/0/1 weight 255</td>
<td>ge-1/0/1 weight 255</td>
<td>ge-0/0/6 weight 255</td>
</tr>
</tbody>
</table>
Table 77: SRX Series Services Gateways Interface Settings (SRX100, SRX210, SRX220, SRX240, SRX550M) (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>SRX100</th>
<th>SRX210</th>
<th>SRX220</th>
<th>SRX550M</th>
<th>SRX240</th>
</tr>
</thead>
<tbody>
<tr>
<td>set chassis cluster redundancy-group 1 interface-monitor</td>
<td>fe-1/0/2 weight 255</td>
<td>fe-2/0/2 weight 255</td>
<td>ge-3/0/1 weight 255</td>
<td>ge-10/0/1 weight 255</td>
<td>ge-5/0/6 weight 255</td>
</tr>
<tr>
<td>set interfaces fe-0/0/2 fastether-options redundant-parent reth1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set interfaces ge-1/0/0 weight 255</td>
<td>setchassisclusterredundancy-group 1 interface-monitor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set interfaces ge-1/0/1 weight 255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set interfaces ge-3/0/1 weight 255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set interfaces fe-2/0/2 weight 255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set interfaces fe-1/0/2 weight 255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set interfaces fe-0/0/2 fastether-options redundant-parent reth1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set interfaces ge-1/0/0 weight 255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set interfaces ge-1/0/1 weight 255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set interfaces ge-3/0/1 weight 255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set interfaces fe-2/0/2 weight 255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set interfaces fe-1/0/2 weight 255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set interfaces fe-0/0/2 fastether-options redundant-parent reth1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set interfaces ge-1/0/0 weight 255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set interfaces ge-1/0/1 weight 255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set interfaces ge-3/0/1 weight 255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set interfaces fe-2/0/2 weight 255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set interfaces fe-1/0/2 weight 255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set interfaces fe-0/0/2 fastether-options redundant-parent reth1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set interfaces ge-1/0/0 weight 255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set interfaces ge-1/0/1 weight 255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set interfaces ge-3/0/1 weight 255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set interfaces fe-2/0/2 weight 255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set interfaces fe-1/0/2 weight 255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you are configuring SRX550M device, see Table 78 on page 823 for command and interface settings for your device and substitute these commands into your CLI.

Table 78: SRX Series Services Gateways Interface Settings for SRX550

<table>
<thead>
<tr>
<th>Command</th>
<th>SRX550</th>
</tr>
</thead>
<tbody>
<tr>
<td>set interfaces fab0 fabric-options member-interfaces</td>
<td>ge-0/0/2</td>
</tr>
<tr>
<td>set interfaces fab1 fabric-options member-interfaces</td>
<td>ge-9/0/2</td>
</tr>
<tr>
<td>set chassis cluster redundancy-group 1 interface-monitor</td>
<td>ge-1/0/0 weight 255</td>
</tr>
<tr>
<td>set chassis cluster redundancy-group 1 interface-monitor</td>
<td>ge-10/0/0 weight 255</td>
</tr>
<tr>
<td>set chassis cluster redundancy-group 1 interface-monitor</td>
<td>ge-1/0/1 weight 255</td>
</tr>
</tbody>
</table>
Table 78: SRX Series Services Gateways Interface Settings for SRX550 (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>SRX550</th>
</tr>
</thead>
<tbody>
<tr>
<td>set chassis cluster redundancy-group 1 interface-monitor</td>
<td>ge-10/0/1 weight 255</td>
</tr>
<tr>
<td>set interfaces</td>
<td>ge-1/0/0 gigether-options redundant-parent reth1</td>
</tr>
<tr>
<td>set interfaces</td>
<td>ge-10/0/0 gigether-options redundant-parent reth1</td>
</tr>
<tr>
<td>set interfaces</td>
<td>ge-1/0/1 gigether-options redundant-parent reth0</td>
</tr>
<tr>
<td>set interfaces</td>
<td>ge-10/0/1 gigether-options redundant-parent reth0</td>
</tr>
</tbody>
</table>

ISSU System Requirements for SRX1400, SRX3400 and SRX3600

To perform an ISSU, your device must be running a Junos OS release that supports ISSU for the specific platform. See Table 79 on page 824 for platform support.

Table 79: ISSU Platform Support SRX1400, SRX3400 and SRX3600

<table>
<thead>
<tr>
<th>Device</th>
<th>Junos OS Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX1400</td>
<td>12.1X47-D10</td>
</tr>
<tr>
<td>SRX3400</td>
<td>12.1X47-D10</td>
</tr>
<tr>
<td>SRX3600</td>
<td>12.1X47-D10</td>
</tr>
</tbody>
</table>