Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc. and/or its affiliates in the United States and other countries. All other trademarks may be property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change, modify, transfer, or otherwise revise this publication without notice.

Junos® OS Network Management Administration Guide
Copyright © 2017 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License Agreement (“EULA”) posted at http://www.juniper.net/support/eula/. By downloading, installing or using such software, you agree to the terms and conditions of that EULA.
Table of Contents

About the Documentation .. xxix
 Documentation and Release Notes ... xxix
 Supported Platforms ... xxix
 Using the Examples in This Manual ... xxx
 Merging a Full Example ... xxx
 Merging a Snippet ... xxxi
 Documentation Conventions .. xxxi
 Documentation Feedback .. xxxii
 Requesting Technical Support .. xxxiv
 Self-Help Online Tools and Resources xxxiv
 Opening a Case with JTAC .. xxxiv

Part 1 Overview

Chapter 1 Network Management Overview 3
 Understanding Device Management Functions in Junos OS 3
 Understanding the Integrated Local Management Interface 6

Chapter 2 Introduction to Network Monitoring 7
 Monitoring Overview ... 7
 Diagnostic Tools Overview .. 8
 J-Web Diagnostic Tools ... 9
 CLI Diagnostic Commands ... 9

Part 2 Network Monitoring Using SNMP

Chapter 3 SNMP Overview .. 15
 Understanding SNMP Implementation in Junos OS 15
 SNMPv3 Overview ... 18

Chapter 4 SNMP MIBs and Traps Supported by Junos OS 21
 Enterprise-Specific SNMP MIBs Supported by Junos OS 21
 Standard SNMP MIBs Supported by Junos OS 32
 Enterprise-Specific MIBs and Supported Devices 50
 Standard SNMP Traps Supported by Junos OS 60
 Standard SNMP Version 1 Traps ... 60
 Standard SNMP Version 2 Traps ... 64
 Enterprise-Specific SNMP Traps Supported by Junos OS 68
 Juniper Networks Enterprise-Specific SNMP Version 1 Traps 68
 Juniper Networks Enterprise-Specific SNMP Version 2 Traps 74
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creating SNMPv3 Users</td>
<td>131</td>
</tr>
<tr>
<td>Example: Creating SNMPv3 Users</td>
<td>132</td>
</tr>
<tr>
<td>Configuring the SNMPv3 Authentication Type</td>
<td>132</td>
</tr>
<tr>
<td>Configuring MD5 Authentication</td>
<td>133</td>
</tr>
<tr>
<td>Configuring SHA Authentication</td>
<td>133</td>
</tr>
<tr>
<td>Configuring No Authentication</td>
<td>133</td>
</tr>
<tr>
<td>Configuring the SNMPv3 Encryption Type</td>
<td>134</td>
</tr>
<tr>
<td>Configuring the Advanced Encryption Standard Algorithm</td>
<td>134</td>
</tr>
<tr>
<td>Configuring the Data Encryption Algorithm</td>
<td>135</td>
</tr>
<tr>
<td>Configuring Triple DES</td>
<td>135</td>
</tr>
<tr>
<td>Configuring No Encryption</td>
<td>135</td>
</tr>
<tr>
<td>Defining Access Privileges for an SNMP Group</td>
<td>136</td>
</tr>
<tr>
<td>Configuring the Access Privileges Granted to a Group</td>
<td>137</td>
</tr>
<tr>
<td>Configuring the Group</td>
<td>137</td>
</tr>
<tr>
<td>Configuring the Security Model</td>
<td>137</td>
</tr>
<tr>
<td>Configuring the Security Level</td>
<td>138</td>
</tr>
<tr>
<td>Associating MIB Views with an SNMP User Group</td>
<td>138</td>
</tr>
<tr>
<td>Configuring the Notify View</td>
<td>139</td>
</tr>
<tr>
<td>Configuring the Read View</td>
<td>139</td>
</tr>
<tr>
<td>Configuring the Write View</td>
<td>140</td>
</tr>
<tr>
<td>Example: Configuring the Access Privileges Granted to a Group</td>
<td>140</td>
</tr>
<tr>
<td>Assigning Security Model and Security Name to a Group</td>
<td>141</td>
</tr>
<tr>
<td>Configuring the Security Model</td>
<td>141</td>
</tr>
<tr>
<td>Assigning Security Names to Groups</td>
<td>142</td>
</tr>
<tr>
<td>Configuring the Group</td>
<td>142</td>
</tr>
<tr>
<td>Example: Security Group Configuration</td>
<td>142</td>
</tr>
<tr>
<td>Configuring SNMPv3 Traps on a Device Running Junos OS</td>
<td>143</td>
</tr>
<tr>
<td>Configuring the SNMPv3 Trap Notification</td>
<td>144</td>
</tr>
<tr>
<td>Example: Configuring SNMPv3 Trap Notification</td>
<td>145</td>
</tr>
<tr>
<td>Configuring the Trap Notification Filter</td>
<td>145</td>
</tr>
<tr>
<td>Configuring the Trap Target Address</td>
<td>146</td>
</tr>
<tr>
<td>Configuring the Address</td>
<td>147</td>
</tr>
<tr>
<td>Configuring the Address Mask</td>
<td>147</td>
</tr>
<tr>
<td>Configuring the Port</td>
<td>148</td>
</tr>
<tr>
<td>Configuring the Routing Instance</td>
<td>148</td>
</tr>
<tr>
<td>Configuring the Trap Target Address</td>
<td>148</td>
</tr>
<tr>
<td>Applying Target Parameters</td>
<td>149</td>
</tr>
<tr>
<td>Example: Configuring the Tag List</td>
<td>149</td>
</tr>
<tr>
<td>Defining and Configuring the Trap Target Parameters</td>
<td>150</td>
</tr>
<tr>
<td>Applying the Trap Notification Filter</td>
<td>151</td>
</tr>
<tr>
<td>Configuring the Target Parameters</td>
<td>151</td>
</tr>
<tr>
<td>Configuring the Message Processing Model</td>
<td>151</td>
</tr>
<tr>
<td>Configuring the Security Model</td>
<td>151</td>
</tr>
<tr>
<td>Configuring the Security Level</td>
<td>152</td>
</tr>
<tr>
<td>Configuring the Security Name</td>
<td>152</td>
</tr>
<tr>
<td>Configuring SNMP Informs</td>
<td>153</td>
</tr>
<tr>
<td>Configuring the Remote Engine and Remote User</td>
<td>154</td>
</tr>
<tr>
<td>Example: Configuring the Remote Engine ID and Remote User</td>
<td>155</td>
</tr>
<tr>
<td>Configuring the Inform Notification Type and Target Address</td>
<td>158</td>
</tr>
</tbody>
</table>
Chapter 8 Configuring SNMP for Routing Instances ... 165
 Understanding SNMP Support for Routing Instances 165
 SNMP MIBs Supported for Routing Instances 166
 Support Classes for MIB Objects ... 176
 SNMP Traps Supported for Routing Instances 177
 Identifying a Routing Instance .. 178
 Enabling SNMP Access over Routing Instances 179
 Specifying a Routing Instance in an SNMPv1 or SNMPv2c Community 179
 Example: Configuring Interface Settings for a Routing Instance 180
 Configuring Access Lists for SNMP Access over Routing Instances 182

Chapter 9 Configuring SNMP Remote Operations ... 183
 SNMP Remote Operations Overview .. 183
 Setting SNMP Views .. 184
 Example: Setting SNMP Views .. 184
 Setting Trap Notification for Remote Operations 185
 Example: Setting Trap Notification for Remote Operations 185
 Using Variable-Length String Indexes .. 185
 Example: Set Variable-Length String Indexes 185
 Enabling Logging ... 186
 Using the Ping MIB for Remote Monitoring Devices Running Junos OS 186
 Starting a Ping Test .. 187
 Using Multiple Set Protocol Data Units (PDUs) 187
 Using a Single Set PDU .. 187
 Monitoring a Running Ping Test .. 188
 pingResultsTable .. 188
 pingProbeHistoryTable ... 189
 Generating Traps .. 190
 Gathering Ping Test Results ... 191
 Stopping a Ping Test .. 192
 Interpreting Ping Variables ... 192
 Using the Traceroute MIB for Remote Monitoring Devices Running Junos OS 193
 Starting a Traceroute Test ... 194
 Using Multiple Set PDUs ... 194
 Using a Single Set PDU .. 194
 Monitoring a Running Traceroute Test .. 195
 traceRouteResultsTable ... 195
 traceRouteProbeResultsTable ... 196
 traceRouteHopsTable ... 197
<table>
<thead>
<tr>
<th>Chapter 10</th>
<th>Tracing SNMP Activity</th>
<th>203</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring SNMP Activity and Tracking Problems That Affect SNMP Performance on a Device Running Junos OS</td>
<td></td>
<td>203</td>
</tr>
<tr>
<td>Checking for MIB Objects Registered with the snmpd</td>
<td></td>
<td>203</td>
</tr>
<tr>
<td>Tracking SNMP Activity</td>
<td></td>
<td>205</td>
</tr>
<tr>
<td>Monitoring SNMP Statistics</td>
<td></td>
<td>207</td>
</tr>
<tr>
<td>Checking CPU Utilization</td>
<td></td>
<td>207</td>
</tr>
<tr>
<td>Checking Kernel and Packet Forwarding Engine Response</td>
<td></td>
<td>208</td>
</tr>
<tr>
<td>Tracing SNMP Activity on a Device Running Junos OS</td>
<td></td>
<td>209</td>
</tr>
<tr>
<td>Configuring the Number and Size of SNMP Log Files</td>
<td></td>
<td>210</td>
</tr>
<tr>
<td>Configuring Access to the Log File</td>
<td></td>
<td>211</td>
</tr>
<tr>
<td>Configuring a Regular Expression for Lines to Be Logged</td>
<td></td>
<td>211</td>
</tr>
<tr>
<td>Configuring the Trace Operations</td>
<td></td>
<td>211</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 11</th>
<th>SNMP FAQs</th>
<th>215</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junos OS SNMP FAQ Overview</td>
<td></td>
<td>215</td>
</tr>
<tr>
<td>Junos OS SNMP FAQs</td>
<td></td>
<td>216</td>
</tr>
<tr>
<td>Junos OS SNMP Support FAQs</td>
<td></td>
<td>216</td>
</tr>
<tr>
<td>Junos OS MIBs FAQs</td>
<td></td>
<td>217</td>
</tr>
<tr>
<td>Junos OS SNMP Configuration FAQs</td>
<td></td>
<td>224</td>
</tr>
<tr>
<td>SNMPv3 FAQs</td>
<td></td>
<td>224</td>
</tr>
<tr>
<td>SNMP Interaction with Juniper Networks Devices FAQs</td>
<td></td>
<td>230</td>
</tr>
<tr>
<td>SNMP Traps and Informs FAQs</td>
<td></td>
<td>232</td>
</tr>
<tr>
<td>Junos OS Dual Routing Engine Configuration FAQs</td>
<td></td>
<td>238</td>
</tr>
<tr>
<td>SNMP Support for Routing Instances FAQs</td>
<td></td>
<td>239</td>
</tr>
<tr>
<td>SNMP Counters FAQs</td>
<td></td>
<td>240</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part 3</th>
<th>Remote Monitoring (RMON) with SNMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 12</td>
<td>RMON Overview</td>
</tr>
<tr>
<td>Understanding RMON Alarms</td>
<td></td>
</tr>
<tr>
<td>alarmTable</td>
<td></td>
</tr>
<tr>
<td>jnxRmonAlarmTable</td>
<td></td>
</tr>
<tr>
<td>Understanding RMON Events</td>
<td></td>
</tr>
<tr>
<td>eventTable</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 13</th>
<th>Configuring RMON Alarms and Events</th>
<th>249</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding RMON Alarms and Events Configuration</td>
<td></td>
<td>249</td>
</tr>
<tr>
<td>Minimum RMON Alarm and Event Entry Configuration</td>
<td></td>
<td>250</td>
</tr>
<tr>
<td>Configuring an RMON Alarm Entry and its Attributes</td>
<td></td>
<td>250</td>
</tr>
<tr>
<td>Configuring the Alarm Entry</td>
<td></td>
<td>251</td>
</tr>
<tr>
<td>Configuring the Description</td>
<td></td>
<td>251</td>
</tr>
<tr>
<td>Configuring the Falling Event Index or Rising Event Index</td>
<td></td>
<td>251</td>
</tr>
</tbody>
</table>
Chapter 14 Monitoring RMON Alarms and Events .. 257
Using alarmTable to Monitor MIB Objects ... 257
Creating an Alarm Entry ... 257
Configuring the Alarm MIB Objects ... 257
 alarmInterval ... 258
 alarmVariable ... 258
 alarmSampleType .. 258
 alarmValue ... 258
 alarmStartupAlarm ... 258
 alarmRisingThreshold .. 259
 alarmFallingThreshold ... 259
 alarmOwner .. 259
 alarmRisingEventIndex .. 259
 alarmFallingEventIndex ... 260
Activating a New Row in alarmTable ... 260
Modifying an Active Row in alarmTable ... 260
Deactivating a Row in alarmTable ... 260
Using eventTable to Log Alarms ... 260
Creating an Event Entry ... 261
Configuring the MIB Objects .. 261
 eventType ... 261
 eventCommunity ... 261
 eventOwner ... 262
 eventDescription ... 262
Activating a New Row in eventTable ... 262
Deactivating a Row in eventTable ... 263

Chapter 15 Using RMON to Monitor Network Service Quality 265
Understanding RMON for Monitoring Service Quality 265
Setting Thresholds .. 265
RMON Command-Line Interface ... 266
RMON Event Table .. 267
RMON Alarm Table .. 267
Troubleshooting RMON .. 268
Understanding Measurement Points, Key Performance Indicators, and Baseline Values ... 269
Measurement Points .. 269
Basic Key Performance Indicators ... 270
Setting Baselines ... 270
Table of Contents

Defining and Measuring Network Availability .. 270
Defining Network Availability ... 271
Monitoring the SLA and the Required Bandwidth 272
Measuring Availability ... 273
Real-Time Performance Monitoring ... 273
Measuring Health .. 276
Measuring Performance .. 282
Measuring Class of Service ... 285
Inbound Firewall Filter Counters per Class ... 286
Monitoring Output Bytes per Queue ... 287
Dropped Traffic ... 288

Part 4 Health Monitoring with SNMP
Chapter 16 Configuring Health Monitoring .. 293
Configuring Health Monitoring on Devices Running Junos OS 293
Monitored Objects .. 294
Minimum Health Monitoring Configuration ... 295
Configuring the Falling Threshold or Rising Threshold 295
Configuring the Interval ... 296
Log Entries and Traps ... 296
Example: Configuring Health Monitoring ... 296

Part 5 Gathering Statistics for Accounting Purposes Using Accounting
Options, Source Class Usage and Destination Class Usage Options
Chapter 17 Accounting Options, Source Class Usage and Destination Class Usage Options Overview ... 299
Accounting Options Overview ... 299
Understanding Source Class Usage and Destination Class Usage Options .. 300
Chapter 18 Configuring Accounting Options, Source Class Usage and Destination Class Usage Options ... 303
Configuration Statements at the [edit accounting-options] Hierarchy Level .. 303
Accounting Options Configuration .. 304
Accounting Options—Full Configuration ... 305
Minimum Accounting Options Configuration 308
Configuring Accounting-Data Log Files ... 312
Configuring How Long Backup Files Are Retained 313
Configuring the Maximum Size of the File ... 313
Configuring Archive Sites for the Files ... 314
Configuring Local Backup for Accounting Files 314
Configuring Files to Be Compressed ... 315
Configuring the Maximum Number of Files 315
Configuring the Storage Location of the File 315
Configuring Files to Be Saved After a Change in Mastership 316
Configuring the Start Time for File Transfer 316
Part 6 Configuring Monitoring Options

Chapter 19 Configuring Interface Alarms

Alarm Overview ... 337
Alarm Types .. 337
Alarm Severity ... 338
Table of Contents

<table>
<thead>
<tr>
<th>Chapter 20</th>
<th>Using RPM to Measure Network Performance</th>
<th>349</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RPM Overview</td>
<td>349</td>
</tr>
<tr>
<td></td>
<td>RPM Probes</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>RPM Tests</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>Probe and Test Intervals</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>Jitter Measurement with Hardware Timestamp</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>RPM Statistics</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>RPM Thresholds and Traps</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>RPM for BGP Monitoring</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>IPv6 RPM Probes</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>Two-Way Active Measurement Protocol (TWAMP) Overview</td>
<td>354</td>
</tr>
<tr>
<td></td>
<td>Benefits of TWAMP</td>
<td>355</td>
</tr>
<tr>
<td></td>
<td>Guidelines for Configuring RPM Probes for IPv6</td>
<td>356</td>
</tr>
<tr>
<td></td>
<td>RPM Support for VPN Routing and Forwarding</td>
<td>357</td>
</tr>
<tr>
<td></td>
<td>Example: Configuring Basic RPM Probes</td>
<td>358</td>
</tr>
<tr>
<td></td>
<td>Example: Configuring RPM Using TCP and UDP Probes</td>
<td>362</td>
</tr>
<tr>
<td></td>
<td>Example: Configuring RPM Probes for BGP Monitoring</td>
<td>365</td>
</tr>
<tr>
<td></td>
<td>Directing RPM Probes to Select BGP Devices</td>
<td>368</td>
</tr>
<tr>
<td></td>
<td>Configuring IPv6 RPM Probes</td>
<td>368</td>
</tr>
<tr>
<td></td>
<td>Tuning RPM Probes</td>
<td>369</td>
</tr>
<tr>
<td></td>
<td>RPM Configuration Options</td>
<td>370</td>
</tr>
<tr>
<td></td>
<td>Monitoring RPM Probes</td>
<td>370</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 21</th>
<th>Configuring IP Monitoring</th>
<th>379</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IP Monitoring Overview</td>
<td>379</td>
</tr>
<tr>
<td></td>
<td>Understanding IP Monitoring Test Parameters</td>
<td>380</td>
</tr>
<tr>
<td></td>
<td>Example: Configuring IP Monitoring on SRX Series Devices</td>
<td>381</td>
</tr>
<tr>
<td></td>
<td>Understanding IP Monitoring Through Redundant Ethernet Interface Link</td>
<td>384</td>
</tr>
<tr>
<td></td>
<td>Aggregation Groups</td>
<td>384</td>
</tr>
<tr>
<td></td>
<td>Example: Configuring IP Monitoring on SRX Series Devices</td>
<td>384</td>
</tr>
<tr>
<td></td>
<td>Example: Configuring Chassis Cluster Redundancy Group IP Address Monitoring</td>
<td>390</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part 7</th>
<th>Monitoring Common Security Features</th>
<th>397</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 22</td>
<td>Displaying Real-Time Information from Device to Host</td>
<td>397</td>
</tr>
<tr>
<td></td>
<td>Displaying Real-Time Monitoring Information</td>
<td>397</td>
</tr>
<tr>
<td></td>
<td>Displaying Multicast Path Information</td>
<td>399</td>
</tr>
</tbody>
</table>
Chapter 23 Monitoring Application Layer Gateways Features

- Monitoring H.323 ALG Information .. 403
- Monitoring MGCP ALGs ... 404
 - Monitoring MGCP ALG Calls ... 405
 - Monitoring MGCP ALG Counters ... 405
 - Monitoring MGCP ALG Endpoints ... 407
- Monitoring SCCP ALGs ... 408
 - Monitoring SCCP ALG Calls ... 408
 - Monitoring SCCP ALG Counters ... 408
- Monitoring SIP ALGs ... 410
 - Monitoring SIP ALG Calls ... 410
 - Monitoring SIP ALG Counters ... 411
 - Monitoring SIP ALG Rate Information 413
 - Monitoring SIP ALG Transactions ... 414
- Monitoring Voice ALG H.323 ... 414
- Monitoring Voice ALG MGCP .. 417
- Monitoring Voice ALG SCCP ... 420
- Monitoring Voice ALG SIP .. 423
- Monitoring Voice ALG Summary ... 428

Chapter 24 Monitoring Interfaces and Switching Functions

- Displaying Real-Time Interface Information 431
- Monitoring Address Pools .. 433
- Monitoring Ethernet Switching ... 434
- Monitoring GVRP .. 435
- Monitoring Interfaces ... 436
- Monitoring MPLS Traffic Engineering Information 437
 - Monitoring MPLS Interfaces .. 438
 - Monitoring MPLS LSP Information .. 438
 - Monitoring MPLS LSP Statistics ... 439
 - Monitoring RSVP Session Information 441
 - Monitoring MPLS RSVP Interfaces Information 442
- Monitoring PPP ... 443
- Monitoring PPPoE .. 443
- Monitoring Spanning Tree .. 447
- Monitoring the WAN Acceleration Interface 448

Chapter 25 Monitoring NAT

- Monitoring NAT ... 449
 - Monitoring Source NAT Information .. 449
 - Monitoring Destination NAT Information 455
 - Monitoring Static NAT Information ... 457
 - Monitoring Incoming Table Information 458
 - Monitoring Interface NAT Port Information 459

Chapter 26 Monitoring Security Policies

- Monitoring Policy Statistics .. 461
- Monitoring Routing Information ... 462
- Monitoring Route Information ... 462
- Monitoring RIP Routing Information ... 464
| Chapter 27 | Monitoring Events, Services and System | 487 |
| Monitoring DHCP Client Bindings | 487 |
| Monitoring Events | 488 |
| Monitoring the System | 490 |
| Monitoring System Properties for SRX Series Devices | 490 |
| Monitoring Chassis Information | 493 |
| System Health Management for SRX Series Devices | 494 |

Chapter 28	Monitoring Unified Threat Management Features	497
Monitoring Antivirus Scan Engine Status	497	
Monitoring Antivirus Scan Results	498	
Monitoring Antivirus Session Status	501	
Monitoring Content Filtering Configurations	501	
Monitoring Reports	502	
Threats Monitoring Report	502	
Traffic Monitoring Report	507	
Monitoring Web Filtering Configurations	508	

Chapter 29	Monitoring VPNs	511
Monitoring VPNs	511	
Monitoring IKE Gateway Information	511	
Monitoring IPsec VPN—Phase I	515	
Monitoring IPsec VPN—Phase II	516	
Monitoring IPsec VPN Information	517	
Part 8 Resource Monitoring of Memory Regions and Types Using CLI and SNMP Queries

Chapter 30 Effective Troubleshooting of System Performance With Resource Monitoring Methodology .. 525

Resource Monitoring Usage Computation Overview 525
Resource Monitoring and Usage Computation For Trio-Based Line Cards ... 526
Resource Monitoring and Usage Computation For I-Chip-Based Line Cards ... 526

Diagnosing and Debugging System Performance by Configuring Memory
Resource Usage Monitoring on MX Series Routers 528
Troubleshooting the Mismatch of jnxNatObjects Values for MS-DPC and MS-MIC ... 531
Managed Objects for Ukernel Memory for a Packet Forwarding Engine in an FPC Slot ... 532
Managed Objects for Packet Forwarding Engine Memory Statistics Data ... 532
Managed Objects for Next-Hop, Jtree, and Firewall Filter Memory for a Packet Forwarding Engine in an FPC Slot ... 533
jnxPfeMemoryErrorsTable ... 533
pfeMemoryErrors ... 534

Part 9 Troubleshooting

Chapter 31 Configuring Data Path Debugging and Trace Options 537

Understanding Data Path Debugging for SRX Series Devices 537
Debugging the Data Path (CLI Procedure) ... 538
Example: Configuring End-to-End Debugging on SRX Series Device 539
Understanding Security Debugging Using Trace Options 544
Setting Security Trace Options (CLI Procedure) ... 545
Displaying Log and Trace Files ... 546
Displaying Output for Security Trace Options ... 546
Displaying Multicast Trace Operations ... 547
Using the J-Web Traceroute Tool ... 548
J-Web Traceroute Results and Output Summary ... 550
Understanding Flow Debugging Using Trace Options 551
Setting Flow Debugging Trace Options (CLI Procedure) 551
Displaying a List of Devices ... 552

Chapter 32 Using MPLS to Diagnose LSPs, VPNs, and Layer 2 Circuits 555

MPLS Connection Checking Overview ... 555
Understanding Ping MPLS ... 557
MPLS Enabled ... 557
Loopback Address ... 557
Source Address for Probes ... 558
Using the ping Command ... 558
Using the J-Web Ping Host Tool ... 560
J-Web Ping Host Results and Output Summary ... 562
Using the J-Web Ping MPLS Tool ... 563
J-Web Ping MPLS Results and Output Summary ... 566
Chapter 33 Using Packet Capture to Analyze Network Traffic 573
Packet Capture Overview ... 573
 Packet Capture on Device Interfaces ... 574
 Firewall Filters for Packet Capture .. 575
 Packet Capture Files ... 575
Analysis of Packet Capture Files ... 575
Example: Enabling Packet Capture on a Device .. 576
Example: Configuring Packet Capture on an Interface 580
Example: Configuring a Firewall Filter for Packet Capture 581
Example: Configuring Packet Capture for Datapath Debugging 583
Disabling Packet Capture ... 587
Deleting Packet Capture Files .. 587
Changing Encapsulation on Interfaces with Packet Capture Configured 588
Displaying Packet Headers ... 589
Using the J-Web Packet Capture Tool ... 594
J-Web Packet Capture Results and Output Summary 597

Chapter 34 Troubleshooting Security Devices .. 599
Recovering the Root Password for SRX Series Devices 599
Troubleshooting DNS Name Resolution in Logical System Security Policies (Master Administrators Only) ... 601
Troubleshooting the Link Services Interface .. 601
 Determine Which CoS Components Are Applied to the Constituent Links ... 602
 Determine What Causes Jitter and Latency on the Multilink Bundle 603
 Determine If LFI and Load Balancing Are Working Correctly 604
 Determine Why Packets Are Dropped on a PVC Between a Juniper Networks Device and a Third-Party Device ... 611
Troubleshooting Security Policies ... 612
 Synchronizing Policies Between Routing Engine and Packet Forwarding Engine .. 612
 Checking a Security Policy Commit Failure .. 612
 Verifying a Security Policy Commit .. 613
 Debugging Policy Lookup ... 613
Understanding Log Error Messages for Troubleshooting ISSU-Related Problems ... 614
 Chassisd Process Errors ... 614
 Kernel State Synchronization ... 614
 Installation-Related Errors .. 615
 ISSU Support-Related Errors ... 615
 Redundancy Group Failover Errors ... 615
 Initial Validation Checks Fail .. 615
Understanding Common Error Handling for ISSU 617
Part 10 Configuration Statements and Operational Commands

Chapter 35 Configuration Statements: Accounting Options, Source Class Usage and Destination Class Usage Options 623

accounting-options ... 625
allow-clear (Accounting Options) .. 627
archive-sites ... 628
backup-on-failure (Accounting Options) 629
class-usage-profile ... 630
cleanup-interval (Accounting Options) 631
compress (Accounting Options) ... 632
counters .. 632
destination-classes ... 633
egress-stats (Flat-File Accounting Options) 634
fields (Flat-File Accounting Options) ... 636
fields (for Interface Profiles) ... 638
fields (for Routing Engine Profiles) .. 639
file (Associating with a Profile) ... 640
file (Configuring a Log File) ... 641
file (Flat-File Accounting Options) .. 642
files ... 643
filter-profile .. 644
flat-file-profile (Accounting Options) 645
format (Flat-File Accounting Options) 647
general-param (Flat-File Accounting Options) 648
ingress-stats (Flat-File Accounting Options) 650
interface-profile .. 651
interval .. 652
interval (Flat-File Accounting Options) 653
I2-stats (Flat-File Accounting Options) 654
mib-profile .. 655
mpls (Security Forwarding Options) ... 656
nonpersistent .. 657
object-names ... 658
operation .. 659
overall-packet (Flat-File Accounting Options) 660
push-backup-to-master (Accounting Options) 661
routing-engine-profile ... 662
schema-version (Flat-File Accounting Options) 663
size ... 664
source-classes ... 665
start-time .. 666
traceoptions (System Accounting) .. 667
transfer-interval ... 669

Chapter 36 Configuration Statements: Chassis Cluster 671

cluster (Chassis) ... 672
global-threshold .. 673
global-weight ... 674
ip-monitoring ... 675
Chapter 37 Configuration Statements: Datapath Debug
ip-monitoring (Services) .. 677
next-hop .. 678

Chapter 38 Configuration Statements: Health Monitoring
falling-threshold ... 692
health-monitor .. 693
idp (SNMP) ... 694
route-engine (SNMP Resource Level) 695
interval .. 696
rising-threshold .. 697

Chapter 39 Configuration Statements: Remote Monitoring (RMON)
alarm (SNMP RMON) ... 700
community ... 701
description ... 702
event .. 703
falling-event-index .. 704
falling-threshold .. 705
falling-threshold-interval ... 706
interval .. 707
request-type .. 708
rising-event-index .. 709
rising-threshold ... 710
rmon ... 710
sample-type .. 711
startup-alarm ... 712
syslog-subtag .. 713
type ... 714
variable ... 715

Chapter 40 Configuration Statements: Resource Monitoring for Memory Regions
free-fw-memory-watermark (Resource Monitor) 718
free-heap-memory-watermark (Resource Monitor) 719
free-nh-memory-watermark (Resource Monitor) 720
high-threshold (Resource Monitor) 721
no-load-throttle (Resource Monitor) 721
no-logging (Resource Monitor).................................. 722
no-throttle (Resource Monitor) 723
resource-category jtree (Resource Monitor) 724
resource-monitor ... 725
subscribers-limit (Resource Monitor) 727
<table>
<thead>
<tr>
<th>Chapter 41</th>
<th>Configuration Statements: Security Alarms</th>
<th>731</th>
</tr>
</thead>
<tbody>
<tr>
<td>decryption-failures</td>
<td>731</td>
<td></td>
</tr>
<tr>
<td>idp (Security Alarms)</td>
<td>732</td>
<td></td>
</tr>
<tr>
<td>Chapter 42</td>
<td>Configuration Statements: SNMP</td>
<td>733</td>
</tr>
<tr>
<td>access-list</td>
<td>734</td>
<td></td>
</tr>
<tr>
<td>agent-address</td>
<td>735</td>
<td></td>
</tr>
<tr>
<td>alarm-id</td>
<td>736</td>
<td></td>
</tr>
<tr>
<td>alarm-list-name</td>
<td>737</td>
<td></td>
</tr>
<tr>
<td>alarm-management</td>
<td>738</td>
<td></td>
</tr>
<tr>
<td>alarm-state</td>
<td>739</td>
<td></td>
</tr>
<tr>
<td>authorization</td>
<td>740</td>
<td></td>
</tr>
<tr>
<td>categories</td>
<td>741</td>
<td></td>
</tr>
<tr>
<td>client-list</td>
<td>742</td>
<td></td>
</tr>
<tr>
<td>client-list-name</td>
<td>743</td>
<td></td>
</tr>
<tr>
<td>clients</td>
<td>744</td>
<td></td>
</tr>
<tr>
<td>commit-delay</td>
<td>745</td>
<td></td>
</tr>
<tr>
<td>community (SNMP)</td>
<td>746</td>
<td></td>
</tr>
<tr>
<td>contact (SNMP)</td>
<td>747</td>
<td></td>
</tr>
<tr>
<td>description</td>
<td>748</td>
<td></td>
</tr>
<tr>
<td>destination-port</td>
<td>749</td>
<td></td>
</tr>
<tr>
<td>enterprise-oid</td>
<td>749</td>
<td></td>
</tr>
<tr>
<td>filter-duplicates</td>
<td>750</td>
<td></td>
</tr>
<tr>
<td>filter-interfaces</td>
<td>751</td>
<td></td>
</tr>
<tr>
<td>interface (SNMP)</td>
<td>752</td>
<td></td>
</tr>
<tr>
<td>location (SNMP)</td>
<td>753</td>
<td></td>
</tr>
<tr>
<td>logical-system</td>
<td>754</td>
<td></td>
</tr>
<tr>
<td>logical-system-trap-filter</td>
<td>755</td>
<td></td>
</tr>
<tr>
<td>name</td>
<td>755</td>
<td></td>
</tr>
<tr>
<td>nonvolatile</td>
<td>756</td>
<td></td>
</tr>
<tr>
<td>oid</td>
<td>757</td>
<td></td>
</tr>
<tr>
<td>proxy (snmp)</td>
<td>758</td>
<td></td>
</tr>
<tr>
<td>routing-instance</td>
<td>760</td>
<td></td>
</tr>
<tr>
<td>routing-instance-access</td>
<td>761</td>
<td></td>
</tr>
<tr>
<td>snmp</td>
<td>761</td>
<td></td>
</tr>
<tr>
<td>snmp-value-match-msmic (Services NAT Options)</td>
<td>762</td>
<td></td>
</tr>
<tr>
<td>source-address</td>
<td>763</td>
<td></td>
</tr>
<tr>
<td>targets</td>
<td>764</td>
<td></td>
</tr>
<tr>
<td>traceoptions (SNMP)</td>
<td>765</td>
<td></td>
</tr>
<tr>
<td>trap-group</td>
<td>767</td>
<td></td>
</tr>
<tr>
<td>trap-options</td>
<td>768</td>
<td></td>
</tr>
<tr>
<td>version (SNMP)</td>
<td>769</td>
<td></td>
</tr>
<tr>
<td>view (Associating a MIB View with a Community)</td>
<td>770</td>
<td></td>
</tr>
<tr>
<td>view (Configuring a MIB View)</td>
<td>771</td>
<td></td>
</tr>
<tr>
<td>Chapter 43</td>
<td>Configuration Statements: SNMPv3</td>
<td>773</td>
</tr>
<tr>
<td>address</td>
<td>775</td>
<td></td>
</tr>
<tr>
<td>address-mask</td>
<td>775</td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>authentication-md5</td>
<td>776</td>
<td></td>
</tr>
<tr>
<td>authentication-none</td>
<td>777</td>
<td></td>
</tr>
<tr>
<td>authentication-password</td>
<td>778</td>
<td></td>
</tr>
<tr>
<td>authentication-sha</td>
<td>779</td>
<td></td>
</tr>
<tr>
<td>community-name</td>
<td>780</td>
<td></td>
</tr>
<tr>
<td>context (SNMPv3)</td>
<td>781</td>
<td></td>
</tr>
<tr>
<td>engine-id</td>
<td>782</td>
<td></td>
</tr>
<tr>
<td>group (Configuring Group Name)</td>
<td>783</td>
<td></td>
</tr>
<tr>
<td>group (Defining Access Privileges for an SNMPv3 Group)</td>
<td>784</td>
<td></td>
</tr>
<tr>
<td>retry-count</td>
<td>785</td>
<td></td>
</tr>
<tr>
<td>timeout</td>
<td>786</td>
<td></td>
</tr>
<tr>
<td>local-engine</td>
<td>787</td>
<td></td>
</tr>
<tr>
<td>message-processing-model</td>
<td>788</td>
<td></td>
</tr>
<tr>
<td>notify</td>
<td>789</td>
<td></td>
</tr>
<tr>
<td>notify-filter (Applying to the Management Target)</td>
<td>790</td>
<td></td>
</tr>
<tr>
<td>notify-filter (Configuring the Profile Name)</td>
<td>791</td>
<td></td>
</tr>
<tr>
<td>notify-view</td>
<td>792</td>
<td></td>
</tr>
<tr>
<td>oid</td>
<td>793</td>
<td></td>
</tr>
<tr>
<td>parameters</td>
<td>794</td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>795</td>
<td></td>
</tr>
<tr>
<td>privacy-3des</td>
<td>796</td>
<td></td>
</tr>
<tr>
<td>privacy-aes128</td>
<td>797</td>
<td></td>
</tr>
<tr>
<td>privacy-des</td>
<td>798</td>
<td></td>
</tr>
<tr>
<td>privacy-none</td>
<td>799</td>
<td></td>
</tr>
<tr>
<td>privacy-password</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>read-view</td>
<td>801</td>
<td></td>
</tr>
<tr>
<td>remote-engine</td>
<td>802</td>
<td></td>
</tr>
<tr>
<td>routing-instance</td>
<td>803</td>
<td></td>
</tr>
<tr>
<td>security-level (Defining Access Privileges)</td>
<td>804</td>
<td></td>
</tr>
<tr>
<td>security-level (Generating SNMP Notifications)</td>
<td>805</td>
<td></td>
</tr>
<tr>
<td>security-model (Access Privileges)</td>
<td>806</td>
<td></td>
</tr>
<tr>
<td>security-model (Group)</td>
<td>807</td>
<td></td>
</tr>
<tr>
<td>security-model (SNMP Notifications)</td>
<td>808</td>
<td></td>
</tr>
<tr>
<td>security-name (Community String)</td>
<td>809</td>
<td></td>
</tr>
<tr>
<td>security-name (Security Group)</td>
<td>810</td>
<td></td>
</tr>
<tr>
<td>security-name (SNMP Notifications)</td>
<td>811</td>
<td></td>
</tr>
<tr>
<td>security-to-group</td>
<td>812</td>
<td></td>
</tr>
<tr>
<td>snmp-community</td>
<td>813</td>
<td></td>
</tr>
<tr>
<td>tag</td>
<td>814</td>
<td></td>
</tr>
<tr>
<td>tag-list</td>
<td>815</td>
<td></td>
</tr>
<tr>
<td>target-address</td>
<td>816</td>
<td></td>
</tr>
<tr>
<td>target-parameters</td>
<td>817</td>
<td></td>
</tr>
<tr>
<td>type</td>
<td>818</td>
<td></td>
</tr>
<tr>
<td>user</td>
<td>819</td>
<td></td>
</tr>
<tr>
<td>usm</td>
<td>820</td>
<td></td>
</tr>
<tr>
<td>v3</td>
<td>822</td>
<td></td>
</tr>
<tr>
<td>vacm</td>
<td>825</td>
<td></td>
</tr>
<tr>
<td>write-view</td>
<td>826</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 44 Configuration Statements: TWAMP ... 827
 twamp-server .. 828
 twamp-client ... 830

Chapter 45 Operational Commands .. 833
 clear chassis cluster ip-monitoring failure-count 835
 clear chassis cluster ip-monitoring failure-count ip-address 836
 clear ilmi statistics .. 837
 clear interfaces statistics ... 838
 clear services rpm twamp server connection 839
 clear snmp history .. 840
 clear snmp statistics ... 841
 request pppoe connect .. 842
 request pppoe disconnect .. 844
 request services ip-monitoring preempt-restore policy 845
 request services rpm twamp start .. 846
 request services rpm twamp stop ... 847
 request snmp spoof-trap .. 848
 show chassis alarms ... 854
 show chassis cluster ip-monitoring status redundancy-group 856
 show interfaces (SRX Series) .. 859
 show interfaces snmp-index ... 890
 show interfaces summary .. 891
 show ilmi statistics .. 893
 show security alarms .. 896
 show security datapath-debug capture 900
 show security datapath-debug counter 901
 show security monitoring ... 902
 show security monitoring fpc fpc-number 904
 show security monitoring performance session 907
 show security monitoring performance spu 908
 show services ip-monitoring status ... 910
 show services rpm twamp client connection 914
 show services rpm twamp client history-results 916
 show services rpm twamp client probe-results 918
 show services rpm twamp client session 923
 show services rpm twamp server connection 925
 show services rpm twamp server session 927
 show snmp health-monitor .. 929
 show snmp inform-statistics .. 936
 show snmp mib .. 938
 show snmp rmon ... 941
 show snmp statistics .. 945
 show snmp stats-response-statistics .. 953
 show snmp v3 .. 955
 show system alarms .. 958
 show system alarms .. 959
 show system resource-monitor fpc ... 962
List of Figures

Part 2 Network Monitoring Using SNMP

Chapter 7 Configuring SNMPv3
- Figure 1: Inform Request and Response .. 153

Chapter 8 Configuring SNMP for Routing Instances
- Figure 2: SNMP Data for Routing Instances 166

Part 3 Remote Monitoring (RMON) with SNMP

Chapter 15 Using RMON to Monitor Network Service Quality
- Figure 3: Setting Thresholds .. 266
- Figure 4: Network Entry Points ... 269
- Figure 5: Regional Points of Presence 271
- Figure 6: Measurements to Each Router 271
- Figure 7: Network Behavior During Congestion 286

Part 6 Configuring Monitoring Options

Chapter 20 Using RPM to Measure Network Performance
- Figure 8: TWAMP Test ... 355
- Figure 9: Four Elements of TWAMP .. 355
- Figure 10: Sample RPM Graphs ... 375

Chapter 21 Configuring IP Monitoring
- Figure 11: IP Monitoring on an SRX Series Device Topology Example 385

Part 9 Troubleshooting

Chapter 34 Troubleshooting Security Devices
- Figure 12: PPP and MLPPP Headers .. 607
List of Tables

About the Documentation .. xxix
Table 1: Notice Icons ... xxxii
Table 2: Text and Syntax Conventions xxxii

Part 1 Overview
Chapter 1 Network Management Overview 3
Table 3: Device Management Features in Junos OS 4

Chapter 2 Introduction to Network Monitoring 7
Table 4: J-Web Interface Troubleshoot Options 9
Table 5: CLI Diagnostic Command Summary 10

Part 2 Network Monitoring Using SNMP
Chapter 4 SNMP MIBs and Traps Supported by Junos OS 21
Table 6: Enterprise-specific MIBs supported by Junos OS 21
Table 7: Standard MIBs supported by Junos OS 32
Table 8: Enterprise-Specific MIBs and Supported Devices 51
Table 9: Standard Supported SNMP Version 1 Traps 61
Table 10: Standard Supported SNMP Version 2 Traps 64
Table 11: Juniper Networks Enterprise-Specific Supported SNMP Version 1 Traps ... 69
Table 12: Juniper Networks Enterprise-Specific Supported SNMP Version 2 Traps ... 75

Chapter 7 Configuring SNMPv3 125
Table 13: Values to Use in Example 156

Chapter 8 Configuring SNMP for Routing Instances 165
Table 14: MIB Support for Routing Instances (Juniper Networks MIBs) 166
Table 15: Class 1 MIB Objects (Standard and Juniper MIBs) 170
Table 16: Class 2 MIB Objects (Standard and Juniper MIBs) 174
Table 17: Class 3 MIB Objects (Standard and Juniper MIBs) 175
Table 18: Class 4 MIB Objects (Standard and Juniper MIBs) 176

Chapter 9 Configuring SNMP Remote Operations 183
Table 19: Results in pingProbeHistoryTable: After the First Ping Test 191
Table 20: Results in pingProbeHistoryTable: After the First Probe of the Second Test ... 192
Table 21: Results in pingProbeHistoryTable: After the Second Ping Test 192
Table 22: traceRouteProbeHistoryTable 200
Chapter 10 Tracing SNMP Activity ... 203
 Table 23: SNMP Tracing Flags ... 212
Chapter 11 SNMP FAQs ... 215
 Table 24: Monitored Object Instances 223
Part 3 Remote Monitoring (RMON) with SNMP
 Chapter 15 Using RMON to Monitor Network Service Quality 265
 Table 25: RMON Event Table ... 267
 Table 26: RMON Alarm Table ... 267
 Table 27: jnxRmon Alarm Extensions 268
 Table 28: Real-Time Performance Monitoring Configuration Options 274
 Table 29: Health Metrics .. 276
 Table 30: Counter Values for vlan-ccc Encapsulation 282
 Table 31: Performance Metrics .. 283
 Table 32: Inbound Traffic Per Class 286
 Table 33: Inbound Counters ... 287
 Table 34: Outbound Counters for ATM Interfaces 287
 Table 35: Outbound Counters for Non-ATM Interfaces 288
 Table 36: Dropped Traffic Counters 288
Part 4 Health Monitoring with SNMP
 Chapter 16 Configuring Health Monitoring 293
 Table 37: Monitored Object Instances 294
Part 5 Gathering Statistics for Accounting Purposes Using Accounting
 Options, Source Class Usage and Destination Class Usage Options
 Chapter 17 Accounting Options, Source Class Usage and Destination Class Usage
 Options Overview .. 299
 Table 38: Types of Accounting Profiles 299
Part 6 Configuring Monitoring Options
 Chapter 19 Configuring Interface Alarms 337
 Table 39: Interface Alarm Conditions 339
 Table 40: System Alarm Conditions and Corrective Actions 342
 Table 41: Alarms Monitoring Page ... 347
 Chapter 20 Using RPM to Measure Network Performance 349
 Table 42: RPM Statistics .. 352
 Table 43: RPM Configuration Summary 370
 Table 44: Summary of Key RPM Output Fields 375
 Chapter 21 Configuring IP Monitoring 379
 Table 45: Test Parameters and Default Values 380
 Table 46: Threshold Supported and Description 381
Part 7 Monitoring Common Security Features

Chapter 22 Displaying Real-Time Information from Device to Host 397
Table 47: CLI traceroute monitor Command Options ... 397
Table 48: CLI traceroute monitor Command Output Summary 398
Table 49: CLI mtrace from-source Command Options ... 399
Table 50: CLI mtrace from-source Command Output Summary 401

Chapter 23 Monitoring Application Layer Gateways Features 403
Table 51: Summary of Key H.323 Counters Output Fields 403
Table 52: Summary of Key MGCP Calls Output Fields ... 405
Table 53: Summary of Key MGCP Counters Output Fields 406
Table 54: Summary of Key MGCP Endpoints Output Fields 407
Table 55: Summary of Key SCCP Calls Output Fields .. 408
Table 56: Summary of Key SCCP Counters Output Fields 409
Table 57: Summary of Key SIP Calls Output Fields ... 410
Table 58: Summary of Key SIP Counters Output Fields .. 411
Table 59: Summary of Key SIP Rate Output Fields .. 413
Table 60: Summary of Key SIP Transactions Output Fields 414
Table 61: ALG H.323 Monitoring Page ... 415
Table 62: Voice ALG MGCP Monitoring Page .. 417
Table 63: Voice ALG SCCP Monitoring Page ... 420
Table 64: Voice ALG SIP Monitoring Page .. 423
Table 65: Voice ALG Summary Monitoring Page ... 428

Chapter 24 Monitoring Interfaces and Switching Functions 431
Table 66: CLI monitor interface Output Control Keys .. 432
Table 67: CLI monitor interface traffic Output Control Keys 432
Table 68: Address Pools Monitoring Page .. 433
Table 69: Summary of Ethernet Switching Output Fields 435
Table 70: GVRP Monitoring Page ... 436
Table 71: Summary of Key MPLS Interface Information Output Fields 438
Table 72: Summary of Key MPLS LSP Information Output Fields 439
Table 73: Summary of Key MPLS LSP Statistics Output Fields 440
Table 74: Summary of Key RSVP Session Information Output Fields 441
Table 75: Summary of Key RSVP Interfaces Information Output Fields 442
Table 76: Summary of Key PPPoE Output Fields .. 444
Table 77: Spanning Tree Monitoring Page ... 447

Chapter 25 Monitoring NAT ... 449
Table 78: Source NAT Monitoring Page .. 449
Table 79: Summary of Key Destination NAT Output Fields 455
Table 80: Summary of Key Static NAT Output Fields ... 457
Table 81: Summary of Key Incoming Table Output Fields 459
Table 82: Summary of Key Interface NAT Output Fields 459

Chapter 26 Monitoring Security Policies .. 461
Table 83: Filtering Route Messages ... 463
Table 84: Summary of Key Routing Information Output Fields 463
Table 85: Summary of Key RIP Routing Output Fields .. 464
Table 86: Summary of Key OSPF Routing Output Fields 466
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 87</td>
<td>Summary of Key BGP Routing Output Fields</td>
</tr>
<tr>
<td>Table 88</td>
<td>View Policy Log Fields</td>
</tr>
<tr>
<td>Table 89</td>
<td>Policy Events Detail Fields</td>
</tr>
<tr>
<td>Table 90</td>
<td>Security Policies Monitoring Output Fields</td>
</tr>
<tr>
<td>Table 91</td>
<td>Check Policies Output</td>
</tr>
<tr>
<td>Table 92</td>
<td>Summary of Key Screen Counters Output Fields</td>
</tr>
<tr>
<td>Table 93</td>
<td>Summary of IDP Status Output Fields</td>
</tr>
<tr>
<td>Table 94</td>
<td>Summary of Key Flow Gate Output Fields</td>
</tr>
<tr>
<td>Table 95</td>
<td>Summary of Key Firewall Authentication Table Output Fields</td>
</tr>
<tr>
<td>Table 96</td>
<td>Summary of Key Firewall Authentication History Output Fields</td>
</tr>
<tr>
<td>Table 97</td>
<td>Summary of Dot1X Output Fields</td>
</tr>
<tr>
<td>Table 98</td>
<td>Summary of Key DHCP Client Binding Output Fields</td>
</tr>
<tr>
<td>Table 99</td>
<td>Events Monitoring Page</td>
</tr>
<tr>
<td>Table 100</td>
<td>Statistics Tab Output in the Threats Report</td>
</tr>
<tr>
<td>Table 101</td>
<td>Activities Tab Output in the Threats Report</td>
</tr>
<tr>
<td>Table 102</td>
<td>Traffic Report Output</td>
</tr>
<tr>
<td>Table 103</td>
<td>Summary of Key IKE SA Information Output Fields</td>
</tr>
<tr>
<td>Table 104</td>
<td>IPsec VPN—Phase I Monitoring Page</td>
</tr>
<tr>
<td>Table 105</td>
<td>IPsec VPN—Phase II Monitoring Page</td>
</tr>
<tr>
<td>Table 106</td>
<td>Summary of Key IPsec VPN Information Output Fields</td>
</tr>
<tr>
<td>Table 107</td>
<td>jnxPfeMemoryUKernTable</td>
</tr>
<tr>
<td>Table 108</td>
<td>jnxPfeMemoryTable</td>
</tr>
<tr>
<td>Table 109</td>
<td>jnxPfeMemoryForwardingTable</td>
</tr>
<tr>
<td>Table 110</td>
<td>jnxPfeMemoryErrorsTable</td>
</tr>
<tr>
<td>Table 111</td>
<td>pfeMemoryErrors</td>
</tr>
<tr>
<td>Table 112</td>
<td>CLI mtrace monitor Command Output Summary</td>
</tr>
<tr>
<td>Table 113</td>
<td>Traceroute Field Summary</td>
</tr>
<tr>
<td>Table 114</td>
<td>J-Web Traceroute Results and Output Summary</td>
</tr>
<tr>
<td>Table 115</td>
<td>CLI traceroute Command Options</td>
</tr>
<tr>
<td>Table 116</td>
<td>Options for Checking MPLS Connections</td>
</tr>
<tr>
<td>Table 117</td>
<td>CLI ping Command Options</td>
</tr>
<tr>
<td>Table 118</td>
<td>J-Web Ping Host Field Summary</td>
</tr>
<tr>
<td>Table 119</td>
<td>Ping Host Results and Output</td>
</tr>
</tbody>
</table>
Chapter 33 Using Packet Capture to Analyze Network Traffic .. 573

Table 126: CLI monitor traffic Command Options ... 590
Table 127: CLI monitor traffic Match Conditions .. 591
Table 128: CLI monitor traffic Logical Operators ... 593
Table 129: CLI monitor traffic Arithmetic, Binary, and Relational Operators 593
Table 130: Packet Capture Field Summary ... 595
Table 131: J-Web Packet Capture Results and Output Summary 597

Chapter 34 Troubleshooting Security Devices ... 599

Table 132: CoS Components Applied on Multilink Bundles and Constituent Links .. 602
Table 133: PPP and MLPPP Encapsulation Overhead .. 607
Table 134: Number of Packets Transmitted on a Queue 610
Table 135: ISSU-Related Errors and Solutions ... 617

Part 10 Configuration Statements and Operational Commands

Chapter 45 Operational Commands ... 833

Table 136: show chassis alarms Output Fields .. 854
Table 137: show chassis cluster ip-monitoring status Output Fields 856
Table 138: show chassis cluster ip-monitoring status redundancy group Reason Fields .. 857
Table 139: show interfaces Output Fields .. 862
Table 140: show interfaces summary Output Fields .. 891
Table 141: show ilmi statistics Output Fields .. 894
Table 142: show security alarms ... 897
Table 143: show security monitoring fpc fpc-number Output Fields 904
Table 144: show services ip-monitoring status Output Fields 910
Table 145: show services rpm twamp client connection Output Fields 914
Table 146: show services rpm twamp client history-results Output Fields 916
Table 147: show services twamp client probe-results Output Fields 918
Table 148: show services rpm twamp client session Output Fields 923
Table 149: show services rpm twamp server connection Output Fields 925
Table 150: show services rpm twamp server session Output Fields 927
Table 151: show snmp health-monitor Output Fields .. 929
Table 152: show snmp inform-statistics Output Fields .. 936
Table 153: show snmp mib Output Fields .. 939
Table 154: show snmp rmon Output Fields .. 941
Table 155: show snmp statistics Output Fields ... 946
Table 156: show snmp statistics subagents Output Fields 949
Table 157: show snmp stats-response-statistics Output Fields 953
Table 158: show snmp v3 Output Fields ... 956
Table 159: show system alarms Output Fields ... 960
Table 160: show system resource-monitor fpc Output Fields 963
About the Documentation

- Documentation and Release Notes on page xxix
- Supported Platforms on page xxix
- Using the Examples in This Manual on page xxx
- Documentation Conventions on page xxxi
- Documentation Feedback on page xxxiii
- Requesting Technical Support on page xxxiv

Documentation and Release Notes

To obtain the most current version of all Juniper Networks® technical documentation, see the product documentation page on the Juniper Networks website at http://www.juniper.net/techpubs/.

If the information in the latest release notes differs from the information in the documentation, follow the product Release Notes.

Juniper Networks Books publishes books by Juniper Networks engineers and subject matter experts. These books go beyond the technical documentation to explore the nuances of network architecture, deployment, and administration. The current list can be viewed at http://www.juniper.net/books.

Supported Platforms

For the features described in this document, the following platforms are supported:

- ACX Series
- M Series
- MX Series
- T Series
- PTX Series
- SRX Series
- vSRX
- QFX Series
- EX Series
Using the Examples in This Manual

If you want to use the examples in this manual, you can use the `load merge` or the `load merge relative` command. These commands cause the software to merge the incoming configuration into the current candidate configuration. The example does not become active until you commit the candidate configuration.

If the example configuration contains the top level of the hierarchy (or multiple hierarchies), the example is a full example. In this case, use the `load merge` command.

If the example configuration does not start at the top level of the hierarchy, the example is a snippet. In this case, use the `load merge relative` command. These procedures are described in the following sections.

Merging a Full Example

To merge a full example, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration example into a text file, save the file with a name, and copy the file to a directory on your routing platform.

 For example, copy the following configuration to a file and name the file `ex-script.conf.`
 Copy the `ex-script.conf` file to the `/var/tmp` directory on your routing platform.

   ```
system {
   scripts {
   commit {
   file ex-script.xsl;
   }
   }
   }
interaces {
fxp0 {
   disable;
   unit 0 {
   family inet {
   address 10.0.0.1/24;
   }
   }
   }
   }
   }
```

2. Merge the contents of the file into your routing platform configuration by issuing the `load merge` configuration mode command:

   ```
[edit]
user@host# load merge /var/tmp/ex-script.conf
load complete
```
Merging a Snippet

To merge a snippet, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration snippet into a text file, save the file with a name, and copy the file to a directory on your routing platform.

 For example, copy the following snippet to a file and name the file `ex-script-snippet.conf`. Copy the `ex-script-snippet.conf` file to the `/var/tmp` directory on your routing platform.

   ```
   commit {
       file ex-script-snippet.xsl; }
   ```

2. Move to the hierarchy level that is relevant for this snippet by issuing the following configuration mode command:

   ```
   [edit]
   user@host# edit system scripts
   [edit system scripts]
   ```

3. Merge the contents of the file into your routing platform configuration by issuing the `load merge relative` configuration mode command:

   ```
   [edit system scripts]
   user@host# load merge relative /var/tmp/ex-script-snippet.conf
   load complete
   ```

 For more information about the `load` command, see CLI Explorer.

Documentation Conventions

Table 1 on page xxxii defines notice icons used in this guide.
Table 1: Notice Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Meaning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Informational note</td>
<td>Indicates important features or instructions.</td>
</tr>
<tr>
<td></td>
<td>Caution</td>
<td>Indicates a situation that might result in loss of data or hardware damage.</td>
</tr>
<tr>
<td></td>
<td>Warning</td>
<td>Alerts you to the risk of personal injury or death.</td>
</tr>
<tr>
<td></td>
<td>Laser warning</td>
<td>Alerts you to the risk of personal injury from a laser.</td>
</tr>
<tr>
<td></td>
<td>Tip</td>
<td>Indicates helpful information.</td>
</tr>
<tr>
<td></td>
<td>Best practice</td>
<td>Alerts you to a recommended use or implementation.</td>
</tr>
</tbody>
</table>

Table 2 on page xxxii defines the text and syntax conventions used in this guide.

Table 2: Text and Syntax Conventions

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
</table>
| **Bold text like this** | Represents text that you type. | To enter configuration mode, type the **configure** command:
user@host> configure |
| **Fixed-width text like this** | Represents output that appears on the terminal screen. | user@host> show chassis alarms
No alarms currently active |
| **Italic text like this** | Introduces or emphasizes important new terms. Identifies guide names. Identifies RFC and Internet draft titles. | • A policy term is a named structure that defines match conditions and actions.
• *Junos OS CLI User Guide*
• RFC 1997, *BGP Communities Attribute* |
| **Italic text like this** | Represents variables (options for which you substitute a value) in commands or configuration statements. | Configure the machine’s domain name:
[edit]
root@# set system domain-name domain-name |
Table 2: Text and Syntax Conventions (continued)

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
</table>
| **Text like this** | Represents names of configuration statements, commands, files, and directories; configuration hierarchy levels; or labels on routing platform components. | • To configure a stub area, include the stub statement at the [edit protocols ospf area area-id] hierarchy level.
• The console port is labeled CONSOLE. |
| <> (angle brackets) | Encloses optional keywords or variables. | stub <default-metric metric >>; |
| | (pipe symbol) | Indicates a choice between the mutually exclusive keywords or variables on either side of the symbol. The set of choices is often enclosed in parentheses for clarity. | broadcast | multicast
(string1 | string2 | string3) |
| # (pound sign) | Indicates a comment specified on the same line as the configuration statement to which it applies. | rsvp { # Required for dynamic MPLS only |
| [] (square brackets) | Encloses a variable for which you can substitute one or more values. | community name members [community-ids] |
| Indention and braces ({ }) | Identifies a level in the configuration hierarchy. | [edit] routing-options { static { nexthop address; retain; } } |
| ; (semicolon) | Identifies a leaf statement at a configuration hierarchy level. | |

GUI Conventions

| **Bold text like this** | Represents graphical user interface (GUI) items you click or select. | • In the Logical Interfaces box, select All Interfaces.
• To cancel the configuration, click Cancel. |
| **> (bold right angle bracket)** | Separates levels in a hierarchy of menu selections. | In the configuration editor hierarchy, select Protocols > Ospf. |

Documentation Feedback

We encourage you to provide feedback, comments, and suggestions so that we can improve the documentation. You can provide feedback by using either of the following methods:

- Online feedback rating system—On any page of the Juniper Networks TechLibrary site at http://www.juniper.net/techpubs/index.html, simply click the stars to rate the content, and use the pop-up form to provide us with information about your experience.
 Alternately, you can use the online feedback form at http://www.juniper.net/techpubs/feedback/.
E-mail—Send your comments to techpubs-comments@juniper.net. Include the document or topic name, URL or page number, and software version (if applicable).

Requesting Technical Support

Technical product support is available through the Juniper Networks Technical Assistance Center (JTAC). If you are a customer with an active J-Care or Partner Support Service support contract, or are covered under warranty, and need post-sales technical support, you can access our tools and resources online or open a case with JTAC.

- Product warranties—For product warranty information, visit http://www.juniper.net/support/warranty/.
- JTAC hours of operation—The JTAC centers have resources available 24 hours a day, 7 days a week, 365 days a year.

Self-Help Online Tools and Resources

For quick and easy problem resolution, Juniper Networks has designed an online self-service portal called the Customer Support Center (CSC) that provides you with the following features:

- Find CSC offerings: http://www.juniper.net/customers/support/
- Search for known bugs: https://prsearch.juniper.net/
- Find product documentation: http://www.juniper.net/documentation/
- Find solutions and answer questions using our Knowledge Base: http://kb.juniper.net/
- Download the latest versions of software and review release notes: http://www.juniper.net/customers/csc/software/
- Search technical bulletins for relevant hardware and software notifications: http://kb.juniper.net/InfoCenter/
- Join and participate in the Juniper Networks Community Forum: http://www.juniper.net/company/communities/
- Open a case online in the CSC Case Management tool: http://www.juniper.net/cm/

To verify service entitlement by product serial number, use our Serial Number Entitlement (SNE) Tool: https://entitlementsearch.juniper.net/entitlementsearch/

Opening a Case with JTAC

You can open a case with JTAC on the Web or by telephone.

- Use the Case Management tool in the CSC at http://www.juniper.net/cm/.
- Call 1-888-314-JTAC (1-888-314-5822 toll-free in the USA, Canada, and Mexico).
For international or direct-dial options in countries without toll-free numbers, see http://www.juniper.net/support/requesting-support.html.
PART 1

Overview

- Network Management Overview on page 3
- Introduction to Network Monitoring on page 7
CHAPTER 1

Network Management Overview

• Understanding Device Management Functions in Junos OS on page 3
• Understanding the Integrated Local Management Interface on page 6

Understanding Device Management Functions in Junos OS

<table>
<thead>
<tr>
<th>Supported Platforms</th>
<th>ACX Series, M Series, MX Series, T Series</th>
</tr>
</thead>
</table>

After you have installed a device into your network, you need to manage the device within your network. Device management can be divided into five tasks:

• Fault management—Monitor the device; detect and fix faults.
• Configuration management—Configure device attributes.
• Accounting management—Collect statistics for accounting purposes.
• Performance management—Monitor and adjust device performance.
• Security management—Control device access and authenticate users.

The Junos® operating system (Junos OS) network management features work in conjunction with an operations support system (OSS) to manage the devices within the network. Junos OS can assist you in performing these management tasks, as described in Table 3 on page 4.
Table 3: Device Management Features in Junos OS

<table>
<thead>
<tr>
<th>Task</th>
<th>Junos OS Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault management</td>
<td>Monitor and see faults using:</td>
</tr>
<tr>
<td></td>
<td>• Operational mode commands—For more information about operational mode commands, see the CLI Explorer.</td>
</tr>
<tr>
<td></td>
<td>• SNMP MIBs—For more information about SNMP MIBs supported by Junos OS, see “Standard SNMP MIBs Supported by Junos OS” on page 32 and “Enterprise-Specific SNMP MIBs Supported by Junos OS” on page 21.</td>
</tr>
<tr>
<td></td>
<td>• Standard SNMP traps—For more information about standard SNMP traps, see the “Standard SNMP Traps Supported by Junos OS” on page 60.</td>
</tr>
<tr>
<td></td>
<td>• Enterprise-specific SNMP traps—For more information about enterprise-specific traps, see “Enterprise-Specific SNMP Traps Supported by Junos OS” on page 68.</td>
</tr>
<tr>
<td></td>
<td>• System log messages—For more information about how to configure system log messages, see the Junos OS Administration Library. For more information about how to view system log messages, see the System Log Explorer.</td>
</tr>
<tr>
<td>Configuration management</td>
<td>• Configure router attributes using the command-line interface (CLI), the Junos XML management protocol, and the NETCONF XML management protocol. For more information about configuring the router using the CLI, see the Junos OS Administration Library. For more information about configuring the router using the APIs, see the Junos XML Management Protocol Guide and NETCONF XML Management Protocol Guide.</td>
</tr>
<tr>
<td></td>
<td>• Configuration Management MIB—For more information about the Configuration Management MIB, see Configuration Management MIB.</td>
</tr>
</tbody>
</table>
Table 3: Device Management Features in Junos OS (continued)

<table>
<thead>
<tr>
<th>Task</th>
<th>Junos OS Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting management</td>
<td>Perform the following accounting-related tasks:</td>
</tr>
<tr>
<td></td>
<td>• Collect statistics for interfaces, firewall filters, destination classes,</td>
</tr>
<tr>
<td></td>
<td>source classes, and the Routing Engine. For more information about collecting</td>
</tr>
<tr>
<td></td>
<td>statistics, see “Accounting Options Configuration” on page 304.</td>
</tr>
<tr>
<td></td>
<td>• Use interface-specific traffic statistics and other counters, available in the</td>
</tr>
<tr>
<td></td>
<td>Standard Interfaces MIB, Juniper Networks enterprise-specific extensions to the</td>
</tr>
<tr>
<td></td>
<td>Interfaces MIB, and media-specific MIBs, such as the enterprise-specific ATM MIB.</td>
</tr>
<tr>
<td></td>
<td>• Use per-ATM virtual circuit (VC) counters, available in the enterprise-specific</td>
</tr>
<tr>
<td></td>
<td>ATM MIB. For more information about the ATM MIB, see ATM MIB.</td>
</tr>
<tr>
<td></td>
<td>• Group source and destination prefixes into source classes and destination</td>
</tr>
<tr>
<td></td>
<td>classes and count packets for those classes. Collect destination class and</td>
</tr>
<tr>
<td></td>
<td>source class usage statistics. For more information about classes, see “</td>
</tr>
<tr>
<td></td>
<td>Destination Class Usage MIB” and “Source Class Usage MIB”, “Configuring Class</td>
</tr>
<tr>
<td></td>
<td>Usage Profiles” on page 328, the Junos OS Network Interfaces Library for</td>
</tr>
<tr>
<td></td>
<td>Routing Devices, and the Junos OS Routing Protocols Library.</td>
</tr>
<tr>
<td></td>
<td>• Count packets as part of a firewall filter. For more information about</td>
</tr>
<tr>
<td></td>
<td>firewall filter policies, see “Enterprise-Specific SNMP MIBs Supported by</td>
</tr>
<tr>
<td></td>
<td>Junos OS” on page 21 and the Junos OS Routing Protocols Library.</td>
</tr>
<tr>
<td></td>
<td>• Sample traffic, collect the samples, and send the collection to a host</td>
</tr>
<tr>
<td></td>
<td>running the CAIDA cflowd utility. For more information about CAIDA and cflowd,</td>
</tr>
<tr>
<td></td>
<td>see the Junos OS Routing Protocols Library for Security Devices.</td>
</tr>
<tr>
<td>Performance management</td>
<td>Monitor performance in the following ways:</td>
</tr>
<tr>
<td></td>
<td>• Use operational mode commands. For more information about monitoring</td>
</tr>
<tr>
<td></td>
<td>performance using operational mode commands, see the CLI Explorer.</td>
</tr>
<tr>
<td></td>
<td>• Use firewall filter. For more information about performance monitoring</td>
</tr>
<tr>
<td></td>
<td>using firewall filters, see the Junos OS Routing Protocols Library.</td>
</tr>
<tr>
<td></td>
<td>• Sample traffic, collect the samples, and send the samples to a host running</td>
</tr>
<tr>
<td></td>
<td>the CAIDA cflowd utility. For more information about CAIDA and cflowd, see the</td>
</tr>
<tr>
<td></td>
<td>Junos OS Routing Protocols Library.</td>
</tr>
<tr>
<td></td>
<td>• Use the enterprise-specific Class-of-Service MIB. For more information</td>
</tr>
<tr>
<td></td>
<td>about this MIB, see Class-of-Service MIB.</td>
</tr>
<tr>
<td>Security management</td>
<td>Assure security in your network in the following ways:</td>
</tr>
<tr>
<td></td>
<td>• Control access to the router and authenticate users. For more information</td>
</tr>
<tr>
<td></td>
<td>about access control and user authentication, see the Junos OS Administration</td>
</tr>
<tr>
<td></td>
<td>Library.</td>
</tr>
<tr>
<td></td>
<td>• Control access to the router using SNMPv3 and SNMP over IPv6. For more</td>
</tr>
<tr>
<td></td>
<td>information, see “Configuring the Local Engine ID” on page 130 and “Tracing</td>
</tr>
<tr>
<td></td>
<td>SNMP Activity on a Device Running Junos OS” on page 209.</td>
</tr>
</tbody>
</table>
Understanding the Integrated Local Management Interface

Supported Platforms

M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

The Integrated Local Management Interface (ILMI) provides a mechanism for Asynchronous Transfer Mode (ATM)-attached devices, such as hosts, routers, and ATM switches, to transfer management information. ILMI provides bidirectional exchange of management information between two ATM interfaces across a physical connection. ILMI information is exchanged over a direct encapsulation of SNMP version 1 (RFC 1157, *A Simple Network Management Protocol*) over ATM Adaptation Layer 5 (AAL5) using a virtual path identifier/virtual channel identifier (VPI/VCI) value (VPI=0, VCI=16).

Junos OS supports only two ILMI MIB variables: `atmfMYIPNmAddress` and `atmfPortMyIfname`. For ATM1 and ATM2 intelligent queuing (IQ) interfaces, you can configure ILMI to communicate directly with an attached ATM switch to enable querying of the switch's IP address and port number.

For more information about the ILMI MIB, see `atmfMYIPNmAddress` or `atmfPortMyIfname` in the [SNMP MIB Explorer](#).

Related Documentation

- Understanding the Integrated Local Management Interface on page 6
- *Understanding the SNMP Implementation in Junos OS*
- Understanding Measurement Points, Key Performance Indicators, and Baseline Values on page 269
- Accounting Options Overview on page 299

Related Documentation

- Understanding Device Management Functions in Junos OS on page 3
Introduction to Network Monitoring

• Monitoring Overview on page 7
• Diagnostic Tools Overview on page 8

Monitoring Overview

Supported Platforms SRX Series, vSRX

Junos OS supports a suite of J-Web tools and CLI operational mode commands for monitoring the system health and performance of your device. Monitoring tools and commands display the current state of the device. To use the J-Web user interface and CLI operational tools, you must have the appropriate access privileges.

You can use the J-Web Monitor option to monitor a device. J-Web results appear in the browser.

You can also monitor the device with CLI operational mode commands. CLI command output appears on the screen of your console or management device, or you can filter the output to a file. For operational commands that display output, such as the show commands, you can redirect the output into a filter or a file. When you display help about these commands, one of the options listed is |, called a pipe, which allows you to filter the command output.

For example, if you enter the show configuration command, the complete device configuration appears on the screen. To limit the display to only those lines of the configuration that contain address, enter the show configuration command using a pipe into the match filter:

```
user@host> show configuration | match address
address-range low 192.168.3.2 high 192.168.3.254;
address-range low 192.168.71.71 high 192.168.71.254;
address 192.168.71.70/21;
address 192.168.2.1/24;
address 127.0.0.1/32;
```

For a complete list of the filters, type a command, followed by the pipe, followed by a question mark (?):

```
user@host> show configuration | ?
```
Possible completions:

compare Compare configuration changes with prior version
count Count occurrences
display Show additional kinds of information
except Show only text that does not match a pattern
find Search for first occurrence of pattern
hold Hold text without exiting the prompt
last Display end of output only
match Show only text that matches a pattern
no-more Don't paginate output
request Make system-level requests
resolve Resolve IP addresses
save Save output text to file
trim Trim specified number of columns from start of line

You can specify complex expressions as an option for the match and except filters.

NOTE: To filter the output of configuration mode commands, use the filter commands provided for the operational mode commands. In configuration mode, an additional filter is supported.

Related Documentation

- Monitoring Interfaces on page 436
- Diagnostic Tools Overview on page 8

Diagnostic Tools Overview

Supported Platforms SRX Series, vSRX

Juniper Networks devices support a suite of J-Web tools and CLI operational mode commands for evaluating system health and performance. Diagnostic tools and commands test the connectivity and reachability of hosts in the network.

- Use the J-Web Diagnose options to diagnose a device. J-Web results appear in the browser.
- Use CLI operational mode commands to diagnose a device. CLI command output appears on the screen of your console or management device, or you can filter the output to a file.

To use the J-Web user interface and CLI operational tools, you must have the appropriate access privileges.

This section contains the following topics:

- J-Web Diagnostic Tools on page 9
- CLI Diagnostic Commands on page 9
J-Web Diagnostic Tools

The J-Web diagnostic tools consist of the options that appear when you select Troubleshoot and Maintain in the task bar. Table 4 on page 9 describes the functions of the Troubleshoot options.

Table 4: J-Web Interface Troubleshoot Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ping Host</td>
<td>Allows you to ping a remote host. You can configure advanced options for the ping operation.</td>
</tr>
<tr>
<td>Ping MPLS</td>
<td>Allows you to ping an MPLS endpoint using various options.</td>
</tr>
<tr>
<td>Traceroute</td>
<td>Allows you to trace a route between the device and a remote host. You can configure advanced options for the traceroute operation.</td>
</tr>
<tr>
<td>Packet Capture</td>
<td>Allows you to capture and analyze router control traffic.</td>
</tr>
</tbody>
</table>

Maintain Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Files</td>
<td>Allows you to manage log, temporary, and core files on the device.</td>
</tr>
<tr>
<td>Upgrade</td>
<td>Allows you to upgrade and manage Junos OS packages.</td>
</tr>
<tr>
<td>Licenses</td>
<td>Displays a summary of the licenses needed and used for each feature that requires a license. Allows you to add licenses.</td>
</tr>
<tr>
<td>Reboot</td>
<td>Allows you to reboot the device at a specified time.</td>
</tr>
</tbody>
</table>

CLI Diagnostic Commands

The CLI commands available in operational mode allow you to perform the same monitoring, troubleshooting, and management tasks you can perform with the J-Web user interface. Instead of invoking the tools through a graphical interface, you use operational mode commands to perform the tasks.

You can perform certain tasks only through the CLI. For example, you can use the mtrace command to display trace information about a multicast path from a source to a receiver, which is a feature available only through the CLI.

To view a list of top-level operational mode commands, type a question mark (?) at the command-line prompt.

At the top level of operational mode are the broad groups of CLI diagnostic commands listed in Table 5 on page 10.
Table 5: CLI Diagnostic Command Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlling the CLI Environment</td>
<td></td>
</tr>
<tr>
<td>set option</td>
<td>Configures the CLI display.</td>
</tr>
<tr>
<td>Diagnosis and Troubleshooting</td>
<td></td>
</tr>
<tr>
<td>clear</td>
<td>Clears statistics and protocol database information.</td>
</tr>
<tr>
<td>mtrace</td>
<td>Traces information about multicast paths from source to receiver.</td>
</tr>
<tr>
<td>monitor</td>
<td>Performs real-time debugging of various Junos OS components, including the routing protocols and interfaces.</td>
</tr>
<tr>
<td>ping</td>
<td>Determines the reachability of a remote network host.</td>
</tr>
<tr>
<td>ping mpls</td>
<td>Determines the reachability of an MPLS endpoint using various options.</td>
</tr>
<tr>
<td>test</td>
<td>Tests the configuration and application of policy filters and AS path regular expressions.</td>
</tr>
<tr>
<td>traceroute</td>
<td>Traces the route to a remote network host.</td>
</tr>
<tr>
<td>Connecting to Other Network Systems</td>
<td></td>
</tr>
<tr>
<td>ssh</td>
<td>Opens secure shell connections.</td>
</tr>
<tr>
<td>telnet</td>
<td>Opens Telnet sessions to other hosts on the network.</td>
</tr>
<tr>
<td>Management</td>
<td></td>
</tr>
<tr>
<td>copy</td>
<td>Copies files from one location on the device to another, from the device to a remote system, or from a remote system to the device.</td>
</tr>
<tr>
<td>restart option</td>
<td>Restarts the various system processes, including the routing protocol, interface, and SNMP processes.</td>
</tr>
<tr>
<td>request</td>
<td>Performs system-level operations, including stopping and rebooting the device and loading Junos OS images.</td>
</tr>
<tr>
<td>start</td>
<td>Exits the CLI and starts a UNIX shell.</td>
</tr>
<tr>
<td>configuration</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>quit</td>
<td>Exits the CLI and returns to the UNIX shell.</td>
</tr>
</tbody>
</table>

Related Documentation
- MPLS Connection Checking Overview on page 555
- Understanding Ping MPLS on page 557
- Using the J-Web Ping Host Tool on page 560
• Using the ping Command on page 558
PART 2

Network Monitoring Using SNMP

- SNMP Overview on page 15
- SNMP MIBs and Traps Supported by Junos OS on page 21
- Loading MIB Files to a Network Management System on page 83
- Configuring SNMP on page 87
- Configuring SNMPv3 on page 125
- Configuring SNMP for Routing Instances on page 165
- Configuring SNMP Remote Operations on page 183
- Tracing SNMP Activity on page 203
- SNMP FAQs on page 215
SNMP Overview

Understanding SNMP Implementation in Junos OS on page 15
SNMPv3 Overview on page 18

Understanding SNMP Implementation in Junos OS

Supported Platforms

ACX Series, EX Series, M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series, vSRX

Do you use a central network management system (NMS)? Most NMS’s use a version of Simple Network Management Protocol (SNMP) that can monitor the status of Junos OS devices that send unsolicited messages called traps. You can configure the IP address of your NMS so that Junos OS can send its traps.

SNMP uses a very basic form of authentication called community strings to control access between a manager and remote agents. Community strings are administrative names used to group collections of devices (and the agents running on them) into common management domains. If a manager and an agent share the same community, they can talk to one another.

Many people associate SNMP community strings with passwords and keys because the jobs they do are similar. As a result, SNMP communities are traditionally referred to as strings. The community string is the first level of management authentication implemented by the SNMP agent in Junos OS.

You might also want to configure remote logging on your device. Junos OS uses a system log (syslog) mechanism similar to many Unix devices to forward log messages to a specified log host address. This allows each of your devices to forward their messages to one central host, making it easier to monitor the network as a whole. Syslog is a very flexible and rich way of logging messages and is used by many device vendors to supplement the information provided by SNMP traps.

A typical SNMP implementation includes three components:

- Managed device
- SNMP agent
- Network management system (NMS)
A managed device is any device on a network, also known as a network element, that is managed by the network management system. Routers and switches are common examples of managed devices. The SNMP agent is the SNMP process that resides on the managed device and communicates with the network management system. The NMS is a combination of hardware and software that is used to monitor and administer a network.

The SNMP data is stored in a highly-structured, hierarchical format known as a management information base (MIB). The MIB structure is based on a tree structure, which defines a grouping of objects into related sets. Each object in the MIB is associated with an object identifier (OID), which names the object. The “leaf” in the tree structure is the actual managed object instance, which represents a resource, event, or activity that occurs in your network device.

The SNMP agent exchanges network management information with SNMP manager software running on an NMS, or host. The agent responds to requests for information and actions from the manager. The agent also controls access to the agent’s MIB, the collection of objects that can be viewed or changed by the SNMP manager.

The SNMP manager collects information about network connectivity, activity, and events by polling managed devices.

Communication between the agent and the manager occurs in one of the following forms:

- **Get, GetBulk, and GetNext requests**—The manager requests information from the agent. The agent returns the information in a Get response message.
- **Set requests**—The manager changes the value of a MIB object controlled by the agent. The agent indicates status in a Set response message.
- **Traps notification**—The agent sends traps to notify the manager of significant events that occur on the network device.

The SNMP implementation in Junos OS contains:

- A master SNMP agent (known as the SNMP process or snmpd) that resides on the managed device and is managed by the NMS or host.
- Various subagents that reside on different modules of Junos OS, such as the Routing Engine, and are managed by the master SNMP agent (snmpd).

NOTE: By default, SNMP is not enabled on devices running Junos OS. For information about enabling SNMP on a device running the Junos OS, see “Configuring SNMP on Devices Running Junos OS” on page 95.

The SNMP implementation in Junos OS uses both standard (developed by the IETF and documented in RFCs) and enterprise-specific (developed and supported by specific vendors) MIBs.
In Junos OS, the management data is maintained by the snmpd at one level (for example, snmpVacmMIB and snmpUsmMIB), and the subagents at the next level (for example, routing MIBs and RMON MIBs). However, there is another level of data that is maintained neither by the master agent nor by the subagents. In such cases, the data is maintained by the Junos OS processes that share the data with the subagents when polled for SNMP data. Interface-related MIBs and Firewall MIBs are good examples of data maintained by Junos OS processes.

When a network management system polls the master agent for data, the master agent immediately shares the data with the network management system if the requested data is available with the master agent or one of the subagents. However, if the requested data does not belong to those categories that are maintained by the master agent or the subagents, the subagent polls the Junos OS kernel or the process that maintains that data. On receiving the required data, the subagent passes the response back to the master agent, which in turn passes it to the NMS.

The following illustration shows the communication flow among the NMS, SNMP process (snmpd), SNMP subagents, and the Junos OS processes.

When a significant event, most often an error or a failure, occurs on a network device, the SNMP agent sends notifications to the SNMP manager. The SNMP implementation in Junos OS supports two types of notifications: traps and informs. **Traps** are unconfirmed notifications, whereas **informs** are confirmed notifications. Informs are supported only on devices that support SNMP version 3 (SNMPv3) configuration.

Junos OS supports trap queuing to ensure that traps are not lost because of temporary unavailability of routes. Two types of queues, destination queues and a throttle queue, are formed to ensure delivery of traps and to control the trap traffic.

Junos OS forms a destination queue when a trap to a particular destination is returned because the host is not reachable, and adds the subsequent traps to the same destination to the queue. Junos OS checks for availability of routes every 30 seconds and sends the traps from the destination queue in a round-robin fashion.

If the trap delivery fails, the trap is added back to the queue, and the delivery attempt counter and the next delivery attempt timer for the queue are reset. Subsequent attempts occur at progressive intervals of 1 minute, 2 minutes, 4 minutes, and 8 minutes. The maximum delay between the attempts is 8 minutes, and the maximum number of
After 10 unsuccessful attempts, the destination queue and all the traps in the queue are deleted.

Junos OS also has a throttle mechanism to control the number of traps (throttle threshold; default value of 500 traps) sent during a particular time period (throttle interval; default of 5 seconds) and to ensure consistency in trap traffic, especially when large number of traps are generated because of interface status changes. The throttle interval period begins when the first trap arrives at the throttle. All traps within the trap threshold are processed, and the traps beyond the threshold limit are queued.

The maximum size of trap queues—that is, throttle queue and destination queue put together—is 40,000. However, on EX Series Ethernet Switches, the maximum size of the trap queue is 1,000. The maximum size of any one queue is 20,000 for devices other than EX Series Switches. On EX Series Switches, the maximum size of one queue is 500. When a trap is added to the throttle queue, or if the throttle queue has exceeded the maximum size, the trap is added back on top of the destination queue, and all subsequent attempts from the destination queue are stopped for a 30-second period, after which the destination queue restarts sending the traps.

Related Documentation

- FAQ: SNMP Support on Junos OS
- Configuring SNMP on Devices Running Junos OS on page 95
- Monitoring SNMP Activity and Tracking Problems That Affect SNMP Performance on a Device Running Junos OS on page 203
- Optimizing the Network Management System Configuration for the Best Results on page 91
- Configuring Options on Managed Devices for Better SNMP Response Time on page 93
- Managing Traps and Informs
- Using the Enterprise-Specific Utility MIB to Enhance SNMP Coverage

SNMPv3 Overview

Supported Platforms

ACX Series, M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

In contrast to SNMP version 1 (SNMPv1) and SNMP version 2 (SNMPv2), SNMP version 3 (SNMPv3) supports authentication and encryption. SNMPv3 uses the user-based security model (USM) for message security and the view-based access control model (VACM) for access control. USM specifies authentication and encryption. VACM specifies access-control rules.

USM uses the concept of a user for which security parameters (levels of security, authentication, privacy protocols, and keys) are configured for both the agent and the manager. Messages sent using USM are better protected than messages sent with community strings, where passwords are sent in the clear. With USM, messages exchanged between the manager and the agent can have data integrity checking and data origin authentication. USM protects against message delays and message replays by using time indicators and request IDs. Encryption is also available.
To complement the USM, SNMPv3 uses the VACM, a highly granular access-control model for SNMPv3 applications. Based on the concept of applying security policies to the name of the groups querying the agent, the agent decides whether the group is allowed to view or change specific MIB objects. VACM defines collections of data (called views), groups of data users, and access statements that define which views a particular group of users can use for reading, writing, or receiving traps.

Trap entries in SNMPv3 are created by configuring the notify, notify filter, target address, and target parameters. The `notify` statement specifies the type of notification (trap) and contains a single tag. The tag defines a set of target addresses to receive a trap. The notify filter defines access to a collection of trap object identifiers (OIDs). The target address defines a management application’s address and other attributes to be used in sending notifications. Target parameters define the message processing and security parameters to be used in sending notifications to a particular management target.

To configure SNMPv3, perform the following tasks:

- Creating SNMPv3 Users on page 131
- Configuring MIB Views on page 121
- Defining Access Privileges for an SNMP Group on page 136
- Configuring SNMPv3 Traps on a Device Running Junos OS on page 143
- Configuring SNMP Informs on page 153

Related Documentation:
- Minimum SNMPv3 Configuration on a Device Running Junos OS on page 126
SNMP MIBs and Traps Supported by Junos OS

- Enterprise-Specific SNMP MIBs Supported by Junos OS on page 21
- Standard SNMP MIBs Supported by Junos OS on page 32
- Enterprise-Specific MIBs and Supported Devices on page 50
- Standard SNMP Traps Supported by Junos OS on page 60
- Enterprise-Specific SNMP Traps Supported by Junos OS on page 68

Enterprise-Specific SNMP MIBs Supported by Junos OS

Supported Platforms

ACX Series, EX Series, M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series, vSRX

Junos OS supports the enterprise-specific MIBs listed in Table 6 on page 21. For information about enterprise-specific SNMP MIB objects, see the SNMP MIB Explorer.

Table 6: Enterprise-specific MIBs supported by Junos OS

<table>
<thead>
<tr>
<th>Enterprise-Specific MIB</th>
<th>Description</th>
<th>Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA Objects MIB</td>
<td>Provides support for monitoring user authentication, authorization, and accounting through the RADIUS, LDAP, SecurID, and local authentication servers.</td>
<td>SRX Series and vSRX</td>
</tr>
<tr>
<td>Access Authentication Objects MIB</td>
<td>Provides support for monitoring firewall authentication, including data about the users trying to access firewall-protected resources and the firewall authentication service itself.</td>
<td>SRX Series and vSRX</td>
</tr>
<tr>
<td>Alarm MIB</td>
<td>Provides information about alarms from the router chassis.</td>
<td>All platforms</td>
</tr>
</tbody>
</table>
Table 6: Enterprise-specific MIBs supported by Junos OS (continued)

<table>
<thead>
<tr>
<th>Enterprise-Specific MIB</th>
<th>Description</th>
<th>Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzer MIB</td>
<td>Provides information about analyzer and remote analyzer related to port mirroring on the EX Series Ethernet Switches. Port mirroring is a method used on enterprise switches to monitor and analyze traffic on the network. When port mirroring is enabled, copies of all (or a sample set of) packets are forwarded from one port of the switch to another port on the same switch (analyzer) or on another switch (remote analyzer) where the packet can be analyzed and studied.</td>
<td>EX Series, QFabric system, and QFX Series</td>
</tr>
<tr>
<td>Antivirus Objects MIB</td>
<td>Provides information about the antivirus engine, antivirus scans, and antivirus scan-related traps.</td>
<td>SRX Series and vSRX</td>
</tr>
<tr>
<td>ATM Class-of-Service MIB</td>
<td>Provides support for ATM interfaces and virtual connections.</td>
<td>ACX Series, M Series, and T Series</td>
</tr>
<tr>
<td>ATM MIB</td>
<td>Provides support for monitoring Asynchronous Transfer Mode, version 2 (ATM2) virtual circuit (VC) class-of-service (CoS) configurations. It also provides CoS queue statistics for all VCs that have CoS configured.</td>
<td>M Series, SRX Series, T Series and vSRX</td>
</tr>
<tr>
<td>BGP4 V2 MIB</td>
<td>Provides support for monitoring BGP peer-received prefix counters. It is based upon similar objects in the MIB documented in Internet draft draft-ietf-idr-bgp4-mibv2-03.txt, Definitions of Managed Objects for the Fourth Version of BGP (BGP-4), Second Version.</td>
<td>All platforms</td>
</tr>
<tr>
<td>Bidirectional Forwarding Detection MIB</td>
<td>Provides support for monitoring Bidirectional Forwarding Detection (BFD) sessions.</td>
<td>All platforms</td>
</tr>
<tr>
<td>Chassis Cluster MIB</td>
<td>Provides information about objects that are used whenever the state of the control link interfaces or fabric link interfaces changes (up to down or down to up) in a chassis cluster deployment.</td>
<td>SRX Series and vSRX</td>
</tr>
<tr>
<td>Chassis Definitions for Router Model MIB</td>
<td>Contains the object identifiers (OIDs) that are used by the Chassis MIB to identify platform and chassis components. The Chassis MIB provides information that changes often, whereas the Chassis Definitions for Router Model MIB provides information that changes less often.</td>
<td>ACX Series, M Series, MX Series, PTX Series, QFX Series, SRX550, SRX1500, and T Series</td>
</tr>
</tbody>
</table>
Table 6: Enterprise-specific MIBs supported by Junos OS (continued)

<table>
<thead>
<tr>
<th>Enterprise-Specific MIB</th>
<th>Description</th>
<th>Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis MIBs</td>
<td>Provides support for environmental monitoring (power supply state, board voltages, fans, temperatures, and airflow) and inventory support for the chassis, System Control Board (SCB), System and Switch Board (SSB), Switching and Forwarding Module (SFM), Switch Fabric Board (SFB), Flexible PIC Concentrators (FPCs), and PICs.</td>
<td>All platforms</td>
</tr>
<tr>
<td>Class-of-Service MIB</td>
<td>Provides support for monitoring interface output queue statistics per interface and per forwarding class.</td>
<td>ACX Series, EX Series, M Series, MX Series, PTX Series, QFabric system, QFX Series, SRX Series, T Series, and vSRX</td>
</tr>
<tr>
<td>Configuration Management MIB</td>
<td>Provides notification for configuration changes as SNMP traps. Each trap contains the time at which the configuration change was committed, the name of the user who made the change, and the method by which the change was made. A history of the last 32 configuration changes is kept in jnxCmChgEventTable.</td>
<td>All platforms</td>
</tr>
<tr>
<td>Destination Class Usage MIB</td>
<td>Provides support for monitoring packet counts based on the ingress and egress points for traffic transiting your networks. Ingress points are identified by the input interface. Egress points are identified by destination prefixes grouped into one or more sets, known as destination classes. One counter is managed per interface per destination class, up to a maximum of 16 counters per interface.</td>
<td>EX Series, M Series, SRX Series, T Series, and vSRX</td>
</tr>
<tr>
<td>DHCP MIB</td>
<td>Provides SNMP support (get and trap) for DHCP local server and relay configurations. It also provides support for bindings and leases tables, and for statistics.</td>
<td>M Series, MX Series, and T Series</td>
</tr>
<tr>
<td>DHCPv6 MIB</td>
<td>Provides SNMP support (get and trap) for DHCPv6 local server and relay configurations. It also provides support for bindings and leases tables, and for statistics.</td>
<td>M Series, MX Series, and T Series</td>
</tr>
<tr>
<td>Digital Optical Monitoring MIB</td>
<td>Provides support for the SNMP Get request for statistics and SNMP Trap notifications for alarms.</td>
<td>EX Series, M Series, MX Series, PTX Series, and T Series</td>
</tr>
<tr>
<td>Enterprise-Specific MIB</td>
<td>Description</td>
<td>Platforms</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>DNS Objects MIB</td>
<td>Provides support for monitoring DNS proxy queries, requests, responses, and failures.</td>
<td>SRX Series and vSRX</td>
</tr>
<tr>
<td>Dynamic Flow Capture MIB</td>
<td>Provides support for monitoring the operational status of dynamic flow capture (DFC) PICs.</td>
<td>M Series and T Series</td>
</tr>
<tr>
<td>Ethernet MAC MIB</td>
<td>Monitors media access control (MAC) statistics on Gigabit Ethernet intelligent queuing (iQ) interfaces. It collects MAC statistics; for example, inoctets, inframes, outoctets, and outframes on each source MAC address and virtual LAN (VLAN) ID for each Ethernet port.</td>
<td>EX Series, M Series, MX Series, QFX Series, SRX300, SRX320, SRX340, SRX550, SRX1500 and T Series</td>
</tr>
<tr>
<td>Event MIB</td>
<td>Defines a generic trap that can be generated using an op script or event policy. This MIB provides the ability to specify a system log string and raise a trap if that system log string is found.</td>
<td>ACX Series, EX Series, M Series, MX Series, PTX Series, QFabric system, QFX Series, SRX1500, SRX300, SRX320, SRX340, SRX550, and T Series</td>
</tr>
<tr>
<td>Experimental MIB</td>
<td>Contains object identifiers for experimental MIBs.</td>
<td>ACX Series, M series, MX Series, and T series</td>
</tr>
<tr>
<td>EX Series MAC Notification MIB</td>
<td>Contains Juniper Networks’ implementation of enterprise-specific MIB for Ethernet MAC Stats for EX Series.</td>
<td>EX Series</td>
</tr>
<tr>
<td>EX Series SMI MiB</td>
<td>Contains the Structure of Management Information for Juniper Networks EX Series platforms.</td>
<td>EX Series</td>
</tr>
<tr>
<td>Firewall MIB</td>
<td>Provides support for monitoring firewall filter counters. Routers must have the Internet Processor II ASIC to perform firewall monitoring.</td>
<td>ACX Series, EX Series, M Series, MX Series, PTX Series, QFabric system, QFX Series, SRX300, SRX320, SRX340, SRX550, SRX1500 and T Series</td>
</tr>
<tr>
<td>Flow Collection Services MIB</td>
<td>Provides statistics on files, records, memory, FTP, and error states of a monitoring services interface. It also provides SNMP traps for unavailable destinations, unsuccessful file transfers, flow overloading, and memory overloading.</td>
<td>M Series and T Series</td>
</tr>
<tr>
<td>GRE Keepalive Monitoring MIB</td>
<td>Provides support for monitoring generic routing encapsulation (GRE) keepalive status. This MIB also provides an SNMP trap when GRE keepalive status changes.</td>
<td>SRX Series and vSRX instances</td>
</tr>
</tbody>
</table>
Table 6: Enterprise-specific MIBs supported by Junos OS (continued)

<table>
<thead>
<tr>
<th>Enterprise-Specific MIB</th>
<th>Description</th>
<th>Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Resources MIB</td>
<td>Extends the hrStorageTable object, providing a measure of the usage of each file system on the router in percentage format. Previously, the objects in the hrStorageTable measured the usage in allocation units—hrStorageUsed and hrStorageAllocationUnits—only. Using the percentage measurement, you can more easily monitor and apply thresholds on usage.</td>
<td>ACX Series, EX Series, M Series, MX Series, QFX Series, SRX300, SRX320, SRX340, SRX550, SRX1500 and T Series</td>
</tr>
<tr>
<td>Interface Accounting Forwarding Class MIB</td>
<td>Extends the Juniper Enterprise Interface MIB and provides support for monitoring statistics data for interface accounting and IETF standardization.</td>
<td>M Series, MX Series, SRX Series, and vSRX</td>
</tr>
<tr>
<td>Interface MIB</td>
<td>Extends the standard ifTable (RFC 2863) with additional statistics and Juniper Networks enterprise-specific chassis information.</td>
<td>ACX Series, EX Series, M Series, MX Series, PTX Series, QFabric system, QFX Series, SRX300, SRX320, SRX340, SRX550, SRX1500 and T Series</td>
</tr>
<tr>
<td>IP Forward MIB</td>
<td>Extends the standard IP Forwarding Table MIB (RFC 4292) to include CIDR forwarding information.</td>
<td>All platforms</td>
</tr>
<tr>
<td>IPsec Generic Flow Monitoring Object MIB</td>
<td>Based on jnx-ipsec-monitor-mib, this MIB provides support for monitoring IPsec and IPsec VPN management objects.</td>
<td>SRX Series and vSRX</td>
</tr>
<tr>
<td>IPsec Monitoring MIB</td>
<td>Provides operational and statistical information related to the IPsec and IKE tunnels on Juniper Networks routers.</td>
<td>M Series, SRX Series, and T Series</td>
</tr>
<tr>
<td>IPsec VPN Objects MIB</td>
<td>Provides support for monitoring IPsec and IPsec VPN management objects for Juniper security product lines. This MIB is an extension of jnx-ipsec-flow-mon.mib.</td>
<td>SRX Series</td>
</tr>
<tr>
<td>IPv4 MIB</td>
<td>Provides additional Internet Protocol version 4 (IPv4) address information, supporting the assignment of identical IPv4 addresses to separate interfaces.</td>
<td>All platforms</td>
</tr>
<tr>
<td>IPv6 and ICMPv6 MIB</td>
<td>Provides IPv6 and Internet Control Message Protocol version 6 (ICMPv6) statistics.</td>
<td>M series, MX Series, PTX Series, SRX Series, T Series, and vSRX</td>
</tr>
</tbody>
</table>
Table 6: Enterprise-specific MIBs supported by Junos OS (continued)

<table>
<thead>
<tr>
<th>Enterprise-Specific MIB</th>
<th>Description</th>
<th>Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2ALD MIB</td>
<td>Contains information about the Layer 2 Address Learning Daemon (L2ALD) and related traps, such as the routing instance MAC limit trap and the interface MAC limit trap. This MIB also provides VLAN information in the jnxL2aldVlanTable table for Enhanced Layer 2 Software (ELS) EX Series and QFX Series switches. NOTE: Non-ELS EX Series switches support the VLAN MIB (jnxExVlanTable table) for VLAN information instead of this MIB. See the SNMP MIB Explorer.</td>
<td>EX Series, MX Series, QFX Series, and T Series</td>
</tr>
<tr>
<td>L2CP MIB</td>
<td>Provides information about Layer 2 Control Protocols (L2CP) based features. Currently, Junos OS supports only the jnxDot1dStpPortRootProtectEnabled, jnxDot1dStpPortRootProtectState, and jnxPortRootProtectStateChangeTrap objects.</td>
<td>MX Series</td>
</tr>
<tr>
<td>L2TP MIB</td>
<td>Provides information about Layer 2 Transport Protocol (L2TP) tunnels and sessions.</td>
<td>M Series, MX Series, and T Series</td>
</tr>
<tr>
<td>LDP MIB</td>
<td>Provides LDP statistics and defines LDP label-switched path (LSP) notifications. LDP traps support only IPv4 standards.</td>
<td>ACX Series, M Series, PTX Series, SRX Series, and T Series</td>
</tr>
<tr>
<td>License MIB</td>
<td>Extends SNMP support to licensing information, and introduces SNMP traps that alert users when the licenses are about to expire, expire, or when the total number of users exceeds the number specified in the license.</td>
<td>M Series, MX Series, SRX Series, and T Series</td>
</tr>
<tr>
<td>Logical Systems MIB</td>
<td>Extend SNMP support to logical systems security profile through various MIBs defined under jnxLsysSecurityProfile.</td>
<td>SRX Series</td>
</tr>
<tr>
<td>MIMSTP MIB</td>
<td>Provides information about MSTP instances (that is, routing instances of type Virtual Switch/Layer 2 control, also known as virtual contexts), MSTIs within the MSTP instance, and VLANs associated with the MSTI.</td>
<td>MX Series and T Series</td>
</tr>
</tbody>
</table>
Table 6: Enterprise-specific MIBs supported by Junos OS (continued)

<table>
<thead>
<tr>
<th>Enterprise-Specific MIB</th>
<th>Description</th>
<th>Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLS LDP MIB</td>
<td>Contains object definitions as described in RFC 3815, Definitions of Managed Objects for the Multiprotocol Label Switching (MPLS), Label Distribution Protocol (LDP). NOTE: Objects in the MPLS LDP MIB were supported in earlier releases of Junos OS as a proprietary LDP MIB (mib-ldpmib.txt). Because the branch used by the proprietary LDP (mib-ldpmib.txt) conflicts with RFC 3812, the proprietary LDP MIB (mib-ldpmib.txt) has been deprecated and replaced by the enterprise-specific MPLS LDP MIB (mib-jnx-mpls-ldp.txt).</td>
<td>ACX Series, EX Series, M Series, MX Series, PTX Series, QFX Series, and T Series</td>
</tr>
<tr>
<td>MPLS MIB</td>
<td>Provides MPLS information and defines MPLS notifications. NOTE: To collect information about MPLS statistics on transit routers, use the enterprise-specific RSVP MIB (mib-jnx-rsvp.txt) instead of the enterprise-specific MPLS MIB (mib-jnx-mpls.txt).</td>
<td>ACX Series, EX Series, M Series, MX Series, PTX Series, QFX Series, SRX Series, and T Series</td>
</tr>
<tr>
<td>MVPN MIB</td>
<td>Contains objects that enable SNMP manager to monitor MVPN connections on the provider edge routers. The enterprise-specific MVPN MIB is the Juniper Networks extension of the IETF standard MIBs defined in internet draft draft-ietf-l3vpn-mvpn-mib-03.txt, MPLS/BGP Layer 3 VPN Multicast Management Information Base.</td>
<td>All platforms</td>
</tr>
<tr>
<td>NAT Objects MIB</td>
<td>Provides support for monitoring network address translation (NAT).</td>
<td>EX Series and SRX Series</td>
</tr>
<tr>
<td>NAT Resources-Monitoring MIB</td>
<td>Provides support for monitoring NAT pools usage and NAT rules. Notifications of usage of NAT resources are also provided by this MIB. This MIB is currently supported on the Multiservices PIC and Multiservices DPC on M Series and MX Series routers only.</td>
<td>M Series and MX Series</td>
</tr>
<tr>
<td>OTN Interface Management MIB</td>
<td>Defines objects for managing Optical Transport Network (OTN) interfaces on devices running Junos OS.</td>
<td>M Series, MX series, PTX Series, and T Series</td>
</tr>
<tr>
<td>Packet Forwarding Engine MIB</td>
<td>Provides notification statistics for Packet Forwarding Engines.</td>
<td>ACX Series, EX Series, M Series, PTX Series, SRX Series, and T Series</td>
</tr>
</tbody>
</table>
Table 6: Enterprise-specific MIBs supported by Junos OS (continued)

<table>
<thead>
<tr>
<th>Enterprise-Specific MIB</th>
<th>Description</th>
<th>Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet Mirror MIB</td>
<td>Enables you to capture and view packet mirroring-related information. This MIB is currently supported by Junos OS for MX Series routers only. Packet mirroring traps are an extension of the standard SNMP implementation and are only available to SNMPv3 users.</td>
<td>MX Series</td>
</tr>
<tr>
<td>PAE Extension MIB</td>
<td>Extends the standard IEEE802.1x PAE Extension MIB, and contains information for Static MAC Authentication.</td>
<td>EX Series</td>
</tr>
<tr>
<td>Passive Monitoring MIB</td>
<td>Performs traffic flow monitoring and lawful interception of packets transiting between two routers.</td>
<td>M Series and T Series</td>
</tr>
<tr>
<td>Ping MIB</td>
<td>Extends the standard Ping MIB control table (RFC 2925). Items in this MIB are created when entries are created in pingCtlTable of the Ping MIB. Each item is indexed exactly as it is in the Ping MIB.</td>
<td>ACX Series, EX Series, M Series, MX Series, QFX Series, SRX Series, and T Series</td>
</tr>
<tr>
<td>Policy Objects MIB</td>
<td>Provides support for monitoring the security policies that control the flow of traffic from one zone to another.</td>
<td>SRX Series</td>
</tr>
<tr>
<td>Power Supply Unit MIB</td>
<td>Enables monitoring and managing of the power supply on a device running Junos OS.</td>
<td>EX Series and QFabric system</td>
</tr>
<tr>
<td>PPP MIB</td>
<td>Provides SNMP support for PPP-related information such as the type of authentication used, interface characteristics, status, and statistics. This MIB is supported on Common Edge PPP process, jpppd.</td>
<td>M Series and MX Series</td>
</tr>
<tr>
<td>PPPoE MIB</td>
<td>Provides SNMP support for PPPoE-related information such as the type of authentication used, interface characteristics, status, and statistics. This MIB is supported on Common Edge PPPoE process, jpppoed.</td>
<td>M Series and MX Series</td>
</tr>
<tr>
<td>Pseudowire ATM MIB</td>
<td>Extends the standard Pseudowire MIB, and defines objects used for managing the ATM pseudowires in Juniper products. The enterprise-specific Pseudowire ATM MIB is the Juniper Networks implementation of RFC 5605, Managed Objects for ATM over Packet Switched Networks (PSNs).</td>
<td>M Series and MX Series</td>
</tr>
<tr>
<td>Enterprise-Specific MIB</td>
<td>Description</td>
<td>Platforms</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Pseudowire TDM MIB</td>
<td>Extends the standard Pseudowire MIB, and contains information about configuration and statistics for specific pseudowire types. The enterprise-specific Pseudowire TDM MIB is the Juniper Networks implementation of the standard Managed Objects for TDM over Packet Switched Network MIB (draft-ietf-pwe3-tdm-mib-08.txt).</td>
<td>ACX Series, M Series, and T Series</td>
</tr>
<tr>
<td>PTP MIB</td>
<td>Monitors the operation of PTP clocks within the network.</td>
<td>MX Series</td>
</tr>
<tr>
<td>Real-Time Performance Monitoring MIB</td>
<td>Provides real-time performance-related data and enables you to access jitter measurements and calculations using SNMP.</td>
<td>EX Series, M Series, MX Series, SRX Series, and T Series</td>
</tr>
<tr>
<td>Reverse-Path-Forwarding MIB</td>
<td>Monitors statistics for traffic that is rejected because of reverse-path-forwarding (RPF) processing.</td>
<td>All platforms</td>
</tr>
<tr>
<td>RMON Events and Alarms MIB</td>
<td>Supports the Junos OS extensions to the standard Remote Monitoring (RMON) Events and Alarms MIB (RFC 2819). The extension augments alarmTable with additional information about each alarm. Two new traps are also defined to indicate when problems are encountered with an alarm.</td>
<td>All platforms</td>
</tr>
<tr>
<td>RSVP MIB</td>
<td>Provides information about RSVP-traffic engineering sessions that correspond to MPLS LSPs on transit routers in the service provider core network.</td>
<td>ACX Series, M Series, MX Series, PTX Series, and T Series</td>
</tr>
<tr>
<td>Security Interface Extension Objects MIB</td>
<td>Provides support for the security management of interfaces.</td>
<td>EX Series, SRX Series, and vSRX</td>
</tr>
<tr>
<td>Security Screening Objects MIB</td>
<td>Defines the MIB for the Juniper Networks Enterprise Firewall screen functionality.</td>
<td>SRX Series and vSRX</td>
</tr>
<tr>
<td>Services PIC MIB</td>
<td>Provides statistics for Adaptive Services (AS) PICs and defines notifications for AS PICs.</td>
<td>M Series and T Series</td>
</tr>
</tbody>
</table>
Table 6: Enterprise-specific MIBs supported by Junos OS (continued)

<table>
<thead>
<tr>
<th>Enterprise-Specific MIB</th>
<th>Description</th>
<th>Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMP IDP MIB</td>
<td>Contains Juniper Networks’ implementation of enterprise specific MIB for IDP.</td>
<td>SRX Series and vSRX</td>
</tr>
<tr>
<td>SONET APS MIB</td>
<td>Monitors any SONET interface that participates in Automatic Protection Switching (APS).</td>
<td>M Series and T Series</td>
</tr>
<tr>
<td>SONET/SDH Interface Management MIB</td>
<td>Monitors the current alarm for each SONET/SDH interface.</td>
<td>M Series and T Series</td>
</tr>
<tr>
<td>Source Class Usage MIB</td>
<td>Counts packets sent to customers by performing a lookup on the IP source address and the IP destination address.</td>
<td>M Series, T Series, and SRX Series</td>
</tr>
<tr>
<td>SPU Monitoring MIB</td>
<td>Provides support for monitoring SPUs on SRX5600 and SRX5800 devices.</td>
<td>SRX Series and vSRX</td>
</tr>
<tr>
<td>Structure of Management Information MIB</td>
<td>Explains how the Juniper Networks enterprise-specific MIBs are structured.</td>
<td>ACX Series, EX Series, M Series, MX series, QFX Series, SRX Series, T Series and vSRX</td>
</tr>
<tr>
<td>Structure of Management Information MIB for EX Series Ethernet Switches</td>
<td>Defines a MIB branch for switching-related MIB definitions for the EX Series Ethernet Switches.</td>
<td>EX Series</td>
</tr>
<tr>
<td>Structure of Management Information MIB for SRX Series</td>
<td>Contains object identifiers (OIDS) for the security branch of the MIBs used in Junos OS for SRX Series devices, services, and traps.</td>
<td>SRX Series and vSRX</td>
</tr>
<tr>
<td>Subscriber MIB</td>
<td>Provides SNMP support for subscriber-related information.</td>
<td>ACX Series, MX Series, and T Series</td>
</tr>
<tr>
<td>System Log MIB</td>
<td>Enables notification of an SNMP trap-based application when an important system log message occurs.</td>
<td>EX Series, M Series, MX Series, PTX Series, QFX Series, SRX Series, and T Series</td>
</tr>
<tr>
<td>Traceroute MIB</td>
<td>Supports the Junos OS extensions of traceroute and remote operations. Items in this MIB are created when entries are created in the traceRouteCtlTable of the Traceroute MIB. Each item is indexed exactly the same way as it is in the Traceroute MIB.</td>
<td>EX Series, M Series, MX Series, SRX Series, T Series, and vSRX</td>
</tr>
</tbody>
</table>
Table 6: Enterprise-specific MIBs supported by Junos OS (continued)

<table>
<thead>
<tr>
<th>Enterprise-Specific MIB</th>
<th>Description</th>
<th>Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel Stats MIB</td>
<td>Supports monitoring of tunnel statistics for IPv4 over IPv6 tunnels. This MIB currently displays three counters: tunnel count in rpd, tunnel count in Kernel, and tunnel count in the Packet Forwarding Engine.</td>
<td>all platforms</td>
</tr>
<tr>
<td>Utility MIB</td>
<td>Provides SNMP support for exposing the Junos OS data and has tables that contain information about each type of data, such as integer and string.</td>
<td>EX Series, M Series, MX Series, QFabric system, QFX Series, SRX Series, T Series, and vSRX</td>
</tr>
<tr>
<td>Virtual Chassis MIB</td>
<td>Contains information about the virtual chassis on the EX Series Ethernet Switches and the MX Series.</td>
<td>EX Series and MX Series</td>
</tr>
<tr>
<td>VLAN MIB</td>
<td>Contains information about prestandard IEEE 802.10 VLANs and their association with LAN emulation clients. NOTE: For ELS EX Series switches and QFX Series switches, VLAN information is provided in the L2ALD MIB in the jnxL2aldVlanTable table instead of in this MIB. See the SNMP MIB Explorer for details. Non-ELS EX Series Ethernet switches use the jnxExVlanTable table in this MIB to provide VLAN configuration information, and the jnxVlanTable table in this MIB has been deprecated and is no longer used.</td>
<td>EX Series and QFX Series</td>
</tr>
<tr>
<td>VPLS MIBs</td>
<td>Provides information about generic, BGP-based, and LDP-based VPLS, and pseudowires associated with the VPLS networks. The enterprise-specific VPLS MIBs are Juniper Networks extensions of the following IETF standard MIBs defined in Internet draft draft-ietf-l2vpn-vpls-mib-05.txt, and are implemented as part of the jnxExperiment branch:</td>
<td>M Series, MX Series, and T Series</td>
</tr>
<tr>
<td></td>
<td>• VPLS-Generic-Draft-01-MIB implemented as mib-jnx-vpls-generic.txt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• VPLS-BGP-Draft-01-MIB implemented as mib-jnx-vpls-bgp.txt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• VPLS-LDP-Draft-01-MIB implemented as mib-jnx-vpls-ldp.txt</td>
<td></td>
</tr>
</tbody>
</table>
Table 6: Enterprise-specific MIBs supported by Junos OS (continued)

<table>
<thead>
<tr>
<th>Enterprise-Specific MIB</th>
<th>Description</th>
<th>Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPN Certificate Objects MIB</td>
<td>Provides support for monitoring the local and CA certificates loaded on the router.</td>
<td>EX Series, SRX Series, and vSRX</td>
</tr>
<tr>
<td>VPN MIB</td>
<td>Provides monitoring for Layer 3 VPNs, Layer 2 VPNs, and virtual private LAN service (VPLS) (read access only).</td>
<td>ACX Series, EX Series, M Series, MX Series, and T Series</td>
</tr>
</tbody>
</table>

For information about enterprise-specific SNMP MIB objects, see the SNMP MIB Explorer.

Related Documentation
- Network Management Administration Guide
- Standard SNMP MiB Supported by Junos OS on page 32
- Enterprise-Specific SNMP Traps Supported by Junos OS on page 68

Standard SNMP MiB Supported by Junos OS

Supported Platforms
- ACX Series, EX Series, M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series, vSRX

Junos OS supports the Standard MiBs listed in Table 7 on page 32.

NOTE: For details on SNMP MIB support on EX4600 switches, QFX Series switches, and QFabric systems, see SNMP MiB Support.

Table 7: Standard MiB supported by Junos OS

<table>
<thead>
<tr>
<th>Standard MiB</th>
<th>Exceptions</th>
<th>Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.1ab section 12.1, Link Layer Discovery Protocol (LLDP) MIB</td>
<td>EX Series implementation of LLDP MIB supports both IPv4 and IPv6 configuration.</td>
<td>EX Series and MX Series</td>
</tr>
</tbody>
</table>
Table 7: Standard MIBs supported by Junos OS (continued)

<table>
<thead>
<tr>
<th>Standard MIB</th>
<th>Exceptions</th>
<th>Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE, 802.3ad, Aggregation of Multiple Link Segments</td>
<td>Supported tables and objects:</td>
<td>EX Series, M Series, MX Series, PTX Series, SRX Series, T Series, and vSRX</td>
</tr>
<tr>
<td></td>
<td>• dot3adAggPortTable, dot3adAggPortListTable, dot3adAggTable, and dot3adAggPortStatsTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: EX Series switches do not support the dot3adAggPortTable and dot3adAggPortStatsTable.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• dot3adAggPortDebugTable (only dot3adAggPortDebugRxState, dot3adAggPortDebugMuxState, dot3adAggPortDebugActorSyncTransitionCount, dot3adAggPortDebugPartnerSyncTransitionCount, dot3adAggPortDebugActorChangeCount, and dot3adAggPortDebugPartnerChangeCount)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: EX Series switches do not support the dot3adAggPortDebugTable.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• dot3adTablesLastChanged</td>
<td></td>
</tr>
</tbody>
</table>
Table 7: Standard MIBs supported by Junos OS (continued)

<table>
<thead>
<tr>
<th>Standard MIB</th>
<th>Exceptions</th>
<th>Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE, 802.1ag, Connectivity Fault Management</td>
<td>Supported tables and objects:</td>
<td>EX Series, MX Series, and QFX Series</td>
</tr>
<tr>
<td>• dot1agCfmMdTableNextIndex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• dot1agCfmMdTable (except dot1agCfmMdMhfldPermission)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• dot1agCfmMaNetTable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• dot1agCfmMaMepListTable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• dot1agCfmDefaultMdDefLevel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• dot1agCfmDefaultMdDefMhfCreation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• dot1agCfmMepTable (except dot1agCfmMepLbrBadMsdu,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dot1agCfmMepTransmitLbmVlanPriority,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dot1agCfmMepTransmitLbmVlanDropEnable,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dot1agCfmMepTransmitLtmFlags,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dot1agCfmMepPbbTeCanReportPbbTePresence,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dot1agCfmMepPbbTeTrafficMismatchDefect,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dot1agCfmMepPbbTeTransmitLbmLtmReverseVid,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dot1agCfmMepPbbTeMismatchAlarm,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dot1agCfmMepPbbTeMismatchSinceReset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• dot1agCfmLtrTable (except dot1agCfmLtrChassisIdSubtype,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dot1agCfmLtrChassisId.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dot1agCfmLtrManAddressDomain,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dot1agCfmLtrManAddress,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dot1agCfmLtrIngressPortIdSubtype,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dot1agCfmLtrIngressPortId,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dot1agCfmLtrEgressPortIdSubtype,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dot1agCfmLtrEgressPortId,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dot1agCfmLtrOrganizationSpecificTlv</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• dot1agCfmMepDbTable (except dot1agCfmMebDbChassisIdSubtype,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dot1agCfmMebDbChassisId,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dot1agCfmMebDbManAddressDomain,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dot1agCfmMebDbManAddress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEEE, 802.1ap, Management Information Base (MIB)</td>
<td>Supported tables and objects:</td>
<td>MX Series</td>
</tr>
<tr>
<td>definitions for VLAN Bridges</td>
<td>• iee8021CfmStackTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• iee8021CfmVlanTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• iee8021CfmDefaultMdTable (except iee8021CfmDefaultMdIdPermission)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• iee8021CfmMaCompTable (except iee8021CfmMaCompIdPermission)</td>
<td></td>
</tr>
<tr>
<td>RFC 1155, Structure and Identification of Management</td>
<td>No exceptions</td>
<td>All platforms</td>
</tr>
<tr>
<td>Information for TCP/IP-based Internets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFC 1157, A Simple Network Management Protocol (SNMP)</td>
<td>No exceptions</td>
<td>All platforms</td>
</tr>
</tbody>
</table>
Table 7: Standard MIBs supported by Junos OS (continued)

<table>
<thead>
<tr>
<th>Standard MIB</th>
<th>Exceptions</th>
<th>Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 1195, Use of OSI IS-IS for Routing in TCP/IP and Dual Environments</td>
<td>Supported tables and objects:</td>
<td>All platforms</td>
</tr>
<tr>
<td>• isisSystem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• isisMANAreaAddr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• isisAreaAddr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• isisSysProtSupp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• isisSummAddr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• isisCirc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• isisCircLevel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• isisPacketCount</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• isisiISAdj</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• isisiISAdjAreaAddr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• isisAdjIPAddr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• isisISAdjProtSupp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• isisRa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• isisIPRA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFC 1212, Concise MIB Definitions</td>
<td>No exceptions</td>
<td>ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, and T Series</td>
</tr>
<tr>
<td>• MIB II and its SNMP version 2 derivates, including:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Statistics counters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• IP, except for ipRouteTable, which has been replaced by ipCidrRouteTable (RFC 2096, IP Forwarding Table MIB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• SNMP management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Interface management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• SNMPv1 Get, GetNext requests, and version 2 GetBulk request</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Junos OS-specific secured access list</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Master configuration keywords</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Reconfigurations upon SIGHUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFC 1215, A Convention for Defining Traps for use with the SNMP</td>
<td>Junos OS supports only MIB II SNMP version 1 traps and version 2 notifications.</td>
<td>ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, and T Series</td>
</tr>
<tr>
<td>RFC 1406, Definitions of Managed Objects for the DS1 and E1 Interface Types</td>
<td>Junos OS supports T1 MIB.</td>
<td>ACX Series, M Series, SRX Series, and T Series</td>
</tr>
<tr>
<td>RFC 1407, Definitions of Managed Objects for the DS3/E3 Interface Type</td>
<td>Junos OS supports T3 MIB.</td>
<td>M Series and T Series</td>
</tr>
</tbody>
</table>
Table 7: Standard MIBs supported by Junos OS (continued)

<table>
<thead>
<tr>
<th>Standard MIB</th>
<th>Exceptions</th>
<th>Platforms</th>
</tr>
</thead>
</table>
| RFC 1471, Definitions of Managed Objects for the Link Control Protocol of the Point-to-Point Protocol | Supported tables and objects:
 - `pppLcpL` object
 - `pppLinkStatusTable` table
 - `pppLinkConfigTable` table | M Series, MX Series, and PTX Series |
| RFC 1657, Definitions of Managed Objects for the Fourth Version of the Border Gateway Protocol (BGP-4) using SMIv2 | No exceptions | ACX Series, EX Series, M Series, MX Series, and T Series |
| RFC 1695, Definitions of Managed Objects for ATM Management Version 8.0 Using SMIv2 | No exceptions | ACX Series, M Series, PTX Series, and T Series |
| RFC 1850, OSPF Version 2 Management Information Base | Unsupported tables, objects, and traps:
 - `ospfOriginateNewLsas` object
 - `ospfRxnNewLsas` object
 - The host table
 - `ospfOriginateLSA` trap
 - `ospfLsdbOverflow` trap
 - `ospfLsdbApproachingOverflow` trap | ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, and T Series |
| RFC 1901, Introduction to Community-based SNMPv2 | No exceptions | All platforms |
Table 7: Standard MIBs supported by Junos OS (continued)

<table>
<thead>
<tr>
<th>Standard MIB</th>
<th>Exceptions</th>
<th>Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2024, Definitions of Managed Objects for Data Link Switching Using SMiv2</td>
<td>Unsupported tables, objects, and traps with read-only access:</td>
<td>M Series, MX Series, and T Series</td>
</tr>
<tr>
<td></td>
<td>• dlswInterface object group</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• dlswSdlc object group</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• dlswDirLocateMacTable table</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• dlswDirNBTable table</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• dlswDirLocateNBTable table</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• dlswCircuitDiscReasonLocal tabular object</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• dlswCircuitDiscReasonRemote tabular object</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• dlswDirMacCacheNextIndex scalar object</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• dlswDirNBCacheNextIndex scalar object</td>
<td></td>
</tr>
<tr>
<td>RFC 2096, IP Forwarding Table MIB</td>
<td>The ipCidrRouteTable has been extended to include the tunnel name when the next hop is through an RSVP-signaled LSP.</td>
<td>ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, and T Series</td>
</tr>
<tr>
<td>NOTE: RFC 2096 has been replaced by RFC 4292. However, Junos OS currently supports both RFC 2096 and RFC 4292.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFC 2115, Management Information Base for Frame Relay DTEs Using SMiv2</td>
<td>Unsupported table and objects:</td>
<td>M Series, MX Series, SRX Series, and T Series</td>
</tr>
<tr>
<td></td>
<td>• frCircuitTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• frErrTable</td>
<td></td>
</tr>
<tr>
<td>RFC 2233, The Interfaces Group MIB Using SMiv2</td>
<td>No exceptions</td>
<td>ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, and T Series</td>
</tr>
<tr>
<td>NOTE: RFC 2233 has been replaced by RFC 2863, IF MIB. However, Junos OS supports both RFC 2233 and RFC 2863.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFC 2287, Definitions of System-Level Managed Objects for Applications</td>
<td>Supported tables and objects:</td>
<td>ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, and T Series</td>
</tr>
<tr>
<td></td>
<td>• sysApplInstallPkgTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• sysApplInstallElmtTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• sysAppElmtRunTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• sysAppElMapTable</td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2017, Juniper Networks, Inc.
Table 7: Standard MIBs supported by Junos OS (continued)

<table>
<thead>
<tr>
<th>Standard MIB</th>
<th>Exceptions</th>
<th>Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2495, Definitions of Managed Objects for the DS1, E1, DS2, and E2 Interface Types</td>
<td>Unsupported tables, objects, and traps:</td>
<td>ACX Series, M Series, SRX Series, and T Series</td>
</tr>
<tr>
<td></td>
<td>• dsxlFarEndConfigTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• dsxlFarEndCurrentTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• dsxlFarEndIntervalTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• dsxlFarEndTotalTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• dsxlFracTable</td>
<td></td>
</tr>
<tr>
<td>RFC 2515, Definitions of Managed Objects for ATM Management</td>
<td>Unsupported table and objects:</td>
<td>ACX Series, M Series, and T Series</td>
</tr>
<tr>
<td></td>
<td>• atmVpCrossConnectTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• atmVcCrossConnectTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• aal5VccTable</td>
<td></td>
</tr>
<tr>
<td>(read-only access)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE: RFC 2571 has been replaced by</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFC 3411. However, Junos OS supports</td>
<td></td>
<td></td>
</tr>
<tr>
<td>both RFC 2571 and RFC 3411.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFC 2572, Message Processing and</td>
<td>No exceptions</td>
<td>ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, and T Series</td>
</tr>
<tr>
<td>Dispatching for the Simple Network</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management Protocol (SNMP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(read-only access)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE: RFC 2572 has been replaced by</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFC 3412. However, Junos OS supports</td>
<td></td>
<td></td>
</tr>
<tr>
<td>both RFC 2572 and RFC 3412.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFC 2576, Coexistence between Version 1, Version 2, and Version 3 of the</td>
<td>No exceptions</td>
<td>ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, and T Series</td>
</tr>
<tr>
<td>Internet-standard Network Management Framework</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE: RFC 2576 has been replaced by</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFC 3584. However, Junos OS supports</td>
<td></td>
<td></td>
</tr>
<tr>
<td>both RFC 2576 and RFC 3584.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFC 2578, Structure of Management</td>
<td>No exceptions</td>
<td>ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, and T Series</td>
</tr>
<tr>
<td>Information Version 2 (SMIv2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFC 2579, Textual Conventions for SMIv2</td>
<td>No exceptions</td>
<td>ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, and T Series</td>
</tr>
</tbody>
</table>

Copyright © 2017, Juniper Networks, Inc.
Table 7: Standard MIBs supported by Junos OS (continued)

<table>
<thead>
<tr>
<th>Standard MIB</th>
<th>Exceptions</th>
<th>Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2580, Conformance Statements for SMIv2</td>
<td>No exceptions</td>
<td>ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, and T Series</td>
</tr>
<tr>
<td>RFC 2662, Definitions of Managed Objects for ADSL Lines</td>
<td>No exceptions</td>
<td>M Series, MX Series, SRX Series, and T Series</td>
</tr>
</tbody>
</table>
| RFC 2665, Definitions of Managed Objects for the Ethernet-like Interface Types | For M Series, T Series, and MX Series, the SNMP counters do not count the Ethernet header and frame check sequence (FCS). Therefore, the Ethernet header bytes and the FCS bytes are not included in the following four tables:
 - ifInOctets
 - ifOutOctets
 - ifHCInOctets
 - ifHCOOutOctets
 However, the EX switches adhere to RFC 2665. | ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, and T Series |
| RFC 2787, Definitions of Managed Objects for the Virtual Router Redundancy Protocol | Unsupported table and objects:
 - vrrpStatsPacketLengthErrors
 NOTE: Junos OS does not support this standard for row creation and the Set operation. | ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, and T Series |
| RFC 2790, Host Resources MIB | Supported tables and objects:
 - hrStorageTable
 NOTE: The file systems /, /config, /var, and /tmp always return the same index number. When SNMP restarts, the index numbers for the remaining file systems might change.
 - hrSystem group
 - hrSWinstalled group
 - hrProcessorTable | ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, and T Series |
Table 7: Standard MIBs supported by Junos OS (continued)

<table>
<thead>
<tr>
<th>Standard MIB</th>
<th>Exceptions</th>
<th>Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2819, Remote Network Monitoring Management Information Base</td>
<td>Supported tables and objects:</td>
<td>ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, and T Series</td>
</tr>
<tr>
<td></td>
<td>• etherStatsTable (for Ethernet interfaces only), alarmTable, eventTable, and logTable are supported on all devices running Junos OS.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• historyControlTable and etherHistoryTable (except etherHistoryUtilization object) are supported only on EX Series switches.</td>
<td></td>
</tr>
<tr>
<td>RFC 2863, The Interfaces Group MIB</td>
<td>No exceptions</td>
<td>ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, and T Series</td>
</tr>
<tr>
<td>NOTE: RFC 2863 replaces RFC 2233. However, Junos OS supports both RFC 2233 and RFC 2863.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFC 2864, The Inverted Stack Table Extension to the Interfaces Group MIB</td>
<td>No exceptions</td>
<td>M Series, MX Series, PTX Series, SRX Series, and T Series</td>
</tr>
<tr>
<td>RFC 2922, The Physical Topology (PTOPO) MIB</td>
<td>Supported objects:</td>
<td>EX Series and SRX Series</td>
</tr>
<tr>
<td></td>
<td>• ptopoConnDiscAlgorithm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ptopoConnAgentNetAddrType</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ptopoConnAgentNetAddr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ptopoConnMultiMacSASeen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ptopoConnMultiNetSASeen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ptopoConnIsStatic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ptopoConnLastVerifyTime</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ptopoConnRowStatus</td>
<td></td>
</tr>
<tr>
<td>RFC 2925, Definitions of Managed Objects for Remote Ping, Traceroute, and Lookup Operations</td>
<td>Supported tables and objects:</td>
<td>ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, and T Series</td>
</tr>
<tr>
<td></td>
<td>• pingCtlTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• pingResultsTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• pingProbeHistoryTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• pingMaxConcurrentRequests</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• traceRouteCtlTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• traceRouteResultsTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• traceRouteProbeHistoryTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• traceRouteHopsTable</td>
<td></td>
</tr>
<tr>
<td>RFC 2932, IPv4 Multicast Routing MIB</td>
<td>No exceptions</td>
<td>ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, and T Series</td>
</tr>
</tbody>
</table>
Table 7: Standard MIBs supported by Junos OS (continued)

<table>
<thead>
<tr>
<th>Standard MIB</th>
<th>Exceptions</th>
<th>Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2934, Protocol Independent Multicast MIB for IPv4</td>
<td>Support for the <code>pimNeighborLoss</code> trap was added in Release 11.4.</td>
<td>ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, and T Series</td>
</tr>
<tr>
<td>NOTE: In Junos OS, RFC 2934 is implemented based on a draft version, <code>pimmib.mib</code>, of the now standard RFC.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFC 2981, Event MIB</td>
<td>No exceptions</td>
<td>ACX Series, M Series, MX Series, PTX Series, and T Series</td>
</tr>
<tr>
<td>RFC 3014, Notification Log MIB</td>
<td>No exceptions</td>
<td>ACX Series, M Series, MX Series, PTX Series, and T Series</td>
</tr>
<tr>
<td>NOTE: RFC 3411 replaces RFC 2571. However, Junos OS supports both RFC 3411 and RFC 2571.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE: RFC 3412 replaces RFC 2572. However, Junos OS supports both RFC 3412 and RFC 2572.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFC 3415, View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP)</td>
<td>No exceptions</td>
<td>ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, and T Series</td>
</tr>
</tbody>
</table>
Table 7: Standard MIBs supported by Junos OS (continued)

<table>
<thead>
<tr>
<th>Standard MIB</th>
<th>Exceptions</th>
<th>Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Protocol (SNMP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE: RFC 3416 replaces RFC 1905, which was supported in earlier versions of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junos OS.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SNMP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFC 3418, Management Information Base (MIB) for the Simple Network</td>
<td>No exceptions</td>
<td>ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, and T Series</td>
</tr>
<tr>
<td>Management Protocol (SNMP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE: RFC 3418 replaces RFC 1907, which was supported in earlier versions of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junos OS.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFC 3498, Definitions of Managed Objects for Synchronous Optical Network</td>
<td>No exceptions</td>
<td>M Series and T Series</td>
</tr>
<tr>
<td>(SONET) Linear Automatic Protection Switching (APS) Architectures (</td>
<td></td>
<td></td>
</tr>
<tr>
<td>implemented under the Juniper Networks enterprise branch [jnxExperiment])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFC 3584, Coexistence between Version 1, Version 2, and Version 3 of the</td>
<td>No exceptions</td>
<td>ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, and T Series</td>
</tr>
<tr>
<td>Internet-standard Network Management Framework</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFC 3591 Managed Objects for the Optical Interface Type</td>
<td>Supported tables and objects:</td>
<td>M Series, MX Series, PTX Series, and T Series</td>
</tr>
<tr>
<td>• optfOTMnTable (except optfOTMnOpticalReach, optfOTMnInterfaceType, and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>optfOTMnOrder)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• optfOChConfigTable (except optfOChDirectionality and optfOChCurrentStatus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• optfOTUkConfigTable (except optfOTUkTraceIdentifierAccepted, optfOTUkTIMDetMode, optfOTUkTIMActEnabled, optfOTUkTraceIdentifierTransmitted, optfOTUkDEGThr, optfOTUkDEGM, optfOTUkSinkAdaptActive, and optfOTUkSourceAdaptActive)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• optfODUkConfigTable (except optfODUkPositionSeqCurrentSize and optfODUkTtpPresent)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7: Standard MIBs supported by Junos OS (continued)

<table>
<thead>
<tr>
<th>Standard MIB</th>
<th>Exceptions</th>
<th>Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 3592, Definitions of Managed Objects for the Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH) Interface Type</td>
<td>No exceptions</td>
<td>M Series, MX Series, and T Series</td>
</tr>
<tr>
<td>RFC 3621, Power Ethernet MIB</td>
<td>No exceptions</td>
<td>EX Series</td>
</tr>
<tr>
<td>RFC 3635, Definitions of Managed Objects for the Ethernet-like Interface Types</td>
<td>Unsupported tables and objects:</td>
<td>MX Series</td>
</tr>
<tr>
<td>• dot3StatsRateControlAbility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• dot3StatsRateControlStatus in dot3StatsEntry table</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE: The values of the following objects in dot3HCStatsEntry table will be always zero for both 32-bit counters and 64-bit counters:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• dot3HCStatsSymbolErrors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• dotHCStatsInternalMacTransmitErrors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFC 3637, Definitions of Managed Objects for the Ethernet WAN Interface Sublayer</td>
<td>Unsupported tables and objects:</td>
<td>M Series, MX Series, PTX Series, and T Series</td>
</tr>
<tr>
<td>• etherWisDeviceTable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• etherWisSectionCurrentTable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• etherWisFarEndPathCurrentTable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFC 3811, Definitions of Textual Conventions (TCs) for Multiprotocol Label Switching (MPLS) Management</td>
<td>No exceptions</td>
<td>ACX Series, M Series, MX Series, PTX Series, SRX Series, and T Series</td>
</tr>
</tbody>
</table>
Table 7: Standard MIBs supported by Junos OS (continued)

<table>
<thead>
<tr>
<th>Standard MIB</th>
<th>Exceptions</th>
<th>Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 3812, Multiprotocol Label Switching (MPLS) Traffic Engineering (TE)</td>
<td>MPLS tunnels as interfaces are not supported.</td>
<td>ACX Series, M Series, MX Series, PTX Series, and T Series</td>
</tr>
<tr>
<td>Management Information Base (MIB) (read-only access)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mplsTunnelCHopTable is supported on ingress routers only.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE: The branch used by the proprietary LDP MIB (ldpmib.mib) conflicts with RFC 3812. ldpmib.mib has been deprecated and replaced by jnx-mpls-ldp.mib.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unsupported tables and objects:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mplsTunnelResourceMeanRate in TunnelResource table</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mplsTunnelResourceMaxBurstSize in TunnelResource table</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mplsTunnelResourceMeanBurstSize in TunnelResource table</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mplsTunnelResourceExBurstSize in TunnelResource table</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mplsTunnelResourceWeight in TunnelResource table</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mplsTunnelPerfTable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mplsTunnelCRLDPResTable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFC 3813, Multiprotocol Label Switching (MPLS) Label Switching Router (LSR)</td>
<td>Unsupported tables and objects (read-only access):</td>
<td>ACX Series, M Series, MX Series, PTX Series, SRX Series, and T Series</td>
</tr>
<tr>
<td>Management Information Base (MIB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mplsInterfacePerfTable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mplsInSegmentPerfTable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mplsOutSegmentPerfTable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mplsInSegmentMapTable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mplsXCUp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mplsXCDown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNMP User-based Security Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFC 3877, Alarm Management Information Base</td>
<td>• Junos OS does not support the alarmActiveStatsTable.</td>
<td>MX Series</td>
</tr>
<tr>
<td>• Traps that do not conform to the alarm model are not supported.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• However, these traps can be redefined to conform to the alarm model.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7: Standard MIBs supported by Junos OS (continued)

<table>
<thead>
<tr>
<th>Standard MIB</th>
<th>Exceptions</th>
<th>Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 3896, Definitions of Managed Objects for the DS3/E3 Interface Type</td>
<td>Unsupported tables and objects:</td>
<td>M Series and T Series</td>
</tr>
<tr>
<td></td>
<td>• dix3FarEndConfigTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• dix3FarEndCurrentTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• dix3FarEndIntervalTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• dix3FarEndTotalTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• dix3FracTable</td>
<td></td>
</tr>
<tr>
<td>RFC 4087, IP Tunnel MIB</td>
<td>Describes MIB objects in the following tables for managing tunnels of any type over IPv4 and IPv6 networks:</td>
<td>M Series, MX Series, and T Series</td>
</tr>
<tr>
<td></td>
<td>• tunnelIfTable—Provides information about the tunnels known to a router.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• tunnelInetConfigTable—Assists dynamic creation of tunnels and provides mapping from end-point addresses to the current interface index value.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: Junos OS supports MAX-ACCESS of read-only for all the MIB objects in <code>tunnelIfTable</code> and <code>tunnelInetConfigTable</code> tables.</td>
<td></td>
</tr>
<tr>
<td>RFC 4133, Entity MIB</td>
<td>Unsupported tables and objects:</td>
<td>Only MX240, MX480, and MX960</td>
</tr>
<tr>
<td></td>
<td>• entityLogicalGroup table</td>
<td>routers, and EX2200 and EX3300</td>
</tr>
<tr>
<td></td>
<td>• entPhysicalMfgDate and entPhysicalUris objects in <code>entityPhysical2Group</code> table</td>
<td>switches</td>
</tr>
<tr>
<td></td>
<td>• entLPMappingTable and entPhysicalContainsTable in <code>entityMappingGroup</code> table</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• entityNotificationsGroup table</td>
<td></td>
</tr>
<tr>
<td>RFC 4188, Definitions of Managed Objects for Bridges</td>
<td>• Supports 802.1D STP(1998)</td>
<td>MX Series, EX Series, and M Series</td>
</tr>
<tr>
<td></td>
<td>• Supported subtrees and objects:</td>
<td>T Series</td>
</tr>
<tr>
<td></td>
<td>• dot1dStp subtree is supported on MX Series 3D Universal Edge Routers.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• dot1dTpFdbAddress, dot1dTpFdbPort, and dot1dTpFdbStatus objects from the <code>dot1dTpFdbTable</code> of the <code>dot1dTp</code> subtree are supported on EX Series Ethernet Switches.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• dot1dTpLearnedEntryDiscards and dot1dTpAgingTime objects are supported on M Series and T Series routers.</td>
<td></td>
</tr>
</tbody>
</table>
Table 7: Standard MIBs supported by Junos OS (continued)

<table>
<thead>
<tr>
<th>Standard MIB</th>
<th>Exceptions</th>
<th>Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 4268, Entity State MIB</td>
<td>No exceptions</td>
<td>Only MX240, MX480, and MX960 routers, and EX2200 and EX3300 switches</td>
</tr>
<tr>
<td>RFC 4273, Definitions of Managed Objects for BGP-4</td>
<td>Supported tables and objects:</td>
<td>ACX Series, EX Series, M Series, MX Series, SRX Series, and T Series</td>
</tr>
<tr>
<td>• jnxBgpM2PrefixInPrefixesAccepted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• jnxBgpM2PrefixInPrefixesRejected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE: Junos OS currently supports these MIB objects that will be deprecated in future releases: ipCidrRouteTable, ipCidrRouteNumber, and ipCidrRouteDiscards.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFC 4292, IP Forwarding MIB</td>
<td>Supported tables and objects:</td>
<td>ACX Series, EX Series, M Series, MX Series, PTX Series, and T Series</td>
</tr>
<tr>
<td>• inetCidrRouteTable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• inetCidrRouteNumber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• inetCidrRouteDiscards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFC 4293, Management Information Base for the Internet Protocol (IP)</td>
<td>Supports only the mandatory groups.</td>
<td>MX Series and EX Series</td>
</tr>
<tr>
<td>RFC 4318, Definitions of Managed Objects for Bridges with Rapid Spanning Tree Protocol</td>
<td>Supports 802.1w and 802.1t extensions for RSTP.</td>
<td>EX Series, M Series, MX Series, and T Series</td>
</tr>
<tr>
<td>RFC 4363b, Q-Bridge VLAN MIB</td>
<td>No exceptions</td>
<td>MX Series and EX Series</td>
</tr>
<tr>
<td>RFC 4382, MPLS/BGP Layer 3 Virtual Private Network (VPN) MIB</td>
<td>Supported tables and objects:</td>
<td>EX Series, M Series, MX Series, PTX Series, and T Series</td>
</tr>
<tr>
<td>• mplsL3VpnActiveVrfs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mplsL3VpnConfiguredVrfs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mplsL3VpnConnectedInterfaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mplsL3VpnVrfConfMidRteThresh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mplsL3VpnVrfConfHighRteThresh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mplsL3VpnIfConfRowStatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mplsL3VpnIfLblRcvThrsh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mplsL3VpnNotificationEnable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mplsL3VpnVrfConfMaxPossRts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mplsL3VpnVrfConfRteMxThrshTime</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mplsL3VpnVrfOperStatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mplsL3VpnVrfPerfCurrNumRoutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mplsL3VpnVrfPerfTable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mplsVpnVrfRTTTable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mplsL3VpnVrfTable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mplsL3VpnIfConfTable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard MIB</td>
<td>Exceptions</td>
<td>Platforms</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>RFC 4444, IS-IS MIB</td>
<td>No exceptions</td>
<td>ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, and T Series</td>
</tr>
<tr>
<td>RFC 4668, RADIUS Accounting Client Management Information Base (MIB) for IPv6 (read-only access)</td>
<td>No exceptions</td>
<td>MX Series</td>
</tr>
<tr>
<td>RFC 4670, RADIUS Accounting Client Management Information Base (MIB) (read-only access)</td>
<td>No exceptions</td>
<td>MX Series</td>
</tr>
<tr>
<td>RFC 4801, Definitions of Textual Conventions for Generalized Multiprotocol Label Switching (GMPLS) Management Information Base (MIB) (read-only access)</td>
<td>No exceptions</td>
<td>M Series, MX Series, and T Series</td>
</tr>
<tr>
<td>RFC 4802, Generalized Multiprotocol Label Switching (GMPLS) Traffic Engineering (TE) Management Information Base (MIB) (read-only access)</td>
<td>Unsupported tables and objects:</td>
<td>M Series, MX Series, and T Series</td>
</tr>
<tr>
<td>RFC 4803, Generalized Multiprotocol Label Switching (GMPLS) Label Switching Router (LSR) Management Information Base (MIB) (read-only access)</td>
<td>Unsupported tables and objects:</td>
<td>M Series, MX Series, and T Series</td>
</tr>
</tbody>
</table>

NOTE: The tables in GMPLS TE (RFC 4802) and LSR (RFC 4803) MIBs are extensions of the corresponding tables from the MPLS TE (RFC 3812) and LSR (RFC 3813) MIBs and use the same index as the MPLS MIB tables.

<table>
<thead>
<tr>
<th>RFC 5132, IP Multicast MIB</th>
<th>Unsupported table:</th>
<th>All platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ipMcastZoneTable</td>
<td></td>
</tr>
</tbody>
</table>
Table 7: Standard MIBs supported by Junos OS (continued)

<table>
<thead>
<tr>
<th>Standard MIB</th>
<th>Exceptions</th>
<th>Platforms</th>
</tr>
</thead>
</table>
| RFC 5643, Management Information Base for OSPFv3 (read-only access) | Unsupported tables and objects:
 - `ospfv3HostTable`
 - `ospfv3CfgNbrTable`
 - `ospfv3ExitOverflowInterval`
 - `ospfv3ReferenceBandwidth`
 - `ospfv3RestartSupport`
 - `ospfv3RestartInterval`
 - `ospfv3RestartStrictLsaChecking`
 - `ospfv3RestartStatus`
 - `ospfv3RestartAge`
 - `ospfv3RestartExitReason`
 - `ospfv3NotificationEnable`
 - `ospfv3StubRouterSupport`
 - `ospfv3StubRouterAdvertisement`
 - `ospfv3DiscontinuityTime`
 - `ospfv3RestartTime`
 - `ospfv3AreaNssaTranslatorRole`
 - `ospfv3AreaNssaTranslatorState`
 - `ospfv3AreaNssaTranslatorStabInterval`
 - `ospfv3AreaNssaTranslatorEvents`
 - `ospfv3AreaTEEnabled`
 - `ospfv3IfMetricValue`
 - `ospfv3IfDemandNbrProbe` | M Series, MX Series, PTX Series, SRX Series, and T Series |

| RFC 6527, Definitions of Managed Objects for the Virtual Router Redundancy Protocol Version 3 (VRRPv3) |
 - Row creation
 - The `Set` operation
 - Unsupported tables and objects:
 - `vrrpv3StatisticsRowDiscontinuityTime`
 - `vrrpv3StatisticsPacketLengthErrors` | ACX Series |

| ESO Consortium MIB, which can be found at http://www.snmp.com/eso/ | No exceptions | ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, and T Series |

NOTE: The ESO Consortium MIB has been replaced by RFC 3826.

| Internet Assigned Numbers Authority, IANAIfType Textual Convention MIB | No exceptions | ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, and T Series |

| Internet draft draft-ietf-atommib-sonetaps-mib-10.txt, Definitions of Managed Objects for SONET Linear APS Architectures | As defined under the Juniper Networks enterprise branch `[jmxExperiment]` only | M Series, MX Series, and T Series |
Table 7: Standard MIBs supported by Junos OS (continued)

<table>
<thead>
<tr>
<th>Standard MIB</th>
<th>Exceptions</th>
<th>Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>internet draft draft-ietf-bfd-mib-02.txt, Bidirectional Forwarding Detection Management Information Base</td>
<td>(Represented by mib-jnx-bfd-exp.txt and implemented under the Juniper Networks enterprise branch [jnxExperiment]. Read only. Includes bfdSessUp and bfdSessDown traps. Does not support bfdSessPerfTable and bfdSessMapTable.)</td>
<td>ACX Series, EX Series, M Series, MX Series, SRX Series, and T Series</td>
</tr>
</tbody>
</table>
| Internet draft draft-ietf-isis-wg-mib-07.txt, Management Information Base for IS-IS | Unsupported tables and objects:
 • isisISAdjTable
 • isisISAdjAreaAddrTable
 • isisISAdjIPAddrTable
 • isisISAdjProtSuppTable) | ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, and T Series |
| Internet draft draft-ietf-l3vpn-mvpn-mib-03.txt, MPLS/BGP Layer 3 VPN Multicast Management Information Base | (Implemented under the Juniper Networks enterprise branch [jnxExperiment]. OID for jnxMvpnExperiment is .1.3.6.1.4.1.2636.5.12. Read only. Includes jnxMvpnNotifications traps.) | M Series, MX Series, and T Series |
| Internet draft draft-ietf-mpls-mldp-mib-02.txt, Definitions of Managed Objects for the LDP Point-to-Multipoint and Multipoint-to-Multipoint Label Switched Paths | Unsupported tables and objects:
 • mplsMidpInterfaceStatsTable
 Also, the following fields of the mplsMidpFecUpstreamSessTable are not implemented because these statistics are not currently supported in LDP or PFE:
 • mplsMidpFecUpstreamSessPackets
 • mplsMidpFecUpstreamSessBytes
 • mplsMidpFecUpstreamSessDiscontinuityTime | M Series, MX Series, PTX Series, and T Series |
| Internet draft draft-ietf-mpls-p2mp-te-mib-09.txt, P2MP MPLS-TE MIB (read-only access) | Unsupported table:
 • mplsTeP2mpTunnelBranchPerfTable | ACX Series, M Series, MX Series, PTX Series, and T Series |
| Internet draft draft-ietf-ospfv3-mib-11.txt, Management Information Base for OSPFv3 | Support for ospfv3NbrTable only. | M Series, MX Series, PTX Series, SRX Series, and T Series |
Table 7: Standard MIBs supported by Junos OS (continued)

<table>
<thead>
<tr>
<th>Standard MIB</th>
<th>Exceptions</th>
<th>Platforms</th>
</tr>
</thead>
</table>
| Internet draft draft-ietf-ppvpn-mpls-vpn-mib-04.txt, MPLS/BGP Virtual Private Network Management Information Base Using SMIv2 | Supported tables and objects:
 - mplsVpnScalars
 - mplsVpnVrfTable
 - mplsVpnPerTable
 - mplsVpnVrfRouteTargetTable | M Series, MX Series, PTX Series, and T Series |
| Internet draft draft-reeder-snmpv3-usm-3desede-00.txt, Extension to the User-Based Security Model (USM) to Support Triple-DES EDE in ‘Outside’ CBC Mode | No exceptions | ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, and T Series |

For information about standard SNMP MIB objects, see the [SNMP MIB Explorer](#).

Related Documentation
- Enterprise-Specific SNMP MIBs Supported by Junos OS on page 21
- Network Management Administration Guide
- Standard SNMP Traps Supported by Junos OS on page 60

Enterprise-Specific MIBs and Supported Devices

Supported Platforms

| Supported Platforms | ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, T Series, vSRX |

NOTE: Starting with Junos OS Release 16.1, this topic has been deprecated; refer instead to “Enterprise-Specific SNMP MIBs Supported by Junos OS” on page 21.

Table 8 on page 51 lists the enterprise-specific MIBs that are supported on various devices running Junos OS.

NOTE: In this table, a value of 1 in any of the platform columns (ACX, M, MX, T, EX, PTX, and SRX) denotes that the corresponding MIB is supported on that particular platform. A value of 0 denotes that the MIB is not supported on the platform.
Table 8: Enterprise-Specific MIBs and Supported Devices

<table>
<thead>
<tr>
<th>Enterprise-Specific MIB</th>
<th>Platforms</th>
<th>SRX</th>
<th>SRX550M</th>
<th>SRX1500, SRX5400, SRX5600, and SRX5800</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACX</td>
<td>M</td>
<td>T</td>
<td>MX</td>
</tr>
<tr>
<td>AAA Objects MIB</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Access Authentication Objects MIB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alarm MIB</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Analyzer MIB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Antivirus Objects MIB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ATM Class-of-Service MIB</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ATM MIB</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>BGP4 V2 MIB</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bidirectional Forwarding Detection MIB</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 8: Enterprise-Specific MIBs and Supported Devices (continued)

<table>
<thead>
<tr>
<th>Enterprise-Specific MIB</th>
<th>Platforms</th>
<th>SRX</th>
<th>SRX300, SRX320, and SRX340</th>
<th>SRX550M</th>
<th>SRX1500, SRX5400, SRX5600, and SRX5800</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACX</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>M</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>MX</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>EX</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>PTX</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Chassis Forwarding MIB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chassis MiBs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chassis Cluster MiBs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class-of-Service MIB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configuration Management MIB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destination Class Usage MIB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DHCP MIB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DHCPv6 MIB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterprise-Specific MIB</td>
<td>Platforms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital Optical Monitoring MIB</td>
<td>ACX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>http://www.juniper.net/techpubs/en_US/junos15.1/</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>topics/reference/mibs/mib-jnx-dom.txt</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PTX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SRX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SRX300,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SRX320,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SRX340</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SRX550M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SRX1500,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SRX5400,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SRX5600,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SRX5800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNS Objects MIB</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>http://www.juniper.net/techpubs/en_US/junos15.1/</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>topics/reference/mibs/mib-jnx-js-dns.txt</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Flow Capture MIB</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>http://www.juniper.net/techpubs/en_US/junos15.1/</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>topics/reference/mibs/mib-jnx-dfc.txt</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethernet MAC MIB</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>http://www.juniper.net/techpubs/en_US/junos15.1/</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>topics/reference/mibs/mib-jnx-mac.txt</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event MIB</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>http://www.juniper.net/techpubs/en_US/junos15.1/</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>topics/reference/mibs/mib-jnx-event.txt</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EX Series MAC Notification MIB</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>http://www.juniper.net/techpubs/en_US/junos15.1/</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>topics/reference/mibs/mib-jnx-ex-mac-notification.txt</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EX Series SMI MIB</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>http://www.juniper.net/techpubs/en_US/junos15.1/</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>topics/reference/mibs/mib-jnx-ex-smi.txt</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental MIB</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>http://www.juniper.net/techpubs/en_US/junos15.1/</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>topics/reference/mibs/mib-jnx-exp.txt</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firewall MIB</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>http://www.juniper.net/techpubs/en_US/junos15.1/</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>topics/reference/mibs/mib-jnx-firewall.txt</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 8: Enterprise-Specific MIBs and Supported Devices (continued)

<table>
<thead>
<tr>
<th>Enterprise-Specific MIB</th>
<th>Platforms</th>
<th>SRX300, SRX320, and SRX340</th>
<th>SRX550M</th>
<th>SRX1500, SRX5400, SRX5600, and SRX5800</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACX</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>M</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MX</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>EX</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PTX</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Flow Collection Services MIB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Host Resources MIB</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Interface MIB</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>IP Forward MIB</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>IPsec Generic Flow Monitoring Object MIB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPsec Monitoring MIB</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>IPsec VPN Objects MIB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPv4 MIB</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>IPv6 and ICMPv6 MIB</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 8: Enterprise-Specific MIBs and Supported Devices (continued)

<table>
<thead>
<tr>
<th>Enterprise-Specific MIB</th>
<th>Platforms</th>
<th>SRX</th>
<th>SRX550M</th>
<th>SRX1500, SRX5400, SRX5600, and SRX5800</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACX</td>
<td>M</td>
<td>T</td>
<td>MX</td>
</tr>
<tr>
<td>L2ALD MIB</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2CP MIB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2TP MIB</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDP MIB</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>License MIB</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical Systems MIB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIMSTP MIB</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPLS LDP MIB</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPLS MIB</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterprise-Specific MIB</td>
<td>Platforms</td>
<td>SRX</td>
<td>SRX300, SRX320, and SRX340</td>
<td>SRX550M</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------</td>
<td>-----</td>
<td>----------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>MVPN MIB</td>
<td>1 1 1 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SRX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT Objects MIB</td>
<td>0 0 0 0 1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SRX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT Resources-Monitoring MIB</td>
<td>0 1 1 0 0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SRX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTN Interface Management MIB</td>
<td>0 1 1 0 0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SRX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packet Forwarding Engine MIB</td>
<td>1 1 1 0 1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SRX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packet Mirror MIB</td>
<td>0 0 0 1 0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SRX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAE Extension MIB</td>
<td>0 0 0 1 0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SRX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passive Monitoring MIB</td>
<td>0 1 1 0 0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SRX</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 8: Enterprise-Specific MIBs and Supported Devices (continued)

<table>
<thead>
<tr>
<th>Enterprise-Specific MIB</th>
<th>Platforms</th>
<th>SRX</th>
<th>SRX550M</th>
<th>SRX1500, SRX5400, SRX5600, and SRX5800</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACX</td>
<td>M</td>
<td>T</td>
<td>MX</td>
</tr>
<tr>
<td>Ping MIB</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Policy Objects MIB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Power Supply Unit MIB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>PPP MIB</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPPoE MIB</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pseudowire ATM MIB</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pseudowire TDM MIB</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PTP MIB</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Real-Time Performance Monitoring MIB</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Enterprise-Specific MIB</td>
<td>Platforms</td>
<td>SRX</td>
<td>SRX300, SRX320, and SRX340</td>
<td>SRX550M</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td>---------</td>
<td>---------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Reverse-Path-Forwarding MIB</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RMON Events and Alarms MIB</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RSVP MIB</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Security Interface Extension Objects MIB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Security Screening Objects MIB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Services PIC MIB</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SNMP IDP MIB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SONET APS MIB</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SONET/SDH Interface Management MIB</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 8: Enterprise-Specific MIBs and Supported Devices (continued)

<table>
<thead>
<tr>
<th>Enterprise-Specific MIB</th>
<th>Platforms</th>
<th>SRX</th>
<th>SRX550M</th>
<th>SRX1500, SRX5400, SRX5600, and SRX5800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Class Usage MIB</td>
<td>0 1 1 0 0 0 0 0 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPU Monitoring MIB</td>
<td>0 0 0 0 0 1 1 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure of Management Information MIB</td>
<td>1 1 1 1 1 0 1 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subscriber MIB</td>
<td>1 0 1 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Log MIB</td>
<td>0 1 1 1 1 1 1 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traceroute MIB</td>
<td>0 1 1 1 1 0 1 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utility MIB</td>
<td>0 1 1 1 1 0 1 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virtual Chassis MIB</td>
<td>0 0 0 1 1 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLAN MIB</td>
<td>0 0 0 1 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 8: Enterprise-Specific MIBs and Supported Devices (continued)

<table>
<thead>
<tr>
<th>Enterprise-Specific MIB</th>
<th>Platforms</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>SRX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACX</td>
<td>M</td>
<td>T</td>
<td>MX</td>
<td>EX</td>
<td>PTX</td>
</tr>
<tr>
<td>VPLS MIBs</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VPN Certificate Objects MIB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>VPN MIB</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Related Documentation
- Enterprise-Specific SNMP Traps Supported by Junos OS on page 68
- Standard SNMP MIBs Supported by Junos OS
- Loading MIB Files to a Network Management System on page 83

Standard SNMP Traps Supported by Junos OS

Supported Platforms
ACX Series, EX Series, M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series, vSRX

This topic provides the list of standard SNMPv1 and SNMPv2 traps supported by devices running Junos OS. For more information about traps see SNMP MIB Explorer.

Standard SNMP Version 1 Traps

Table 9 on page 61 provides an overview of the standard traps for SNMPv1. The traps are organized first by trap category and then by trap name, and include their enterprise ID, generic trap number, and specific trap number. The system logging severity levels are listed for those traps that have them with their corresponding system log tag. Traps that do not have corresponding system logging severity levels are marked with an end dash (--) in the table.
For more information about system log messages, see the [System Log Explorer](#). For more information about configuring system logging, see the [Junos OS System Basics Configuration Guide](#).

Table 9: Standard Supported SNMP Version 1 Traps

<table>
<thead>
<tr>
<th>Defined in</th>
<th>Trap Name</th>
<th>Enterprise ID</th>
<th>Generic Trap Number</th>
<th>Specific Trap Number</th>
<th>System Logging Severity Level</th>
<th>Syslog Tag</th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startup Notifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFC 1215, Conventions for Defining Traps for Use with the SNMP</td>
<td>authenticationFailure</td>
<td>1.3.6.1.4.1.2636</td>
<td>4</td>
<td>0</td>
<td>Notice</td>
<td>SNMPD_TRAP_GEN_FAILURE</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>RFC 1215, Conventions for Defining Traps for Use with the SNMP</td>
<td>coldStart</td>
<td>1.3.6.1.4.1.2636</td>
<td>0</td>
<td>0</td>
<td>Critical</td>
<td>SNMPD_TRAP_COLD_START</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>RFC 1215, Conventions for Defining Traps for Use with the SNMP</td>
<td>warmStart</td>
<td>1.3.6.1.4.1.2636</td>
<td>1</td>
<td>0</td>
<td>Error</td>
<td>SNMPD_TRAP_WARM_START</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>Link Notifications</td>
<td>linkDown</td>
<td>1.3.6.1.4.1.2636</td>
<td>2</td>
<td>0</td>
<td>Warning</td>
<td>SNMP_TRAP_LINK_DOWN</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>RFC 1215, Conventions for Defining Traps for Use with the SNMP</td>
<td>linkUp</td>
<td>1.3.6.1.4.1.2636</td>
<td>3</td>
<td>0</td>
<td>Info</td>
<td>SNMP_TRAP_LINK_UP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>Remote Operations Notifications</td>
<td>pingProbeFailed</td>
<td>1.3.6.1.2.1.80.0</td>
<td>6</td>
<td>1</td>
<td>Info</td>
<td>SNMP_TRAP_PING_PROBE_FAILED</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>RFC 2925, Definitions of Managed Objects for Remote Ping, Traceroute, and Lookup Operations</td>
<td>pingTestFailed</td>
<td>1.3.6.1.2.1.80.0</td>
<td>6</td>
<td>2</td>
<td>Info</td>
<td>SNMP_TRAP_PING_TEST_FAILED</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>RFC 2925, Definitions of Managed Objects for Remote Ping, Traceroute, and Lookup Operations</td>
<td>pingTestCompleted</td>
<td>1.3.6.1.2.1.80.0</td>
<td>6</td>
<td>3</td>
<td>Info</td>
<td>SNMP_TRAP_PING_TEST_COMPLETED</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>RFC 2925, Definitions of Managed Objects for Remote Ping, Traceroute, and Lookup Operations</td>
<td>traceRoutePathChange</td>
<td>1.3.6.1.2.1.81.0</td>
<td>6</td>
<td>1</td>
<td>Info</td>
<td>SNMP_TRAP_TRACE_ROUTE_PATH_CHANGE</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>RFC 2925, Definitions of Managed Objects for Remote Ping, Traceroute, and Lookup Operations</td>
<td>traceRouteTestFailed</td>
<td>1.3.6.1.2.1.81.0</td>
<td>6</td>
<td>2</td>
<td>Info</td>
<td>SNMP_TRAP_TRACE_ROUTE_TEST_FAILED</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>RFC 2925, Definitions of Managed Objects for Remote Ping, Traceroute, and Lookup Operations</td>
<td>traceRouteTestCompleted</td>
<td>1.3.6.1.2.1.81.0</td>
<td>6</td>
<td>3</td>
<td>Info</td>
<td>SNMP_TRAP_TRACE_ROUTE_TEST_COMPLETED</td>
<td>All devices running Junos OS.</td>
</tr>
</tbody>
</table>

RMON Alarms
Table 9: Standard Supported SNMP Version 1 Traps (continued)

<table>
<thead>
<tr>
<th>Defined in</th>
<th>Trap Name</th>
<th>Enterprise ID</th>
<th>Generic Trap Number</th>
<th>Specific Trap Number</th>
<th>System Logging Severity Level</th>
<th>Syslog Tag</th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2819a, RMON MIB</td>
<td>failingAlarm</td>
<td>1.3.6.1.2.1.16</td>
<td>6</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>risingAlarm</td>
<td>1.3.6.1.2.1.16</td>
<td>6</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
</tbody>
</table>

Routing Notifications

BGP 4 MIB

<table>
<thead>
<tr>
<th>Trap Name</th>
<th>Enterprise ID</th>
<th>Generic Trap Number</th>
<th>Specific Trap Number</th>
<th>System Logging Severity Level</th>
<th>Syslog Tag</th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td>bgpEstablished</td>
<td>1.3.6.1.2.1.15.7</td>
<td>6</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>M, T, MX, J, EX, and SRX Series devices.</td>
</tr>
<tr>
<td>bgpBackwardTransition</td>
<td>1.3.6.1.2.1.15.7</td>
<td>6</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>M, T, MX, J, EX, and SRX Series devices.</td>
</tr>
</tbody>
</table>
Table 9: Standard Supported SNMP Version 1 Traps (continued)

<table>
<thead>
<tr>
<th>Defined in</th>
<th>Trap Name</th>
<th>Enterprise ID</th>
<th>Generic Trap Number</th>
<th>Specific Trap Number</th>
<th>System Logging Severity Level</th>
<th>Syslog Tag</th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPF TRAP MIB</td>
<td>ospfVirtIfStateChange</td>
<td>1.3.6.1.2.1.14.16.2</td>
<td>6</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>M, T, MX, J, EX, and SRX Series devices.</td>
</tr>
<tr>
<td></td>
<td>ospfNbrStateChange</td>
<td>1.3.6.1.2.1.14.16.2</td>
<td>6</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>M, T, MX, J, EX, and SRX Series devices.</td>
</tr>
<tr>
<td></td>
<td>ospfVirtNbrStateChange</td>
<td>1.3.6.1.2.1.14.16.2</td>
<td>6</td>
<td>3</td>
<td>--</td>
<td>--</td>
<td>M, T, MX, J, EX, and SRX Series devices.</td>
</tr>
<tr>
<td></td>
<td>ospfIfConfigError</td>
<td>1.3.6.1.2.1.14.16.2</td>
<td>6</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td>M, T, MX, J, EX, and SRX Series devices.</td>
</tr>
<tr>
<td></td>
<td>ospfVirtIfConfigError</td>
<td>1.3.6.1.2.1.14.16.2</td>
<td>6</td>
<td>5</td>
<td>--</td>
<td>--</td>
<td>M, T, MX, J, EX, and SRX Series devices.</td>
</tr>
<tr>
<td></td>
<td>ospfIfAuthFailure</td>
<td>1.3.6.1.2.1.14.16.2</td>
<td>6</td>
<td>6</td>
<td>--</td>
<td>--</td>
<td>M, T, MX, J, EX, and SRX Series devices.</td>
</tr>
<tr>
<td></td>
<td>ospfVirtIfAuthFailure</td>
<td>1.3.6.1.2.1.14.16.2</td>
<td>6</td>
<td>7</td>
<td>--</td>
<td>--</td>
<td>M, T, MX, J, EX, and SRX Series devices.</td>
</tr>
<tr>
<td></td>
<td>ospfIfRxBadPacket</td>
<td>1.3.6.1.2.1.14.16.2</td>
<td>6</td>
<td>8</td>
<td>--</td>
<td>--</td>
<td>M, T, MX, J, EX, and SRX Series devices.</td>
</tr>
<tr>
<td></td>
<td>ospfVirtIfRxBadPacket</td>
<td>1.3.6.1.2.1.14.16.2</td>
<td>6</td>
<td>9</td>
<td>--</td>
<td>--</td>
<td>M, T, MX, J, EX, and SRX Series devices.</td>
</tr>
<tr>
<td></td>
<td>ospfTxRetransmit</td>
<td>1.3.6.1.2.1.14.16.2</td>
<td>6</td>
<td>10</td>
<td>--</td>
<td>--</td>
<td>M, T, MX, J, EX, and SRX Series devices.</td>
</tr>
<tr>
<td></td>
<td>ospfVirtIfTxRetransmit</td>
<td>1.3.6.1.2.1.14.16.2</td>
<td>6</td>
<td>11</td>
<td>--</td>
<td>--</td>
<td>M, T, MX, J, EX, and SRX Series devices.</td>
</tr>
<tr>
<td></td>
<td>ospfMaxAgeLsa</td>
<td>1.3.6.1.2.1.14.16.2</td>
<td>6</td>
<td>13</td>
<td>--</td>
<td>--</td>
<td>M, T, MX, J, EX, and SRX Series devices.</td>
</tr>
<tr>
<td></td>
<td>ospfIfStateChange</td>
<td>1.3.6.1.2.1.14.16.2</td>
<td>6</td>
<td>16</td>
<td>--</td>
<td>--</td>
<td>M, T, MX, J, EX, and SRX Series devices.</td>
</tr>
</tbody>
</table>

VRRP Notifications

| RFC 2787, Definitions of Managed | vrrpTrapNewMaster | 1.3.6.1.2.1.68 | 6 | 1 | Warning | VRRPD_NEW MASTER_TRAP | All devices running Junos OS. |

Copyright © 2017, Juniper Networks, Inc.
Table 9: Standard Supported SNMP Version 1 Traps (continued)

<table>
<thead>
<tr>
<th>Defined In</th>
<th>Trap Name</th>
<th>Enterprise ID</th>
<th>Generic Trap Number</th>
<th>Specific Trap Number</th>
<th>System Logging Severity Level</th>
<th>Syslog Tag</th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objects for the Virtual Router Redundancy Protocol</td>
<td>vrrpTrapAuthFailure</td>
<td>1.3.6.1.2.1.68</td>
<td>6</td>
<td>2</td>
<td>Warning</td>
<td>VRRPD_AUTH_FAILURE_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>RFC 6527, Definitions of Managed Objects for the Virtual Router Redundancy Protocol Version 3 (VRRPv3)</td>
<td>vrrpv3NewMaster</td>
<td>1.3.6.1.2.1.207</td>
<td>6</td>
<td>1</td>
<td>Warning</td>
<td>VRRPD_NEW_MASTER</td>
<td>M and MX</td>
</tr>
<tr>
<td></td>
<td>vrrpv3ProtoError</td>
<td>1.3.6.1.2.1.207</td>
<td>6</td>
<td>2</td>
<td>Warning</td>
<td>VRRPD_V3_PROTO_ERROR</td>
<td>M and MX</td>
</tr>
</tbody>
</table>

Standard SNMP Version 2 Traps

Table 10 on page 64 provides an overview of the standard SNMPv2 traps supported by the Junos OS. The traps are organized first by trap category and then by trap name and include their snmpTrapOID. The system logging severity levels are listed for those traps that have them with their corresponding system log tag. Traps that do not have corresponding system logging severity levels are marked with an end dash (–) in the table.

For more information about system log messages, see System Log Messages Configuration Guide.

Table 10: Standard Supported SNMP Version 2 Traps

<table>
<thead>
<tr>
<th>Defined In</th>
<th>Trap Name</th>
<th>snmpTrapOID</th>
<th>System Logging Severity Level</th>
<th>Syslog Tag</th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startup Notifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>RFC 1907, Management Information Base for Version 2 of the Simple Network Management Protocol (SNMPv2)</td>
<td>coldStart</td>
<td>1.3.6.1.6.3.11.15.1</td>
<td>Critical</td>
<td>SNMPD_TRAP_COLD_START</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>warmStart</td>
<td>1.3.6.1.6.3.11.15.2</td>
<td>Error</td>
<td>SNMPD_TRAP_WARM_START</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>authenticationFailure</td>
<td>1.3.6.1.6.3.11.15.5</td>
<td>Notice</td>
<td>SNMPD_TRAP_GEN_FAILURE</td>
<td>All devices running Junos OS.</td>
</tr>
</tbody>
</table>

Link Notifications
Table 10: Standard Supported SNMP Version 2 Traps (continued)

<table>
<thead>
<tr>
<th>Defined In</th>
<th>Trap Name</th>
<th>snmpTrapOID</th>
<th>System Logging Severity Level</th>
<th>Syslog Tag</th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2863, The Interfaces Group MIB</td>
<td>linkDown</td>
<td>1.3.6.1.6.3.1.1.5.3</td>
<td>Warning</td>
<td>SNMP_TRAP_LINK_DOWN</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>RFC 2863, The Interfaces Group MIB</td>
<td>linkUp</td>
<td>1.3.6.1.6.3.1.1.5.4</td>
<td>Info</td>
<td>SNMP_TRAP_LINK_UP</td>
<td>All devices running Junos OS.</td>
</tr>
</tbody>
</table>

Remote Operations Notifications

<table>
<thead>
<tr>
<th>Defined In</th>
<th>Trap Name</th>
<th>snmpTrapOID</th>
<th>System Logging Severity Level</th>
<th>Syslog Tag</th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2925, Definitions of Managed Objects for Remote Ping, Traceroute, and Lookup Operations</td>
<td>pingProbeFailed</td>
<td>1.3.6.1.2.1.80.0.1</td>
<td>Info</td>
<td>SNMP_TRAP_PING_PROBE_FAILED</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>RFC 2925, Definitions of Managed Objects for Remote Ping, Traceroute, and Lookup Operations</td>
<td>pingTestFailed</td>
<td>1.3.6.1.2.1.80.0.2</td>
<td>Info</td>
<td>SNMP_TRAP_PING_TEST_FAILED</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>RFC 2925, Definitions of Managed Objects for Remote Ping, Traceroute, and Lookup Operations</td>
<td>pingTestCompleted</td>
<td>1.3.6.1.2.1.80.0.3</td>
<td>Info</td>
<td>SNMP_TRAP_PING_TEST_COMPLETED</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>RFC 2925, Definitions of Managed Objects for Remote Ping, Traceroute, and Lookup Operations</td>
<td>traceRoutePathChange</td>
<td>1.3.6.1.2.1.81.0.1</td>
<td>Info</td>
<td>SNMP_TRAP_TRACE_ROUTE_PATH_CHANGE</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>RFC 2925, Definitions of Managed Objects for Remote Ping, Traceroute, and Lookup Operations</td>
<td>traceRouteTestFailed</td>
<td>1.3.6.1.2.1.81.0.2</td>
<td>Info</td>
<td>SNMP_TRAP_TRACE_ROUTE_TEST_FAILED</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>RFC 2925, Definitions of Managed Objects for Remote Ping, Traceroute, and Lookup Operations</td>
<td>traceRouteTestCompleted</td>
<td>1.3.6.1.2.1.81.0.3</td>
<td>Info</td>
<td>SNMP_TRAP_TRACE_ROUTE_TEST_COMPLETED</td>
<td>All devices running Junos OS.</td>
</tr>
</tbody>
</table>

RMON Alarms

<table>
<thead>
<tr>
<th>Defined In</th>
<th>Trap Name</th>
<th>snmpTrapOID</th>
<th>System Logging Severity Level</th>
<th>Syslog Tag</th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2819a, RMON MIB</td>
<td>fallingAlarm</td>
<td>1.3.6.1.2.1.16.0.1</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>RFC 2819a, RMON MIB</td>
<td>risingAlarm</td>
<td>1.3.6.1.2.1.16.0.2</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
</tbody>
</table>

Routing Notifications

<table>
<thead>
<tr>
<th>Defined In</th>
<th>Trap Name</th>
<th>snmpTrapOID</th>
<th>System Logging Severity Level</th>
<th>Syslog Tag</th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP 4 MIB</td>
<td>bgpEstablished</td>
<td>1.3.6.1.2.1.15.7.1</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>BGP 4 MIB</td>
<td>bgpBackwardTransition</td>
<td>1.3.6.1.2.1.15.7.2</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
</tbody>
</table>
Table 10: Standard Supported SNMP Version 2 Traps (continued)

<table>
<thead>
<tr>
<th>Defined In</th>
<th>Trap Name</th>
<th>snmpTrapOID</th>
<th>System Logging Severity Level</th>
<th>Syslog Tag</th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ospfVirtIfStateChange</td>
<td>1.3.6.1.2.14.16.2.1</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>ospfNbrStateChange</td>
<td>1.3.6.1.2.14.16.2.2</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>ospfVirtNbrStateChange</td>
<td>1.3.6.1.2.14.16.2.3</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>ospfVirtIfConfigError</td>
<td>1.3.6.1.2.14.16.2.4</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>ospfVirtIfAuthFailure</td>
<td>1.3.6.1.2.14.16.2.5</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>ospfVirtIfRxBadPacket</td>
<td>1.3.6.1.2.14.16.2.6</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>ospfVirtIfTxRetransmit</td>
<td>1.3.6.1.2.14.16.2.7</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>ospfVirtIfRxBadPacket</td>
<td>1.3.6.1.2.14.16.2.8</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>ospfVirtIfRxBadPacket</td>
<td>1.3.6.1.2.14.16.2.9</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>ospfMaxAgeLsa</td>
<td>1.3.6.1.2.14.16.2.10</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>ospfVirtIfTxRetransmit</td>
<td>1.3.6.1.2.14.16.2.11</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>ospfVirtIfStateChange</td>
<td>1.3.6.1.2.14.16.2.12</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
</tbody>
</table>

MPLS Notifications
Table 10: Standard Supported SNMP Version 2 Traps (continued)

<table>
<thead>
<tr>
<th>Defined In</th>
<th>Trap Name</th>
<th>snmpTrapOID</th>
<th>System Logging Severity Level</th>
<th>Syslog Tag</th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 3812, Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) Management Information Base</td>
<td>mplsTunnelUp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mplsTunnelDown</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mplsTunnelRerouted</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mplsTunnelReoptimized</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entity State MIB Notifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFC 4268, Entity State MIB</td>
<td>entStateOperEnabled</td>
<td>1.3.6.1.2.131.0.1</td>
<td>Notice</td>
<td>CHASSISD_SNMP_TRAP3</td>
<td>MX240, MX480, and MX960</td>
</tr>
<tr>
<td></td>
<td>entStateOperDisabled</td>
<td>1.3.6.1.2.131.0.2</td>
<td>Notice</td>
<td>CHASSISD_SNMP_TRAP3</td>
<td>MX240, MX480, and MX960</td>
</tr>
<tr>
<td>L3VPN Notifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFC 4382, MPLS/BGP Layer 3 Virtual Private Network (VPN)</td>
<td>mplsL3VpnVrfUp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mplsL3VpnVrfDown</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mplsL3VpnVrfRouteMidThreshExceeded</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mplsL3VpnVrfNumVrfRouteMaxThreshExceeded</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mplsL3VpnNumVrfRouteMaxThreshCleared</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VRRP Notifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFC 2787,Definitions of Managed Objects for the Virtual Router Redundancy Protocol</td>
<td>vrpTrapNewMaster</td>
<td>1.3.6.1.2.168.0.1</td>
<td>Warning</td>
<td>VRRPD_NEWMASTER_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>vrpTrapAuthFailure</td>
<td>1.3.6.1.2.168.0.2</td>
<td>Warning</td>
<td>VRRPD_AUTH_FAILURE_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
</tbody>
</table>
Table 10: Standard Supported SNMP Version 2 Traps (continued)

<table>
<thead>
<tr>
<th>Defined In</th>
<th>Trap Name</th>
<th>snmpTrapOID</th>
<th>System Logging Severity Level</th>
<th>Syslog Tag</th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 6527, Definitions of Managed Objects for the Virtual Router Redundancy Protocol Version 3 (VRRPv3)</td>
<td>vrrpv3NewMaster</td>
<td>1.3.6.1.2.1.207.0.1</td>
<td>Warning</td>
<td>VRRPD_NEW_MASTER</td>
<td>M and MX</td>
</tr>
<tr>
<td>RFC 6527, Definitions of Managed Objects for the Virtual Router Redundancy Protocol Version 3 (VRRPv3)</td>
<td>vrrpv3ProtoError</td>
<td>1.3.6.1.2.1.207.0.2</td>
<td>Warning</td>
<td>VRRPD_PROTO_ERROR</td>
<td>M and MX</td>
</tr>
</tbody>
</table>

Related Documentation
- Enterprise-Specific SNMP Traps Supported by Junos OS on page 68
- Enterprise-Specific SNMP MIBs Supported by Junos OS on page 21
- Standard SNMP MIBs Supported by Junos OS on page 32
- Configuring SNMP Trap Options and Groups on a Device Running Junos OS on page 112
- Managing Traps and Informs

Enterprise-Specific SNMP Traps Supported by Junos OS

Supported Platforms
- ACX Series
- EX Series
- M Series
- MX Series
- PTX Series
- T Series

This topic provides the list of Juniper Networks enterprise-specific SNMPv1 and SNMPv2 traps supported on devices running Junos OS. For more information about traps see SNMP MIB Explorer.

- Juniper Networks Enterprise-Specific SNMP Version 1 Traps on page 68
- Juniper Networks Enterprise-Specific SNMP Version 2 Traps on page 74

Juniper Networks Enterprise-Specific SNMP Version 1 Traps

The Junos OS supports enterprise-specific SNMP version 1 traps shown in Table 11 on page 69. The traps are organized first by trap category and then by trap name. The system logging severity levels are listed for those traps that have them. Traps that do not have corresponding system logging severity levels are marked with an en dash (–).

For more information about system log messages, see the Junos OS System Log Reference for Security Devices.
Table 11: Juniper Networks Enterprise-Specific Supported SNMP Version 1 Traps

<table>
<thead>
<tr>
<th>Defined In</th>
<th>Trap Name</th>
<th>Enterprise ID</th>
<th>Generic Trap Number</th>
<th>Specific Trap Number</th>
<th>System Logging Severity Level</th>
<th>System Log Tag</th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis Notifications (Alarm Conditions)</td>
<td>Chassis MIB (jnx-chassis.mib)</td>
<td>jnxPowerSupplyFailure</td>
<td>1.3.6.1.4.1.2636.4.1</td>
<td>6</td>
<td>Warning</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxFanFailure</td>
<td>1.3.6.1.4.1.2636.4.1</td>
<td>6</td>
<td>2</td>
<td>Critical</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxOverTemperature</td>
<td>1.3.6.1.4.1.2636.4.1</td>
<td>6</td>
<td>3</td>
<td>Alert</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxRedundancySwitchOver</td>
<td>1.3.6.1.4.1.2636.4.1</td>
<td>6</td>
<td>4</td>
<td>Critical</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxFruRemoval</td>
<td>1.3.6.1.4.1.2636.4.1</td>
<td>6</td>
<td>5</td>
<td>Notice</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxFruInsertion</td>
<td>1.3.6.1.4.1.2636.4.1</td>
<td>6</td>
<td>6</td>
<td>Notice</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxFruPowerOff</td>
<td>1.3.6.1.4.1.2636.4.1</td>
<td>6</td>
<td>7</td>
<td>Notice</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxFruPowerOn</td>
<td>1.3.6.1.4.1.2636.4.1</td>
<td>6</td>
<td>8</td>
<td>Notice</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxFruFailed</td>
<td>1.3.6.1.4.1.2636.4.1</td>
<td>6</td>
<td>9</td>
<td>Warning</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxFruOffline</td>
<td>1.3.6.1.4.1.2636.4.1</td>
<td>6</td>
<td>10</td>
<td>Notice</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxFruOnline</td>
<td>1.3.6.1.4.1.2636.4.1</td>
<td>6</td>
<td>11</td>
<td>Notice</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxFruCheck</td>
<td>1.3.6.1.4.1.2636.4.1</td>
<td>6</td>
<td>12</td>
<td>Warning</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
</tbody>
</table>
Table 11: Juniper Networks Enterprise-Specific Supported SNMP Version 1 Traps (continued)

<table>
<thead>
<tr>
<th>Defined In</th>
<th>Trap Name</th>
<th>Enterprise ID</th>
<th>Generic Trap Number</th>
<th>Specific Trap Number</th>
<th>System Logging Severity Level</th>
<th>System Log Tag</th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>jnxFEBSwitchover</td>
<td>1.3.6.1.4.1.2636.4.1</td>
<td>6</td>
<td>13</td>
<td>Warning</td>
<td>CHASSISD_SNMPTRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxHardDiskFailed</td>
<td>1.3.6.1.4.1.2636.4.1</td>
<td>6</td>
<td>14</td>
<td>Warning</td>
<td>CHASSISD_SNMPTRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxHardDiskMissing</td>
<td>1.3.6.1.4.1.2636.4.1</td>
<td>6</td>
<td>15</td>
<td>Warning</td>
<td>CHASSISD_SNMPTRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxPowerSupplyOk</td>
<td>1.3.6.1.4.1.2636.4.2</td>
<td>6</td>
<td>1</td>
<td>Critical</td>
<td>CHASSISD_SNMPTRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxFanOK</td>
<td>1.3.6.1.4.1.2636.4.2</td>
<td>6</td>
<td>2</td>
<td>Critical</td>
<td>CHASSISD_SNMPTRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxTemperatureOK</td>
<td>1.3.6.1.4.1.2636.4.2</td>
<td>6</td>
<td>3</td>
<td>Alert</td>
<td>CHASSISD_SNMPTRAP</td>
<td>All devices running Junos OS.</td>
</tr>
</tbody>
</table>

Configuration Notifications

<table>
<thead>
<tr>
<th>Configuration Management MIB (jnx-configmgmt.mib)</th>
<th>Trap Name</th>
<th>Enterprise ID</th>
<th>Generic Trap Number</th>
<th>Specific Trap Number</th>
<th>System Logging Severity Level</th>
<th>System Log Tag</th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td>jnxCmCfgChange</td>
<td>1.3.6.1.4.1.2636.4.5</td>
<td>6</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>jnxCmRescueChange</td>
<td>1.3.6.1.4.1.2636.4.5</td>
<td>6</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
</tbody>
</table>
Table 11: Juniper Networks Enterprise-Specific Supported SNMP Version 1 Traps (continued)

<table>
<thead>
<tr>
<th>Defined In</th>
<th>Trap Name</th>
<th>Enterprise ID</th>
<th>Generic Trap Number</th>
<th>Specific Trap Number</th>
<th>System Logging Severity Level</th>
<th>System Log Tag</th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link Notifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow Collection Services MIB (jnx-coll.mib)</td>
<td>jnxCollUnavailableDest</td>
<td>1.3.6.1.4.1.2636.4.8</td>
<td>6</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>Devices that run Junos OS and have collector PICs installed.</td>
</tr>
<tr>
<td></td>
<td>jnxCollUnavailableDestCleared</td>
<td>1.3.6.1.4.1.2636.4.8</td>
<td>6</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>Devices that run Junos OS and have collector PICs installed.</td>
</tr>
<tr>
<td></td>
<td>jnxCollUnsuccessfulTransfer</td>
<td>1.3.6.1.4.1.2636.4.8</td>
<td>6</td>
<td>3</td>
<td>--</td>
<td>--</td>
<td>Devices that run Junos OS and have collector PICs installed.</td>
</tr>
<tr>
<td></td>
<td>jnxCollFlowOverload</td>
<td>1.3.6.1.4.1.2636.4.8</td>
<td>6</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td>Devices that run Junos OS and have collector PICs installed.</td>
</tr>
<tr>
<td></td>
<td>jnxCollFlowOverloadCleared</td>
<td>1.3.6.1.4.1.2636.4.8</td>
<td>6</td>
<td>5</td>
<td>--</td>
<td>--</td>
<td>Devices that run Junos OS and have collector PICs installed.</td>
</tr>
<tr>
<td></td>
<td>jnxCollMemoryUnavailable</td>
<td>1.3.6.1.4.1.2636.4.8</td>
<td>6</td>
<td>6</td>
<td>--</td>
<td>--</td>
<td>Devices that run Junos OS and have collector PICs installed.</td>
</tr>
<tr>
<td></td>
<td>jnxCollMemoryAvailable</td>
<td>1.3.6.1.4.1.2636.4.8</td>
<td>6</td>
<td>7</td>
<td>--</td>
<td>--</td>
<td>Devices that run Junos OS and have collector PICs installed.</td>
</tr>
<tr>
<td></td>
<td>jnxCollFtpSwitchover</td>
<td>1.3.6.1.4.1.2636.4.8</td>
<td>6</td>
<td>8</td>
<td>--</td>
<td>--</td>
<td>Devices that run Junos OS and have collector PICs installed.</td>
</tr>
</tbody>
</table>
Table 11: Juniper Networks Enterprise-Specific Supported SNMP Version 1 Traps (continued)

<table>
<thead>
<tr>
<th>Defined In</th>
<th>Trap Name</th>
<th>Enterprise ID</th>
<th>Generic Trap Number</th>
<th>Specific Trap Number</th>
<th>System Logging Severity Level</th>
<th>System Log Tag</th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passive Monitoring MIB (jnx-pmon.mib)</td>
<td>jnxPMonOverloadSet</td>
<td>1.3.6.1.4.1.2636.4.7.0.1</td>
<td>6</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>Devices that run Junos OS and have PICs that support passive monitoring installed.</td>
</tr>
<tr>
<td></td>
<td>jnxPMonOverloadCleared</td>
<td>1.3.6.1.4.1.2636.4.7.0.2</td>
<td>6</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>Devices that run Junos OS and have PICs that support passive monitoring installed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SONET APS MIB (jnx-sonetaps.mib)</td>
<td>apsEventChannelMismatch</td>
<td>1.3.6.1.4.1.2636.3.24.2</td>
<td>6</td>
<td>3</td>
<td>–</td>
<td>–</td>
<td>Devices that run Junos OS and have SONET PICs installed.</td>
</tr>
<tr>
<td></td>
<td>apsEventPSBF</td>
<td>1.3.6.1.4.1.2636.3.24.2</td>
<td>6</td>
<td>4</td>
<td>–</td>
<td>–</td>
<td>Devices that run Junos OS and have SONET PICs installed.</td>
</tr>
<tr>
<td></td>
<td>apsEventFEPLF</td>
<td>1.3.6.1.4.1.2636.3.24.2</td>
<td>6</td>
<td>5</td>
<td>–</td>
<td>–</td>
<td>Devices that run Junos OS and have SONET PICs installed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remote Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PING MIB (jnx-ping.mib)</td>
<td>jnxPingRttThresholdExceeded</td>
<td>1.3.6.1.4.1.2636.4.9</td>
<td>6</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxPingRttStdDevThresholdExceeded</td>
<td>1.3.6.1.4.1.2636.4.9</td>
<td>6</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxPingRttJitterThresholdExceeded</td>
<td>1.3.6.1.4.1.2636.4.9</td>
<td>6</td>
<td>3</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxPingEgressThresholdExceeded</td>
<td>1.3.6.1.4.1.2636.4.9</td>
<td>6</td>
<td>4</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
</tbody>
</table>
Table 11: Juniper Networks Enterprise-Specific Supported SNMP Version 1 Traps (continued)

<table>
<thead>
<tr>
<th>Defined In</th>
<th>Trap Name</th>
<th>Enterprise ID</th>
<th>Generic Trap Number</th>
<th>Specific Trap Number</th>
<th>System Logging Severity Level</th>
<th>System Log Tag</th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>jnxPingEgressStdDevThresholdExceeded</td>
<td>1.3.6.1.4.1.2636.4.9</td>
<td>6</td>
<td>5</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxPingEgressJitterThresholdExceeded</td>
<td>1.3.6.1.4.1.2636.4.9</td>
<td>6</td>
<td>6</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxPingIngressThresholdExceeded</td>
<td>1.3.6.1.4.1.2636.4.9</td>
<td>6</td>
<td>7</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxPingIngressStddevThresholdExceeded</td>
<td>1.3.6.1.4.1.2636.4.9</td>
<td>6</td>
<td>8</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxPingIngressJitterThresholdExceeded</td>
<td>1.3.6.1.4.1.2636.4.9</td>
<td>6</td>
<td>9</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
</tbody>
</table>

Routing Notifications

<table>
<thead>
<tr>
<th>MIB</th>
<th>Trap Name</th>
<th>Enterprise ID</th>
<th>Generic Trap Number</th>
<th>Specific Trap Number</th>
<th>System Logging Severity Level</th>
<th>System Log Tag</th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFD Experimental MIB (jnx-bfd-exp.mib)</td>
<td>bfdSessUp</td>
<td>1.3.6.1.4.1.2636.5.3.1</td>
<td>6</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>bfdSessDown</td>
<td>1.3.6.1.4.1.2636.5.3.1</td>
<td>6</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>LDP MIB (jnx-ldp.mib)</td>
<td>jnxLdpLspUp</td>
<td>1.3.6.1.4.1.2636.4.4</td>
<td>6</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>M. T. and MX Series routers.</td>
</tr>
<tr>
<td></td>
<td>jnxLdpLspDown</td>
<td>1.3.6.1.4.1.2636.4.4</td>
<td>6</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>M. T. and MX Series routers.</td>
</tr>
<tr>
<td></td>
<td>jnxLdpSesUp</td>
<td>1.3.6.1.4.1.2636.4.4</td>
<td>6</td>
<td>3</td>
<td>–</td>
<td>–</td>
<td>M. T. and MX Series routers.</td>
</tr>
<tr>
<td></td>
<td>jnxLdpSesDown</td>
<td>1.3.6.1.4.1.2636.4.4</td>
<td>6</td>
<td>4</td>
<td>–</td>
<td>–</td>
<td>M. T. and MX Series routers.</td>
</tr>
<tr>
<td>Defined In</td>
<td>Trap Name</td>
<td>Enterprise ID</td>
<td>Generic Trap Number</td>
<td>Specific Trap Number</td>
<td>System Logging Severity Level</td>
<td>System Log Tag</td>
<td>Supported On</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------------</td>
<td>------------------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>------------------------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>MPLS MIB (jnx-mpls.mib)</td>
<td>mplsLspUp (Deprecated)</td>
<td>1.3.6.1.4.1.2636.3.2.4</td>
<td>6</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mplsLspDown (Deprecated)</td>
<td>1.3.6.1.4.1.2636.3.2.4</td>
<td>6</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mplsLspChange (Deprecated)</td>
<td>1.3.6.1.4.1.2636.3.2.4</td>
<td>6</td>
<td>3</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mplsLspPathDown (Deprecated)</td>
<td>1.3.6.1.4.1.2636.3.2.4</td>
<td>6</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>VPN MIB (jnx-vpn.mib)</td>
<td>jnxVpnIfUp</td>
<td>1.3.6.1.4.1.2636.3.26</td>
<td>6</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>M, T, and MX Series routers.</td>
</tr>
<tr>
<td></td>
<td>jnxVpnIfDown</td>
<td>1.3.6.1.4.1.2636.3.26</td>
<td>6</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>M, T, and MX Series routers.</td>
</tr>
<tr>
<td></td>
<td>jnxVpnPwUp</td>
<td>1.3.6.1.4.1.2636.3.26</td>
<td>6</td>
<td>3</td>
<td>--</td>
<td>--</td>
<td>M, T, and MX Series routers.</td>
</tr>
<tr>
<td></td>
<td>jnxVpnPwDown</td>
<td>1.3.6.1.4.1.2636.3.26</td>
<td>6</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td>M, T, and MX Series routers.</td>
</tr>
<tr>
<td>RMON Alarms</td>
<td>jnxRmonAlarmGetFailure</td>
<td>1.3.6.1.4.1.2636.4.3</td>
<td>6</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxRmonGetOk</td>
<td>1.3.6.1.4.1.2636.4.3</td>
<td>6</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>SONET Alarms</td>
<td>jnxSonetAlarmSet</td>
<td>1.3.6.1.4.1.2636.4.6</td>
<td>6</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>Devices that run Junos OS and have SONET PICs installed.</td>
</tr>
<tr>
<td></td>
<td>jnxSonetAlarmCleared</td>
<td>1.3.6.1.4.1.2636.4.6</td>
<td>6</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>Devices that run Junos OS and have SONET PICs installed.</td>
</tr>
</tbody>
</table>

Juniper Networks Enterprise-Specific SNMP Version 2 Traps

The Junos OS supports the enterprise-specific SNMP version 2 traps shown in Table 12 on page 75. The traps are organized first by trap category and then by trap name.
The system logging severity levels are listed for those traps that have them. Traps that do not have corresponding system logging severity levels are marked with an en dash (–).

For more information about system messages, see the System Log Explorer. For more information about configuring system logging, see the Junos OS Administration Library for Routing Devices.

Table 12: Juniper Networks Enterprise-Specific Supported SNMP Version 2 Traps

<table>
<thead>
<tr>
<th>Source MIB</th>
<th>Trap Name</th>
<th>snmpTrapOID</th>
<th>System Logging Severity Level</th>
<th>System Log Tag</th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis (Alarm Conditions) Notifications</td>
<td>jnxPowerSupplyFailure</td>
<td>1.3.6.1.4.1.2636.4.1.1</td>
<td>Alert</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxFanFailure</td>
<td>1.3.6.1.4.1.2636.4.1.2</td>
<td>Critical</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxOverTemperature</td>
<td>1.3.6.1.4.1.2636.4.1.3</td>
<td>Critical</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxFruNotifAdminStatus</td>
<td></td>
<td>Notice</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>jnxFruNotifMismatch</td>
<td></td>
<td>Notice</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>jnxFruNotifOperStatus</td>
<td></td>
<td>Notice</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>jnxRedundancySwitchOver</td>
<td>1.3.6.1.4.1.2636.4.1.4</td>
<td>Critical</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxFruRemoval</td>
<td>1.3.6.1.4.1.2636.4.1.5</td>
<td>Notice</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxFruInsertion</td>
<td>1.3.6.1.4.1.2636.4.1.6</td>
<td>Notice</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxFruPowerOff</td>
<td>1.3.6.1.4.1.2636.4.1.7</td>
<td>Notice</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxFruPowerOn</td>
<td>1.3.6.1.4.1.2636.4.1.8</td>
<td>Notice</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxFruFailed</td>
<td>1.3.6.1.4.1.2636.4.1.9</td>
<td>Warning</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxFruOffline</td>
<td>1.3.6.1.4.1.2636.4.1.10</td>
<td>Notice</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
</tbody>
</table>
Table 12: Juniper Networks Enterprise-Specific Supported SNMP Version 2 Traps (continued)

<table>
<thead>
<tr>
<th>Source MIB</th>
<th>Trap Name</th>
<th>snmpTrapOID</th>
<th>System Logging Severity Level</th>
<th>System Log Tag</th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td>jnxFruOnline</td>
<td></td>
<td>1.3.6.1.4.1.2636.4.1.11</td>
<td>Notice</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>jnxFruCheck</td>
<td></td>
<td>1.3.6.1.4.1.2636.4.1.12</td>
<td>Notice</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>jnxFEBSwitchover</td>
<td></td>
<td>1.3.6.1.4.1.2636.4.1.13</td>
<td>Notice</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>jnxHardDiskFailed</td>
<td></td>
<td>1.3.6.1.4.1.2636.4.1.14</td>
<td>Notice</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>jnxHardDiskMissing</td>
<td></td>
<td>1.3.6.1.4.1.2636.4.1.15</td>
<td>Notice</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>jnxPowerSupplyOK</td>
<td></td>
<td>1.3.6.1.4.1.2636.4.2.1</td>
<td>Critical</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>jnxFanOK</td>
<td></td>
<td>1.3.6.1.4.1.2636.4.2.2</td>
<td>Critical</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>jnxTemperatureOK</td>
<td></td>
<td>1.3.6.1.4.1.2636.4.2.3</td>
<td>Alert</td>
<td>CHASSISD_SNMP_TRAP</td>
<td>All devices running Junos OS.</td>
</tr>
</tbody>
</table>

Configuration Notifications

<table>
<thead>
<tr>
<th>Configuration Management MIB (jnx-cfgmgmt.mib)</th>
<th>Trap Name</th>
<th>snmpTrapOID</th>
<th></th>
<th></th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td>jnxCmCfgChange</td>
<td></td>
<td>1.3.6.1.4.1.2636.4.5.0.1</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>jnxCmRescueChange</td>
<td></td>
<td>1.3.6.1.4.1.2636.4.5.0.2</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
</tbody>
</table>

Link Notifications
Table 12: Juniper Networks Enterprise-Specific Supported SNMP Version 2 Traps (continued)

<table>
<thead>
<tr>
<th>Source MIB</th>
<th>Trap Name</th>
<th>snmpTrapOID</th>
<th>System Logging Severity Level</th>
<th>System Log Tag</th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>jnxCollUnavailableDest</td>
<td>1.3.6.1.4.1.2636.4.8.0.1</td>
<td>-</td>
<td>-</td>
<td>Devices that run Junos OS and have collector PICs installed.</td>
</tr>
<tr>
<td>Collection</td>
<td>jnxCollUnavailableDestCleared</td>
<td>1.3.6.1.4.1.2636.4.8.0.2</td>
<td>-</td>
<td>-</td>
<td>Devices that run Junos OS and have collector PICs installed.</td>
</tr>
<tr>
<td>Services</td>
<td>jnxCollUnsuccessfulTransfer</td>
<td>1.3.6.1.4.1.2636.4.8.0.3</td>
<td>-</td>
<td>-</td>
<td>Devices that run Junos OS and have collector PICs installed.</td>
</tr>
<tr>
<td>MIB</td>
<td>jnxCollFlowOverload</td>
<td>1.3.6.1.4.1.2636.4.8.0.4</td>
<td>-</td>
<td>-</td>
<td>Devices that run Junos OS and have collector PICs installed.</td>
</tr>
<tr>
<td>(jnx-coll.mib)</td>
<td>jnxCollFlowOverloadCleared</td>
<td>1.3.6.1.4.1.2636.4.8.0.5</td>
<td>-</td>
<td>-</td>
<td>Devices that run Junos OS and have collector PICs installed.</td>
</tr>
<tr>
<td></td>
<td>jnxCollMemoryUnavailable</td>
<td>1.3.6.1.4.1.2636.4.8.0.6</td>
<td>-</td>
<td>-</td>
<td>Devices that run Junos OS and have collector PICs installed.</td>
</tr>
<tr>
<td></td>
<td>jnxCollMemoryAvailable</td>
<td>1.3.6.1.4.1.2636.4.8.0.7</td>
<td>-</td>
<td>-</td>
<td>Devices that run Junos OS and have collector PICs installed.</td>
</tr>
<tr>
<td></td>
<td>jnxCollFtpSwitchover</td>
<td>1.3.6.1.4.1.2636.4.8.0.8</td>
<td>-</td>
<td>-</td>
<td>Devices that run Junos OS and have collector PICs installed.</td>
</tr>
<tr>
<td>PMON MIB</td>
<td>jnxPMonOverloadSet</td>
<td>1.3.6.1.4.1.2636.4.7.0.1</td>
<td>-</td>
<td>-</td>
<td>Devices that run Junos OS and have PICs that support passive monitoring installed.</td>
</tr>
<tr>
<td>(jnx-pmon.mib)</td>
<td>jnxPMonOverloadCleared</td>
<td>1.3.6.1.4.1.2636.4.7.0.2</td>
<td>-</td>
<td>-</td>
<td>Devices that run Junos OS and have PICs that support passive monitoring installed.</td>
</tr>
</tbody>
</table>
Table 12: Juniper Networks Enterprise-Specific Supported SNMP Version 2 Traps (continued)

<table>
<thead>
<tr>
<th>Source MIB</th>
<th>Trap Name</th>
<th>snmpTrapOID</th>
<th>System Logging Severity Level</th>
<th>System Log Tag</th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td>SONET APS MIB (jnx-sonetaps.mib)</td>
<td>apsEventChannelMismatch</td>
<td>1.3.6.1.4.1.2636.3.24.2.0.3</td>
<td>–</td>
<td>–</td>
<td>Devices that run Junos OS and have SONET PICs installed.</td>
</tr>
<tr>
<td></td>
<td>apsEventPSBF</td>
<td>1.3.6.1.4.1.2636.3.24.2.0.4</td>
<td>–</td>
<td>–</td>
<td>Devices that run Junos OS and have SONET PICs installed.</td>
</tr>
<tr>
<td></td>
<td>apsEventFEPLF</td>
<td>1.3.6.1.4.1.2636.3.24.2.0.5</td>
<td>–</td>
<td>–</td>
<td>Devices that run Junos OS and have SONET PICs installed.</td>
</tr>
</tbody>
</table>

Remote Operations Notifications

<table>
<thead>
<tr>
<th>MIB</th>
<th>Trap Name</th>
<th>snmpTrapOID</th>
<th>System Logging Severity Level</th>
<th>System Log Tag</th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td>jnx-ping.mib</td>
<td>jnxPingRttThreshold Exceeded</td>
<td>1.3.6.1.4.1.2636.4.9.0.1</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxPingRttStdDevThreshold Exceeded</td>
<td>1.3.6.1.4.1.2636.4.9.0.2</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxPingRttJitterThreshold Exceeded</td>
<td>1.3.6.1.4.1.2636.4.9.0.3</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxPingEgressThreshold Exceeded</td>
<td>1.3.6.1.4.1.2636.4.9.0.4</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxPingEgressStdDevThreshold Exceeded</td>
<td>1.3.6.1.4.1.2636.4.9.0.5</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxPingEgressJitterThreshold Exceeded</td>
<td>1.3.6.1.4.1.2636.4.9.0.6</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxPingIngressThreshold Exceeded</td>
<td>1.3.6.1.4.1.2636.4.9.0.7</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxPingIngressStdDevThreshold Exceeded</td>
<td>1.3.6.1.4.1.2636.4.9.0.8</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>jnxPingIngressJitterThreshold Exceeded</td>
<td>1.3.6.1.4.1.2636.4.9.0.9</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
</tbody>
</table>

Routing Notifications

<table>
<thead>
<tr>
<th>MIB</th>
<th>Trap Name</th>
<th>snmpTrapOID</th>
<th>System Logging Severity Level</th>
<th>System Log Tag</th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td>jnx-bfd-exp.mib</td>
<td>bfdSessUp</td>
<td>1.3.6.1.4.1.2636.5.31.0.1</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td></td>
<td>bfdSessDown</td>
<td>1.3.6.1.4.1.2636.5.31.0.2</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>Source MIB</td>
<td>Trap Name</td>
<td>snmpTrapOID</td>
<td>System Logging Severity Level</td>
<td>System Log Tag</td>
<td>Supported On</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
<td>-------------------------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>BGP4 V2 MIB (jnx-bgpmbib2.mib)</td>
<td>jnxBgpM2Established</td>
<td>1.3.6.1.4.1.2636.5.1.1.1.0.1</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>jnxBgpM2BackwardTransition</td>
<td>1.3.6.1.4.1.2636.5.1.1.1.0.2</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
<td></td>
</tr>
<tr>
<td>DHCP MIB (jnx-dhcp.mib)</td>
<td>jnxDhcpLocalServer DuplicateClient</td>
<td>1.3.6.1.4.1.2636.3.61.61.1.3.1</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>jnxDhcpLocalServer InterfaceLimitExceeded</td>
<td>1.3.6.1.4.1.2636.3.61.61.1.3.2</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
<td></td>
</tr>
<tr>
<td>jnxDhcpLocalServer InterfaceLimitAbated</td>
<td>1.3.6.1.4.1.2636.3.61.61.1.3.3</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
<td></td>
</tr>
<tr>
<td>jnxDhcpLocalServer Health</td>
<td>1.3.6.1.4.1.2636.3.61.61.1.3.4</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
<td></td>
</tr>
<tr>
<td>jnxDhcpRelayInterface LimitExceeded</td>
<td>1.3.6.1.4.1.2636.3.61.61.2.3.1</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
<td></td>
</tr>
<tr>
<td>jnxDhcpRelayInterface LimitAbated</td>
<td>1.3.6.1.4.1.2636.3.61.61.2.3.2</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
<td></td>
</tr>
<tr>
<td>DHCPv6MIB (jnx-dhcpv6.mib)</td>
<td>jnxDhcpv6LocalServer InterfaceLimitExceeded</td>
<td>1.3.6.1.4.1.2636.3.61.62.2.3.1</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>jnxDhcpv6LocalServer InterfaceLimitAbated</td>
<td>1.3.6.1.4.1.2636.3.61.62.2.3.2</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
<td></td>
</tr>
<tr>
<td>jnxDhcpv6LocalServer Health</td>
<td>1.3.6.1.4.1.2636.3.61.62.2.3.3</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
<td></td>
</tr>
<tr>
<td>LDP MIB (jnx-ldp.mib)</td>
<td>jnxLdpLspUp</td>
<td>1.3.6.1.4.1.2636.4.4.0.1</td>
<td>–</td>
<td>–</td>
<td>M, T, and MX Series routers.</td>
</tr>
<tr>
<td>jnxLdpLspDown</td>
<td>1.3.6.1.4.1.2636.4.4.0.2</td>
<td>–</td>
<td>–</td>
<td>M, T, and MX Series routers.</td>
<td></td>
</tr>
<tr>
<td>jnxLdpSesUp</td>
<td>1.3.6.1.4.1.2636.4.4.0.3</td>
<td>–</td>
<td>–</td>
<td>M, T, and MX Series routers.</td>
<td></td>
</tr>
<tr>
<td>jnxLdpSesDown</td>
<td>1.3.6.1.4.1.2636.4.4.0.4</td>
<td>–</td>
<td>–</td>
<td>M, T, and MX Series routers.</td>
<td></td>
</tr>
</tbody>
</table>
Table 12: Juniper Networks Enterprise-Specific Supported SNMP Version 2 Traps (continued)

<table>
<thead>
<tr>
<th>Source MIB</th>
<th>Trap Name</th>
<th>snmpTrapOID</th>
<th>System Logging Severity Level</th>
<th>System Log Tag</th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLS MIB</td>
<td>mplsLspUp (Deprecated)</td>
<td>1.3.6.1.4.1.2636.3.2.4.1</td>
<td>–</td>
<td>–</td>
<td>M, T, and MX Series routers.</td>
</tr>
<tr>
<td></td>
<td>mplsLspInfoUp</td>
<td>1.3.6.1.4.1.2636.3.2.0.1</td>
<td>–</td>
<td>–</td>
<td>M, T, and MX Series routers.</td>
</tr>
<tr>
<td></td>
<td>mplsLspDown (Deprecated)</td>
<td>1.3.6.1.4.1.2636.3.2.4.2</td>
<td>–</td>
<td>–</td>
<td>M, T, and MX Series routers.</td>
</tr>
<tr>
<td></td>
<td>mplsLspInfoDown</td>
<td>1.3.6.1.4.1.2636.3.2.0.2</td>
<td>–</td>
<td>–</td>
<td>M, T, and MX Series routers.</td>
</tr>
<tr>
<td></td>
<td>mplsLspChange (Deprecated)</td>
<td>1.3.6.1.4.1.2636.3.2.4.3</td>
<td>–</td>
<td>–</td>
<td>M, T, and MX Series routers.</td>
</tr>
<tr>
<td></td>
<td>mplsLspInfoChange</td>
<td>1.3.6.1.4.1.2636.3.2.0.3</td>
<td>–</td>
<td>–</td>
<td>M, T, and MX Series routers.</td>
</tr>
<tr>
<td></td>
<td>mplsLspPathDown (Deprecated)</td>
<td>1.3.6.1.4.1.2636.3.2.4.4</td>
<td>–</td>
<td>–</td>
<td>M, T, and MX Series routers.</td>
</tr>
<tr>
<td></td>
<td>mplsLspInfoPathDown</td>
<td>1.3.6.1.4.1.2636.3.2.0.4</td>
<td>–</td>
<td>–</td>
<td>M, T, and MX Series routers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mplsLspPathUp</td>
<td>1.3.6.1.4.1.2636.3.2.0.5</td>
<td>–</td>
<td>–</td>
<td>M, T, and MX Series routers.</td>
<td></td>
</tr>
<tr>
<td>VPN MIB</td>
<td>jnxVpnIfUp</td>
<td>1.3.6.1.4.1.2636.3.26.0.1</td>
<td>–</td>
<td>–</td>
<td>M, T, and MX Series routers.</td>
</tr>
<tr>
<td></td>
<td>jnxVpnIfDown</td>
<td>1.3.6.1.4.1.2636.3.26.0.2</td>
<td>–</td>
<td>–</td>
<td>M, T, and MX Series routers.</td>
</tr>
<tr>
<td></td>
<td>jnxVpnPwUp</td>
<td>1.3.6.1.4.1.2636.3.26.0.3</td>
<td>–</td>
<td>–</td>
<td>M, T, and MX Series routers.</td>
</tr>
<tr>
<td></td>
<td>jnxVpnPwDown</td>
<td>1.3.6.1.4.1.2636.3.26.0.4</td>
<td>–</td>
<td>–</td>
<td>M, T, and MX Series routers.</td>
</tr>
</tbody>
</table>
Table 12: Juniper Networks Enterprise-Specific Supported SNMP Version 2 Traps (continued)

<table>
<thead>
<tr>
<th>Source MIB</th>
<th>Trap Name</th>
<th>snmpTrapOID</th>
<th>System Logging Severity Level</th>
<th>System Log Tag</th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA MIB (jnx-user-aaa.mib)</td>
<td>jnxAccessAuthAddress PoolHighThreshold</td>
<td>1.3.6.1.4.1.2636.3.51.1.0.5</td>
<td>–</td>
<td>–</td>
<td>SRX Series devices.</td>
</tr>
<tr>
<td></td>
<td>jnxAccessAuthAddress PoolAbateThreshold</td>
<td>1.3.6.1.4.1.2636.3.51.1.0.6</td>
<td>–</td>
<td>–</td>
<td>SRX Series devices.</td>
</tr>
<tr>
<td></td>
<td>jnxAccessAuthAddress PoolOutOfAddresses</td>
<td>1.3.6.1.4.1.2636.3.51.1.0.7</td>
<td>–</td>
<td>–</td>
<td>SRX Series devices.</td>
</tr>
<tr>
<td></td>
<td>jnxAccessAuthAddress PoolOutOfMemory</td>
<td>1.3.6.1.4.1.2636.3.51.1.0.8</td>
<td>–</td>
<td>–</td>
<td>SRX Series devices.</td>
</tr>
<tr>
<td></td>
<td>jnxAccessAuthServiceUp</td>
<td>1.3.6.1.4.1.2636.3.51.1.0.1</td>
<td>–</td>
<td>–</td>
<td>SRX Series devices.</td>
</tr>
<tr>
<td></td>
<td>jnxAccessAuthServiceDown</td>
<td>1.3.6.1.4.1.2636.3.51.1.0.2</td>
<td>–</td>
<td>–</td>
<td>SRX Series devices.</td>
</tr>
<tr>
<td></td>
<td>jnxAccessAuthServerDisabled</td>
<td>1.3.6.1.4.1.2636.3.51.1.0.3</td>
<td>–</td>
<td>–</td>
<td>SRX Series devices.</td>
</tr>
<tr>
<td></td>
<td>jnxAccessAuthServerEnabled</td>
<td>1.3.6.1.4.1.2636.3.51.1.0.4</td>
<td>–</td>
<td>–</td>
<td>SRX Series devices.</td>
</tr>
<tr>
<td></td>
<td>jnxJsFwAuthFailure</td>
<td>1.3.6.1.4.1.2636.3.39.12.1.0.1</td>
<td>–</td>
<td>–</td>
<td>SRX Series devices.</td>
</tr>
<tr>
<td>Access Authentication Methods MIB (jnx-js-auth.mib)</td>
<td>jnxJsFwAuthServiceUp</td>
<td>1.3.6.1.4.1.2636.3.39.12.1.0.2</td>
<td>–</td>
<td>–</td>
<td>SRX Series devices.</td>
</tr>
<tr>
<td></td>
<td>jnxJsFwAuthServiceDown</td>
<td>1.3.6.1.4.1.2636.3.39.12.1.0.3</td>
<td>–</td>
<td>–</td>
<td>SRX Series devices.</td>
</tr>
<tr>
<td></td>
<td>jnxJsFwAuthCapacityExceeded</td>
<td>1.3.6.1.4.1.2636.3.39.12.1.0.4</td>
<td>–</td>
<td>–</td>
<td>SRX Series devices.</td>
</tr>
<tr>
<td></td>
<td>jnxJsNatAddrPoolThresholdStatus</td>
<td>1.3.6.1.4.1.2636.3.39.17.1.0.1</td>
<td>–</td>
<td>–</td>
<td>SRX Series devices.</td>
</tr>
<tr>
<td>Network Address Translation Resources Monitoring MIB (jnxNatMIB)</td>
<td>jnxNatAddrPoolUtil</td>
<td>1.3.6.1.4.1.2636.3.59.12.1</td>
<td>–</td>
<td>–</td>
<td>M Series and MX Series routers</td>
</tr>
<tr>
<td></td>
<td>jnxNatTrapSrcPoolName</td>
<td>1.3.6.1.4.1.2636.3.59.12.2</td>
<td>–</td>
<td>–</td>
<td>M Series and MX Series routers</td>
</tr>
<tr>
<td></td>
<td>jnxNatAddrPoolThresholdStatus</td>
<td>1.3.6.1.4.1.2636.3.59.10.1</td>
<td>–</td>
<td>–</td>
<td>M Series and MX Series routers</td>
</tr>
</tbody>
</table>
Table 12: Juniper Networks Enterprise-Specific Supported SNMP Version 2 Traps (continued)

<table>
<thead>
<tr>
<th>Source MIB</th>
<th>Trap Name</th>
<th>snmpTrapOID</th>
<th>System Logging Severity Level</th>
<th>System Log Tag</th>
<th>Supported On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Address Translation MIB (jnx-js-nat.mib)</td>
<td>jnxJsScreen Attack</td>
<td>1.3.6.1.4.1.2636.3.391.8.1.0.1</td>
<td>Warning</td>
<td>RT SCREEN_ICMP, RT SCREEN_IP, RT SCREEN, SESSION_LIMIT, RT SCREEN_TCP, RT SCREEN_UDP</td>
<td>SRX Series devices.</td>
</tr>
<tr>
<td>Security Screening Objects MIB (jnx-js-screening.mib)</td>
<td>jnxJsScreenCfg Change</td>
<td>1.3.6.1.4.1.2636.3.391.8.1.0.2</td>
<td>–</td>
<td>–</td>
<td>SRX Series devices.</td>
</tr>
<tr>
<td>RMON MIB (jnx-rmon.mib)</td>
<td>jnxRmonGetOk</td>
<td>1.3.6.1.4.1.2636.4.3.0.2</td>
<td>–</td>
<td>–</td>
<td>All devices running Junos OS.</td>
</tr>
<tr>
<td>SONET MIB (jnx-sonet.mib)</td>
<td>jnxSonetAlarm Cleared</td>
<td>1.3.6.1.4.1.2636.4.6.0.2</td>
<td>–</td>
<td>–</td>
<td>Devices that run Junos OS and have SONET PICs installed.</td>
</tr>
</tbody>
</table>

Related Documentation
- Standard SNMP Traps Supported by Junos OS on page 60
- Standard SNMP MIBs Supported by Junos OS on page 32
- Enterprise-Specific SNMP MIBs Supported by Junos OS on page 21
- Configuring SNMP Trap Options and Groups on a Device Running Junos OS on page 112
- Managing Traps and Informs
CHAPTER 5

Loading MIB Files to a Network Management System

- Loading MIB Files to a Network Management System on page 83

Loading MIB Files to a Network Management System

<table>
<thead>
<tr>
<th>Supported Platforms</th>
<th>ACX Series</th>
</tr>
</thead>
</table>

For your network management system (NMS) to identify and understand the MIB objects used by the Junos OS, you must first load the MIB files to your NMS using a MIB compiler. A MIB compiler is a utility that parses the MIB information such as the MIB object name, IDs, and data type for the NMS.

You can download the Junos MIB package from the Junos OS Enterprise MIBs index at http://www.juniper.net/techpubs/en_US/release-independent/junos/mibs/mibs.html. The Junos MIB package is available in `.zip` and `.tar` packages. You can download the appropriate format based on your requirements.

The Junos MIB package contains two folders: **StandardMibs** and **JuniperMibs**. The **StandardMibs** folder contains the standard MIBs and RFCs that are supported on devices running the Junos OS, whereas the **JuniperMibs** folder contains the Juniper Networks enterprise-specific MIBs.

To load MIB files that are required for managing and monitoring devices running the Junos OS:

2. Click the **TAR** or **ZIP** link under the appropriate release heading to download the Junos MIB package for that release.

3. Decompress the file (`.tar` or `.zip`) using an appropriate utility.

4. Load the standard MIB files (from the **StandardMibs** folder) in the following order:
NOTE: Some of the MIB compilers that are commonly used have the standard MIBs preloaded on them. If the standard MIBs are already loaded on the MIB compiler that you are using, skip this step and proceed to Step 7.

a. mib-SNMPv2-SMI.txt
b. mib-SNMPv2-TC.txt
c. mib-IANAifType-MIB.txt
d. mib-IANA-RTPROTO-MIB.txt
e. mib-rfc1907.txt
f. mib-rfc2011a.txt
g. mib-rfc2012a.txt
h. mib-rfc2013a.txt
i. mib-rfc2863a.txt

5. Load the remaining standard MIB files.

NOTE: You must follow the order specified in this procedure, and ensure that all standard MIBs are loaded before you load the enterprise-specific MIBs. There might be dependencies that require a particular MIB to be present on the compiler before loading some other MIB. You can find such dependencies listed in the IMPORT section of the MIB file.

6. Load the Juniper Networks enterprise-specific SMI MIB, mib-jnx-smi.txt, and the following optional SMI MIBs based on your requirements:
 - mib-jnx-js-smi.txt—(Optional) For Juniper Security MIB tree objects
 - mib-jnx-ex-smi.txt—(Optional) For EX Series Ethernet Switches
 - mib-jnx-exp.txt—(Recommended) For Juniper Networks experimental MIB objects

7. Load the remaining enterprise-specific MIBs from the JuniperMibs folder.

TIP: While loading a MIB file, if the compiler returns an error message saying that any of the objects is undefined, open the MIB file using a text editor and ensure that all the MIB files listed in the IMPORT section are loaded on the compiler. If any of the MIB files listed in the IMPORT section is not loaded on the compiler, load that MIB file, and then try to load the MIB file that failed to load.
For example, the enterprise-specific PING MIB, mib-jnx-ping.txt, has dependencies on RFC 2925, DiSMAN-PING-MIB, mib-rfc2925a.txt. If you try to load mib-jnx-ping.txt before loading mib-rfc2925a.txt, the compiler returns an error message saying that certain objects in mib-jnx-ping.txt are undefined. Load mib-rfc2925a.txt, and then try to load mib-jnx-ping.txt. The enterprise-specific PING MIB, mib-jnx-ping.txt, then loads without any issue.

Related Documentation

- Standard SNMP MIBs Supported by Junos OS
- Enterprise-Specific SNMP MIBs Supported by Junos OS on page 21
CHAPTER 6

Configuring SNMP

- Configuration Statements at the [edit snmp] Hierarchy Level on page 88
- Optimizing the Network Management System Configuration for the Best Results on page 91
- Configuring Options on Managed Devices for Better SNMP Response Time on page 93
- Configuring SNMP on Devices Running Junos OS on page 95
- Configuring the System Contact on a Device Running Junos OS on page 98
- Configuring the System Location for a Device Running Junos OS on page 99
- Configuring the System Description on a Device Running Junos OS on page 99
- Configuring SNMP Details on page 100
- Configuring a Different System Name on page 101
- Configuring the Commit Delay Timer on page 102
- Filtering Duplicate SNMP Requests on page 103
- Configuring SNMP Communities on page 103
- Examples: Configuring the SNMP Community String on page 106
- Adding a Group of Clients to an SNMP Community on page 107
- Configuring a Proxy SNMP Agent on page 108
- Configuring SNMP Traps on page 110
- Configuring SNMP Trap Options and Groups on a Device Running Junos OS on page 112
- Configuring SNMP Trap Options on page 113
- Configuring SNMP Trap Groups on page 116
- Example: Configuring SNMP Trap Groups on page 119
- Configuring the Interfaces on Which SNMP Requests Can Be Accepted on page 119
- Example: Configuring Secured Access List Checking on page 120
- Filtering Interface Information Out of SNMP Get and GetNext Output on page 120
- Configuring MIB Views on page 121
- Configuring Ping Proxy MIB on page 123
Configuration Statements at the [edit snmp] Hierarchy Level

Supported Platforms
ACX Series, M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

This topic shows all possible configuration statements at the [edit snmp] hierarchy level and their level in the configuration hierarchy. When you are configuring Junos OS, your current hierarchy level is shown in the banner on the line preceding the `user@host#` prompt.

```
[edit]
snmp {
    alarm-management {
        alarm-list-name list-name {
            alarm-id id {
                alarm-state state {
                    description alarm-description;
                    notification-id notification-id-of-alarm;
                    resource-prefix alarm-resource-prefix;
                    varbind-index varbind-index-in-alarm-varbind-list;
                    varbind-subtree alarm-varbind-subtree;
                    varbind-value alarm-varbind-value;
                }
            }
        }
    }
    client-list client-list-name {
        ip-addresses;
    }
    community community-name {
        authorization authorization;
        client-list-name client-list-name;
        clients {
            address <restrict>;
        }
    }
    logical-system logical-system-name {
        routing-instance routing-instance-name;
        clients {
            address <restrict>;
        }
    }
    routing-instance routing-instance-name {
        clients {
            address <restrict>;
        }
    }
    view view-name;
}
contact contact;
description description;
engine-id {
    (local engine-id | use-default-ip-address | use-mac-address);
}
filter-duplicates;
interface [ interface-names ];
```
location location;
name name;
nonvolatile {
 commit-delay seconds;
}

rmon {
 alarm index {
 description description;
 falling-event-index index;
 falling-threshold integer;
 falling-threshold-interval seconds;
 interval seconds;
 request-type (get-next-request | get-request | walk-request);
 rising-event-index index;
 rising-threshold integer;
 sample-type type;
 startup-alarm alarm;
 syslog-subtag syslog-subtag;
 variable oid-variable;
 }

 event index {
 community community-name;
 description description;
 type type;
 }
}

traceoptions {
 file filename <files number> <size size> <world-readable | no-world-readable> <match regular-expression>;
 flag flag;
 memory-trace;
 no-remote-trace;
 no-default-memory-trace;
}

trap-group group-name {
 categories {
 category;
 }
 destination-port port-number;
 routing-instance instance;
 logical-system logical-system-name;
 targets {
 address;
 }
 version (all | v1 | v2);
}

trap-options {
 agent-address outgoing-interface;
 source-address address;
 enterprise-oid;
 logical-system logical-system-name {
 routing-instance routing-instance-name {
 source-address address;
 }
 }
}

routing-instance routing-instance-name {
source-address address;
}
}
v3 {
 notify name {
 tag tag-name;
 type (trap | inform);
 }
 notify-filter profile-name {
 oid oid (include | exclude);
 }
 snmp-community community-index {
 community-name community-name;
 security-name security-name;
 tag tag-name;
 }
 target-address target-address-name {
 address address;
 address-mask address-mask;
 logical-system logical-system;
 port port-number;
 retry-count number;
 routing-instance instance;
 tag-list tag-list;
 target-parameters target-parameters-name;
 timeout seconds;
 }
 target-parameters target-parameters-name {
 notify-filter profile-name;
 parameters {
 message-processing-model (v1 | v2c | v3);
 security-level (authentication | none | privacy);
 security-model (usm | v1 | v2c);
 security-name security-name;
 }
 }
 usm {
 local-engine {
 user username {
 authentication-md5 {
 authentication-password authentication-password;
 }
 authentication-none;
 authentication-sha {
 authentication-password authentication-password;
 }
 privacy-3des {
 privacy-password privacy-password;
 }
 privacy-aes128 {
 privacy-password privacy-password;
 }
 privacy-des {
 privacy-password privacy-password;
 }
 privacy-none;
 }
 }
 }
Related Documentation

- Understanding the SNMP Implementation in Junos OS
- Configuring SNMP on a Device Running Junos OS

Optimizing the Network Management System Configuration for the Best Results

Supported Platforms

ACX Series, EX Series, M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series, vSRX

You can modify your network management system configuration to optimize the response time for SNMP queries. The following sections contain a few tips on how you can configure the network management system:

- Changing the Polling Method from Column-by-Column to Row-by-Row on page 92
- Reducing the Number of Variable Bindings per PDU on page 92
- Increasing Timeout Values in Polling and Discovery Intervals on page 92
- Reducing Incoming Packet Rate at the snmpd on page 92
Changing the Polling Method from Column-by-Column to Row-by-Row

You can configure the network management system to use the row-by-row method for SNMP data polling. It has been proven that the row-by-row and multiple row-by-multiple-row polling methods are more efficient than column-by-column polling. By configuring the network management system to use the row-by-row data polling method, you can ensure that data for only one interface is polled in a request instead of a single request polling data for multiple interfaces, as is the case with column-by-column polling. Row-by-row polling also reduces the risk of requests timing out.

Reducing the Number of Variable Bindings per PDU

By reducing the number of variable bindings per protocol data unit (PDU), you can improve the response time for SNMP requests. A request that polls for data related to multiple objects, which are mapped to different index entries, translates into multiple requests at the device-end because the subagent might have to poll different modules to obtain data that are linked to different index entries. The recommended method is to ensure that a request has only objects that are linked to one index entry instead of multiple objects linked to different index entries.

NOTE: If responses from a device are slow, avoid using the GetBulk option for the device, because a GetBulk request might contain objects that are linked to various index entries and might further increase the response time.

Increasing Timeout Values in Polling and Discovery Intervals

By increasing the timeout values for polling and discovery intervals, you can increase the queuing time at the device end and reduce the number of throttle drops that occur because of the request timing out.

Reducing Incoming Packet Rate at the snmpd

By reducing the frequency of sending SNMP requests to a device, you can reduce the risk of SNMP requests piling up at any particular device. Apart from reducing the frequency of sending SNMP requests to a device, you can also increase the polling interval, control the use of GetNext requests, and reduce the number of polling stations per device.

Related Documentation

- Understanding SNMP Implementation in Junos OS on page 15
- Configuring SNMP on Devices Running Junos OS on page 95
- Monitoring SNMP Activity and Tracking Problems That Affect SNMP Performance on a Device Running Junos OS on page 203
- Configuring Options on Managed Devices for Better SNMP Response Time on page 93
- Managing Traps and Informs
- Using the Enterprise-Specific Utility MIB to Enhance SNMP Coverage
Configuring Options on Managed Devices for Better SNMP Response Time

Supported Platforms
ACX Series, EX Series, M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series, vSRX

The following sections contain information about configuration options on the managed devices that can enhance SNMP performance:

- Enabling the stats-cache-lifetime Option on page 93
- Filtering Out Duplicate SNMP Requests on page 93
- Excluding Interfaces That Are Slow in Responding to SNMP Queries on page 94

Enabling the stats-cache-lifetime Option

The Junos OS provides you with an option to configure the length of time an SNMP request stays active and queued so as to reduce the possibility of request drops during slow response times. You can use the `stats-cache-lifetime seconds` option at the `[edit snmp]` hierarchy level to specify the length of time that an SNMP request remains queued. The recommended value for the `stats-cache-lifetime` option is in the range of 30 to 60 seconds.

NOTE: The `set snmp stats-cache-lifetime seconds` command is a hidden command and is supported only on devices running Junos OS Release 9.3 and later.

Filtering Out Duplicate SNMP Requests

If a network management station retransmits a Get, GetNext, or GetBulk SNMP request too frequently to a device, that request might interfere with the processing of previous requests and slow down the response time of the agent. Filtering these duplicate requests improves the response time of the SNMP agent. The Junos OS enables you to filter out duplicate Get, GetNext, and GetBulk SNMP requests. The Junos OS uses the following information to determine if an SNMP request is a duplicate:

- Source IP address of the SNMP request
- Source UDP port of the SNMP request
- Request ID of the SNMP request

NOTE: By default, filtering of duplicate SNMP requests is disabled on devices running the Junos OS.

To enable filtering of duplicate SNMP requests on devices running the Junos OS, include the `filter-duplicates` statement at the `[edit snmp]` hierarchy level:

```
[edit snmp]
filter-duplicates;
```
Excluding Interfaces That Are Slow in Responding to SNMP Queries

An interface that is slow in responding to SNMP requests for interface statistics can delay kernel responses to SNMP requests. You can review the mib2d log file to find out how long the kernel takes to respond to various SNMP requests. For more information about reviewing the log file for kernel response data, see “Checking Kernel and Packet Forwarding Engine Response” under “Monitoring SNMP Activity and Tracking Problems That Affect SNMP Performance on a Device Running Junos OS” on page 203. If you notice that a particular interface is slow in responding, and think that it is slowing down the kernel from responding to SNMP requests, exclude that interface from the SNMP queries to the device. You can exclude an interface from the SNMP queries either by configuring the filter-interface statement or by modifying the SNMP view settings.

The following example shows a sample configuration for excluding interfaces from the SNMP Get, GetNext, and Set operations:

```plaintext
[edit]
  snmp {
    filter-interfaces {
      interfaces { # exclude the specified interfaces
        interface1;
        interface2;
      }
      all-internal-interfaces; # exclude all internal interfaces
    }
  }
```

The following example shows the SNMP view configuration for excluding the interface with an interface index (ifIndex) value of 312 from a request for information related to the ifTable and ifXTable objects:

```plaintext
[edit snmp]
  view test {
    oid .1 include;
    oid ifTable.1.*.312 exclude;
    oid ifXTable.1.*.312 exclude
  }
```

Alternatively, you can take the interface that is slow in responding offline.

Related Documentation

- Understanding SNMP Implementation in Junos OS on page 15
- Configuring SNMP on Devices Running Junos OS on page 95
- Monitoring SNMP Activity and Tracking Problems That Affect SNMP Performance on a Device Running Junos OS on page 203
- Optimizing the Network Management System Configuration for the Best Results on page 91
- Managing Traps and Informs
- Using the Enterprise-Specific Utility MIB to Enhance SNMP Coverage
Configuring SNMP on Devices Running Junos OS

Supported Platforms

ACX Series, EX Series, M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series, vSRX

The following sections contain information about basic SNMP configuration and a few examples of configuring the basic SNMP operations on devices running Junos OS:

- Configuring Basic Settings for SNMPv1 and SNMPv2 on page 95
- Configuring Basic Settings for SNMPv3 on page 95
- Configuring System Name, Location, Description, and Contact Information on page 97

Configuring Basic Settings for SNMPv1 and SNMPv2

By default, SNMP is not enabled on devices running Junos OS. To enable SNMP on devices running Junos OS, include the `community public` statement at the `[edit snmp]` hierarchy level.

- **Enabling SNMPv1 and SNMPv2 Get and GetNext Operations**

```ini
[edit]
snmp {
    community public;
}
```

A community that is defined as public grants access to all MIB data to any client.

To enable SNMPv1 and SNMPv2 Set operations on the device, you must include the following statements at the `[edit snmp]` hierarchy level:

- **Enabling SNMPv1 and SNMPv2 Set Operations**

```ini
[edit snmp]
view all {
    oid .1;
}
community private {
    view all;
    authorization read-write;
}
```

The following example shows the basic minimum configuration for SNMPv1 and SNMPv2 traps on a device:

- **Configuring SNMPv1 and SNMPv2 Traps**

```ini
[edit snmp]
trap-group jnpr {
    targets {
        192.168.69.179;
    }
}
```

Configuring Basic Settings for SNMPv3

The following example shows the minimum SNMPv3 configuration for enabling Get, GetNext, and Set operations on a device (note that the configuration has authentication set to md5 and privacy to none):

```ini
[edit snmp]
```
Enabling SNMPv3 Get, GetNext, and Set Operations

```plaintext
[edit snmp]
v3 {
  usm {
    local-engine {
      user jnpruser {
        authentication-md5 {
          authentication-key "$9$guaDiQFnAuOQzevMWx7ikqP$"; ## SECRET-DATA
        }
        privacy-none;
      }
    }
  }
  vacm {
    security-to-group {
      security-model usm {
        security-name jnpruser {
          group grpnm;
        }
      }
    }
    access {
      group grpnm {
        default-context-prefix {
          security-model any {
            security-level authentication {
              read-view all;
              write-view all;
            }
          }
        }
      }
    }
    view all {
      oid .1;
    }
  }
}
```

The following example shows the basic configuration for SNMPv3 informs on a device (the configuration has authentication and privacy set to none):

Configuring SNMPv3 Informs

```plaintext
[edit snmp]

v3 {
  usm {
    remote-engine 00000063200133a2c0a845c3 {
      user RU2_v3_sha_none {
        authentication-none;
        privacy-none;
      }
    }
  }
  vacm {
    security-to-group {
      security-model usm {
        security-name RU2_v3_sha_none {
          group g1_usm_auth;
        }
      }
    }
  }
}
```
You can convert the SNMPv3 informs to traps by setting the value of the type statement at the [edit snmp v3 notify N1_all_tl1_informs] hierarchy level to trap as shown in the following example:

```
Converting Informs to Traps

user@host# set snmp v3 notify N1_all_tl1_informs type trap
```

Configuring System Name, Location, Description, and Contact Information

Junos OS enables you to include the name and location of the system, administrative contact information, and a brief description of the system in the SNMP configuration.
NOTE: Always keep the name, location, contact, and description information configured and updated for all your devices that are managed by SNMP.

The following example shows a typical configuration.

TIP: Use quotation marks to enclose the system name, contact, location, and description information that contain spaces.

```
[edit]
snmp {
    name "snmp 001"; # Overrides the system name.
    contact "Juniper Berry, (650) 555-1234"; # Specifies the name and phone number of the administrator.
    location "row 11, rack C"; # Specifies the location of the device.
    description "M40 router with 8 FPCs" # Configures a description for the device.
}
```

Related Documentation

- Understanding SNMP Implementation in Junos OS on page 15
- Monitoring SNMP Activity and Tracking Problems That Affect SNMP Performance on a Device Running Junos OS on page 203
- Optimizing the Network Management System Configuration for the Best Results on page 91
- Configuring Options on Managed Devices for Better SNMP Response Time on page 93
- Managing Traps and Informs
- Using the Enterprise-Specific Utility MIB to Enhance SNMP Coverage

Configuring the System Contact on a Device Running Junos OS

Supported Platforms ACX Series, M Series, MX Series, PTX Series, T Series

You can specify an administrative contact for each system being managed by SNMP. This name is placed into the MIB II `sysContact` object. To configure a contact name, include the `contact` statement at the `[edit snmp]` hierarchy level:

```
[edit snmp]
contact contact;
```

If the name contains spaces, enclose it in quotation marks (" ").

To define a system contact name that contains spaces:

```
[edit]
snmp {
    contact "Juniper Berry, (650) 555-1234";
}
```
Configuring the System Location for a Device Running Junos OS

Supported Platforms
ACX Series, M Series, MX Series, PTX Series, T Series

You can specify the location of each system being managed by SNMP. This string is placed into the MIB II `sysLocation` object. To configure a system location, include the `location` statement at the `[edit snmp]` hierarchy level:

```
[edit snmp]
location location;
```

If the location contains spaces, enclose it in quotation marks (" ").

To specify the system location:
```
[edit]
snmp {
    location "Row 11, Rack C";
}
```

Related Documentation
- Configuring SNMP on a Device Running Junos OS
- Configuring the System Contact on a Device Running Junos OS on page 98
- Configuring the System Description on a Device Running Junos OS on page 99
- Configuring a Different System Name on page 101
- Configuration Statements at the [edit snmp] Hierarchy Level on page 88

Configuring the System Description on a Device Running Junos OS

Supported Platforms
ACX Series, M Series, MX Series, PTX Series, T Series

You can specify a description for each system being managed by SNMP. This string is placed into the MIB II `sysDescription` object. To configure a description, include the `description` statement at the `[edit snmp]` hierarchy level:

```
[edit snmp]
description description;
```

If the description contains spaces, enclose it in quotation marks (" ").

To specify the system description:
```
[edit]
snmp {
```
You can use SNMP to store basic administrative details, such as a contact name and the location of the device. Your management system can then retrieve this information remotely, when you are troubleshooting an issue or performing an audit. In SNMP terminology, these are the sysContact, sysDescription, and sysLocation objects found within the system group of MIB-2 (as defined in RFC 1213, Management Information Base for Network Management of TCP/IP-based Internets: MIB-II). You can set initial values directly in the Junos OS configuration for each system being managed by SNMP.

To set the system contact details:

1. Set the system contact details by including the `contact` statement at the `[edit snmp]` hierarchy level, or in an appropriate configuration group as shown here.

 This administrative contact is placed into the MIB II `sysContact` object.

 If the name contains spaces, enclose it in quotation marks (" ").

   ```
   [edit groups global snmp]
   user@host# set contact contact
   ```

 For example:

   ```
   [edit groups global snmp]
   user@host# set contact "Enterprise Support, (650) 555-1234"
   ```

2. Configure a system description.

 This string is placed into the MIB II `sysDescription` object. If the description contains spaces, enclose it in quotation marks (" ").

   ```
   [edit groups global snmp]
   user@host# set description description
   ```

 For example:

   ```
   [edit groups global snmp]
   user@host# set description "M10i router with 8 FPCs"
   ```

3. Configure a system location.
This string is placed into the MIB II **sysLocation** object. If the location contains spaces, enclose it in quotation marks (" ").

To specify the system location:

```
[edit]
snmp {
    location "Row 11, Rack C";
}
[edit groups global snmp]
user@host# set location location
```

For example:

```
[edit groups global snmp]
user@host# set location "London Corporate Office, Lab 5, Row 11, Rack C"
```

4. At the top level of the configuration, apply the configuration group.

If you use a configuration group, you must apply it for it to take effect.

```
[edit]
user@host# set apply-groups global
```

5. Commit the configuration.

```
user@host# commit
```

6. To verify the configuration, enter the `show snmp mib walk system` operational-mode command.

The `show snmp mib walk system` command performs a MIB walk through of the system table (from MIB-2 as defined in RFC 1213). The SNMP agent in Junos OS responds by printing each row in the table and its associated value. You can use the same command to perform a MIB walk through any part of the MIB tree supported by the agent.

```
user@host> show snmp mib walk system
sysDescr.0    = M10i router with 8 FPCs
sysObjectID.0 = jnxProductNameM10i
sysUpTime.0   = 173676474
sysContact.0  = Enterprise Support, (650) 555-1234
sysName.0     = host
sysLocation.0 = London Corporate Office, Lab 5, Row 11, Rack C
sysServices.0 = 4
```

Related Documentation
- Configuring SNMP Communities on page 103
- Configuring SNMP Traps on page 110
- **Configuring SNMP on a Device Running Junos OS**

Configuring a Different System Name

Supported Platforms
- ACX Series
- M Series
- MX Series
- PTX Series
- T Series
Junos OS enables you to override the system name by including the `name` statement at the `[edit snmp]` hierarchy level:

```
[edit snmp]
name name;
```

If the name contains spaces, enclose it in quotation marks (" ").

To specify the system name override:

```
[edit]
snmp {
    name "snmp 1";
}
```

Related Documentation
- Configuring SNMP on a Device Running Junos OS
- Configuring the System Contact on a Device Running Junos OS on page 98
- Configuring the System Location for a Device Running Junos OS on page 99
- Configuring the System Description on a Device Running Junos OS on page 99
- Configuration Statements at the `[edit snmp]` Hierarchy Level on page 88

Configuring the Commit Delay Timer

Supported Platforms
ACX Series, M Series, MX Series, PTX Series, T Series

When a router or switch first receives an SNMP nonvolatile Set request, a Junos OS XML protocol session opens and prevents other users or applications from changing the candidate configuration (equivalent to the command-line interface [CLI] `configure exclusive` command). If the router does not receive new SNMP Set requests within 5 seconds (the default value), the candidate configuration is committed and the Junos OS XML protocol session closes (the configuration lock is released). If the router receives new SNMP Set requests while the candidate configuration is being committed, the SNMP Set request is rejected and an error is generated. If the router receives new SNMP Set requests before 5 seconds have elapsed, the commit-delay timer (the length of time between when the last SNMP request is received and the commit is requested) resets to 5 seconds.

By default, the timer is set to 5 seconds. To configure the timer for the SNMP Set reply and start of the commit, include the `commit-delay` statement at the `[edit snmp nonvolatile]` hierarchy level:

```
[edit snmp nonvolatile]
commit-delay seconds;
```

`seconds` is the length of the time between when the SNMP request is received and the commit is requested for the candidate configuration. For more information about the `configure exclusive` command and locking the configuration, see the CLI User Guide.

Related Documentation
- Configuring SNMP on a Device Running Junos OS
- Configuration Statements at the `[edit snmp]` Hierarchy Level on page 88
Filtering Duplicate SNMP Requests

Supported Platforms PTX Series

By default, filtering duplicate `get`, `getNext`, and `getBulk` SNMP requests is disabled on devices running Junos OS. If a network management station retransmits a `Get`, `GetNext`, or `GetBulk` SNMP request too frequently to the router, that request might interfere with the processing of previous requests and slow down the response time of the agent. Filtering these duplicate requests improves the response time of the SNMP agent. Junos OS uses the following information to determine if an SNMP request is a duplicate:

- Source IP address of the SNMP request
- Source UDP port of the SNMP request
- Request ID of the SNMP request

To filter duplicate SNMP requests, include the `filter-duplicates` statement at the `[edit snmp]` hierarchy level:

```
[edit snmp]
filter-duplicates;
```

Related Documentation

- Configuring SNMP on a Device Running Junos OS
- Configuring the Interfaces on Which SNMP Requests Can Be Accepted on page 119
- Filtering Interface Information Out of SNMP Get and GetNext Output on page 120
- Configuration Statements at the `[edit snmp]` Hierarchy Level on page 88

Configuring SNMP Communities

Supported Platforms ACX Series, M Series, MX Series, PTX Series, T Series

Configuring the SNMP agent in Junos OS is a straightforward task that shares many familiar settings common to other managed devices in your network. For example, you need to configure Junos OS with an SNMP community string and a destination for traps. Community strings are administrative names that group collections of devices and the agents that are running on them together into common management domains. If a manager and an agent share the same community, they can communicate with each other. An SNMP community defines the level of authorization granted to its members, such as which MIB objects are available, which operations (read-only or read-write) are valid for those objects, and which SNMP clients are authorized, based on their source IP addresses.

The SNMP community string defines the relationship between an SNMP server system and the client systems. This string acts like a password to control the clients’ access to the server.
To create a read-only SNMP community:

1. Enter the SNMP community used in your network.
 If the community name contains spaces, enclose it in quotation marks (" ").
 Community names must be unique.

 NOTE: You cannot configure the same community name at the [edit snmp
 community] and [edit snmpv3 snmp-community community-index] hierarchy
 levels.

 [edit groups global]
 user@host# set snmp community name
 This example uses the standard name public to create a community that gives limited
 read-only access.
 [edit groups global]
 user@host# set snmp community public

2. Define the authorization level for the community.
 The default authorization level for a community is read-only.
 To allow Set requests within a community, you need to define that community as
 authorization read-write. For Set requests, you also need to include the specific MIB
 objects that are accessible with read-write privileges using the view statement. The
 default view includes all supported MIB objects that are accessible with read-only
 privileges. No MIB objects are accessible with read-write privileges. For more
 information about the view statement, see "Configuring MIB Views" on page 121.
 [edit groups global snmp community name]
 user@host# set authorization authorization
 This example confines the public community to read-only access. Any SNMP client
 (for example, an SNMP management system) that belongs to the public community
 can read MIB variables but cannot set (change) them.
 [edit groups global snmp community public]
 user@host# set authorization read-only

3. Define a list of clients in the community who are authorized to communicate with the
 SNMP agent in Junos OS.
 The clients statement lists the IP addresses of the clients (community members) that
 are allowed to use this community. List the clients by IP address and prefix. Typically,
 the list includes the SNMP network management system in your network or the address
 of your management network. If no clients statement is present, all clients are allowed.
 For address, you must specify an IPv4 or IPv6 address, not a hostname.
 [edit groups global snmp community name]
 user@host# set clients address
The following statement defines the hosts in the 192.168.1.0/24 network as being authorized in the public community.

```
[edit groups global snmp community public]
user@host# set clients 192.168.1.0/24
```

4. Define the clients that are not authorized within the community by specifying their IP address, followed by the `restrict` statement.

```
[edit groups global snmp community name]
user@host# set clients address restrict
```

The following statement defines all other hosts as being restricted from the public community.

```
[edit groups global snmp community public]
user@host# set clients 0/0 restrict
```

5. At the top level of the configuration, apply the configuration group.

If you use a configuration group, you must apply it for it to take effect.

```
[edit]
user@host# set apply-groups global
```

6. Commit the configuration.

```
user@host# commit
```

To create a read-write SNMP community:

1. Enter the SNMP community used in your network.

```
[edit groups global]
user@host# set snmp community name
```

This example standard community string `private` to identify the community granted read-write access to the SNMP agent running on the device.

```
[edit groups global]
user@host# set snmp community private
```

2. Define the authorization level for the community.

```
[edit groups global snmp community name]
user@host# set authorization authorization
```

This example confines the public community to read-only access. Any SNMP client (for example, an SNMP management system) that belongs to the public community can read MIB variables but cannot set (change) them.

```
[edit groups global snmp community public]
user@host# set authorization read-write
```

3. Define a list of clients in the community who are authorized to make changes to the SNMP agent in Junos OS.
List the clients by IP address and prefix.

[edit groups global snmp community name]
user@host# set clients address

For example:

[edit groups global snmp community private]
user@host# set clients 192.168.1.15/24
user@host# set clients 192.168.1.18/24

4. Define the clients that are not authorized within the community by specifying their IP address, followed by the restrict statement.

[edit groups global snmp community name]
user@host# set clients address restrict

The following statement defines all other hosts as being restricted from the public community.

[edit groups global snmp community private]
user@host# set clients 0/0 restrict

5. At the top level of the configuration, apply the configuration group.

If you use a configuration group, you must apply it for it to take effect.

[edit]
user@host# set apply-groups global

6. Commit the configuration.

user@host# commit

Related Documentation
- Adding a Group of Clients to an SNMP Community on page 107
- Configuring SNMP on a Device Running Junos OS
- Configuration Statements at the [edit snmp] Hierarchy Level on page 88
- Examples: Configuring the SNMP Community String on page 106

Examples: Configuring the SNMP Community String

Supported Platforms
ACX Series, M Series, MX Series, PTX Series, T Series

Grant read-only access to all clients. With the following configuration, the system responds to SNMP Get, GetNext, and GetBulk requests that contain the community string public:

[edit]
snmp {
 community public {
 authorization read-only;
 }
}
Grant all clients read-write access to the ping MIB and `jnxPingMIB`. With the following configuration, the system responds to SNMP `Get`, `GetNext`, `GetBulk`, and `Set` requests that contain the community string `private` and specify an OID contained in the ping MIB or `jnxPingMIB` hierarchy:

```snmp
[edit]
snmp {
  view ping-mib-view {
    oid pingMIB include;
    oid jnxPingMIB include;
    community private {
      authorization read-write;
      view ping-mib-view;
    }
  }
}
```

The following configuration allows read-only access to clients with IP addresses in the range `1.2.3.4/24`, and denies access to systems in the range `fe80::1:2:3:4/64`:

```snmp
[edit]
snmp {
  community field-service {
    authorization read-only;
    clients {
      default restrict; # Restrict access to all SNMP clients not explicitly
      # listed on the following lines.
      1.2.3.4/24; # Allow access by all clients in 1.2.3.4/24 except
      fe80::1:2:3:4/64 restrict; # fe80::1:2:3:4/64.
    }
  }
}
```

Related Documentation
- Configuring SNMP Communities on page 103

Adding a Group of Clients to an SNMP Community

Supported Platforms
ACX Series, M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series, vSRX

Junos OS enables you to add one or more groups of clients to an SNMP community. You can include the `client-list-name name` statement at the `[edit snmp community community-name]` hierarchy level to add all the members of the client list or prefix list to an SNMP community.

To define a list of clients, include the `client-list` statement followed by the IP addresses of the clients at the `[edit snmp]` hierarchy level:

```snmp
[edit snmp]
client-list client-list-name {
  ip-addresses;
}
```

You can configure a prefix list at the `[edit policy options]` hierarchy level. Support for prefix lists in the SNMP community configuration enables you to use a single list to
configure the SNMP and routing policies. For more information about the prefix-list statement, see the Routing Policies, Firewall Filters, and Traffic Policers Feature Guide.

To add a client list or prefix list to an SNMP community, include the client-list-name statement at the [edit snmp community community-name] hierarchy level:

```
[edit snmp community community-name]
client-list-name client-list-name;
```

NOTE: The client list and prefix list must not have the same name.

The following example shows how to define a client list:

```
[edit]
snmp {
    client-list clientlist1 {
        10.1.1.1/32;
        10.2.2.2/32;
    }
}
```

The following example shows how to add a client list to an SNMP community:

```
[edit]
snmp {
    community community1 {
        authorization read-only;
        client-list-name clientlist1;
    }
}
```

The following example shows how to add a prefix list to an SNMP community:

```
[edit]
policy-options {
    prefix-list prefixlist {
        10.3.3.3/32;
        10.5.5.5/32;
    }
}
```

Related Documentation

- client-list
- client-list-name

Configuring a Proxy SNMP Agent

Supported Platforms

- M Series, MX Series, T Series
Starting with Release 12.3, Junos OS enables you to assign one of the devices in the network as a proxy SNMP agent through which the network management system (NMS) can query other devices in the network. When you configure a proxy, you can specify the names of devices to be managed through the proxy SNMP agent.

When the NMS queries the proxy SNMP agent, the NMS specifies the community name (for SNMPv1 and SNMPv2) or the context and security name (for SNMPv3) associated with the device from which it requires the information.

NOTE: If you have configured authentication and privacy methods and passwords for SNMPv3, those parameters are also specified in the query for SNMPv3 information.

To configure a proxy SNMP agent and specify devices to be managed by the proxy SNMP agent, you can include the following configuration statements at the [edit snmp] hierarchy level:

```configuration
proxy proxy-name{
  device-name device-name;
  logical-system logical-system {
    routing-instance routing-instance;
  }
  routing-instance routing-instance;
  <version-v1 | version-v2c> {
    snmp-community community-name;
    no-default-comm-to-v3-config;
  }
  version-v3 {
    security-name security-name;
    context context-name;
  }
}
```

- The `proxy` statement enables you to specify a unique name for the proxy configuration.
- The `version-v1`, `version-v2c`, and `version-v3` statements enable you to specify the SNMP version.
- The `no-default-comm-to-v3-config` statement is an optional statement at the [edit snmp proxy proxy-name <version-v1 | version-v2c>] hierarchy level that when included in the configuration requires you to manually configure the statements at the [edit snmp v3 snmp-community community-name] and [edit snmp v3 vacm] hierarchy levels. If the `no-default-comm-to-v3-config` statement is not included at the [edit snmp proxy proxy-name <version-v1 | version-v2c>] hierarchy level, the [edit snmp v3 snmp-community community-name] and [edit snmp v3 vacm] hierarchy level configurations are automatically initialized.
- The `logical-system` and `routing-instance` statements are optional statements that enable you to specify logical system and routing instance names if you want to create proxies for logical systems or routing instances on the device.
NOTE: Starting with Junos OS Release 15.2, you must configure interface
<interface-name> statement at the [edit snmp] hierarchy level for the proxy
SNMP agent.

NOTE: The community and security configuration for the proxy should match
the corresponding configuration on the device that is to be managed.

NOTE: Because the proxy SNMP agent does not have trap forwarding
capabilities, the devices that are managed by the proxy SNMP agent send
the traps directly to the network management system.

You can use the show snmp proxy operational mode command to view proxy details on
a device. The show snmp proxy command returns the proxy names, device names, SNMP
version, community/security, and context information.

Related Documentation
• proxy (snmp) on page 758

Configuring SNMP Traps

Supported Platforms
M Series, MX Series, PTX Series, T Series

Traps are unsolicited messages sent from an SNMP agent to remote network
management systems or trap receivers. Many enterprises use SNMP traps as part of a
fault-monitoring solution, in addition to system logging. In Junos OS, SNMP traps are not
forwarded by default, so you must configure a trap-group if you wish to use SNMP traps.

You can create and name a group of one or more types of SNMP traps and then define
which systems receive the group of SNMP traps. The name of the trap group is embedded
in SNMP trap notification packets as one variable binding (varbind) known as the
community name.

To configure an SNMP trap:

1. Create a single, consistent source address that Junos OS applies to all outgoing traps
in your device.

 A source address is useful, because although most Junos OS devices have a number
of outbound interfaces, using one source address helps a remote NMS to associate
the source of the traps with an individual device

 [edit groups global snmp]
 user@host# set trap-options source-address address

 This example uses the IP address of the loopback interface (lo0) as the source address
for all the SNMP traps that originate from the device.

 [edit groups global snmp]
user@host# set trap-options source-address lo0

2. Create a trap group in which you can list the types of traps to be forwarded and the targets (addresses) of the receiving remote management systems.

 [edit groups global snmp trap-group group-name]
 user@host# set version (all | v1 | v2) targets address

 This example creates a trap group called managers, allows SNMP version 2-formatted notifications (traps) to be sent to the host at address 192.168.1.15. This statement forwards all categories of traps.

 [edit groups global snmp trap-group managers]
 user@host# set version v2 targets 192.168.1.15

3. Define the specific subset of trap categories to be forwarded.

 For a list of categories, see "Configuring SNMP Trap Groups" on page 116.

 [edit groups global snmp trap-group group-name]
 user@host# set categories category

 The following statement configures the standard MIB-II authentication failures on the agent (the device).

 [edit groups global snmp trap-group managers]
 user@host# set categories authentication

4. At the top level of the configuration, apply the configuration group.

 If you use a configuration group, you must apply it for it to take effect.

 [edit]
 user@host# set apply-groups global

5. Commit the configuration.

 user@host# commit

6. To verify the configuration, generate an authentication failure trap.

 This means that the SNMP agent received a request with an unknown community. Other traps types can also be spoofed as well.

 This feature enables you to trigger SNMP traps from routers and ensure that they are processed correctly within your existing network management infrastructure. This is also useful for testing and debugging SNMP behavior on the switch or NMS.

 Using the `monitor traffic` command, you can verify that the trap is sent to the network management system.

 user@host> request snmp spoof-trap authenticationFailure
 Spoof-trap request result: trap sent successfully
Some carriers have more than one trap receiver that forwards traps to a central NMS. This allows for more than one path for SNMP traps from a router to the central NMS through different trap receivers. A device running Junos OS can be configured to send the same copy of each SNMP trap to every trap receiver configured in the trap group.

The source address in the IP header of each SNMP trap packet is set to the address of the outgoing interface by default. When a trap receiver forwards the packet to the central NMS, the source address is preserved. The central NMS, looking only at the source address of each SNMP trap packet, assumes that each SNMP trap came from a different source.

In reality, the SNMP traps came from the same router, but each left the router through a different outgoing interface.

The statements discussed in the following sections are provided to allow the NMS to recognize the duplicate traps and to distinguish SNMPv1 traps based on the outgoing interface.

To configure SNMP trap options and trap groups, include the `trap-options` and `trap-group` statements at the `[edit snmp]` hierarchy level:

```
[edit snmp]
trap-options {
  agent-address outgoing-interface;
  source-address address;
}
trap-group group-name {
  categories {
    category;
  }
  destination-port port-number;
  targets {
    address;
  }
  version (all | v1 | v2);
}
```

Related Documentation
- Configuring SNMP Trap Options on page 113
- Configuring SNMP Trap Groups on page 116
- Configuring SNMP on a Device Running Junos OS
- Configuration Statements at the `[edit snmp]` Hierarchy Level on page 88
Configuring SNMP Trap Options

Supported Platforms

M Series, MX Series, PTX Series, T Series

Using SNMP trap options, you can set the source address of every SNMP trap packet sent by the router to a single address regardless of the outgoing interface. In addition, you can set the agent address of the SNMPv1 traps. For more information about the contents of SNMPv1 traps, see RFC 1157.

NOTE: SNMP cannot be associated with any routing instances other than the master routing instance.

To configure SNMP trap options, include the `trap-options` statement at the `[edit snmp]` hierarchy level:

```
[edit snmp]
trap-options {
  agent-address outgoing-interface;
  enterprise-oid logical-system routing-instance
  source-address address;
}
```

You must also configure a trap group for the trap options to take effect. For information about trap groups, see “Configuring SNMP Trap Groups” on page 116.

This topic contains the following sections:

- Configuring the Source Address for SNMP Traps on page 113
- Configuring the Agent Address for SNMP Traps on page 115
- Adding `snmpTrapEnterpriseObjectIdentifier` to Standard SNMP Traps on page 116

Configuring the Source Address for SNMP Traps

You can configure the source address of trap packets in many ways: lo0, a valid IPv4 address or IPv6 address configured on one of the router interfaces, a logical-system address, or the address of a routing-instance. The value `lo0` indicates that the source address of the SNMP trap packets is set to the lowest loopback address configured on the interface lo0.

NOTE: If the source address is an invalid IPv4 or IPv6 address or is not configured, SNMP traps are not generated.

You can configure the source address of trap packets in one of the following formats:

- A valid IPv4 address configured on one of the router interfaces
- A valid IPv6 address configured on one of the router interfaces
- lo0; that is, the lowest loopback address configured on the interface lo0
- A logical-system name
- A routing-instance name

A Valid IPv4 Address As the Source Address
To specify a valid IPv4 interface address as the source address for SNMP traps on one of the router interfaces, include the `source-address` statement at the `[edit snmp trap-options]` hierarchy level:

```
[edit snmp trap-options]
source-address address;
```

`address` is a valid IPv4 address configured on one of the router interfaces.

A Valid IPv6 Address As the Source Address
To specify a valid IPv6 interface address as the source address for SNMP traps on one of the router interfaces, include the `source-address` statement at the `[edit snmp trap-options]` hierarchy level:

```
[edit snmp trap-options]
source-address address;
```

`address` is a valid IPv6 address configured on one of the router interfaces.

The Lowest Loopback Address As the Source Address
To specify the source address of the SNMP traps so that they use the lowest loopback address configured on the interface lo0 as the source address, include the `source-address` statement at the `[edit snmp trap-options]` hierarchy level:

```
[edit snmp trap-options]
source-address lo0;
```

To enable and configure the loopback address, include the `address` statement at the `[edit interfaces lo0 unit 0 family inet]` hierarchy level:

```
[edit interfaces]
lo0 {
    unit 0 {
        family inet {
            address ip-address;
        }
    }
}
```

To configure the loopback address as the source address of trap packets:

```
[edit snmp]
trap-options {
    source-address lo0;
}
```

```
trap-group "urgent-dispatcher" {
    version v2;
    categories link startup;
    targets {
        192.168.10.22;
        172.171.2;
    }
}
```
[edit interfaces]
lo0 {
 unit 0 {
 family inet {
 address 10.0.0.1/32;
 address 127.0.0.1/32;
 }
 }
}

In this example, the IP address 10.0.0.1 is the source address of every trap sent from this router.

Logical System Name as the Source Address

To specify a logical system name as the source address of SNMP traps, include the `logical-system logical-system-name` statement at the [edit snmp trap-options] hierarchy level.

For example, the following configuration sets logical system name ls1 as the source address of SNMP traps:

```
[edit snmp]
  trap-options
    logical-system ls1;
```

Routing Instance Name as the Source Address

To specify a routing instance name as the source address of SNMP traps, include the `routing-instance routing-instance-name` statement at the [edit snmp trap-options] hierarchy level.

For example, the following configuration sets the routing instance name ri1 as the source address for SNMP traps:

```
[edit snmp]
  trap-options
    routing-instance ri1;
```

Configuring the Agent Address for SNMP Traps

The agent address is only available in SNMPv1 trap packets (see RFC 1157). By default, the router’s default local address is not specified in the agent address field of the SNMPv1 trap. To configure the agent address, include the `agent-address` statement at the [edit snmp trap-options] hierarchy level. Currently, the agent address can only be the address of the outgoing interface:

```
[edit snmp]
  trap-options
    agent-address outgoing-interface;
```

To configure the outgoing interface as the agent address:

```
[edit snmp]
  trap-options
    agent-address outgoing-interface;
```
trap-group “urgent-dispatcher” {
 version v1;
categories link startup;
targets {
 192.168.10.22;
 172.17.1.2;
 }
}

In this example, each SNMPv1 trap packet sent has its agent address value set to the IP address of the outgoing interface.

Adding snmpTrapEnterprise Object Identifier to Standard SNMP Traps

The `snmpTrapEnterprise` object helps you identify the enterprise that has defined the trap. Typically, the `snmpTrapEnterprise` object appears as the last varbind in enterprise-specific SNMP version 2 traps. However, starting Release 10.0, Junos OS enables you to add the `snmpTrapEnterprise` object identifier to standard SNMP traps as well.

To add `snmpTrapEnterprise` to standard traps, include the `enterprise-oid` statement at the `[edit snmp trap-options]` hierarchy level. If the `enterprise-oid` statement is not included in the configuration, `snmpTrapEnterprise` is added only for enterprise-specific traps.

```no
[edit snmp]
trap-options {
    enterprise-oid;
}
```

Related Documentation

- Configuring SNMP Trap Options and Groups on a Device Running Junos OS on page 112
- Configuring SNMP Trap Groups on page 116
- Configuring SNMP on a Device Running Junos OS
- Configuration Statements at the `[edit snmp]` Hierarchy Level on page 88

Configuring SNMP Trap Groups

Supported Platforms

- SRX Series, vSRX

You can create and name a group of one or more types of SNMP traps and then define which systems receive the group of SNMP traps. The trap group must be configured for SNMP traps to be sent. To create an SNMP trap group, include the `trap-group` statement at the `[edit snmp]` hierarchy level:

```no
[edit snmp]
trap-group group-name {
    categories {
        category;
    }
    destination-port port-number;
    routing-instance instance;
    targets {
        address;
```
The trap group name can be any string and is embedded in the community name field of the trap. To configure your own trap group port, include the `destination-port` statement. The default destination port is port 162.

For each trap group that you define, you must include the `target` statement to define at least one system as the recipient of the SNMP traps in the trap group. Specify the IPv4 or IPv6 address of each recipient, not its hostname.

Specify the types of traps the trap group can receive in the `categories` statement. For information about the category to which the traps belong, see the “Standard SNMP Traps Supported by Junos OS” on page 60 and “Enterprise-Specific SNMP Traps Supported by Junos OS” on page 68 topics.

Specify the routing instance used by the trap group in the `routing-instance` statement. All targets configured in the trap group use this routing instance.

A trap group can receive the following categories:

- **authentication**—Authentication failures
- **chassis**—Chassis or environment notifications
- **configuration**—Configuration notifications
- **link**—Link-related notifications (up-down transitions, DS-3 and DS-1 line status change, IPv6 interface state change, and Passive Monitoring PIC overload)

NOTE: To send Passive Monitoring PIC overload interface traps, select the `link` trap category.

- **remote-operations**—Remote operation notifications
- **rmon-alarm**—Alarm for RMON events
- **routing**—Routing protocol notifications
- **sonet-alarms**—SONET/SDH alarms

NOTE: If you omit the SONET/SDH subcategories, all SONET/SDH trap alarm types are included in trap notifications.
- **line-ais**—Line alarm indication signal (AIS) alarm notification
- **path-ais**—Path AIS alarm notification
- **loss-of-pointer**—Loss of pointer alarm notification
- **ber-defect**—SONET/SDH bit error rate alarm defect notification
- **ber-fault**—SONET/SDH error rate alarm fault notification
- **line-remote-defect-indication**—Line remote defect indication alarm notification
- **path-remote-defect-indication**—Path remote defect indication alarm notification
- **remote-error-indication**—Remote error indication alarm notification
- **unequipped**—Unequipped alarm notification
- **path-mismatch**—Path mismatch alarm notification
- **loss-of-cell**—Loss of cell delineation alarm notification
- **vt-ais**—Virtual tributary (VT) AIS alarm notification
- **vt-loss-of-pointer**—VT loss of pointer alarm notification
- **vt-remote-defect-indication**—VT remote defect indication alarm notification
- **vt-unequipped**—VT unequipped alarm notification
- **vt-label-mismatch**—VT label mismatch error notification
- **vt-loss-of-cell**—VT loss of cell delineation notification
- **startup**—System warm and cold starts
- **timing-events**—Timing events and defects notification
- **vrrp-events**—Virtual Router Redundancy Protocol (VRRP) events such as new-master or authentication failures

 startup—System warm and cold starts

 vrrp-events—Virtual Router Redundancy Protocol (VRRP) events such as new-master or authentication failures

If you include SONET/SDH subcategories, only those SONET/SDH trap alarm types are included in trap notifications.

The **version** statement allows you to specify the SNMP version of the traps sent to targets of the trap group. If you specify v1 only, SNMPv1 traps are sent. If you specify v2 only, SNMPv2 traps are sent. If you specify **all**, both an SNMPv1 and an SNMPv2 trap are sent for every trap condition. For more information about the **version** (SNMP) statement, see [version](SNMP).

Related Documentation
- [Configuring SNMP Trap Options and Groups on a Device Running Junos OS](#)
- [Configuring SNMP Trap Options on page 113](#)
- [Configuring SNMP on a Device Running Junos OS](#)
Example: Configuring SNMP Trap Groups

Supported Platforms M Series, MX Series, PTX Series, T Series

Set up a trap notification list named urgent-dispatcher for link and startup traps. This list is used to identify the network management hosts (1.2.3.4 and fe80::1:2:3:4) to which traps generated by the local router should be sent. The name specified for a trap group is used as the SNMP community string when the agent sends traps to the listed targets.

```
[edit]
snmp {
    trap-group "urgent-dispatcher" {
        version v2;
        categories link startup;
        targets {
            1.2.3.4;
            fe80::1:2:3:4;
        }
    }
}
```

Related Documentation
- Configuring SNMP Trap Groups on page 116
- Configuring SNMP Trap Options and Groups on a Device Running Junos OS on page 112
- Configuring SNMP Trap Options on page 113

Configuring the Interfaces on Which SNMP Requests Can Be Accepted

Supported Platforms M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series

By default, all router or switch interfaces have SNMP access privileges. To limit the access through certain interfaces only, include the interface statement at the [edit snmp] hierarchy level:

```
[edit snmp]
interface [interface-names ];
```

Specify the names of any logical or physical interfaces that should have SNMP access privileges. Any SNMP requests entering the router or switch from interfaces not listed are discarded.

Related Documentation
- Configuring SNMP on a Device Running Junos OS
- Configuration Statements at the [edit snmp] Hierarchy Level on page 88
- Example: Configuring Secured Access List Checking on page 120
Example: Configuring Secured Access List Checking

Supported Platforms

M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

SNMP access privileges are granted to only devices on interfaces so-0/0/0 and at-1/0/1. The following example does this by configuring a list of logical interfaces:

```
[edit]
  snmp {
    interface [ so-0/0/0.0 so-0/0/0.1 at-1/0/1.0 at-1/0/1.1 ];
  }
```

The following example grants the same access by configuring a list of physical interfaces:

```
[edit]
  snmp {
    interface [ so-0/0/0 at-1/0/1 ];
  }
```

Related Documentation

- Configuring the Interfaces on Which SNMP Requests Can Be Accepted on page 119
- Filtering Interface Information Out of SNMP Get and GetNext Output on page 120
- Configuring SNMP on a Device Running Junos OS
- Configuration Statements at the [edit snmp] Hierarchy Level on page 88

Filtering Interface Information Out of SNMP Get and GetNext Output

Supported Platforms

M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

Junos OS enables you to filter out information related to specific interfaces from the output of SNMP Get and GetNext requests performed on interface-related MIBs such as IF MIB, ATM MIB, RMON MIB, and the Juniper Networks enterprise-specific IF MIB.

You can use the following options of the `filter-interfaces` statement at the [edit snmp] hierarchy level to specify the interfaces that you want to exclude from SNMP Get and GetNext queries:

- `interfaces`—Interfaces that match the specified regular expressions.
- `all-internal-interfaces`—Internal interfaces.

```
[edit]
  snmp {
    filter-interfaces {
      interfaces {
        interface-name 1;
        interface-name 2;
      }
      all-internal-interfaces;
    }
  }
```
Starting with Release 12.1, Junos OS provides an except option (| operator) that enables you to filter out all interfaces except those interfaces that match all the regular expressions prefixed with the | mark.

For example, to filter out all interfaces except the ge interfaces from the SNMP get and get-next results, enter the following command:

```plaintext
[edit snmp]
user@host# set filter-interfaces interfaces "|~ge-.*"
user@host# commit
```

When this is configured, Junos OS filters out all interfaces except the ge interfaces from the SNMP get and get-next results.

NOTE: The | mark is supported only as the first character of the regular expression. If it appears anywhere else in a regular expression, Junos OS considers the regular expression invalid, and returns an error.

However, note that these settings are limited to SNMP operations, and the users can continue to access information related to the interfaces (including those hidden using the filter-interfaces options) using the appropriate Junos OS command-line interface (CLI) commands.

Related Documentation

- Configuring the Interfaces on Which SNMP Requests Can Be Accepted on page 119
- Configuring SNMP on a Device Running Junos OS
- Configuration Statements at the [edit snmp] Hierarchy Level on page 88

Configuring MIB Views

Supported Platforms

- ACX Series, EX4600, M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series, vSRX

SNMPv3 defines the concept of MIB views in RFC 3415, View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP). MIB views provide an agent better control over who can access specific branches and objects within its MIB tree. A view consists of a name and a collection of SNMP object identifiers, which are either explicitly included or excluded. Once defined, a view is then assigned to an SNMPv3 group or SNMPv1/v2c community (or multiple communities), automatically masking which parts of the agent’s MIB tree members of the group or community can (or cannot) access.

By default, an SNMP community grants read access and denies write access to all supported MIB objects (even communities configured as authorization read-write). To restrict or grant read or write access to a set of MIB objects, you must configure a MIB view and associate the view with a community.

To configure MIB views, include the `view` statement at the [edit snmp] hierarchy level:

```plaintext
[edit snmp]
view view-name {
```
The `view` statement defines a MIB view and identifies a group of MIB objects. Each MIB object of a view has a common object identifier (OID) prefix. Each object identifier represents a subtree of the MIB object hierarchy. The subtree can be represented either by a sequence of dotted integers (such as `1.3.6.1.2.1` or by its subtree name (such as `interfaces`). A configuration statement uses a view to specify a group of MIB objects on which to define access. You can also use a wildcard character asterisk (*) to include OIDs that match a particular pattern in the SNMP view. To enable a view, you must associate the view with a community.

To remove an OID completely, use the `delete view all oid oid-number` command but omit the `include` parameter.

```snmp
[edit groups global snmp]
user@host# set view view-name old object-identifier (include | exclude)
```

The following example creates a MIB view called `ping-mib-view`. The `oid` statement does not require a dot at the beginning of the object identifier. The `snmp view` statement includes the branch under the object identifier `1.3.6.1.2.1.80`. This includes the entire DISMAN-PINGMIB subtree (as defined in RFC 2925, *Definitions of Managed Objects for Remote Ping, Traceroute, and Lookup Operations*), which effectively permits access to any object under that branch.

```snmp
[edit groups global snmp]
user@host# set view ping-mib-view oid 1.3.6.1.2.1.80 include
```

The following example adds a second branch in the same MIB view.

```snmp
[edit groups global snmp]
user@host# set view ping-mib-view oid jnxPingMIB include
```

Assign a MIB view to a community that you want to control.

To associate MIB views with a community, include the `view` statement at the `[edit snmp community community-name]` hierarchy level:

```snmp
[edit snmp community community-name]
view view-name;
```

For more information about the Ping MIB, see RFC 2925 and PING MIB.
Configuring Ping Proxy MIB

Supported Platforms
M Series, MX Series, PTX Series, T Series

Restrict the `ping-mib` community to read and write access of the Ping MIB and `jnxpingMIB` only. Read or write access to any other MIB using this community is not allowed.

```
[edit snmp]
view ping-mib-view {
    oid 1.3.6.1.2.1.80 include; #pingMIB
    oid jnxPingMIB include; #jnxPingMIB
}
community ping-mib {
    authorization read-write;
    view ping-mib-view;
}
```

The following configuration prevents the `no-ping-mib` community from accessing Ping MIB and `jnxPingMIB` objects. However, this configuration does not prevent the `no-ping-mib` community from accessing any other MIB object that is supported on the device.

```
[edit snmp]
view no-ping-mib-view {
    oid 1.3.6.1.2.1.80 exclude; # deny access to pingMIB objects
    oid jnxPingMIB exclude; # deny access to jnxPingMIB objects
}
community no-ping-mib {
    authorization read-write;
    view ping-mib-view;
}
```

Related Documentation
- Configuring SNMP on a Device Running Junos OS
- Configuration Statements at the [edit snmp] Hierarchy Level on page 88
- Configuring MIB Views on page 121
- view (Configuring a MIB View) on page 771
- oid on page 757
CHAPTER 7

Configuring SNMPv3

- Minimum SNMPv3 Configuration on a Device Running Junos OS on page 126
- Example: SNMPv3 Configuration on page 127
- Configuring the Local Engine ID on page 130
- Creating SNMPv3 Users on page 131
- Example: Creating SNMPv3 Users on page 132
- Configuring the SNMPv3 Authentication Type on page 132
- Configuring the SNMPv3 Encryption Type on page 134
- Defining Access Privileges for an SNMP Group on page 136
- Configuring the Access Privileges Granted to a Group on page 137
- Example: Configuring the Access Privileges Granted to a Group on page 140
- Assigning Security Model and Security Name to a Group on page 141
- Example: Security Group Configuration on page 142
- Configuring SNMPv3 Traps on a Device Running Junos OS on page 143
- Configuring the SNMPv3 Trap Notification on page 144
- Example: Configuring SNMPv3 Trap Notification on page 145
- Configuring the Trap Notification Filter on page 145
- Configuring the Trap Target Address on page 146
- Example: Configuring the Tag List on page 149
- Defining and Configuring the Trap Target Parameters on page 150
- Configuring SNMP Informs on page 153
- Configuring the Remote Engine and Remote User on page 154
- Example: Configuring the Remote Engine ID and Remote User on page 155
- Configuring the Inform Notification Type and Target Address on page 158
- Example: Configuring the Inform Notification Type and Target Address on page 159
- Configuring the SNMPv3 Community on page 160
- Example: Configuring an SNMPv3 Community on page 162
Minimum SNMPv3 Configuration on a Device Running Junos OS

Supported Platforms
ACX Series, EX4600, M Series, MX Series, PTX Series, QFabric System, QFX Series, T Series

To configure the minimum requirements for SNMPv3, include the following statements at the [edit snmp v3] and [edit snmp] hierarchy levels:

```
NOTICE: You must configure at least one view (notify, read, or write) at the [edit snmp view-name] hierarchy level.

[edit snmp]
view view-name {
    oid object-identifier (include | exclude);
}
[edit snmp v3]
notify name {
    tag tag-name;
}
notify-filter profile-name {
    oid object-identifier (include | exclude);
}
snmp-community community-index {
    security-name security-name;
}
target-address target-address-name {
    address address;
    target-parameters target-parameters-name;
}
target-parameters target-parameters-name {
    notify-filter profile-name;
    parameters {
        message-processing-model (v1 | v2c | v3);
        security-level (authentication | none | privacy);
        security-model (usm | v1 | v2c);
        security-name security-name;
    }
}
usm {
    local-engine {
        user username {
        }
    }
}
vacm {
    access {
        group group-name {
            (default-context-prefix | context-prefix context-prefix)
            security-model (any | usm | v1 | v2c) {
                security-level (authentication | none | privacy) {
                    notify-view view-name;
                    read-view view-name;
                    write-view view-name;
                }
            }
        }
    }
}
Define an SNMPv3 configuration:

```
[edit snmp]
engine-id {
 use-mac-address;
}
view jnxAlarms {
 oid 1.3.6.1.4.1.2636.3.4 include;
}
view interfaces {
 oid 1.3.6.1.2.1.2 include;
}
view ping-mib {
 oid 1.3.6.1.2.1.80 include;
}
[edit snmp v3]
notify n1 {
 tag router1; # Identifies a set of target addresses
 type trap; # Defines type of notification
}
notify n2 {
 tag host1;
 type trap;
}
notify-filter nf1 {
 oid .1 include; # Defines which traps to send
} # In this case, includes all traps
```

Example: SNMPv3 Configuration

Related Documentation
- Creating SNMPv3 Users on page 131
- Configuring MIB Views on page 121
- Defining Access Privileges for an SNMP Group on page 136
- Configuring SNMPv3 Traps on a Device Running Junos OS on page 143
- Configuring SNMP Informs on page 153
- Example: SNMPv3 Configuration on page 127

Supported Platforms
- ACX Series
- M Series
- MX Series
- PTX Series
- T Series
notify-filter nf2 {
    oid 1.3.6.1.4.1 include; # Sends enterprise-specific traps only
}
notify-filter nf3 {
    oid 1.3.6.1.2.1.1.5 include; # Sends BGP traps only
}

snmp-community index1 {
    community-name "$9$JOZi.QF/AtOz3"; # SECRET-DATA
    security-name john; # Matches the security name configured at the target parameters
    tag host1; # Finds the addresses that are allowed to be used with
}

target-address ta1 { # Associates the target address with the group
    address 10.1.1.1; # Associates the target address with the group
    address-mask 255.255.255.0; # Defines the range of addresses
    port 162; # Indicates the port to use for receiving traps
    tag-list router1; # Indicates the tag to use for filtering traps
    target-parameters tp1; # Applies configured target parameters
}
target-address ta2 {
    address 10.1.1.2; # Associates the target address with the group
    address-mask 255.255.255.0; # Defines the range of addresses
    port 162; # Indicates the port to use for receiving traps
    tag-list host1; # Indicates the tag to use for filtering traps
    target-parameters tp2; # Applies configured target parameters
}
target-address ta3 {
    address 10.1.1.3; # Associates the target address with the group
    address-mask 255.255.255.0; # Defines the range of addresses
    port 162; # Indicates the port to use for receiving traps
    tag-list "router1 host1"; # Specifies the tag to use for filtering traps
    target-parameters tp3; # Applies configured target parameters
}
target-parameters tp1 { # Defines the target parameters
    notify-filter nf1; # Specifies which notify filter to apply
    parameters {
        message-processing-model v1;
        security-model v1;
        security-level none;
        security-name john; # Matches the security name configured at the
    } # [edit snmp v3 snmp-community community-index hierarchy level.
}
target-parameters tp2 {
    notify-filter nf2;
    parameters {
        message-processing-model v1;
        security-model v1;
        security-level none;
        security-name john;
    }
}
target-parameters tp3 {
    notify-filter nf3;
    parameters {
        message-processing-model v1;
        security-model v1;
    }
}
security-level none;
security-name john;
}
} usm {
  local-engine { #Defines authentication and encryption for SNMPv3 users
    user user1 {
      authentication-md5 {
        authentication-password authentication-password;
      }
      privacy-des {
        privacy-password privacy-password;
      }
    }
    user user2 {
      authentication-sha {
        authentication-password authentication-password;
      }
      privacy-none;
    }
    user user3 {
      authentication-none;
      privacy-none;
    }
    user user4 {
      authentication-sha {
        authentication-password authentication-password;
      }
      privacy-aes128 {
        privacy-password privacy-password;
      }
    }
    user user5 {
      authentication-sha {
        authentication-password authentication-password;
      }
      privacy-none;
    }
  }
} vacm {
  access {
    group san-francisco { #Defines the access privileges for the group
      default-context-prefix { # called san-francisco
        security-model v1 {
          security-level none {
            notify-view ping-mib;
            read-view interfaces;
            write-view jnxAlarms;
          }
        }
      }
    }
  }
  security-to-group {
    security-model v1 {
      
    }
  }
}
Related Documentation
- Minimum SNMPv3 Configuration on a Device Running Junos OS on page 126

Configuring the Local Engine ID

Supported Platforms
ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

By default, the local engine ID uses the default IP address of the router. The local engine ID is the administratively unique identifier for the SNMPv3 engine. This statement is optional. To configure the local engine ID, include the `engine-id` statement at the [edit snmp] hierarchy level:

```
[edit snmp]
engine-id {
 (local engine-id-suffix | use-default-ip-address | use-mac-address);
}
```

- **local engine-id-suffix**—The engine ID suffix is explicitly configured.
- **use-default-ip-address**—The engine ID suffix is generated from the default IP address.
- **use-mac-address**—The SNMP engine identifier is generated from the Media Access Control (MAC) address of the management interface on the router.

The local engine ID is defined as the administratively unique identifier of an SNMPv3 engine, and is used for identification, not for addressing. There are two parts of an engine ID: prefix and suffix. The prefix is formatted according to the specifications defined in RFC 3411, *An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks*. You can configure the suffix here.

**NOTE:** SNMPv3 authentication and encryption keys are generated based on the associated passwords and the engine ID. If you configure or change the engine ID, you must commit the new engine ID before you configure SNMPv3 users. Otherwise the keys generated from the configured passwords are based on the previous engine ID. For the engine ID, we recommend using the master IP address of the device if the device has multiple routing engines and has the master IP address configured. Alternatively, you can use the MAC address of the management port if the device has only one Routing Engine.
Creating SNMPv3 Users

For each SNMPv3 user, you can specify the username, authentication type, authentication password, privacy type, and privacy password. After a user enters a password, a key based on the engine ID and password is generated and is written to the configuration file. After the generation of the key, the password is deleted from this configuration file.

**NOTE:** You can configure only one encryption type for each SNMPv3 user.

To create users, include the `user` statement at the `[edit snmp v3 usm local-engine]` hierarchy level:

```
[edit snmp v3 usm local-engine]
user username;
```

`username` is the name that identifies the SNMPv3 user.

To configure user authentication and encryption, include the following statements at the `[edit snmp v3 usm local-engine user username]` hierarchy level:

```
[edit snmp v3 usm local-engine user username]
authentication-md5 {
 authentication-password authentication-password;
}
authentication-sha {
 authentication-password authentication-password;
}
authentication-none;
privacy-aes128 {
 privacy-password privacy-password;
}
privacy-des {
 privacy-password privacy-password;
}
privacy-3des {
 privacy-password privacy-password;
}
privacy-none;
```
Example: Creating SNMPv3 Users

Define SNMPv3 users:

```
[edit]
snmp {
v3 {
 usm {
 local-engine {
 user user1 {
 authentication-md5 {
 authentication-password authentication-password;
 }
 privacy-des {
 privacy-password password;
 }
 }
 user user2 {
 authentication-sha {
 authentication-password authentication-password;
 }
 privacy-none;
 }
 user user3 {
 authentication-none;
 privacy-none;
 }
 user user4 {
 authentication-md5 {
 authentication-password authentication-password;
 }
 privacy-des {
 privacy-password authentication-password;
 }
 }
 user user5 {
 authentication-sha {
 authentication-password authentication-password;
 }
 privacy-aes128 {
 aes128-password authentication-password;
 }
 }
 }
 }
}
```

Related Documentation
- Minimum SNMPv3 Configuration on a Device Running Junos OS on page 126

Configuring the SNMPv3 Authentication Type

Supported Platforms
- ACX Series
- M Series
- MX Series
- PTX Series
- T Series
By default, in a Junos OS configuration the SNMPv3 authentication type is set to none.

This topic includes the following sections:

- Configuring MD5 Authentication on page 133
- Configuring SHA Authentication on page 133
- Configuring No Authentication on page 133

**Configuring MD5 Authentication**

To configure the message digest algorithm (MD5) as the authentication type for an SNMPv3 user, include the `authentication-md5` statement at the `[edit snmp v3 usm local-engine user username]` hierarchy level:

```
[edit snmp v3 usm local-engine user username]
authentication-md5 {
 authentication-password authentication-password;
}
```

`authentication-password` is the password used to generate the key used for authentication.

SNMPv3 has special requirements when you create plain-text passwords on a router or switch:

- The password must be at least eight characters long.
- The password can include alphabetic, numeric, and special characters, but it cannot include control characters.

**Configuring SHA Authentication**

To configure the secure hash algorithm (SHA) as the authentication type for an SNMPv3 user, include the `authentication-sha` statement at the `[edit snmp v3 usm local-engine user username]` hierarchy level:

```
[edit snmp v3 usm local-engine user username]
authentication-sha {
 authentication-password authentication-password;
}
```

`authentication-password` is the password used to generate the key used for authentication.

SNMPv3 has special requirements when you create plain-text passwords on a router or switch:

- The password must be at least eight characters long.
- The password can include alphabetic, numeric, and special characters, but it cannot include control characters.

**Configuring No Authentication**

To configure no authentication for an SNMPv3 user, include the `authentication-none` statement at the `[edit snmp v3 usm local-engine user username]` hierarchy level:

```
[edit snmp v3 usm local-engine user username]
```
By default, encryption is set to none.

NOTE: Before you configure encryption, you must configure MD5 or SHA authentication.

Before you configure the `privacy-des`, `privacy-3des` and `privacy-aes128` statements, you must install the `jcrypto` package, and either restart the SNMP process or reboot the router.

This topic includes the following sections:

- Configuring the Advanced Encryption Standard Algorithm on page 134
- Configuring the Data Encryption Algorithm on page 135
- Configuring Triple DES on page 135
- Configuring No Encryption on page 135

Configuring the Advanced Encryption Standard Algorithm

To configure the Advanced Encryption Standard (AES) algorithm for an SNMPv3 user, include the `privacy-aes128` statement at the `[edit snmp v3 usm local-engine user username]` hierarchy level:

```
[edit snmp v3 usm local-engine user username]
privacy-aes128 {
 privacy-password privacy-password;
}
```

`privacy-password` is the password used to generate the key used for encryption.

SNMPv3 has special requirements when you create plain-text passwords on a router or switch:

- The password must be at least eight characters long.
- The password can include alphabetic, numeric, and special characters, but it cannot include control characters.
Configuring the Data Encryption Algorithm

To configure the data encryption algorithm (DES) for an SNMPv3 user, include the `privacy-des` statement at the `[edit snmp v3 usm local-engine user username]` hierarchy level:

```
[edit snmp v3 usm local-engine user username]
privacy-des {
 privacy-password privacy-password;
}
```

`privacy-password` is the password used to generate the key used for encryption.

SNMPv3 has special requirements when you create plain-text passwords on a router or switch:

- The password must be at least eight characters long.
- The password can include alphabetic, numeric, and special characters, but it cannot include control characters.

Configuring Triple DES

To configure triple DES for an SNMPv3 user, include the `privacy-3des` statement at the `[edit snmp v3 usm local-engine user username]` hierarchy level:

```
[edit snmp v3 usm local-engine user username]
privacy-3des {
 privacy-password privacy-password;
}
```

`privacy-password` is the password used to generate the key used for encryption.

SNMPv3 has special requirements when you create plain-text passwords on a router or switch:

- The password must be at least eight characters long.
- The password can include alphabetic, numeric, and special characters, but it cannot include control characters.

Configuring No Encryption

To configure no encryption for an SNMPv3 user, include the `privacy-none` statement at the `[edit snmp v3 usm local-engine user username]` hierarchy level:

```
[edit snmp v3 usm local-engine user username]
privacy-none;
```

Related Documentation

- Configuring the SNMPv3 Authentication Type on page 132
- Defining Access Privileges for an SNMP Group on page 136
- Configuring the Access Privileges Granted to a Group on page 137
- Assigning Security Model and Security Name to a Group on page 141
Defining Access Privileges for an SNMP Group

Supported Platforms

- ACX Series
- M Series
- MX Series
- PTX Series
- T Series

The SNMP version 3 (SNMPv3) uses the view-based access control model (VACM), which allows you to configure the access privileges granted to a group. Access is controlled by filtering the MIB objects available for a specific operation through a predefined view. You assign views to determine the objects that are visible for read, write, and notify operations for a particular group, using a particular context, a particular security model (v1, v2c, or usm), and particular security level (authenticated, privacy, or none). For information about how to configure views, see “Configuring MIB Views” on page 121.

You define user access to management information at the [edit snmp v3 vacm] hierarchy level. All access control within VACM operates on groups, which are collections of users as defined by USM, or community strings as defined in the SNMPv1 and SNMPv2c security models. The term security-name refers to these generic end users. The group to which a specific security name belongs is configured at the [edit snmp v3 vacm security-to-group] hierarchy level. That security name can be associated with a group defined at the [edit snmp v3 vacm security-to-group] hierarchy level. A group identifies a collection of SNMP users that share the same access policy. You then define the access privileges associated with a group at the [edit snmp v3 vacm access] hierarchy level. Access privileges are defined using views. For each group, you can apply different views depending on the SNMP operation; for example, read (get, getNext, or getBulk) write (set), notifications, the security level used (authentication, privacy, or none), and the security model (v1, v2c, or usm) used within an SNMP request.

You configure members of a group with the security-name statement. For v3 packets using USM, the security name is the same as the username. For SNMPv1 or SNMPv2c packets, the security name is determined based on the community string. Security names are specific to a security model. If you are also configuring VACM access policies for SNMPv1 or SNMPv2c packets, you must assign security names to groups for each security model (SNMPv1 or SNMPv2c) at the [edit snmp v3 vacm security-to-group] hierarchy level. You must also associate a security name with an SNMP community at the [edit snmp v3 snmp-community community-index] hierarchy level.

To configure the access privileges for an SNMP group, include statements at the [edit snmp v3 vacm] hierarchy level:

```
[edit snmp v3 vacm]
access {
 group group-name {
 (default-context-prefix | context-prefix context-prefix)
 security-model (any | usm | v1 | v2c) {
 security-level (authentication | none | privacy) {
 notify-view view-name;
 read-view view-name;
 write-view view-name;
 }
 }
 }
}
```
To configure the access privileges granted to a group, include the `group` statement at the `[edit snmp v3 vacm access]` hierarchy level:

```
[edit snmp v3 vacm access]
group group-name;
```

`group-name` is a collection of SNMP users that belong to a common SNMP list that defines an access policy. Users belonging to a particular SNMP group inherit all access privileges granted to that group.

## Configuring the Security Model

To configure the security model, include the `security-model` statement at the `[edit snmp v3 vacm access group group-name (default-context-prefix | context-prefix context-prefix)]` hierarchy level:

```
[edit snmp v3 vacm access group group-name (default-context-prefix | context-prefix context-prefix)]
security-model (any | usm | v1 | v2c);
```

- `any`—Any security model
- `usm`—SNMPv3 security model
• v1—SNMPv1 security model
• v2c—SNMPv2c security model

Configuring the Security Level

To configure the access privileges granted to packets with a particular security level, include the `security-level` statement at the `[edit snmp v3 vacm access group group-name (default-context-prefix | context-prefix context-prefix) security-model (any | usm | v1 | v2c)]` hierarchy level:

```
[edit snmp v3 vacm access group group-name default-context-prefix security-model (any | usm | v1 | v2c)]
security-level (authentication | none | privacy);
```

• `none`—Provides no authentication and no encryption.
• `authentication`—Provides authentication but no encryption.
• `privacy`—Provides authentication and encryption.

**NOTE:** Access privileges are granted to all packets with a security level equal to or greater than that configured. If you are configuring the SNMPv1 or SNMPv2c security model, use `none` as your security level. If you are configuring the SNMPv3 security model (USM), use the `authentication`, `none`, or `privacy` security level.

Associating MIB Views with an SNMP User Group

MIB views define access privileges for members of a group. Separate views can be applied for each SNMP operation (read, write, and notify) within each security model (usm, v1, and v2c) and each security level (authentication, none, and privacy) supported by SNMP.

To associate MIB views with an SNMP user group, include the following statements at the `[edit snmp v3 vacm access group group-name (default-context-prefix | context-prefix context-prefix) security-model (any | usm | v1 | v2c) security-level (authentication | none | privacy)]` hierarchy level:

```
[edit snmp v3 vacm accessgroup group-name (default-context-prefix | context-prefix context-prefix)security-model (any | usm | v1 | v2c) security-level (authentication | none | privacy)]
notify-view view-name;
read-view view-name;
write-view view-name;
```
NOTE: You must associate at least one view (notify, read, or write) at the
[edit snmp v3 vacm access group group-name (default-context-prefix | context-prefix context-prefix) security-model (any | usm | v1 | v2c) security-level (authentication | none | privacy)] hierarchy level.

You must configure the MIB view at the [edit snmp view view-name] hierarchy
level. For information about how to configure MIB views, see “Configuring
MIB Views” on page 121.

This section describes the following topics related to this configuration:

- Configuring the Notify View on page 139
- Configuring the Read View on page 139
- Configuring the Write View on page 140

Configuring the Notify View

To associate notify access with an SNMP user group, include the notify-view statement at the [edit snmp v3 vacm access group group-name (default-context-prefix | context-prefix context-prefix) security-model (any | usm | v1 | v2c) security-level (authentication | none | privacy)] hierarchy level:

[edit snmp v3 vacm access group group-name (default-context-prefix | context-prefix context-prefix) security-model (any | usm | v1 | v2c) security-level (authentication | none | privacy)]
notify-view view-name;

view-name specifies the notify access, which is a list of notifications that can be sent to
each user in an SNMP group. A view name cannot exceed 32 characters.

Configuring the Read View

To associate a read view with an SNMP user group, include the read-view statement at the [edit snmp v3 vacm access group group-name (default-context-prefix | context-prefix context-prefix) security-model (any | usm | v1 | v2c) security-level (authentication | none | privacy)] hierarchy level:

[edit snmp v3 vacm access group group-name (default-context-prefix | context-prefix context-prefix) security-model (any | usm | v1 | v2c) security-level (authentication | none | privacy)]
read-view view-name;

view-name specifies read access for an SNMP user group. A view name cannot exceed
32 characters.
Configuring the Write View

To associate a write view with an SNMP user group, include the write-view statement at the [edit snmp v3 vacm access group group-name (default-context-prefix | context-prefix context-prefix) security-model (any | usm | v1 | v2c) security-level (authentication | none | privacy)] hierarchy level:

[edit snmp v3 vacm access group group-name (default-context-prefix | context-prefix context-prefix) security-model (any | usm | v1 | v2c) security-level (authentication | none | privacy)]
write-view view-name;

view-name specifies write access for an SNMP user group. A view name cannot exceed 32 characters.

Related Documentation
- Configuring the SNMPv3 Authentication Type on page 132
- Defining Access Privileges for an SNMP Group on page 136
- Assigning Security Model and Security Name to a Group on page 141
- Minimum SNMPv3 Configuration on a Device Running Junos OS on page 126
- Example: Configuring the Access Privileges Granted to a Group on page 140

Example: Configuring the Access Privileges Granted to a Group

Supported Platforms  ACX Series, M Series, MX Series, PTX Series, T Series

Define access privileges:

[edit snmp v3 vacm]
access {
  group group1 {
    default-context-prefix {
      security-model usm {
        security-level privacy {
          notify-view nv1;
          read-view rv1;
          write-view wv1;
        }
      }
    }
  }
  context-prefix lr1/rl1 {
    security-model usm {
      security-level privacy {
        notify-view nv1;
        read-view rv1;
        write-view wv1;
      }
    }
  }
  group group2 {
    default-context-prefix {

Related Documentation

- Configuring the Access Privileges Granted to a Group on page 137
- Minimum SNMPv3 Configuration on a Device Running Junos OS on page 126

Assigning Security Model and Security Name to a Group

Supported Platforms

ACX Series, M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

To assign security names to groups, include the following statements at the [edit snmp v3 vacm security-to-group] hierarchy level:

```
[edit snmp v3 vacm security-to-group]
security-model (usm | v1 | v2c) {
 security-name security-name {
 group group-name;
 }
}
```

This topic includes the following sections:

- Configuring the Security Model on page 141
- Assigning Security Names to Groups on page 142
- Configuring the Group on page 142

Configuring the Security Model

To configure the security model, include the `security-model` statement at the [edit snmp v3 vacm security-to-group] hierarchy level:

```
[edit snmp v3 vacm security-to-group]
security-model (usm | v1 | v2c);
```

- `usm`—SNMPv3 security model
- `v1`—SNMPv1 security model
- **v2c**—SNMPv2 security model

### Assigning Security Names to Groups

To associate a security name with an SNMPv3 user, or a v1 or v2 community string, include the `security-name` statement at the `[edit snmp v3 vacm security-to-group security-model (usm | v1 | v2c)]` hierarchy level:

```
[edit snmp v3 vacm security-to-group security-model (usm | v1 | v2c)]
security-name security-name;
```

For SNMPv3, the `security-name` is the username configured at the `[edit snmp v3 usm local-engine user username]` hierarchy level. For SNMPv1 and SNMPv2c, the security name is the community string configured at the `[edit snmp v3 snmp-community community-index]` hierarchy level. For information about configuring usernames, see “Creating SNMPv3 Users” on page 131. For information about configuring a community string, see “Configuring the SNMPv3 Community” on page 160.

**NOTE:** The USM security name is separate from the SNMPv1 and SNMPv2c security name. If you support SNMPv1 and SNMPv2c in addition to SNMPv3, you must configure separate security names within the security-to-group configuration at the `[edit snmp v3 vacm access]` hierarchy level.

### Configuring the Group

After you have created SNMPv3 users, or v1 or v2 security names, you associate them with a group. A group is a set of security names belonging to a particular security model. A group defines the access rights for all users belonging to it. Access rights define what SNMP objects can be read, written to, or created. A group also defines what notifications a user is allowed to receive.

If you already have a group that is configured with all of the view and access permissions that you want to give a user, you can add the user to that group. If you want to give a user view and access permissions that no other groups have, or if you do not have any groups configured, create a group and add the user to it.

To configure the access privileges granted to a group, include the `group` statement at the `[edit snmp v3 vacm security-to-group security-model (usm | v1 | v2c) security-name security-name]` hierarchy level:

```
[edit snmp v3 vacm security-to-group security-model (usm | v1 | v2c) security-name security-name]
group group-name;
```

`group-name` identifies a collection of SNMP security names that share the same access policy. For more information about groups, see “Defining Access Privileges for an SNMP Group” on page 136.

### Example: Security Group Configuration

**Supported Platforms**  
M Series, MX Series, SRX Series, T Series, vSRX
Assign security names to groups:

```
vacm {
 security-to-group {
 security-model usm {
 security-name user1 {
 group group1;
 }
 security-name user2 {
 group group2;
 }
 security-name user3 {
 group group3;
 }
 }
 }
}
```

**Related Documentation**

- Assigning Security Model and Security Name to a Group on page 141
- Minimum SNMPv3 Configuration on a Device Running Junos OS on page 126

---

### Configuring SNMPv3 Traps on a Device Running Junos OS

**Supported Platforms**

ACX Series, M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series

In SNMPv3, you create traps and informs by configuring the `notify`, `target-address`, and `target-parameters` parameters. Traps are unconfirmed notifications, whereas informs are confirmed notifications. This section describes how to configure SNMP traps. For information about configuring SNMP informs, see “Configuring SNMP Informs” on page 153.

The target address defines a management application’s address and parameters to be used in sending notifications. Target parameters define the message processing and security parameters that are used in sending notifications to a particular management target. SNMPv3 also lets you define SNMPv1 and SNMPv2c traps.

---

**NOTE:** When you configure SNMP traps, make sure your configured access privileges allow the traps to be sent. Access privileges are configured at the `[edit snmp v3 vacm access]` and `[edit snmp v3 vacm security-to-group]` hierarchy levels.

To configure SNMP traps, include the following statements at the `[edit snmp v3]` hierarchy level:

```
[edit snmp v3]
notify name {
 tag tag-name;
 type trap;
}
```

```
```
target-address target-address-name {
    address address;
    address-mask address-mask;
    logical-system logical-system;
    port port-number;
    routing-instance instance;
    tag-list tag-list;
    target-parameters target-parameters-name;
}

Related Documentation
- Configuring the SNMPv3 Trap Notification on page 144
- Configuring the Trap Notification Filter on page 145
- Configuring the Trap Target Address on page 146
- Defining and Configuring the Trap Target Parameters on page 150
- Configuring SNMP Informs on page 153
- Configuring the Remote Engine and Remote User on page 154
- Configuring the Inform Notification Type and Target Address on page 158

**Configuring the SNMPv3 Trap Notification**

**Supported Platforms**
M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series

The *notify* statement specifies the type of notification (trap) and contains a single tag. The tag defines a set of target addresses to receive a trap. The tag list contains one or more tags and is configured at the *edit snmp v3 target-address target-address-name* hierarchy level. If the tag list contains this tag, Junos OS sends a notification to all the target addresses associated with this tag.

To configure the trap notifications, include the *notify* statement at the *edit snmp v3* hierarchy level:

```
[edit snmp v3]
notify name {
 tag tag-name;
 type trap;
}
```

*name* is the name assigned to the notification.
**tag-name** defines the target addresses to which this notification is sent. This notification is sent to all the target-addresses that have this tag in their tag list. The **tag-name** is not included in the notification.

**trap** is the type of notification.

**NOTE:** Each notify entry name must be unique.

Junos OS supports two types of notification: trap and inform.

For information about how to configure the **tag** list, see “Configuring the Trap Target Address” on page 148.

**Example: Configuring SNMPv3 Trap Notification**

**Supported Platforms**  
M Series, MX Series, PTX Series, SRX Series, T Series

Specify three sets of destinations to send traps:

```
[edit snmp v3]
notify n1 {
 tag router1;
 type trap;
}
notify n2 {
 tag router2;
 type trap
}
notify n3 {
 tag router3;
 type trap;
}
```

**Related Documentation**

- Configuring SNMPv3 Traps on a Device Running Junos OS on page 143  
- Configuring the Trap Notification Filter on page 145  
- Configuring the Trap Target Address on page 146  
- Defining and Configuring the Trap Target Parameters on page 150  
- Configuring SNMP Inform on page 153  
- Minimum SNMPv3 Configuration on a Device Running Junos OS on page 126

**Configuring the Trap Notification Filter**

**Supported Platforms**  
ACX Series, M Series, MX Series, PTX Series, T Series
SNMPv3 uses the notify filter to define which traps (or which objects from which traps) are sent to the network management system (NMS). The trap notification filter limits the type of traps that are sent to the NMS.

Each object identifier represents a subtree of the MIB object hierarchy. The subtree can be represented either by a sequence of dotted integers (such as 1.3.6.1.2.1.2) or by its subtree name (such as interfaces). You can also use the wildcard character asterisk (*) in the object identifier (OID) to specify object identifiers that match a particular pattern.

To configure the trap notifications filter, include the notify-filter statement at the [edit snmp v3] hierarchy level:

```
[edit snmp v3]
notify-filter profile-name;
```

`profile-name` is the name assigned to the notify filter.

By default, the OID is set to include. To define access to traps (or objects from traps), include the oid statement at the [edit snmp v3 notify-filter profile-name] hierarchy level:

```
[edit snmp v3 notify-filter profile-name]
oid oid (include | exclude);
```

`oid` is the object identifier. All MIB objects represented by this statement have the specified OID as a prefix. It can be specified either by a sequence of dotted integers or by a subtree name.

- **include**—Include the subtree of MIB objects represented by the specified OID.
- **exclude**—Exclude the subtree of MIB objects represented by the specified OID.

### Related Documentation

- Configuring SNMPv3 Traps on a Device Running Junos OS on page 143
- Configuring the SNMPv3 Trap Notification on page 144
- Configuring the Trap Target Address on page 146
- Defining and Configuring the Trap Target Parameters on page 150
- Configuring SNMP Informs on page 153
- Minimum SNMPv3 Configuration on a Device Running Junos OS on page 126

### Configuring the Trap Target Address

**Supported Platforms**

ACX Series, M Series, MX Series, PTX Series, T Series

The target address defines a management application's address and parameters that are used in sending notifications. It can also identify management stations that are allowed to use specific community strings. When you receive a packet with a recognized community string and a tag is associated with it, Junos OS looks up all the target addresses with this tag and verifies that the source address of this packet matches one of the configured target addresses.
NOTE: You must configure the address mask when you configure the SNMP community.

To specify where you want the traps to be sent and define what SNMPv1 and SNMPv2cc packets are allowed, include the target-address statement at the [edit snmp v3] hierarchy level:

```
[edit snmp v3]
target-address target-address-name;
```

`target-address-name` is the string that identifies the target address.

To configure the target address properties, include the following statements at the [edit snmp v3 target-address target-address-name] hierarchy level:

```
[edit snmp v3 target-address target-address-name]
address address;
address-mask address-mask;
logical-system logical-system;
port port-number;
routing-instance instance;
tag-list tag-list;
target-parameters target-parameters-name;
```

This section includes the following topics:

- Configuring the Address on page 147
- Configuring the Address Mask on page 147
- Configuring the Port on page 148
- Configuring the Routing Instance on page 148
- Configuring the Trap Target Address on page 148
- Applying Target Parameters on page 149

### Configuring the Address

To configure the address, include the `address` statement at the [edit snmp v3 target-address target-address-name] hierarchy level:

```
[edit snmp v3 target-address target-address-name]
address address;
```

`address` is the SNMP target address.

### Configuring the Address Mask

The address mask specifies a set of addresses that are allowed to use a community string and verifies the source addresses for a group of target addresses.

To configure the address mask, include the `address-mask` statement at the [edit snmp v3 target-address target-address-name] hierarchy level:

```
[edit snmp v3 target-address target-address-name]
address-mask address-mask;
```
address-mask combined with the address defines a range of addresses. For information about how to configure the community string, see “Configuring the SNMPv3 Community” on page 160.

Configuring the Port

By default, the UDP port is set to 162. To configure a different port number, include the port statement at the [edit snmp v3 target-address target-address-name] hierarchy level:

```
[edit snmp v3 target-address target-address-name]
port port-number;
```

port-number is the SNMP target port number.

Configuring the Routing Instance

Traps are sent over the default routing instance. To configure the routing instance for sending traps, include the routing-instance statement at the [edit snmp v3 target-address target-address-name] hierarchy level:

```
[edit snmp v3 target-address target-address-name]
routing-instance instance;
```

instance is the name of the routing instance. To configure a routing instance within a logical system, specify the logical system name followed by the routing instance name. Use a slash (/ ) to separate the two names (for example, test-lr/test-ri). To configure the default routing instance on a logical system, specify the logical system name followed by default (for example, test-lr/default).

Configuring the Trap Target Address

Each target-address statement can have one or more tags configured in its tag list. Each tag can appear in more than one tag list. When a significant event occurs on the network device, the tag list identifies the targets to which a notification is sent.

To configure the tag list, include the tag-list statement at the [edit snmp v3 target-address target-address-name] hierarchy level:

```
[edit snmp v3 target-address target-address-name]
tag-list "tag-list";
```

tag-list specifies one or more tags as a space-separated list enclosed within double quotes.

For an example of tag list configuration, see “Example: Configuring the Tag List” on page 149.

For information about how to specify a tag at the [edit snmp v3 notify notify-name] hierarchy level, see “Configuring the SNMPv3 Trap Notification” on page 144.

NOTE: When you configure SNMP traps, make sure your configured access privileges allow the traps to be sent. Configure access privileges at the [edit snmp v3 vacm access] hierarchy level.
Applying Target Parameters

The `target-parameters` statement at the [edit snmp v3] hierarchy level applies the target parameters configured at the [edit snmp v3 target-parameters target-parameters-name] hierarchy level.

To reference configured target parameters, include the `target-parameters` statement at the [edit snmp v3 target-address target-address-name] hierarchy level:

```
[edit snmp v3 target-address target-address-name]
target-parameters target-parameters-name;
```

`target-parameters-name` is the name associated with the message processing and security parameters that are used in sending notifications to a particular management target.

Related Documentation

- Configuring SNMPv3 Traps on a Device Running Junos OS on page 143
- Configuring the SNMPv3 Trap Notification on page 144
- Configuring the Trap Notification Filter on page 145
- Defining and Configuring the Trap Target Parameters on page 150
- Configuring SNMP Informs on page 153
- Minimum SNMPv3 Configuration on a Device Running Junos OS on page 126
- Example: Configuring the Tag List on page 149

Example: Configuring the Tag List

Supported Platforms  ACX Series, M Series, MX Series, PTX Series, T Series

In the following example, two tag entries (router1 and router2) are defined at the [edit snmp v3 notify notify-name] hierarchy level. When an event triggers a notification, Junos OS sends a trap to all target addresses that have router1 or router2 configured in their target-address tag list. This results in the first two targets getting one trap each, and the third target getting two traps.

```
[edit snmp v3]
notify n1 {
 tag router1; # Identifies a set of target addresses
 type trap; # Defines the type of notification
}
notify n2 {
 tag router2;
 type trap;
}
target-address ta1 {
 address 10.1.1.1;
 address-mask 255.255.255.0;
 port 162;
 tag-list router1;
 target-parameters tp1;
}
```
target-address ta2 {
    address 10.1.1.2;
    address-mask 255.255.255.0;
    port 162;
    tag-list router2;
    target-parameters tp2;
}
tag-address ta3 {
    address 10.1.1.3;
    address-mask 255.255.255.0;
    port 162;
    tag-list "router1 router2"; #Define multiple tags in the target address tag list
    target-parameters tp3;
}

Defining and Configuring the Trap Target Parameters

Related Documentation

- Configuring SNMPv3 Traps on a Device Running Junos OS on page 143
- Configuring the Trap Target Address on page 146
- Minimum SNMPv3 Configuration on a Device Running Junos OS on page 126

Target parameters define the message processing and security parameters that are used in sending notifications to a particular management target.

To define a set of target parameters, include the target-parameters statement at the [edit snmp v3] hierarchy level:

```
[edit snmp v3]
target-parameters target-parameters-name;
```

`target-parameters-name` is the name assigned to the target parameters.

To configure target parameter properties, include the following statements at the [edit snmp v3 target-parameters target-parameter-name] hierarchy level:

```
[edit snmp v3 target-parameters target-parameter-name]
notify-filter profile-name;
parameters {
 message-processing-model (v1 | v2c | V3);
 security-level (authentication | none | privacy);
 security-model (usm | v1 | v2c);
 security-name security-name;
}
```

This topic includes the following sections:

- Applying the Trap Notification Filter on page 151
- Configuring the Target Parameters on page 151
Applying the Trap Notification Filter

To apply the trap notification filter, include the `notify-filter` statement at the `[edit snmp v3 target-parameters target-parameter-name]` hierarchy level:

```
[edit snmp v3 target-parameters target-parameter-name]
notify-filter profile-name;
```

`profile-name` is the name of a configured notify filter. For information about configuring notify filters, see “Configuring the Trap Notification Filter” on page 145.

Configuring the Target Parameters

To configure target parameter properties, include the following statements at the `[edit snmp v3 target-parameters target-parameter-name parameters]` hierarchy level:

```
[edit snmp v3 target-parameters target-parameter-name parameters]
message-processing-model (v1 | v2c | v3);
security-level (authentication | none | privacy);
security-model (usm | v1 | v2c);
security-name security-name;
```

This section includes the following topics:

- Configuring the Message Processing Model on page 151
- Configuring the Security Model on page 151
- Configuring the Security Level on page 152
- Configuring the Security Name on page 152

Configuring the Message Processing Model

The message processing model defines which version of SNMP to use when generating SNMP notifications. To configure the message processing model, include the `message-processing-model` statement at the `[edit snmp v3 target-parameters target-parameter-name parameters]` hierarchy level:

```
[edit snmp v3 target-parameters target-parameter-name parameters]
message-processing-model (v1 | v2c | v3);
```

- v1—SNMPv1 message processing model
- v2c—SNMPv2c message processing model
- v3—SNMPv3 message processing model

Configuring the Security Model

To define the security model to use when generating SNMP notifications, include the `security-model` statement at the `[edit snmp v3 target-parameters target-parameter-name parameters]` hierarchy level:

```
[edit snmp v3 target-parameters target-parameter-name parameters]
security-model (usm | v1 | v2c);
```

- usm—SNMPv3 security model
- v1—SNMPv1 security model
• v2c—SNMPv2c security model

Configuring the Security Level

The `security-level` statement specifies whether the trap is authenticated and encrypted before it is sent.

To configure the security level to use when generating SNMP notifications, include the `security-level` statement at the `[edit snmpv3 target-parameters target-parameter-name parameters]` hierarchy level:

```
[edit snmpv3 target-parameters target-parameter-name parameters]
security-level {authentication | none | privacy};
```

- **authentication**—Provides authentication but no encryption.
- **none**—No security. Provides no authentication and no encryption.
- **privacy**—Provides authentication and encryption.

**NOTE:** If you are configuring the SNMPv1 or SNMPv2c security model, use `none` as your security level. If you are configuring the SNMPv3 (USM) security model, use the `authentication` or `privacy` security level.

Configuring the Security Name

To configure the security name to use when generating SNMP notifications, include the `security-name` statement at the `[edit snmpv3 target-parameters target-parameter-name parameters]` hierarchy level:

```
[edit snmpv3 target-parameters target-parameter-name parameters]
security-name security-name;
```

If the USM security model is used, the `security-name` identifies the user that is used when the notification is generated. If the v1 or v2c security models are used, `security-name` identifies the SNMP community used when the notification is generated.

**NOTE:** The access privileges for the group associated with a security name must allow this notification to be sent.

If you are using the v1 or v2 security models, the security name at the `[edit snmpv3 vacm security-to-group]` hierarchy level must match the security name at the `[edit snmpv3 snmp-community community-index]` hierarchy level.

Related Documentation

- Configuring SNMPv3 Traps on a Device Running Junos OS on page 143
- Configuring the SNMPv3 Trap Notification on page 144
- Configuring the Trap Notification Filter on page 145
- Configuring the Trap Target Address on page 146
Configuring SNMP Informs

Supported Platforms

ACX Series, M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series, vSRX

Junos OS supports two types of notifications: traps and informs. With traps, the receiver does not send any acknowledgment when it receives a trap. Therefore, the sender cannot determine if the trap was received. A trap may be lost because a problem occurred during transmission. To increase reliability, an inform is similar to a trap except that the inform is stored and retransmitted at regular intervals until one of these conditions occurs:

- The receiver (target) of the inform returns an acknowledgment to the SNMP agent.
- A specified number of unsuccessful retransmissions have been attempted and the agent discards the inform message.

If the sender never receives a response, the inform can be sent again. Thus, informs are more likely to reach their intended destination than traps are. Informs use the same communications channel as traps (same socket and port) but have different protocol data unit (PDU) types.

Informs are more reliable than traps, but they consume more network, router, and switch resources (see Figure 1 on page 153). Unlike a trap, an inform is held in memory until a response is received or the timeout is reached. Also, traps are sent only once, whereas an inform may be retried several times. Use informs when it is important that the SNMP manager receive all notifications. However, if you are more concerned about network traffic, or router and switch memory, use traps.

Figure 1: Inform Request and Response

For information about configuring SNMP traps, see “Configuring SNMPv3 Traps on a Device Running Junos OS” on page 143.

Related Documentation

- Configuring SNMPv3 Traps on a Device Running Junos OS on page 143
- Configuring the Remote Engine and Remote User on page 154
- Configuring the Inform Notification Type and Target Address on page 158
- Minimum SNMPv3 Configuration on a Device Running Junos OS on page 126
Configuring the Remote Engine and Remote User

Supported Platforms
ACX Series, M Series, MX Series, PTX Series, T Series

To send inform messages to an SNMPv3 user on a remote device, you must first specify the engine identifier for the SNMP agent on the remote device where the user resides. The remote engine ID is used to compute the security digest for authenticating and encrypting packets sent to a user on the remote host. When sending an inform message, the agent uses the credentials of the user configured on the remote engine (inform target).

To configure a remote engine and remote user to receive and respond to SNMP informs, include the following statements at the [edit snmp v3] hierarchy level:

```
[edit snmp v3]
usm {
 remote-engine engine-id {
 user username {
 authentication-md5 {
 authentication-key key;
 }
 authentication-none;
 authentication-sha {
 authentication-key key;
 }
 privacy-3des {
 privacy-key key;
 }
 privacy-aes128 {
 privacy-key key;
 }
 privacy-des {
 privacy-key key;
 }
 privacy-none;
 }
 }
}
```

For informs, `remote-engine engine-id` is the identifier for the SNMP agent on the remote device where the user resides.

For informs, `user username` is the user on a remote SNMP engine who receives the informs.

Informs generated can be unauthenticated, authenticated, or authenticated_and_encrypted, depending on the security level of the SNMPv3 user configured on the remote engine (the inform receiver). The authentication key is used for generating message authentication code (MAC). The privacy key is used to encrypt the inform PDU part of the message.

Related Documentation
- Configuring SNMPv3 Traps on a Device Running Junos OS on page 143
- Configuring SNMP Informs on page 153
- Configuring the Inform Notification Type and Target Address on page 158
Minimum SNMPv3 Configuration on a Device Running Junos OS on page 126
Example: Configuring the Remote Engine ID and Remote User on page 155

Example: Configuring the Remote Engine ID and Remote User

**Supported Platforms**
ACX Series, M Series, MX Series, PTX Series, T Series

This example shows how to configure a remote engine and remote user so you can receive and respond to SNMP inform notifications. Inform notifications can be authenticated and encrypted. They are also more reliable than traps, another type of notification that Junos OS supports. Unlike traps, inform notifications are stored and retransmitted at regular intervals until one of these conditions occurs:

- The target of the inform notification returns an acknowledgment to the SNMP agent.
- A specified number of unsuccessful retransmissions have been attempted.

**Requirements on page 155**
**Overview on page 155**
**Configuration on page 156**
**Verification on page 157**

**Requirements**

No special configuration beyond device initialization is required before configuring this example.

This feature requires the use of plain-text passwords valid for SNMPv3. SNMPv3 has the following special requirements when you create plain-text passwords on a router or switch:

- The password must be at least eight characters long.
- The password can include alphabetic, numeric, and special characters, but it cannot include control characters.

Although quotation marks are not always required to enclose passwords, it is best to use them. You need quotation marks if the password contains any spaces or possibly in the case of certain special characters or punctuation.

**Overview**

Inform notifications are supported in SNMPv3 to increase reliability. For example, an SNMP agent receiving an inform notification acknowledges the receipt.

For inform notifications, the remote engine ID identifies the SNMP agent on the remote device where the user resides, and the username identifies the user on a remote SNMP engine who receives the inform notifications.

Consider a scenario in which you have the values in Table 13 on page 156 to use in configuring the remote engine ID and remote user in this example.
### Table 13: Values to Use in Example

<table>
<thead>
<tr>
<th>Name of Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>username</td>
<td>u10</td>
</tr>
<tr>
<td>remote engine ID</td>
<td>800007E5804089071BC6D10A41</td>
</tr>
<tr>
<td>authentication type</td>
<td>authentication-md5</td>
</tr>
<tr>
<td>authentication password</td>
<td>qol67R%?</td>
</tr>
<tr>
<td>encryption type</td>
<td>privacy-des</td>
</tr>
<tr>
<td>privacy password</td>
<td>m*72Jl9v</td>
</tr>
</tbody>
</table>

### Configuration

#### CLI Quick Configuration

To quickly configure this example, copy the following commands and paste them into a text file, remove any line breaks and change any details necessary to match your network configuration, copy and paste these commands into the CLI at the [edit snmp v3] hierarchy level, and then enter `commit` from configuration mode.

```
set usm remote-engine 800007E5804089071BC6D10A41 user u10 authentication-md5 authentication-key "qol67R%?"
set usm remote-engine 800007E5804089071BC6D10A41 user u10 privacy-des privacy-key "m*72Jl9v"
```

### Configuring the Remote Engine and Remote User

#### Step-by-Step Procedure

The following example requires that you navigate to various levels in the configuration hierarchy. For information about navigating the CLI, see *Using the CLI Editor in Configuration Mode* in the *Junos OS CLI User Guide*.

To configure the remote engine ID and remote user:

1. Configure the remote engine ID, username, and authentication type and password.
   ```
 [edit snmp v3]
 user@host# set usm remote-engine 800007E5804089071BC6D10A41 user u10 authentication-md5 authentication-key "qol67R%?"
   ```

2. Configure the encryption type and privacy password.
   You can configure only one encryption type per SNMPv3 user.
   ```
 [edit snmp v3]
 user@host# set usm remote-engine 800007E5804089071BC6D10A41 user u10 privacy-des privacy-key "m*72Jl9v"
   ```
Results

In configuration mode, confirm your configuration by entering the `show` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
[edit snmp v3]
user@host# show
usm {
 remote-engine 800007E5804089071BC6D10A41 {
 user u10 {
 authentication-md5 {
 authentication-key "9Tz/teK8NdS LXk.f5n6p00Rev$# secret-data
 }
 privacy-des {
 privacy-key "9/gyNCu1KvWdWYM Ww2gJHkRhcrWx$# secret-data
 }
 }
 }
}
```

After you have confirmed that the configuration is correct, enter `commit` from configuration mode.

Verification

**Verifying the Configuration of the Remote Engine ID and Username**

**Purpose**
Verify the status of the engine ID and user information.

**Action**
Display information about the SNMPv3 engine ID and user.

```
user@host> show snmpv3
Local engine ID: 80 00 0a 4c 01 0a ff 03 e3
Engine boots: 3
Engine time: 769187 seconds
Max msg size: 65507 bytes

Engine ID: 80 00 07 e5 80 40 89 07 1b c6 d1 0a 41
User u10 Auth/Priv Storage Status
 md5/des nonvolatile active
```

**Meaning**
The output displays the following information:
- Local engine ID and detail about the engine
- Remote engine ID (labeled **Engine ID**)
- Username
- Authentication type and encryption (privacy) type that is configured for the user
• Type of storage for the username, either nonvolatile (configuration saved) or volatile (not saved)

• Status of the new user; only users with an active status can use SNMPv3

Related Documentation

- show snmp v3 on page 955
- Configuring the SNMPv3 Encryption Type on page 134
- Configuring the SNMPv3 Authentication Type on page 132
- Configuring SNMP Informson page 153
- Configuring the Remote Engine and Remote User on page 154

Configuring the Inform Notification Type and Target Address

Supported Platforms  ACX Series, M Series, MX Series, PTX Series, SRX Series, T Series

To configure the inform notification type and target information, include the following statements at the [edit snmp v3] hierarchy level:

```
[edit snmp v3]
notify name {
 tag tag-name:
 type (trap | inform);
}
```

```
target-address target-address-name {
 address address;
 address-mask address-mask;
 logical-system logical-system;
 port port-number;
 retry-count number;
 routing-instance instance;
 tag-list tag-list;
 target-parameters target-parameters-name;
 timeout seconds;
}
```

```
target-parameters target-parameters-name {
 notify-filter profile-name;
 parameters {
 message-processing-model (v1 | v2c | v3);
 security-level (authentication | none | privacy);
 security-model (usm | v1 | v2c);
 security-name security-name;
 }
}
```

```
notify name is the name assigned to the notification. Each notify entry name must be unique.

tag tag-name defines the target addresses that are sent this notification. The notification is sent to all target addresses that have this tag in their tag list. The tag-name is not
included in the notification. For information about how to configure the tag list, see “Configuring the Trap Target Address” on page 148.

type inform is the type of notification.

target-address target-address-name identifies the target address. The target address defines a management application’s address and parameters that are used to respond to informs.

timeout seconds is the number of seconds to wait for an acknowledgment. If no acknowledgment is received within the timeout period, the inform is retransmitted. The default timeout is 15 seconds.

retry-count number is the maximum number of times an inform is transmitted if no acknowledgment is received. The default is 3. If no acknowledgment is received after the inform is transmitted the maximum number of times, the inform message is discarded.

message-processing-model defines which version of SNMP to use when SNMP notifications are generated. Informs require a v3 message processing model.

security-model defines the security model to use when SNMP notifications are generated. Informs require a usm security model.

security-model defines the security model to use when SNMP notifications are generated. Informs require a usm security model.

security-level specifies whether the inform is authenticated and encrypted before it is sent. For the usm security model, the security level must be one of the following:

• authentication—Provides authentication but no encryption.
• privacy—Provides authentication and encryption.

security-name identifies the username that is used when generating the inform.

Related Documentation

- Configuring SNMPv3 Traps on a Device Running Junos OS on page 143
- Configuring SNMP Informs on page 153
- Configuring the Remote Engine and Remote User on page 154
- Minimum SNMPv3 Configuration on a Device Running Junos OS on page 126
- Example: Configuring the Inform Notification Type and Target Address on page 159

Example: Configuring the Inform Notification Type and Target Address

Supported Platforms

ACX Series, M Series, MX Series, PTX Series, T Series
In the following example, target 172.17.20.184 is configured to respond to informs. The inform timeout is 30 seconds and the maximum retransmit count is 3. The inform is sent to all targets in the tl1 list. The security model for the remote user is usm and the remote engine username is u10.

```
[edit snmp v3]
notify nl {     
type inform;
tag tl1;
}
notify-filter nf1 {     
oid .1.3 include;
}
target-address ta1 {     
  address 172.17.20.184;
retry-count 3;
tag-list tl1;
address-mask 255.255.255.0;
target-parameters tp1;
timeout 30;
}
target-parameters tp1 {     
  parameters {     
    message-processing-model v3;
security-model usm;
security-level privacy;
security-name u10;
  }
notify-filter nf1;
}
```

Related Documentation
- Configuring the Inform Notification Type and Target Address on page 158
- Minimum SNMPv3 Configuration on a Device Running Junos OS on page 126

Configuring the SNMPv3 Community

Supported Platforms
- ACX Series
- M Series
- MX Series
- PTX Series
- QFabric System
- QFX Series
- T Series

The SNMP community defines the relationship between an SNMP server system and the client systems. This statement is optional.

To configure the SNMP community, include the `snmp-community` statement at the `[edit snmp v3]` hierarchy level:

```
[edit snmp v3]
snmp-community community-index;
```

community-index is the index for the SNMP community.

To configure the SNMP community properties, include the following statements at the `[edit snmp v3 snmp-community community-index]` hierarchy level:

```
[edit snmp v3 snmp-community community-index]
community-name community-name;
```
This section includes the following topics:

- Configuring the Community Name on page 161
- Configuring the Context on page 161
- Configuring the Security Names on page 162
- Configuring the Tag on page 162

Configuring the Community Name

The community name defines the SNMP community. The SNMP community authorizes SNMPv1 or SNMPv2c clients. The access privileges associated with the configured security name define which MIB objects are available and the operations (read, write, or notify) allowed on those objects.

To configure the SNMP community name, include the `community-name` statement at the `[edit snmpv3 snmp-community community-index]` hierarchy level:

```
[edit snmp v3 snmp-community community-index]
community-name community-name;
```

`community-name` is the community string for an SNMPv1 or SNMPv2c community.

If unconfigured, it is the same as the community index.

If the community name contains spaces, enclose it in quotation marks (" ").

NOTE: Community names must be unique. You cannot configure the same community name at the `[edit snmp community]` and `[edit snmp v3 snmp-community community-index]` hierarchy levels. The configured community name at the `[edit snmp v3 snmp-community community-index]` hierarchy level is encrypted. You cannot view the community name after you have configured it and committed your changes. In the command-line interface (CLI), the community name is concealed.

Configuring the Context

An SNMP context defines a collection of management information that is accessible to an SNMP entity. Typically, an SNMP entity has access to multiple contexts. A context can be a physical or logical system, a collection of multiple systems, or even a subset of a system. Each context in a management domain has a unique identifier.

To configure an SNMP context, include the `context context-name` statement at the `[edit snmp v3 snmp-community community-index]` hierarchy level:

```
[edit snmp v3 snmp-community community-index]
context context-name;
```
NOTE: To query a routing instance or a logical system,

Configuring the Security Names

To assign a community string to a security name, include the `security-name` statement at the `[edit snmp v3 snmp-community community-index]` hierarchy level:

```
[edit snmp v3 snmp-community community-index]
security-name security-name;
```

`security-name` is used when access control is set up. The `security-to-group` configuration at the `[edit snmp v3 vacm]` hierarchy level identifies the group.

NOTE: This security name must match the security name configured at the `[edit snmp v3 target-parameters target-parameters-name parameters]` hierarchy level when you configure traps.

Configuring the Tag

To configure the tag, include the `tag` statement at the `[edit snmp v3 snmp-community community-index]` hierarchy level:

```
[edit snmp v3 snmp-community community-index]
tag tag-name;
```

`tag-name` identifies the address of managers that are allowed to use a community string.

Related Documentation

- Creating SNMPv3 Users on page 131
- Minimum SNMPv3 Configuration on a Device Running Junos OS on page 126
- Example: Configuring an SNMPv3 Community on page 162

Example: Configuring an SNMPv3 Community

Supported Platforms ACX Series, M Series, MX Series, PTX Series, T Series

Define an SNMP community:

```
[edit snmp v3]
snmp-community index1 {
    community-name "$9$JOZi.QF/AtOz3": # SECRET-DATA
    security-name john;
    tag router1; # Identifies managers that are allowed to use
    # a community string
    target-address ta1 {
        address 10.1.1.1;
        address-mask 255.255.255.0; # Defines the range of addresses
        port 162;
        tag-list router1;
        target-parameters tp1; # Applies configured target parameters
    }
}
```
Related Documentation

- Configuring the SNMPv3 Community on page 160
- Minimum SNMPv3 Configuration on a Device Running Junos OS on page 126
Understand the SNMP Support for Routing Instances

Supported Platforms

ACX Series, M Series, MX Series, PTX Series, T Series

Junos OS enables SNMP managers for all routing instances to request and manage SNMP data related to the corresponding routing instances and logical system networks.

In Junos OS:

- Clients from routing instances other than the default can access MIB objects and perform SNMP operations only on the logical system networks to which they belong.
- Clients from the default routing instance can access information related to all routing instances and logical system networks.

Before Junos OS Release 8.4, only the SNMP manager in the default routing instance (inet.0) had access to the MIB objects.

With the increase in virtual private network (VPN) service offerings, this feature is useful particularly for service providers who need to obtain SNMP data for specific routing instances (see Figure 2 on page 166). Service providers can use this information for their own management needs or export the data for use by their customers.
Figure 2: SNMP Data for Routing Instances

If no routing instance is specified in the request, the SNMP agent operates as before:

- For nonrouting table objects, all instances are exposed.
- For routing table objects, only those associated with the default routing instance are exposed.

NOTE: The actual protocol data units (PDUs) are still exchanged over the default (inet.0) routing instance, but the data contents returned are dictated by the routing instance specified in the request PDUs.

Related Documentation
- Support Classes for MIB Objects on page 176
- SNMP Traps Supported for Routing Instances on page 177
- Identifying a Routing Instance on page 178
- Enabling SNMP Access over Routing Instances on page 179
- Specifying a Routing Instance in an SNMPv1 or SNMPv2c Community on page 179
- Configuring Access Lists for SNMP Access over Routing Instances on page 182

SNMP MIBs Supported for Routing Instances

Supported Platforms
ACX Series, M Series, MX Series, PTX Series, T Series

Table 14 on page 166 shows enterprise-specific MIB objects supported by Junos OS and provides notes detailing how they are handled when a routing instance is specified in an SNMP request. An en dash (—) indicates that the item is not applicable.

Table 14: MIB Support for Routing Instances (Juniper Networks MIBs)

<table>
<thead>
<tr>
<th>Object</th>
<th>Support Class</th>
<th>Description/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>jnxProducts(1)</td>
<td>—</td>
<td>Product Object IDs</td>
</tr>
</tbody>
</table>
Table 14: MIB Support for Routing Instances (Juniper Networks MIBs) (continued)

<table>
<thead>
<tr>
<th>Object</th>
<th>Support Class</th>
<th>Description/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>jnxServices(2)</td>
<td>--</td>
<td>Services</td>
</tr>
<tr>
<td>jnxMibs(3)</td>
<td>Class 3</td>
<td>Objects are exposed only for the default logical system.</td>
</tr>
<tr>
<td>jnxBoxAnatomy(1)</td>
<td></td>
<td>All instances within a logical system are exposed. Data will not be segregated down to the routing instance level.</td>
</tr>
<tr>
<td>mpls(2)</td>
<td>Class 2</td>
<td>Only those logical interfaces (and their parent physical interfaces) that belong to a specific routing instance are exposed.</td>
</tr>
<tr>
<td>ifJnx(3)</td>
<td>Class 1</td>
<td>Only those logical interfaces (and their parent physical interfaces) that belong to a specific routing instance are exposed.</td>
</tr>
<tr>
<td>jnxAlarms(4)</td>
<td>Class 3</td>
<td>Objects are exposed only for the default logical system.</td>
</tr>
<tr>
<td>jnxFirewalls(5)</td>
<td>Class 4</td>
<td>Data is not segregated by routing instance. All instances are exposed.</td>
</tr>
<tr>
<td>jnxDCUs(6)</td>
<td>Class 1</td>
<td>Only those logical interfaces (and their parent physical interfaces) that belong to a specific routing instance are exposed.</td>
</tr>
<tr>
<td>jnxPingMIB(7)</td>
<td>Class 3</td>
<td>Objects are exposed only for the default logical system.</td>
</tr>
<tr>
<td>jnxTraceRouteMIB(8)</td>
<td>Class 3</td>
<td>Objects are exposed only for the default logical system.</td>
</tr>
<tr>
<td>jnxATM(10)</td>
<td>Class 1</td>
<td>Only those logical interfaces (and their parent physical interfaces) that belong to a specific routing instance are exposed.</td>
</tr>
<tr>
<td>jnxIpv6(11)</td>
<td>Class 4</td>
<td>Data is not segregated by routing instance. All instances are exposed.</td>
</tr>
<tr>
<td>jnxIpv4(12)</td>
<td>Class 1</td>
<td>jnxIpv4AddrTable(1). Only those logical interfaces (and their parent physical interfaces) that belong to a specific routing instance are exposed.</td>
</tr>
<tr>
<td>jnxRmon(13)</td>
<td>Class 3</td>
<td>jnxRmonAlarmTable(1). Objects are exposed only for the default logical system.</td>
</tr>
<tr>
<td>jnxLdp(14)</td>
<td>Class 2</td>
<td>jnxLdpTrapVars(1). All instances within a logical system are exposed. Data will not be segregated down to the routing instance level.</td>
</tr>
</tbody>
</table>
Table 14: MIB Support for Routing Instances (Juniper Networks MIBs) (continued)

<table>
<thead>
<tr>
<th>Object</th>
<th>Support Class</th>
<th>Description/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>jnxCos(15)</td>
<td>Class 3</td>
<td>Objects are exposed only for the default logical system.</td>
</tr>
<tr>
<td>jnxCosIfqStatsTable(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jnxCosFcTable(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jnxCosFcIdTable(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jnxCosQstatTable(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jnxScu(16)</td>
<td>Class 1</td>
<td>Only those logical interfaces (and their parent physical interfaces) that belong to</td>
</tr>
<tr>
<td>jnxScuStatsTable(1)</td>
<td></td>
<td>a specific routing instance are exposed.</td>
</tr>
<tr>
<td>jnxRpf(17)</td>
<td>Class 1</td>
<td>Only those logical interfaces (and their parent physical interfaces) that belong to</td>
</tr>
<tr>
<td>jnxRpfStatsTable(1)</td>
<td></td>
<td>a specific routing instance are exposed.</td>
</tr>
<tr>
<td>jnxCfgMgmt(18)</td>
<td>Class 3</td>
<td>Objects are exposed only for the default logical system.</td>
</tr>
<tr>
<td>jnxPMon(19)</td>
<td>Class 1</td>
<td>Only those logical interfaces (and their parent physical interfaces) that belong to</td>
</tr>
<tr>
<td>jnxPMonFlowTable(1)</td>
<td></td>
<td>a specific routing instance are exposed.</td>
</tr>
<tr>
<td>jnxPMonErrorTable(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jnxPMonMemoryTable(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jnxSonet(20)</td>
<td>Class 1</td>
<td>Only those logical interfaces (and their parent physical interfaces) that belong to</td>
</tr>
<tr>
<td>jnxSonetAlarmTable(1)</td>
<td></td>
<td>a specific routing instance are exposed.</td>
</tr>
<tr>
<td>jnxAtmCos(21)</td>
<td>Class 1</td>
<td>Only those logical interfaces (and their parent physical interfaces) that belong to</td>
</tr>
<tr>
<td>jnxCosAtmVcTable(1)</td>
<td></td>
<td>a specific routing instance are exposed.</td>
</tr>
<tr>
<td>jnxCosAtmScTable(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jnxCosAtmVcQstatsTable(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jnxCosAtmTrunkTable(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ipSecFlowMonitorMIB(22)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>jnxMac(23)</td>
<td>Class 1</td>
<td>Only those logical interfaces (and their parent physical interfaces) that belong to</td>
</tr>
<tr>
<td>jnxMacStats(1)</td>
<td></td>
<td>a specific routing instance are exposed.</td>
</tr>
<tr>
<td>apsMIB(24)</td>
<td>Class 3</td>
<td>Objects are exposed only for the default logical system.</td>
</tr>
<tr>
<td>jnxChassisDefines(25)</td>
<td>Class 3</td>
<td>Objects are exposed only for the default logical system.</td>
</tr>
</tbody>
</table>
Table 14: MIB Support for Routing Instances (Juniper Networks MIBs) (continued)

<table>
<thead>
<tr>
<th>Object</th>
<th>Support Class</th>
<th>Description/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>jnxVpnMIB(26)</td>
<td>Class 2</td>
<td>All instances within a logical system are exposed. Data will not be segregated down to the routing instance level.</td>
</tr>
<tr>
<td>jnxSericesInfoMib(27)</td>
<td>Class 1</td>
<td>Only those logical interfaces (and their parent physical interfaces) that belong to a specific routing instance are exposed.</td>
</tr>
<tr>
<td>jnxCollectorMIB(28)</td>
<td>Class 1</td>
<td>Only those logical interfaces (and their parent physical interfaces) that belong to a specific routing instance are exposed.</td>
</tr>
<tr>
<td>jnxHistory(29)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>jnxSpMIB(32)</td>
<td>Class 3</td>
<td>Objects are exposed only for the default logical system.</td>
</tr>
</tbody>
</table>

Table 15 on page 170 shows Class 1 MIB objects (standard and enterprise-specific MIBs) supported by Junos OS. With Class 1 objects, only those logical interfaces (and their parent physical interfaces) that belong to a specific routing instance are exposed.
Table 15: Class 1 MIB Objects (Standard and Juniper MIBs)

<table>
<thead>
<tr>
<th>Class</th>
<th>MIB</th>
<th>Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1</td>
<td>802.3ad.mib</td>
<td>(dot3adAgg) MIB objects:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dot3adAggTable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dot3adAggPortListTable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(dot3adAggPort)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dot3adAggPortTable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dot3adAggPortStatsTable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dot3adAggPortDebugTable</td>
</tr>
<tr>
<td></td>
<td>rfc2863a.mib</td>
<td>ifTable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ifXTable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ifStackTable</td>
</tr>
<tr>
<td></td>
<td>rfc2011a.mib</td>
<td>ipAddrTable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipNetToMediaTable</td>
</tr>
<tr>
<td></td>
<td>rtmib.mib</td>
<td>ipForward (ipCidrRouteTable)</td>
</tr>
<tr>
<td></td>
<td>rfc2665a.mib</td>
<td>dot3StatsTable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dot3ControlTable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dot3PauseTable</td>
</tr>
<tr>
<td></td>
<td>rfc2495a.mib</td>
<td>dsx1ConfigTable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dsx1CurrentTable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dsx1IntervalTable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dsx1TotalTable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dsx1FarEndCurrentTable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dsx1FarEndIntervalTable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dsx1FarEndTotalTable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dsx1FracTable ...</td>
</tr>
<tr>
<td></td>
<td>rfc2496a.mib</td>
<td>dsx3 (dsx3ConfigTable)</td>
</tr>
<tr>
<td></td>
<td>rfc2115a.mib</td>
<td>frDlcmiTable (and related MIB objects)</td>
</tr>
<tr>
<td></td>
<td>rfc3592.mib</td>
<td>sonetMediumTable (and related MIB objects)</td>
</tr>
<tr>
<td>Class</td>
<td>MIB</td>
<td>Objects</td>
</tr>
<tr>
<td>----------------</td>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>rfc3020.mib</td>
<td>mfrMIB</td>
<td>mfrBundleTable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mfrMibBundleLinkObjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mfrBundleIfIndexMappingTable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(and related MIB objects)</td>
</tr>
<tr>
<td>ospf2mib.mib</td>
<td>All objects</td>
<td></td>
</tr>
<tr>
<td>ospf2trap.mib</td>
<td>All objects</td>
<td></td>
</tr>
<tr>
<td>bgpmib.mib</td>
<td>All objects</td>
<td></td>
</tr>
<tr>
<td>rfc2819a.mib</td>
<td>Example: etherStatsTable</td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>MIB</td>
<td>Objects</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>Class 1</td>
<td>rfc2863a.mib</td>
<td>Examples: ifXtable, ifStackTable</td>
</tr>
<tr>
<td></td>
<td>rfc2665a.mib</td>
<td>etherMIB</td>
</tr>
<tr>
<td></td>
<td>rfc2515a.mib</td>
<td>atmMIB objects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Examples: atmInterfaceConfTable, atmVplTable, atmVclTable</td>
</tr>
<tr>
<td></td>
<td>rfc2465.mib</td>
<td>ip-v6mib</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Examples: ipv6IfTable, ipv6AddrPrefixTable, ipv6NetToMediaTable, ipv6RouteTable</td>
</tr>
<tr>
<td></td>
<td>rfc2787a.mib</td>
<td>vrrp mib</td>
</tr>
<tr>
<td></td>
<td>rfc2932.mib</td>
<td>ipMRoutingMIB, ipMRoutingStdMIB</td>
</tr>
<tr>
<td></td>
<td>mrouter.mib</td>
<td>ipMRoutingMIBObjects</td>
</tr>
<tr>
<td></td>
<td>isismib.mib</td>
<td>IsisMIB</td>
</tr>
<tr>
<td></td>
<td>pimmib.mib</td>
<td>pimMIB</td>
</tr>
<tr>
<td></td>
<td>msdpmib.mib</td>
<td>msdpmib</td>
</tr>
<tr>
<td></td>
<td>jnx-if-extensions.mib</td>
<td>Examples: ifJnxTable, ifChassisTable</td>
</tr>
<tr>
<td></td>
<td>jnx-dcu.mib</td>
<td>jnxDCUs</td>
</tr>
<tr>
<td></td>
<td>jnx-atm.mib</td>
<td></td>
</tr>
</tbody>
</table>
Table 15: Class 1 MIB Objects (Standard and Juniper MIBs) (continued)

<table>
<thead>
<tr>
<th>Class</th>
<th>MIB</th>
<th>Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Examples:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>jnxAtmIfTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>jnxAtmVCTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>jnxAtmVpTable</td>
<td></td>
</tr>
<tr>
<td>jnx-ipv4.mib</td>
<td>jnxipv4</td>
<td>Example: jnxipv4AddrTable</td>
</tr>
<tr>
<td>jnx-cos.mib</td>
<td>Examples:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>jnxCosIfqStatsTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>jnxCosQstatTable</td>
<td></td>
</tr>
<tr>
<td>jnx-scu.mib</td>
<td>Example: jnxScuStatsTable</td>
<td></td>
</tr>
<tr>
<td>jnx-rpf.mib</td>
<td>Example: jnxRpfStatsTable</td>
<td></td>
</tr>
<tr>
<td>jnx-pmon.mib</td>
<td>Example: jnxPMonFlowTable</td>
<td></td>
</tr>
<tr>
<td>jnx-sonet.mib</td>
<td>Example: jnxSonetAlarmTable</td>
<td></td>
</tr>
<tr>
<td>jnx-atm-cos.mib</td>
<td>Examples:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>jnxCosAtmVcTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>jnxCosAtmVcScTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>jnxCosAtmVcQstatsTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>jnxCosAtmTrunkTable</td>
<td></td>
</tr>
<tr>
<td>jnx-mac.mib</td>
<td>Example: jnxMacStatsTable</td>
<td></td>
</tr>
<tr>
<td>jnx-services.mib</td>
<td>Example: jnxSvcFlowTableAggStatsTable</td>
<td></td>
</tr>
<tr>
<td>jnx-coll.mib</td>
<td>jnxCollectorMIB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Examples:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>jnxCollPicIfTable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>jnxCollFileEntry</td>
<td></td>
</tr>
</tbody>
</table>

Table 16 on page 174 shows Class 2 MIB objects (standard and enterprise-specific MIBs) supported by Junos OS. With Class 2 objects, all instances within a logical system are exposed. Data will not be segregated down to the routing instance level.
Table 16: Class 2 MIB Objects (Standard and Juniper MIBs)

<table>
<thead>
<tr>
<th>Class</th>
<th>MIB</th>
<th>Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 2</td>
<td>rfc3813.mib</td>
<td>mplsLsrStdMIB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Examples:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mplsInterfaceTable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mplsInSegmentTable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mplsOutSegmentTable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mplsLabelStackTable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mplsXCTable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(and related MIB objects)</td>
</tr>
<tr>
<td>igmpmib.mib</td>
<td>igmpStdMIB</td>
<td>NOTE: The igmpmib.mib is the draft version of the IGMP Standard MIB in the experimental tree. Junos OS does not support the original IGMP Standard MIB.</td>
</tr>
<tr>
<td>l3vpnmib.mib</td>
<td>mplsVpnmib</td>
<td></td>
</tr>
<tr>
<td>jnx-mpls.mib</td>
<td>Example: mplsLspList</td>
<td></td>
</tr>
<tr>
<td>jnx-ldp.mib</td>
<td>jnxLdp</td>
<td>Example: jnxLdpStatsTable</td>
</tr>
<tr>
<td>jnx-vpn.mib</td>
<td>jnxVpnMIB</td>
<td></td>
</tr>
<tr>
<td>jnx-bgpmb2.mib</td>
<td>jnxBgpM2Experiment</td>
<td></td>
</tr>
</tbody>
</table>

Table 17 on page 175 shows Class 3 MIB objects (standard and enterprise-specific MIBs) supported by Junos OS. With Class 3, objects are exposed only for the default logical system.
Table 17: Class 3 MIB Objects (Standard and Juniper MIBs)

<table>
<thead>
<tr>
<th>Class</th>
<th>MIB</th>
<th>Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 3</td>
<td>rfc2819a.mib</td>
<td>rmonEvents</td>
</tr>
<tr>
<td></td>
<td></td>
<td>alarmTable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>logTable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>eventTable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>agentxMIB</td>
</tr>
<tr>
<td></td>
<td>rfc2925a.mib</td>
<td>pingmib</td>
</tr>
<tr>
<td></td>
<td>rfc2925b.mib</td>
<td>tracerouteMIB</td>
</tr>
<tr>
<td></td>
<td>jnx-chassis.mib</td>
<td>jnxBoxAnatomy</td>
</tr>
<tr>
<td></td>
<td>jnx-chassis-alarm.mib</td>
<td>jnxAlarms</td>
</tr>
<tr>
<td></td>
<td>jnx-ping.mib</td>
<td>jnxPingMIB</td>
</tr>
<tr>
<td></td>
<td>jnx-traceroute.mib</td>
<td>jnxTraceRouteMIB</td>
</tr>
<tr>
<td></td>
<td>jnx-rmon.mib</td>
<td>jnxRmonAlarmTable</td>
</tr>
<tr>
<td></td>
<td>jnx-cos.mib</td>
<td>Example: jnxCosFcTable</td>
</tr>
<tr>
<td></td>
<td>jnx-cfgmgmt.mib</td>
<td>Example: jnxCfgMgmt</td>
</tr>
<tr>
<td></td>
<td>jnx-sonetaps.mib</td>
<td>apsMIBObjects</td>
</tr>
<tr>
<td></td>
<td>jnx-sp.mib</td>
<td>jnxSpMIB</td>
</tr>
<tr>
<td></td>
<td>ggsn.mib</td>
<td>ejnmobileipABmib</td>
</tr>
<tr>
<td></td>
<td>rfc1907.mib</td>
<td>snmpModules</td>
</tr>
<tr>
<td></td>
<td>snmpModules</td>
<td>Examples:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>snmpMIB snmpFrameworkMIB</td>
</tr>
</tbody>
</table>

Table 18 on page 176 shows Class 4 MIB objects (standard and enterprise-specific MIBs) supported by Junos OS. With Class 4 objects, data is not segregated by routing instance. All instances are exposed.
Table 18: Class 4 MIB Objects (Standard and Juniper MIBs)

<table>
<thead>
<tr>
<th>Class 4</th>
<th>MIB</th>
<th>Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>system</td>
<td>Example: sysORTable</td>
<td></td>
</tr>
<tr>
<td>rfc2011a.mib</td>
<td>ip (ipDefaultTTL, ipInReceives)</td>
<td>icmp</td>
</tr>
<tr>
<td>rfc2012a.mib</td>
<td>tcp</td>
<td>tcpConnTable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipv6TcpConnTable</td>
</tr>
<tr>
<td>rfc2013a.mib</td>
<td>udp</td>
<td>udpTable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipv6UdpTable</td>
</tr>
<tr>
<td>rfc2790a.mib</td>
<td>hrSystem</td>
<td></td>
</tr>
<tr>
<td>rfc2287a.mib</td>
<td>sysApplOBJ</td>
<td></td>
</tr>
<tr>
<td>jnx-firewall.mib</td>
<td>jnxFirewalls</td>
<td></td>
</tr>
<tr>
<td>jnx-ipv6.mib</td>
<td>jnxipv6</td>
<td></td>
</tr>
</tbody>
</table>

Related Documentation
- Understanding SNMP Support for Routing Instances on page 165
- Support Classes for MIB Objects on page 176
- SNMP Traps Supported for Routing Instances on page 177

Support Classes for MIB Objects

Supported Platforms
ACX Series, M Series, MX Series, PTX Series, T Series

When a routing instance is specified, all routing-related MIB objects return data maintained by the routing instance in the request. For all other MIB objects, the data returned is segregated according to that routing instance. For example, only those interfaces assigned to that routing instance (for example, the logical interfaces [ifls] as well as their corresponding physical interfaces [ifds]) are exposed by the SNMP agent. Similarly, objects with an unambiguous attachment to an interface (for example, addresses) are segregated as well.

For those objects where the attachment is ambiguous (for example, objects in sysApplMIB), no segregation is done and all instances are visible in all cases.
Another category of objects is visible only when no logical system is specified (only within the default logical system) regardless of the routing instance within the default logical system. Objects in this category are Chassis MIB objects, objects in the SNMP group, RMON alarm, event and log groups, Ping MIB objects, configuration management objects, and V3 objects.

In summary, to support routing instances, MIB objects fall into one of the following categories:

- **Class 1**—Data is segregated according to the routing instance in the request. This is the most granular of the segregation classes.

- **Class 2**—Data is segregated according to the logical system specified in the request. The same data is returned for all routing instances that belong to a particular logical system. Typically, this applies to routing table objects where it is difficult to extract routing instance information or where routing instances do not apply.

- **Class 3**—Data is exposed only for the default logical system. The same set of data is returned for all routing instances that belong to the default logical system. If you specify another logical system (not the default), no data is returned. Typically, this class applies to objects implemented in subagents that do not monitor logical system changes and register their objects using only the default context (for example, Chassis MIB objects).

- **Class 4**—Data is not segregated by routing instance. The same data is returned for all routing instances. Typically, this applies to objects implemented in subagents that monitor logical system changes and register or deregister all their objects for each logical system change. Objects whose values cannot be segregated by routing instance fall into this class.

See “SNMP MIBs Supported for Routing Instances” on page 166 for a list of the objects associated with each class.

Related Documentation
- Understanding SNMP Support for Routing Instances on page 165
- SNMP Traps Supported for Routing Instances on page 177

SNMP Traps Supported for Routing Instances

Supported Platforms
- M Series, MX Series, PTX Series, T Series

You can restrict the trap receivers from receiving traps that are not related to the logical system networks to which they belong. To do this, include the `logical-system-trap-filter` statement at the `[edit snmp]` hierarchy level:

```
[edit snmp]
logical-system-trap-filter;
```

If the `logical-system-trap-filter` statement is not included in the SNMP configuration, all traps are forwarded to the configured routing instance destinations. However, even when this statement is configured, the trap receiver associated with the default routing instance will receive all SNMP traps.
When configured under the trap-group object, all v1 and v2c traps that apply to routing instances (or interfaces belonging to a routing instance) have the routing instance name encoded in the community string. The encoding is identical to that used in request PDUs.

For traps configured under the v3 framework, the routing instance name is carried in the context field when the v3 message processing model has been configured. For other message processing models (v1 or v2c), the routing instance name is not carried in the trap message header (and not encoded in the community string).

Related Documentation

- Understanding SNMP Support for Routing Instances on page 165
- Support Classes for MIB Objects on page 176
- SNMP MIBs Supported for Routing Instances on page 166

Identifying a Routing Instance

Supported Platforms

ACX Series, M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

With this feature, routing instances are identified by either the context field in v3 requests or encoded in the community string in v1 or v2c requests.

When encoded in a community string, the routing instance name appears first and is separated from the actual community string by the `@` character.

To avoid conflicts with valid community strings that contain the `@` character, the community is parsed only if typical community string processing fails. For example, if a routing instance named RI is configured, an SNMP request with RI@public is processed within the context of the RI routing instance. Access control (views, source address restrictions, access privileges, and so on) is applied according to the actual community string (the set of data after the `@` character—in this case public). However, if the community string RI@public is configured, the protocol data unit (PDU) is processed according to that community and the embedded routing instance name is ignored.

Logical systems perform a subset of the actions of a physical router and have their own unique routing tables, interfaces, policies, and routing instances. When a routing instance is defined within a logical system, the logical system name must be encoded along with the routing instance using a slash (`/`) to separate the two. For example, if the routing instance RI is configured within the logical system LS, that routing instance must be encoded within a community string as LS/RI@public. When a routing instance is configured outside a logical system (within the default logical system), no logical system name (or `/` character) is needed.

Also, when a logical system is created, a default routing instance (named default) is always created within the logical system. This name should be used when querying data for that routing instance (for example, LS/default@public). For v3 requests, the name **logical system/routing instance** should be identified directly in the context field.
NOTE: To identify a virtual LAN (VLAN) spanning-tree instance (VSTP on MX Series 3D Universal Edge Routers), specify the routing instance name followed by a double colon (::) and the VLAN ID. For example, to identify VSTP instance for VLAN 10 in the global default routing instance, include default::10@public in the context (SNMPv3) or community (SNMPv1 or v2) string.

Related Documentation
- Understanding SNMP Support for Routing Instances on page 165
- Enabling SNMP Access over Routing Instances on page 179
- Specifying a Routing Instance in an SNMPv1 or SNMPv2c Community on page 179

Enabling SNMP Access over Routing Instances

Supported Platforms ACX Series, M Series, MX Series, PTX Series, T Series

To enable SNMP managers in routing instances other than the default routing instance to access SNMP information, include the `routing-instance-access` statement at the `[edit snmp]` hierarchy level:

```
[edit snmp]
routing-instance-access;
```

If this statement is not included in the SNMP configuration, SNMP managers from routing instances other than the default routing instance cannot access SNMP information.

Related Documentation
- Understanding SNMP Support for Routing Instances on page 165
- Identifying a Routing Instance on page 178
- Specifying a Routing Instance in an SNMPv1 or SNMPv2c Community on page 179
- Configuring Access Lists for SNMP Access over Routing Instances on page 182

Specifying a Routing Instance in an SNMPv1 or SNMPv2c Community

Supported Platforms ACX Series, M Series, MX Series, PTX Series, T Series

You can specify the routing instance along with the client information when you add a client to an SNMP community. To specify the routing instance to which a client belongs, include the `routing-instance` statement followed by the routing instance name and client information in the SNMP configuration.

The following example shows the configuration statement to add routing instance test-ri to SNMP community community1.
NOTE: Routing instances specified at the [edit snmp community community-name] hierarchy level are added to the default logical system in the community.

```
[edit snmp]
community community1 {
  clients {
    10.209.152.33/32;
  }
  routing-instance test-ri {
    clients {
      10.19.19.1/32;
    }
  }
}
```

If the routing instance is defined within a logical system, include the `routing-instance` statement at the [edit snmp community community-name logical-system logical-system-name] hierarchy level, as in the following example:

```
[edit snmp]
community community1 {
  clients {
    10.209.152.33/32;
  }
  logical-system test-LS {
    routing-instance test-ri {
      clients {
        10.19.19.1/32;
      }
    }
  }
}
```

Related Documentation

- Understanding SNMP Support for Routing Instances on page 165
- Identifying a Routing Instance on page 178
- Enabling SNMP Access over Routing Instances on page 179
- Configuring Access Lists for SNMP Access over Routing Instances on page 182
- Example: Configuring Interface Settings for a Routing Instance on page 180

Example: Configuring Interface Settings for a Routing Instance

Supported Platforms ACX Series, M Series, MX Series, PTX Series, T Series

This example shows an 802.3ad ae0 interface configuration allocated to a routing instance named INFrtd:

```
[edit chassis]
aggregated-devices {
  ethernet {
```
device-count 5;
}
}
[edit interfaces ae0]
vlan-tagging;
aggregated-ether-options {
 minimum-links 2;
 link-speed 100m;
}
unit 0 {
 vlan-id 100;
 family inet {
 address 10.1.0.1/24;
 }
}
[edit interfaces fe-1/1/0]
fastether-options {
 802.3ad ae0;
}
[edit interfaces fe-1/1/1]
fastether-options {
 802.3ad ae0;
}
[edit routing-instances]
INFrtd {
 instance-type virtual-router;
 interface fe-1/1/0.0;
 interface fe-1/1/1.0;
 interface fe-1/1/5.0;
 interface ae0.0;
 protocols {
 ospf {
 area 0.0.0.0 {
 interface all;
 }
 }
 }
}
}

The following `snmpwalk` command shows how to retrieve SNMP-related information from `router1` and the 802.3ae bundle interface belonging to routing instance `INFrtd` with the SNMP community `public`:

```
router# snmpwalk -Os router1 INFrtd@public dot3adAggTable
dot3adAggMACAddress.59 = 0:90:69:92:93:f0
dot3adAggMACAddress.65 = 0:90:69:92:93:f0
dot3adAggActorSystemPriority.59 = 0

dot3adAggActorSystemPriority.65 = 0
dot3adAggActorSystemID.59 = 0:0:0:0:0:0

dot3adAggActorSystemID.65 = 0:0:0:0:0:0

dot3adAggAggregateOrIndividual.59 = true(1)
dot3adAggAggregateOrIndividual.65 = true(1)
dot3adAggActorAdminKey.59 = 0
dot3adAggActorAdminKey.65 = 0
dot3adAggActorOperKey.59 = 0
dot3adAggActorOperKey.65 = 0
```
Configuring Access Lists for SNMP Access over Routing Instances

Supported Platforms
ACX Series, M Series, MX Series, PTX Series, T Series

You can create and maintain access lists to manage access to SNMP information. Access list configuration enables you to allow or deny SNMP access to clients of a specific routing instance.

The following example shows how to create an access list:

```
[edit snmp]
routing-instance-access {
    access-list {
        ri1 restrict;
        ls1/default;
        ls1/ri2;
        ls1*;
    }
}
```

The configuration given in the example:

- Restricts clients in ri1 from accessing SNMP information.
- Allows clients in ls1/default, ls1/ri2, and all other routing instances with names starting with ls1 to access SNMP information.

You can use the wildcard character (*) to represent a string in the routing instance name.

NOTE: You cannot restrict the SNMP manager of the default routing instance from accessing SNMP information.
SNMP Remote Operations Overview

Supported Platforms
ACX Series, M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

A SNMP remote operation is any process on the router that can be controlled remotely using SNMP. Junos OS currently provides support for two SNMP remote operations: the Ping MIB and Traceroute MIB, defined in RFC 2925. Using these MIBs, an SNMP client in the network management system (NMS) can:

- Start a series of operations on a router
- Receive notification when the operations are complete
- Gather the results of each operation

Junos OS also provides extended functionality to these MIBs in the Juniper Networks enterprise-specific extensions jnxPingMIB and jnxTraceRouteMIB. For more information about jnxPingMIB and jnxTraceRouteMIB, see PING MIB and Traceroute MIB.
This topic covers the following sections:

- **SNMP Remote Operation Requirements** on page 184
- **Setting SNMP Views** on page 184
- **Setting Trap Notification for Remote Operations** on page 185
- **Using Variable-Length String Indexes** on page 185
- **Enabling Logging** on page 186

SNMP Remote Operation Requirements

To use SNMP remote operations, you should be experienced with SNMP conventions. You must also configure Junos OS to allow the use of the remote operation MIBs.

Setting SNMP Views

All remote operation MIBs supported by Junos OS require that the SNMP clients have read-write privileges. The default SNMP configuration of Junos OS does not provide clients with a community string with such privileges.

To set read-write privileges for an SNMP community string, include the following statements at the `[edit snmp]` hierarchy level:

```plaintext
[edit snmp]
community community-name {
    authorization authorization;
    view view-name;
}
view view-name {
    oid object-identifier (include | exclude);
}
```

Example: Setting SNMP Views

To create a community named `remote-community` that grants SNMP clients read-write access to the Ping MIB, `jnXPing` MIB, Traceroute MIB, and `jnXTraceRoute` MIB, include the following statements at the `[edit snmp]` hierarchy level:

```plaintext
snmp {
    view remote-view {
        oid 1.3.6.1.2.1.80 include; # pingMIB
        oid 1.3.6.1.4.1.2636.3.7 include; # jnPingMIB
        oid 1.3.6.1.2.1.81 include; # traceRouteMIB
        oid 1.3.6.1.4.1.2636.3.8 include; # jnXTraceRouteMIB
    }
    community remote-community {
        view remote-view;
        authorization read-write;
    }
}
```

For more information about the `community` statement, see “Configuring SNMP Communities” on page 103 and `community (SNMP)`.
For more information about the view statement, see “Configuring MIB Views” on page 121, view (Associating a MIB View with a Community), and view (Configuring a MIB View).

Setting Trap Notification for Remote Operations

In addition to configuring the remote operations MIB for trap notification, you must also configure Junos OS. You must specify a target host for remote operations traps.

To configure trap notification for SNMP remote operations, include the categories and targets statements at the [edit snmp trap-group group-name] hierarchy level:

```junos
[edit snmp trap-group group-name]
categories {
category;
}
targets {
address;
}
```

Example: Setting Trap Notification for Remote Operations

Specify 172.17.12.213 as a target host for all remote operation traps:

```junos
snmp {
 trap-group remote-traps {
categories remote-operations;
targets {
 172.17.12.213;
}
}
}
```

For more information about trap groups, see “Configuring SNMP Trap Groups” on page 116.

Using Variable-Length String Indexes

All tabular objects in the remote operations MIBs supported by Junos OS are indexed by two variables of type SnmpAdminString. For more information about SnmpAdminString, see RFC 2571.

Junos OS does not handle SnmpAdminString any differently from the octet string variable type. However, the indexes are defined as variable length. When a variable length string is used as an index, the length of the string must be included as part of the object identifier (OID).

Example: Set Variable-Length String Indexes

To reference the pingCtlTargetAddress variable of a row in pingCtlTable where pingCtlOwnerIndex is bob and pingCtlTestName is test, use the following object identifier (OID):

```
pingMIB.pingObjects.pingCtlTable.pingCtlEntry.pingCtlTargetAddress."bob"."test"
1.3.6.1.2.1.80.1.2.1.4.3.98.111.98.4.116.101.115.116
```
For more information about the definition of the Ping MIB, see RFC 2925.

Enabling Logging

The SNMP error code returned in response to SNMP requests can only provide a generic description of the problem. The error descriptions logged by the remote operations process can often provide more detailed information about the problem and help you to solve the problem faster. This logging is not enabled by default. To enable logging, include the `flag general` statement at the `[edit snmp traceoptions]` hierarchy level:

```
[edit]
snmp {
  traceoptions {
    flag general;
  }
}
```

For more information about traceoptions, see “Tracing SNMP Activity on a Device Running Junos OS” on page 209.

If the remote operations process receives an SNMP request that it cannot accommodate, the error is logged in the `/var/log/rmopd` file. To monitor this log file, issue the `monitor start rmopd` command in operational mode of the command-line interface (CLI).

Related Documentation

- Using the Ping MIB for Remote Monitoring Devices Running Junos OS on page 186
- Using the Traceroute MIB for Remote Monitoring Devices Running Junos OS on page 193

Using the Ping MIB for Remote Monitoring Devices Running Junos OS

Supported Platforms

M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

A ping test is used to determine whether packets sent from the local host reach the designated host and are returned. If the designated host can be reached, the ping test provides the approximate round-trip time for the packets. Ping test results are stored in `pingResultsTable` and `pingProbeHistoryTable`.

RFC 2925 is the authoritative description of the Ping MIB in detail and provides the ASN.1 MIB definition of the Ping MIB.

Related Documentation

- SNMP Remote Operations Overview on page 183
- Starting a Ping Test on page 187
- Monitoring a Running Ping Test on page 188
- Gathering Ping Test Results on page 191
- Stopping a Ping Test on page 192
- Interpreting Ping Variables on page 192
Starting a Ping Test

Supported Platforms
ACX Series, M Series, MX Series, PTX Series, T Series

Before you start a ping test, configure a Ping MIB view. This allows SNMP Set requests on pingMIB. To start a ping test, create a row in pingCtlTable and set pingCtlAdminStatus to enabled. The minimum information that must be specified before setting pingCtlAdminStatus to enabled is:

- pingCtlOwnerIndexSnmpAdminString
- pingCtlTestNameSnmpAdminString
- pingCtlTargetAddressInetAddress
- pingCtlTargetAddressTypeInetAddressType
- pingCtlRowStatusRowStatus

For all other values, defaults are chosen unless otherwise specified. pingCtlOwnerIndex and pingCtlTestName are used as the index, so their values are specified as part of the object identifier (OID). To create a row, set pingCtlRowStatus to createAndWait or createAndGo on a row that does not already exist. A value of active for pingCtlRowStatus indicates that all necessary information has been supplied and the test can begin; pingCtlAdminStatus can be set to enabled. An SNMP Set request that sets pingCtlRowStatus to active will fail if the necessary information in the row is not specified or is inconsistent. For information about how to configure a view, see “Setting SNMP Views” on page 184.

There are two ways to start a ping test:

- Using Multiple Set Protocol Data Units (PDUs) on page 187
- Using a Single Set PDU on page 187

Using Multiple Set Protocol Data Units (PDUs)

You can use multiple Set request PDUs (multiple PDUs, with one or more varbinds each) and set the following variables in this order to start the test:

- pingCtlRowStatus to createAndWait
- All appropriate test variables
- pingCtlRowStatus to active

Junos OS now verifies that all necessary information to run a test has been specified.

- pingCtlAdminStatus to enabled

Using a Single Set PDU

You can use a single Set request PDU (one PDU, with multiple varbinds) to set the following variables to start the test:
- pingCtlRowStatus to createAndGo
- All appropriate test variables
- pingCtlAdminStatus to enabled

Monitoring a Running Ping Test

When pingCtlAdminStatus is successfully set to enabled, the following is done before the acknowledgment of the SNMP Set request is sent back to the client:

- pingResultsEntry is created if it does not already exist.
- pingResultsOperStatus transitions to enabled.

For more information, see the following sections:

- pingResultsTable on page 188
- pingProbeHistoryTable on page 189
- Generating Traps on page 190

pingResultsTable

While the test is running, pingResultsEntry keeps track of the status of the test. The value of pingResultsOperStatus is enabled while the test is running and disabled when it has stopped.

The value of pingCtlAdminStatus remains enabled until you set it to disabled. Thus, to get the status of the test, you must examine pingResultsOperStatus.

The pingCtlFrequency variable can be used to schedule many tests for one pingCtlEntry. After a test ends normally (you did not stop the test) and the pingCtlFrequency number of seconds has elapsed, the test is started again just as if you had set pingCtlAdminStatus to enabled. If you intervene at any time between repeated tests (you set pingCtlAdminStatus to disabled or pingCtlRowStatus to notInService), the repeat feature is disabled until another test is started and ends normally. A value of 0 for pingCtlFrequency indicates this repeat feature is not active.

pingResultsIpTgtAddr and pingResultsIpTgtAddrType are set to the value of the resolved destination address when the value of pingCtlTargetAddressType is dns. When a test starts successfully and pingResultsOperStatus transitions to enabled:

- pingResultsIpTgtAddr is set to null-string.
- pingResultsIpTgtAddrType is set to unknown.

pingResultsIpTgtAddr and pingResultsIpTgtAddrType are not set until pingCtlTargetAddress can be resolved to a numeric address. To retrieve these values, poll pingResultsIpTgtAddrType for any value other than unknown after successfully setting pingCtlAdminStatus to enabled.

At the start of a test, pingResultsSentProbes is initialized to 1 and the first probe is sent. pingResultsSentProbes increases by 1 each time a probe is sent.
As the test runs, every pingCtlTimeOut seconds, the following occur:

- pingProbeHistoryStatus for the corresponding pingProbeHistoryEntry in pingProbeHistoryTable is set to requestTimedOut.
- A pingProbeFailed trap is generated, if necessary.
- An attempt is made to send the next probe.

NOTE: No more than one outstanding probe exists for each test.

For every probe, you can receive one of the following results:

- The target host acknowledges the probe with a response.
- The probe times out; there is no response from the target host acknowledging the probe.
- The probe could not be sent.

Each probe result is recorded in pingProbeHistoryTable. For more information about pingProbeHistoryTable, see “pingProbeHistoryTable” on page 189.

When a response is received from the target host acknowledging the current probe:

- pingResultsProbeResponses increases by 1.
- The following variables are updated:
 - pingResultsMinRtt—Minimum round-trip time
 - pingResultsMaxRtt—Maximum round-trip time
 - pingResultsAverageRtt—Average round-trip time
 - pingResultsRttSumOfSquares—Sum of squares of round-trip times
 - pingResultsLastGoodProbe—Timestamp of the last response

NOTE: Only probes that result in a response from the target host contribute to the calculation of the round-trip time (RTT) variables.

When a response to the last probe is received or the last probe has timed out, the test is complete.

pingProbeHistoryTable

An entry in pingProbeHistoryTable (pingProbeHistoryEntry) represents a probe result and is indexed by three variables:

- The first two variables, pingCtlOwnerIndex and pingCtlTestName, are the same ones used for pingCtlTable, which identifies the test.
• The third variable, pingProbeHistoryIndex, is a counter to uniquely identify each probe result.

The maximum number of pingProbeHistoryTable entries created for a given test is limited by pingCtlMaxRows. If pingCtlMaxRows is set to 0, no pingProbeHistoryTable entries are created for that test.

Each time a probe result is determined, a pingProbeHistoryEntry is created and added to pingProbeHistoryTable. pingProbeHistoryIndex of the new pingProbeHistoryEntry is 1 greater than the last pingProbeHistoryEntry added to pingProbeHistoryTable for that test. pingProbeHistoryIndex is set to 1 if this is the first entry in the table. The same test can be run multiple times, so this index keeps growing.

If pingProbeHistoryIndex of the last pingProbeHistoryEntry added is 0xFFFFFFFF, the next pingProbeHistoryEntry added has pingProbeHistoryIndex set to 1.

The following are recorded for each probe result:

• pingProbeHistoryResponse—Time to live (TTL)
• pingProbeHistoryStatus—What happened and why
• pingProbeHistoryLastRC—Return code (RC) value of ICMP packet
• pingProbeHistoryTime—Timestamp when probe result was determined

When a probe cannot be sent, pingProbeHistoryResponse is set to 0. When a probe times out, pingProbeHistoryResponse is set to the difference between the time when the probe was discovered to be timed out and the time when the probe was sent.

Generating Traps

For any trap to be generated, the appropriate bit of pingCtlTrapGeneration must be set. You must also configure a trap group to receive remote operations. A trap is generated under the following conditions:

• A pingProbeFailed trap is generated every time pingCtlTrapProbeFailureFilter number of consecutive probes fail during the test.
• A pingTestFailed trap is generated when the test completes and at least pingCtlTrapTestFailureFilter number of probes fail.
• A pingTestCompleted trap is generated when the test completes and fewer than pingCtlTrapTestFailureFilter probes fail.

NOTE: A probe is considered a failure when pingProbeHistoryStatus of the probe result is anything besides responseReceived.

For information about how to configure a trap group to receive remote operations, see “Configuring SNMP Trap Groups” on page 116 and “Example: Setting Trap Notification for Remote Operations” on page 185.
Gathering Ping Test Results

Supported Platforms
ACX Series, M Series, MX Series, PTX Series, T Series

You can either poll `pingResultsOperStatus` to find out when the test is complete or request that a trap be sent when the test is complete. For more information about `pingResultsOperStatus`, see “pingResultsTable” on page 188. For more information about Ping MIB traps, see “Generating Traps” on page 190.

The statistics calculated and then stored in `pingResultsTable` include:

- `pingResultsMinRtt`—Minimum round-trip time
- `pingResultsMaxRtt`—Maximum round-trip time
- `pingResultsAverageRtt`—Average round-trip time
- `pingResultsProbeResponses`—Number of responses received
- `pingResultsSentProbes`—Number of attempts to send probes
- `pingResultsRttSumOfSquares`—Sum of squares of round-trip times
- `pingResultsLastGoodProbe`—Timestamp of the last response

You can also consult `pingProbeHistoryTable` for more detailed information about each probe. The index used for `pingProbeHistoryTable` starts at 1, goes to 0xFFFFFFFF, and wraps to 1 again.

For example, if `pingCtlProbeCount` is 15 and `pingCtlMaxRows` is 5, then upon completion of the first run of this test, `pingProbeHistoryTable` contains probes like those in Table 19 on page 191.

Table 19: Results in pingProbeHistoryTable: After the First Ping Test

<table>
<thead>
<tr>
<th>pingProbeHistoryIndex</th>
<th>Probe Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Result of 11th probe from run 1</td>
</tr>
<tr>
<td>12</td>
<td>Result of 12th probe from run 1</td>
</tr>
<tr>
<td>13</td>
<td>Result of 13th probe from run 1</td>
</tr>
<tr>
<td>14</td>
<td>Result of 14th probe from run 1</td>
</tr>
<tr>
<td>15</td>
<td>Result of 15th probe from run 1</td>
</tr>
</tbody>
</table>

Upon completion of the first probe of the second run of this test, `pingProbeHistoryTable` will contain probes like those in Table 20 on page 192.
Table 20: Results in pingProbeHistoryTable: After the First Probe of the Second Test

<table>
<thead>
<tr>
<th>pingProbeHistoryIndex</th>
<th>Probe Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Result of 12th probe from run 1</td>
</tr>
<tr>
<td>13</td>
<td>Result of 13th probe from run 1</td>
</tr>
<tr>
<td>14</td>
<td>Result of 14th probe from run 1</td>
</tr>
<tr>
<td>15</td>
<td>Result of 15th probe from run 1</td>
</tr>
<tr>
<td>16</td>
<td>Result of 1st probe from run 2</td>
</tr>
</tbody>
</table>

Upon completion of the second run of this test, pingProbeHistoryTable will contain probes like those in Table 21 on page 192.

Table 21: Results in pingProbeHistoryTable: After the Second Ping Test

<table>
<thead>
<tr>
<th>pingProbeHistoryIndex</th>
<th>Probe Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Result of 11th probe from run 2</td>
</tr>
<tr>
<td>27</td>
<td>Result of 12th probe from run 2</td>
</tr>
<tr>
<td>28</td>
<td>Result of 13th probe from run 2</td>
</tr>
<tr>
<td>29</td>
<td>Result of 14th probe from run 2</td>
</tr>
<tr>
<td>30</td>
<td>Result of 15th probe from run 2</td>
</tr>
</tbody>
</table>

History entries can be deleted from the MIB in two ways:

- More history entries for a given test are added and the number of history entries exceeds pingCtlMaxRows. The oldest history entries are deleted to make room for the new ones.
- You delete the entire test by setting pingCtlRowStatus to destroy.

Stopping a Ping Test

Supported Platforms

ACX Series, M Series, MX Series, PTX Series, T Series

To stop an active test, set pingCtlAdminStatus to disabled. To stop the test and remove its pingCtlEntry, pingResultsEntry, and any pingHistoryEntry objects from the MIB, set pingCtlRowStatus to destroy.

Interpreting Ping Variables

Supported Platforms

ACX Series, M Series, MX Series, PTX Series, T Series
This section clarifies the ranges for the following variables that are not explicitly specified in the Ping MIB:

- **pingCtlDataSize**—The value of this variable represents the total size of the payload (in bytes) of an outgoing probe packet. This payload includes the timestamp (8 bytes) that is used to time the probe. This is consistent with the definition of `pingCtlDataSize` (maximum value of 65,507) and the standard ping application.

If the value of `pingCtlDataSize` is between 0 and 8 inclusive, it is ignored and the payload is 8 bytes (the timestamp). The Ping MIB assumes all probes are timed, so the payload must always include the timestamp.

For example, if you wish to add an additional 4 bytes of payload to the packet, you must set `pingCtlDataSize` to 12.

- **pingCtlDataFill**—The first 8 bytes of the data segment of the packet is for the timestamp. After that, the `pingCtlDataFill` pattern is used in repetition. The default pattern (when `pingCtlDataFill` is not specified) is (00, 01, 02, 03 ... FF, 00, 01, 02, 03 ... FF, ...).

- **pingCtlMaxRows**—The maximum value is 255.

- **pingMaxConcurrentRequests**—The maximum value is 500.

- **pingCtlTrapProbeFailureFilter** and **pingCtlTrapTestFailureFilter**—A value of 0 for `pingCtlTrapProbeFailureFilter` or `pingCtlTrapTestFailureFilter` is not well defined by the Ping MIB. If `pingCtlTrapProbeFailureFilter` is 0, `pingProbeFailed` traps will not be generated for the test under any circumstances. If `pingCtlTrapTestFailureFilter` is 0, `pingTestFailed` traps will not be generated for the test under any circumstances.

Using the Traceroute MIB for Remote Monitoring Devices Running Junos OS

Supported Platforms

ACX Series, M Series, MX Series, QFX Series, SRX Series, T Series

A traceroute test approximates the path packets take from the local host to the remote host.

RFC 2925 is the authoritative description of the Traceroute MIB in detail and provides the ASN.1 MIB definition of the Traceroute MIB.

Related Documentation

- SNMP Remote Operations Overview on page 183
- Starting a Traceroute Test on page 194
- Monitoring a Running Traceroute Test on page 195
- Monitoring Traceroute Test Completion on page 199
- Gathering Traceroute Test Results on page 200
- Stopping a Traceroute Test on page 201
- Interpreting Traceroute Variables on page 202
Starting a Traceroute Test

Supported Platforms ACX Series, M Series, MX Series, PTX Series, T Series

Before you start a traceroute test, configure a Traceroute MIB view. This allows SNMP Set requests on tracerouteMIB. To start a test, create a row in traceRouteCtlTable and set traceRouteCtlAdminStatus to enabled. You must specify at least the following before setting traceRouteCtlAdminStatus to enabled:

- traceRouteCtlOwnerIndexSnmpAdminString
- traceRouteCtlTestNameSnmpAdminString
- traceRouteCtlTargetAddressInetAddress
- traceRouteCtlRowStatusRowStatus

For all other values, defaults are chosen unless otherwise specified. traceRouteCtlOwnerIndex and traceRouteCtlTestName are used as the index, so their values are specified as part of the OID. To create a row, set traceRouteCtlRowStatus to createAndWait or createAndGo on a row that does not already exist. A value of active for traceRouteCtlRowStatus indicates that all necessary information has been specified and the test can begin; traceRouteCtlAdminStatus can be set to enabled. An SNMP Set request that sets traceRouteCtlRowStatus to active will fail if the necessary information in the row is not specified or is inconsistent. For information about how to configure a view, see “Setting SNMP Views” on page 184.

There are two ways to start a traceroute test:

- Using Multiple Set PDUs on page 194
- Using a Single Set PDU on page 194

Using Multiple Set PDUs

You can use multiple Set request PDUs (multiple PDUs, with one or more varbinds each) and set the following variables in this order to start the test:

- traceRouteCtlRowStatus to createAndWait
- All appropriate test variables
- traceRouteCtlRowStatus to active

The Junos OS now verifies that all necessary information to run a test has been specified.

- traceRouteCtlAdminStatus to enabled

Using a Single Set PDU

You can use a single Set request PDU (one PDU, with multiple varbinds) to set the following variables to start the test:

- traceRouteCtlRowStatus to createAndGo
• All appropriate test variables
 • `traceRouteCtlAdminStatus` to enabled

Related Documentation

- Using the Traceroute MIB for Remote Monitoring Devices Running Junos OS on page 193
- Monitoring a Running Traceroute Test on page 195
- SNMP Remote Operations Overview on page 183
- Monitoring Traceroute Test Completion on page 199
- Gathering Traceroute Test Results on page 200
- Stopping a Traceroute Test on page 201
- Interpreting Traceroute Variables on page 202

Monitoring a Running Traceroute Test

Supported Platforms

ACX Series, M Series, MX Series, PTX Series, T Series

When `traceRouteCtlAdminStatus` is successfully set to *enabled*, the following is done before the acknowledgment of the SNMP *Set* request is sent back to the client:

- `traceRouteResultsEntry` is created if it does not already exist.
- `traceRouteResultsOperStatus` transitions to enabled.

For more information, see the following sections:

- `traceRouteResultsTable` on page 195
- `traceRouteProbeResultsTable` on page 196
- `traceRouteHopsTable` on page 197
- Generating Traps on page 198

traceRouteResultsTable

While the test is running, this `traceRouteResultsTable` keeps track of the status of the test. The value of `traceRouteResultsOperStatus` is *enabled* while the test is running and *disabled* when it has stopped.

The value of `traceRouteCtlAdminStatus` remains *enabled* until you set it to *disabled*. Thus, to get the status of the test, you must examine `traceRouteResultsOperStatus`.

The `traceRouteCtlFrequency` variable can be used to schedule many tests for one `traceRouteCtlEntry`. After a test ends normally (you did not stop the test) and `traceRouteCtlFrequency` number of seconds has elapsed, the test is started again just as if you had set `traceRouteCtlAdminStatus` to *enabled*. If you intervene at any time between repeated tests (you set `traceRouteCtlAdminStatus` to *disabled* or `traceRouteCtlRowStatus` to *notInService*), the repeat feature is *disabled* until another test is started and ends normally. A value of 0 for `traceRouteCtlFrequency` indicates this repeat feature is not active.
traceRouteResultsIpTgtAddr and traceRouteResultsIpTgtAddrType are set to the value of the resolved destination address when the value of traceRouteCtlTargetAddressType is dns. When a test starts successfully and traceRouteResultsOperStatus transitions to enabled:

- traceRouteResultsIpTgtAddr is set to null-string.
- traceRouteResultsIpTgtAddrType is set to unknown.

traceRouteResultsIpTgtAddr and traceRouteResultsIpTgtAddrType are not set until traceRouteCtlTargetAddress can be resolved to a numeric address. To retrieve these values, poll traceRouteResultsIpTgtAddrType for any value other than unknown after successfully setting traceRouteCtlAdminStatus to enabled.

At the start of a test, traceRouteResultsCurHopCount is initialized to traceRouteCtlInitialTtl, and traceRouteResultsCurProbeCount is initialized to 1. Each time a probe result is determined, traceRouteResultsCurProbeCount increases by 1. While the test is running, the value of traceRouteResultsCurProbeCount reflects the current outstanding probe for which results have not yet been determined.

The traceRouteCtlProbesPerHop number of probes is sent for each time-to-live (TTL) value. When the result of the last probe for the current hop is determined, provided that the current hop is not the destination hop, traceRouteResultsCurHopCount increases by 1, and traceRouteResultsCurProbeCount resets to 1.

At the start of a test, if this is the first time this test has been run for this traceRouteCtlEntry, traceRouteResultsTestAttempts and traceRouteResultsTestSuccesses are initialized to 0.

At the end of each test execution, traceRouteResultsOperStatus transitions to disabled, and traceRouteResultsTestAttempts increases by 1. If the test was successful in determining the full path to the target, traceRouteResultsTestSuccesses increases by 1, and traceRouteResultsLastGoodPath is set to the current time.

traceRouteProbeResultsTable

Each entry in traceRouteProbeHistoryTable is indexed by five variables:

- The first two variables, traceRouteCtlOwnerIndex and traceRouteCtlTestName, are the same ones used for traceRouteCtlTable and to identify the test.
- The third variable, traceRouteProbeHistoryIndex, is a counter, starting from 1 and wrapping at FFFFFFFF. The maximum number of entries is limited by traceRouteCtlMaxRows.
- The fourth variable, traceRouteProbeHistoryHopIndex, indicates which hop this probe is for (the actual time-to-live or TTL value). Thus, the first traceRouteCtlProbesPerHop number of entries created when a test starts have a value of traceRouteCtlInitialTtl for traceRouteProbeHistoryHopIndex.
- The fifth variable, traceRouteProbeHistoryProbeIndex, is the probe for the current hop. It ranges from 1 to traceRouteCtlProbesPerHop.
While a test is running, as soon as a probe result is determined, the next probe is sent. A maximum of \texttt{traceRouteCtlTimeOut} seconds elapses before a probe is marked with status \texttt{requestTimedOut} and the next probe is sent. There is never more than one outstanding probe per traceroute test. Any probe result coming back after a probe times out is ignored.

Each probe can:

- Result in a response from a host acknowledging the probe
- Time out with no response from a host acknowledging the probe
- Fail to be sent

Each probe status is recorded in \texttt{traceRouteProbeHistoryTable} with \texttt{traceRouteProbeHistoryStatus} set accordingly.

Probes that result in a response from a host record the following data:

- \texttt{traceRouteProbeHistoryResponse}—Round-trip time (RTT)
- \texttt{traceRouteProbeHistoryHAddrType}—The type of HAddr (next argument)
- \texttt{traceRouteProbeHistoryHAddr}—The address of the hop

All probes, regardless of whether a response for the probe is received, have the following recorded:

- \texttt{traceRouteProbeHistoryStatus}—What happened and why
- \texttt{traceRouteProbeHistoryLastRC}—Return code (RC) value of the ICMP packet
- \texttt{traceRouteProbeHistoryTime}—Timestamp when the probe result was determined

When a probe cannot be sent, \texttt{traceRouteProbeHistoryResponse} is set to 0. When a probe times out, \texttt{traceRouteProbeHistoryResponse} is set to the difference between the time when the probe was discovered to be timed out and the time when the probe was sent.

\texttt{traceRouteHopsTable}

Entries in \texttt{traceRouteHopsTable} are indexed by three variables:

- The first two, \texttt{traceRouteCtlOwnerIndex} and \texttt{traceRouteCtlTestName}, are the same ones used for \texttt{traceRouteCtlTable} and identify the test.
- The third variable, \texttt{traceRouteHopsHopIndex}, indicates the current hop, which starts at 1 (not \texttt{traceRouteCtlInitialTtl}).

When a test starts, all entries in \texttt{traceRouteHopsTable} with the given \texttt{traceRouteCtlOwnerIndex} and \texttt{traceRouteCtlTestName} are deleted. Entries in this table are only created if \texttt{traceRouteCtlCreateHopsEntries} is set to true.

A new \texttt{traceRouteHopsEntry} is created each time the first probe result for a given TTL is determined. The new entry is created whether or not the first probe reaches a host. The value of \texttt{traceRouteHopsHopIndex} is increased by 1 for this new entry.
NOTE: Any traceRouteHopsEntry can lack a value for traceRouteHopsIpTgtAddress if there are no responses to the probes with the given TTL.

Each time a probe reaches a host, the IP address of that host is available in the probe result. If the value of traceRouteHopsIpTgtAddress of the current traceRouteHopsEntry is not set, then the value of traceRouteHopsIpTgtAddress is set to this IP address. If the value of traceRouteHopsIpTgtAddress of the current traceRouteHopsEntry is the same as the IP address, then the value does not change. If the value of traceRouteHopsIpTgtAddress of the current traceRouteHopsEntry is different from this IP address, indicating a path change, a new traceRouteHopsEntry is created with:

- traceRouteHopsHopIndex variable increased by 1
- traceRouteHopsIpTgtAddress set to the IP address

NOTE: A new entry for a test is added to traceRouteHopsTable each time a new TTL value is used or the path changes. Thus, the number of entries for a test may exceed the number of different TTL values used.

When a probe result is determined, the value traceRouteHopsSentProbes of the current traceRouteHopsEntry increases by 1. When a probe result is determined, and the probe reaches a host:

- The value traceRouteHopsProbeResponses of the current traceRouteHopsEntry is increased by 1.
- The following variables are updated:
 - traceRouteResultsMinRtt—Minimum round-trip time
 - traceRouteResultsMaxRtt—Maximum round-trip time
 - traceRouteResultsAverageRtt—Average round-trip time
 - traceRouteResultsRttSumOfSquares—Sum of squares of round-trip times
 - traceRouteResultsLastGoodProbe—Timestamp of the last response

NOTE: Only probes that reach a host affect the round-trip time values.

Generating Traps

For any trap to be generated, the appropriate bit of traceRouteCtlTrapGeneration must be set. You must also configure a trap group to receive remote operations. Traps are generated under the following conditions:
• `traceRouteHopsIpTgtAddress` of the current probe is different from the last probe with the same TTL value (traceRoutePathChange).

• A path to the target could not be determined (traceRouteTestFailed).

A path to the target was determined (traceRouteTestCompleted).

For information about how to configure a trap group to receive remote operations, see “Configuring SNMP Trap Groups” on page 116 and “Example: Setting Trap Notification for Remote Operations” on page 185.

Monitoring Traceroute Test Completion

Supported Platforms

ACX Series, M Series, MX Series, PTX Series, T Series

When a test is complete, `traceRouteResultsOperStatus` transitions from enabled to disabled. This transition occurs in the following situations:

• The test ends successfully. A probe result indicates that the destination has been reached. In this case, the current hop is the last hop. The rest of the probes for this hop are sent. When the last probe result for the current hop is determined, the test ends.

• `traceRouteCtlMaxTtl` threshold is exceeded. The destination is never reached. The test ends after the number of probes with TTL value equal to `traceRouteCtlMaxTtl` have been sent.

• `traceRouteCtlMaxFailures` threshold is exceeded. The number of consecutive probes that end with status `requestTimedOut` exceeds `traceRouteCtlMaxFailures`.

• You end the test. You set `traceRouteCtlAdminStatus` to disabled or delete the row by setting `traceRouteCtlRowStatus` to destroy.

• You misconfigured the traceroute test. A value or variable you specified in `traceRouteCtlTable` is incorrect and will not allow a single probe to be sent. Because of the nature of the data, this error could not be determined until the test was started; that is, until after `traceRouteResultsOperStatus` transitioned to enabled. When this occurs, one entry is added to `traceRouteProbeHistoryTable` with `traceRouteProbeHistoryStatus` set to the appropriate error code.

If `traceRouteCtlTrapGeneration` is set properly, either the `traceRouteTestFailed` or `traceRouteTestCompleted` trap is generated.

Related Documentation

• Using the Traceroute MIB for Remote Monitoring Devices Running Junos OS on page 193

• Monitoring a Running Traceroute Test on page 195

• SNMP Remote Operations Overview on page 183

• Starting a Traceroute Test on page 194

• Gathering Traceroute Test Results on page 200

• Stopping a Traceroute Test on page 201

• Interpreting Traceroute Variables on page 202
Gathering Traceroute Test Results

Supported Platforms ACX Series, M Series, MX Series, PTX Series, T Series

You can either poll `traceRouteResultsOperStatus` to find out when the test is complete or request that a trap be sent when the test is complete. For more information about `traceResultsOperStatus`, see “traceRouteResultsTable” on page 195. For more information about Traceroute MIB traps, see the Generating Traps section in “Monitoring a Running Traceroute Test” on page 195.

Statistics are calculated on a per-hop basis and then stored in `traceRouteHopsTable`. They include the following for each hop:

- `traceRouteHopsIpTgtAddressType`—Address type of host at this hop
- `traceRouteHopsIpTgtAddress`—Address of host at this hop
- `traceRouteHopsMinRtt`—Minimum round-trip time
- `traceRouteHopsMaxRtt`—Maximum round-trip time
- `traceRouteHopsAverageRtt`—Average round-trip time
- `traceRouteHopsRttSumOfSquares`—Sum of squares of round-trip times
- `traceRouteHopsSentProbes`—Number of attempts to send probes
- `traceRouteHopsProbeResponses`—Number of responses received
- `traceRouteHopsLastGoodProbe`—Timestamp of last response

You can also consult `traceRouteProbeHistoryTable` for more detailed information about each probe. The index used for `traceRouteProbeHistoryTable` starts at 1, goes to 0xFFFFFFFF, and wraps to 1 again.

For example, assume the following:

- `traceRouteCtlMaxRows` is 10.
- `traceRouteCtlProbesPerHop` is 5.
- There are eight hops to the target (the target being number eight).
- Each probe sent results in a response from a host (the number of probes sent is not limited by `traceRouteCtlMaxFailures`).

In this test, 40 probes are sent. At the end of the test, `traceRouteProbeHistoryTable` would have a history of probes like those in Table 22 on page 200.

Table 22: `traceRouteProbeHistoryTable`

<table>
<thead>
<tr>
<th>HistoryIndex</th>
<th>HistoryHopIndex</th>
<th>HistoryProbeIndex</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>
Table 22: traceRouteProbeHistoryTable (continued)

<table>
<thead>
<tr>
<th>HistoryIndex</th>
<th>HistoryHopIndex</th>
<th>HistoryProbeIndex</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>34</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>35</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>36</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>38</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>39</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>40</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

Related Documentation
- Using the Traceroute MIB for Remote Monitoring Devices Running Junos OS on page 193
- Monitoring a Running Traceroute Test on page 195
- SNMP Remote Operations Overview on page 183
- Starting a Traceroute Test on page 194
- Monitoring Traceroute Test Completion on page 199
- Stopping a Traceroute Test on page 201
- Interpreting Traceroute Variables on page 202

Stopping a Traceroute Test

Supported Platforms

ACX Series, M Series, MX Series, PTX Series, T Series

To stop an active test, set `traceRouteCtlAdminStatus` to `disabled`. To stop a test and remove its `traceRouteCtlEntry`, `traceRouteResultsEntry`, `traceRouteProbeHistoryEntry`, and `traceRouteProbeHistoryEntry` objects from the MIB, set `traceRouteCtlRowStatus` to `destroy`.

Related Documentation
- Using the Traceroute MIB for Remote Monitoring Devices Running Junos OS on page 193
- Monitoring a Running Traceroute Test on page 195
- SNMP Remote Operations Overview on page 183
- Starting a Traceroute Test on page 194
- Monitoring Traceroute Test Completion on page 199
- Gathering Traceroute Test Results on page 200
Interpreting Traceroute Variables

Supported Platforms

- ACX Series, M Series, MX Series, PTX Series, T Series

This topic contains information about the ranges for the following variables that are not explicitly specified in the Traceroute MIB:

- `traceRouteCtlMaxRows`—The maximum value for `traceRouteCtlMaxRows` is 2550. This represents the maximum TTL (255) multiplied by the maximum for `traceRouteCtlProbesPerHop` (10). Therefore, the `traceRouteProbeHistoryTable` accommodates one complete test at the maximum values for one `traceRouteCtlEntry`. Usually, the maximum values are not used and the `traceRouteProbeHistoryTable` is able to accommodate the complete history for many tests for the same `traceRouteCtlEntry`.

- `traceRouteMaxConcurrentRequests`—The maximum value is 50. If a test is running, it has one outstanding probe. `traceRouteMaxConcurrentRequests` represents the maximum number of traceroute tests that have `traceRouteResultsOperStatus` with a value of `enabled`. Any attempt to start a test with `traceRouteMaxConcurrentRequests` tests running will result in the creation of one probe with `traceRouteProbeHistoryStatus` set to `maxConcurrentLimitReached` and that test will end immediately.

- `traceRouteCtlTable`—The maximum number of entries allowed in this table is 100. Any attempt to create a 101st entry will result in a `BAD_VALUE` message for SNMPv1 and a `RESOURCE_UNAVAILABLE` message for SNMPv2.

Related Documentation

- Using the Traceroute MIB for Remote Monitoring Devices Running Junos OS on page 193
- Monitoring a Running Traceroute Test on page 195
- SNMP Remote Operations Overview on page 183
- Starting a Traceroute Test on page 194
- Monitoring Traceroute Test Completion on page 199
- Gathering Traceroute Test Results on page 200
- Stopping a Traceroute Test on page 201
Monitoring SNMMP Activity and Tracking Problems That Affect SNMMP Performance on a Device Running Junos OS on page 203

• Tracing SNMMP Activity on a Device Running Junos OS on page 209

• Example: Tracing SNMMP Activity on page 213

Monitoring SNMMP Activity and Tracking Problems That Affect SNMMP Performance on a Device Running Junos OS

Supportered Platforms

ACX Series, EX Series, M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series, vSRX

The following sections contain information about monitoring the SNMMP activity on devices running the Junos OS and identifying problems that might impact the SNMMP performance on devices running Junos OS:

• Checking for MIB Objects Registered with the snmpd on page 203

• Tracking SNMMP Activity on page 205

• Monitoring SNMMP Statistics on page 207

• Checking CPU Utilization on page 207

• Checking Kernel and Packet Forwarding Engine Response on page 208

Checking for MIB Objects Registered with the snmpd

For the SNMMP process to be able to access data related to a MIB object, the MIB object must be registered with the snmpd. When an SNMMP subagent comes online, it tries to register the associated MIB objects with the snmpd. The snmpd maintains a mapping of the objects and the subagents with which the objects are associated. However, the registration attempt fails occasionally, and the objects remain unregistered with the snmpd until the next time the subagent restarts and successfully registers the objects.

When a network management system polls for data related to objects that are not registered with the snmpd, the snmpd returns either a NoSuchName error (for SNMMPv1 objects) or a NoSuchObject error (for SNMMPv2 objects).
You can use the following commands to check for MIB objects that are registered with the snmpd:

- `show snmp registered-objects`—Creates a `/var/log/snmp_reg_objs` file that contains the list of registered objects and their mapping to various subagents.

The following examples show the steps for creating and displaying the `/var/log/snmp_reg_objs` file:

```bash
user@host> show snmp registered-objects
user@host> file show /var/log/snmp_reg_objs
```

---(more)---

NOTE: The `/var/log/snmp_reg_objs` file contains only those objects that are associated with the Junos OS processes that are up and running and registered with the snmpd, at the time of executing the `show snmp registered-objects` command. If a MIB object related to a Junos OS process that is up and running is not shown in the list of registered objects, you might want to restart the software process to retry object registration with the snmpd.
Tracking SNMP Activity

SNMP tracing operations track activity of SNMP agents and record the information in log files. The logged event descriptions provide detailed information to help you solve problems faster. By default, Junos OS does not trace any SNMP activity. To enable tracking of SNMP activities on a device running Junos OS, include the `traceoptions` statement at the [edit snmp] hierarchy level.

A sample `traceoptions` configuration might look like:

```
[edit snmp]
set traceoptions flag all;
```

When the `traceoptions flag all` statement is included at the [edit snmp] hierarchy level, the following log files are created:

- snmpd
- mib2d
- rmopd

You can use the `show log log-filename` operational mode command to view the contents of the log file. In the snmpd log file (see the following example), a sequence of `>>>` represents an incoming packet, whereas a sequence of `<<<` represents an outgoing packet. Note that the request response pair might not follow any sequence if there are multiple network management systems polling the device at the same time. You can use the source and request ID combinations to match requests and responses. However, note that no response log is created in the log file if the SNMP master agent or the SNMP subagent has not responded to a request.

A careful analysis of the request-response time can help you identify and understand delayed responses.

Reviewing a Log File

The following example shows the output for the `show log snmpd` command:

```
user@host> show log snmpd
Apr 12 06:40:03 snmpd[7ee783df] >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Apr 12 06:40:03 snmpd[7ee783df] >>> Get-Bulk-Request
Apr 12 06:40:03 snmpd[7ee783df] >>>  Source:      10.209.63.42
Apr 12 06:40:03 snmpd[7ee783df] >>>  Destination: 10.209.2.242
Apr 12 06:40:03 snmpd[7ee783df] >>>  Version:     SNMPv2
Apr 12 06:40:03 snmpd[7ee783df] >>>  Request_id:  0x7ee783df
Apr 12 06:40:03 snmpd[7ee783df] >>>  Community:   public
Apr 12 06:40:03 snmpd[7ee783df] >>>  Non-repeaters:   0
Apr 12 06:40:03 snmpd[7ee783df] >>>  Max-repetitions: 10
Apr 12 06:40:03 snmpd[7ee783df] >>>  OID : jnxContentsType.6.1.2.0
Apr 12 06:40:03 snmpd[7ee783df] >>>  <<<<<<<
Apr 12 06:40:03 snmpd[7ee783df] >>> Get-Response
Apr 12 06:40:03 snmpd[7ee783df] <<<  Source:      10.209.63.42
Apr 12 06:40:03 snmpd[7ee783df] <<<  Destination: 10.209.2.242
Apr 12 06:40:03 snmpd[7ee783df] <<<  Version:     SNMPv2
Apr 12 06:40:03 snmpd[7ee783df] <<<  Request_id:  0x7ee783df
```

Copyright © 2017, Juniper Networks, Inc.
Apr 12 06:40:03 snmpd[7ee783df] <<< Community: public
Apr 12 06:40:03 snmpd[7ee783df] <<< Error: status=0 / vb_index=0
Apr 12 06:40:03 snmpd[7ee783df] <<< OID: jnxContentsType.7.1.0.0
Apr 12 06:40:03 snmpd[7ee783df] <<< type: Object
Apr 12 06:40:03 snmpd[7ee783df] <<< value: jnxM10iFPC.0
Apr 12 06:40:03 snmpd[7ee783df] <<< OID: jnxContentsType.7.1.1.0
Apr 12 06:40:03 snmpd[7ee783df] <<< type: Object
Apr 12 06:40:03 snmpd[7ee783df] <<< value: jnxChassisTempSensor.0
Apr 12 06:40:03 snmpd[7ee783df] <<< OID: jnxContentsType.7.2.0.0
Apr 12 06:40:03 snmpd[7ee783df] <<< type: Object
Apr 12 06:40:03 snmpd[7ee783df] <<< value: jnxM10iFPC.0
Apr 12 06:40:03 snmpd[7ee783df] <<< OID: jnxContentsType.7.2.1.0
Apr 12 06:40:03 snmpd[7ee783df] <<< type: Object
Apr 12 06:40:03 snmpd[7ee783df] <<< value: jnxChassisTempSensor.0
Apr 12 06:40:03 snmpd[7ee783df] <<< OID: jnxContentsType.9.1.0.0
Apr 12 06:40:03 snmpd[7ee783df] <<< type: Object
Apr 12 06:40:03 snmpd[7ee783df] <<< value: jnxM10iRE.0
Apr 12 06:40:03 snmpd[7ee783df] <<< OID: jnxContentsType.9.1.1.0
Apr 12 06:40:03 snmpd[7ee783df] <<< type: Object
Apr 12 06:40:03 snmpd[7ee783df] <<< value: jnxPCMCIACard.0
Apr 12 06:40:03 snmpd[7ee783df] <<< OID: jnxContentsType.9.2.0.0
Apr 12 06:40:03 snmpd[7ee783df] <<< type: Object
Apr 12 06:40:03 snmpd[7ee783df] <<< value: jnxM10iRE.0
Apr 12 06:40:03 snmpd[7ee783df] <<< OID: jnxContentsType.9.2.1.0
Apr 12 06:40:03 snmpd[7ee783df] <<< type: Object
Apr 12 06:40:03 snmpd[7ee783df] <<< value: jnxPCMCIACard.0
Apr 12 06:40:03 snmpd[7ee783df] <<< OID: jnxContentsType.12.1.0.0
Apr 12 06:40:03 snmpd[7ee783df] <<< type: Object
Apr 12 06:40:03 snmpd[7ee783df] <<< value: jnxM10iHCM.0
Apr 12 06:40:03 snmpd[7ee783df] <<< OID: jnxContentsType.12.2.0.0
Apr 12 06:40:03 snmpd[7ee783df] <<< type: Object
Apr 12 06:40:03 snmpd[7ee783df] <<< value: jnxM10iHCM.0

……
……
Monitoring SNMP Statistics

The `show snmp statistics extensive` operational mode command provides you with an option to review SNMP traffic, including traps, on a device. Output for the `show snmp statistics extensive` command shows real-time values and can be used to monitor values such as throttle drops, currently active, max active, not found, time out, max latency, current queued, total queued, and overflows. You can identify slowness in SNMP responses by monitoring the currently active count, because a constant increase in the currently active count is directly linked to slow or no response to SNMP requests.

Sample Output for the `show snmp statistics extensive` Command

```
user@host> show snmp statistics extensive
SNMP statistics:
  Input:
    Packets: 226656, Bad versions: 0, Bad community names: 0,
    Bad community uses: 0, ASN parse errors: 0,
    Too bigs: 0, No such names: 0, Bad values: 0,
    Read onlys: 0, General errors: 0,
    Total request varbinds: 1967606, Total set varbinds: 0,
    Get requests: 18478, Get nexts: 75794, Set requests: 0,
    Get responses: 0, Traps: 0,
    Silent drops: 0, Proxy drops: 0, Commit pending drops: 0,
    Throttle drops: 27084, Duplicate request drops: 0
  V3 Input:
    Unknown security models: 0, Invalid messages: 0
    Unknown pdu handlers: 0, Unavailable contexts: 0
    Unknown contexts: 0, Unsupported security levels: 0
    Not in time windows: 0, Unknown user names: 0
    Unknown engine ids: 0, Wrong digests: 0, Decryption errors: 0
  Output:
    Packets: 226537, Too bigs: 0, No such names: 0,
    Bad values: 0, General errors: 0,
    Get requests: 0, Get nexts: 0, Set requests: 0,
    Get responses: 226155, Traps: 382
  SA Control Blocks:
    Total: 222984, Currently Active: 501, Max Active: 501,
    Not found: 0, Timed Out: 0, Max Latency: 25
  SA Registration:
    Registers: 0, Deregisters: 0, Removes: 0
  Trap Queue Stats:
    Current queued: 0, Total queued: 0, Discards: 0, Overflows: 0
  Trap Throttle Stats:
    Current throttled: 0, Throttles needed: 0
  Snmp Set Stats:
    Commit pending failures: 0, Config lock failures: 0
    Rpc failures: 0, Journal write failures: 0
    Mgd connect failures: 0, General commit failures: 0
```

Checking CPU Utilization

High CPU usage of the software processes that are being queried, such as snmpd or mib2d, is another factor that can lead to slow response or no response. You can use the `show system processes extensive` operational mode command to check the CPU usage levels of the Junos OS processes.
Sample Output of show system processes extensive Command

```bash
user@host> show system processes extensive
```

```
last pid: 1415; load averages: 0.00, 0.00, 0.00 up 0+02:20:54 10:26:25
117 processes: 2 running, 98 sleeping, 17 waiting
Mem: 180M Active, 54M Inact, 39M Wired, 195M Cache, 69M Buf, 272M Free
Swap: 1536M Total, 1536M Free
```

<table>
<thead>
<tr>
<th>PID</th>
<th>USERNAME</th>
<th>THR</th>
<th>PRI</th>
<th>NICE</th>
<th>SIZE</th>
<th>RES</th>
<th>STATE</th>
<th>TIME</th>
<th>WCPU</th>
<th>COMMAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>root</td>
<td>1</td>
<td>171</td>
<td>52</td>
<td>0K</td>
<td>12K</td>
<td>RUN</td>
<td>132:09</td>
<td>95.21%</td>
<td>idle</td>
</tr>
<tr>
<td>1184</td>
<td>root</td>
<td>1</td>
<td>97</td>
<td>0</td>
<td>35580K</td>
<td>9324K</td>
<td>select</td>
<td>4:16</td>
<td>1.61%</td>
<td>chassisd</td>
</tr>
<tr>
<td>177</td>
<td>root</td>
<td>1</td>
<td>-8</td>
<td>0</td>
<td>OK</td>
<td>12K</td>
<td>mdwait</td>
<td>0:51</td>
<td>0.00%</td>
<td>md7</td>
</tr>
<tr>
<td>119</td>
<td>root</td>
<td>1</td>
<td>-8</td>
<td>0</td>
<td>OK</td>
<td>12K</td>
<td>mdwait</td>
<td>0:20</td>
<td>0.00%</td>
<td>md4</td>
</tr>
<tr>
<td>13</td>
<td>root</td>
<td>1</td>
<td>-20</td>
<td>-139</td>
<td>0K</td>
<td>12K</td>
<td>WAIT</td>
<td>0:16</td>
<td>0.00%</td>
<td>sw17: clock sio</td>
</tr>
<tr>
<td>1373</td>
<td>root</td>
<td>1</td>
<td>96</td>
<td>0</td>
<td>15008K</td>
<td>12712K</td>
<td>select</td>
<td>0:09</td>
<td>0.00%</td>
<td>snmpd</td>
</tr>
<tr>
<td>1371</td>
<td>root</td>
<td>1</td>
<td>96</td>
<td>0</td>
<td>9520K</td>
<td>5032K</td>
<td>select</td>
<td>0:08</td>
<td>0.00%</td>
<td>jdiameterd</td>
</tr>
<tr>
<td>12</td>
<td>root</td>
<td>1</td>
<td>-40</td>
<td>-139</td>
<td>0K</td>
<td>12K</td>
<td>WAIT</td>
<td>0:07</td>
<td>0.00%</td>
<td>sw12: net</td>
</tr>
<tr>
<td>1375</td>
<td>root</td>
<td>1</td>
<td>96</td>
<td>0</td>
<td>15016K</td>
<td>5812K</td>
<td>select</td>
<td>0:06</td>
<td>0.00%</td>
<td>pfed</td>
</tr>
<tr>
<td>49</td>
<td>root</td>
<td>1</td>
<td>-8</td>
<td>0</td>
<td>40K</td>
<td>12K</td>
<td>mdwait</td>
<td>0:05</td>
<td>0.00%</td>
<td>md0</td>
</tr>
<tr>
<td>1345</td>
<td>root</td>
<td>1</td>
<td>96</td>
<td>0</td>
<td>10088K</td>
<td>4480K</td>
<td>select</td>
<td>0:05</td>
<td>0.00%</td>
<td>l2ald</td>
</tr>
<tr>
<td>1181</td>
<td>root</td>
<td>1</td>
<td>96</td>
<td>0</td>
<td>1608K</td>
<td>908K</td>
<td>select</td>
<td>0:05</td>
<td>0.00%</td>
<td>bshowk</td>
</tr>
<tr>
<td>23</td>
<td>root</td>
<td>1</td>
<td>-68</td>
<td>-187</td>
<td>0K</td>
<td>12K</td>
<td>WAIT</td>
<td>0:04</td>
<td>0.00%</td>
<td>irq0: fxp1</td>
</tr>
<tr>
<td>30</td>
<td>root</td>
<td>1</td>
<td>171</td>
<td>52</td>
<td>OK</td>
<td>12K</td>
<td>pgzero</td>
<td>0:04</td>
<td>0.00%</td>
<td>pagezero</td>
</tr>
<tr>
<td>1344</td>
<td>root</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>39704K</td>
<td>11444K</td>
<td>kqread</td>
<td>0:03</td>
<td>0.00%</td>
<td>rpd</td>
</tr>
<tr>
<td>1205</td>
<td>root</td>
<td>1</td>
<td>96</td>
<td>0</td>
<td>3152K</td>
<td>912K</td>
<td>select</td>
<td>0:03</td>
<td>0.00%</td>
<td>license-check</td>
</tr>
<tr>
<td>1372</td>
<td>root</td>
<td>1</td>
<td>96</td>
<td>0</td>
<td>28364K</td>
<td>6696K</td>
<td>select</td>
<td>0:03</td>
<td>0.00%</td>
<td>dcd</td>
</tr>
<tr>
<td>1374</td>
<td>root</td>
<td>1</td>
<td>96</td>
<td>0</td>
<td>11764K</td>
<td>7632K</td>
<td>select</td>
<td>0:02</td>
<td>0.00%</td>
<td>mib2d</td>
</tr>
<tr>
<td>1405</td>
<td>user</td>
<td>1</td>
<td>96</td>
<td>0</td>
<td>15892K</td>
<td>11132K</td>
<td>select</td>
<td>0:02</td>
<td>0.00%</td>
<td>cli</td>
</tr>
<tr>
<td>139</td>
<td>root</td>
<td>1</td>
<td>-8</td>
<td>0</td>
<td>OK</td>
<td>12K</td>
<td>mdwait</td>
<td>0:02</td>
<td>0.00%</td>
<td>md5</td>
</tr>
<tr>
<td>22</td>
<td>root</td>
<td>1</td>
<td>-80</td>
<td>-199</td>
<td>OK</td>
<td>12K</td>
<td>WAIT</td>
<td>0:02</td>
<td>0.00%</td>
<td>irq9: cbb1 fxp0</td>
</tr>
<tr>
<td>1185</td>
<td>root</td>
<td>1</td>
<td>96</td>
<td>0</td>
<td>4472K</td>
<td>2036K</td>
<td>select</td>
<td>0:02</td>
<td>0.00%</td>
<td>alarmd</td>
</tr>
<tr>
<td>4</td>
<td>root</td>
<td>1</td>
<td>-8</td>
<td>0</td>
<td>OK</td>
<td>12K</td>
<td>-</td>
<td>0:02</td>
<td>0.00%</td>
<td>g_down</td>
</tr>
<tr>
<td>3</td>
<td>root</td>
<td>1</td>
<td>-8</td>
<td>0</td>
<td>OK</td>
<td>12K</td>
<td>-</td>
<td>0:02</td>
<td>0.00%</td>
<td>g_up</td>
</tr>
<tr>
<td>43</td>
<td>root</td>
<td>1</td>
<td>-16</td>
<td>0</td>
<td>OK</td>
<td>12K</td>
<td>pselect</td>
<td>0:02</td>
<td>0.00%</td>
<td>vmkmemdaemon</td>
</tr>
<tr>
<td>1377</td>
<td>root</td>
<td>1</td>
<td>96</td>
<td>0</td>
<td>3776K</td>
<td>2256K</td>
<td>select</td>
<td>0:01</td>
<td>0.00%</td>
<td>l2sd</td>
</tr>
<tr>
<td>48</td>
<td>root</td>
<td>1</td>
<td>-16</td>
<td>0</td>
<td>OK</td>
<td>12K</td>
<td>-</td>
<td>0:01</td>
<td>0.00%</td>
<td>schedcpu</td>
</tr>
<tr>
<td>99</td>
<td>root</td>
<td>1</td>
<td>-8</td>
<td>0</td>
<td>OK</td>
<td>12K</td>
<td>mdwait</td>
<td>0:01</td>
<td>0.00%</td>
<td>md3</td>
</tr>
<tr>
<td>953</td>
<td>root</td>
<td>1</td>
<td>96</td>
<td>0</td>
<td>4168K</td>
<td>2428K</td>
<td>select</td>
<td>0:01</td>
<td>0.00%</td>
<td>eventd</td>
</tr>
<tr>
<td>1364</td>
<td>root</td>
<td>1</td>
<td>96</td>
<td>0</td>
<td>4872K</td>
<td>2808K</td>
<td>select</td>
<td>0:01</td>
<td>0.00%</td>
<td>cfmd</td>
</tr>
<tr>
<td>15</td>
<td>root</td>
<td>1</td>
<td>-16</td>
<td>0</td>
<td>OK</td>
<td>12K</td>
<td>-</td>
<td>0:01</td>
<td>0.00%</td>
<td>yarrow</td>
</tr>
<tr>
<td>1350</td>
<td>root</td>
<td>1</td>
<td>96</td>
<td>0</td>
<td>31580K</td>
<td>7248K</td>
<td>select</td>
<td>0:01</td>
<td>0.00%</td>
<td>cosd</td>
</tr>
<tr>
<td>1378</td>
<td>root</td>
<td>1</td>
<td>96</td>
<td>0</td>
<td>19776K</td>
<td>6292K</td>
<td>select</td>
<td>0:01</td>
<td>0.00%</td>
<td>lpdfd</td>
</tr>
</tbody>
</table>

...

Checking Kernel and Packet Forwarding Engine Response

As mentioned in "Understanding SNMP Implementation in Junos OS" on page 15, some SNMP MIB data are maintained by the kernel or Packet Forwarding Engine. For such data to be available for the network management system, the kernel has to provide the required information to the SNMP subagent in mib2d. A slow response from the kernel can cause a delay in mib2d returning the data to the network management system. Junos OS adds an entry in the mib2d log file every time that an interface takes more than 10,000 microseconds to respond to a request for interface statistics. You can use the `show log log-filename | grep "kernel response time"` command to find out the response time taken by the kernel.
Checking the Kernel Response Time

user@host> show log mib2d | grep "kernel response time"
Aug 17 22:39:37 == kernel response time for
 COS_IPVPN_DEFAULT_OUTPUT-t1-7/3/0:10:27.0-o: 9.126471 sec, range
 (0.000007, 11.000806)
Aug 17 22:39:53 == kernel response time for
 COS_IPVPN_DEFAULT_INPUT-t1-7/2/0:5:15.0-i: 5.387321 sec, range
 (0.000007, 11.000806)
Aug 17 22:39:53 == kernel response time for ct1-6/1/0:9:15: 0.695406
 sec, range (0.000007, 11.000806)
 sec, range (0.000007, 11.000806)
Aug 17 22:40:22 == kernel response time for lsq-7/0/0: 2.556592 sec,
 range (0.000007, 11.000806)

Related Documentation
- Understanding SNMP Implementation in Junos OS on page 15
- Configuring SNMP on Devices Running Junos OS on page 95
- Optimizing the Network Management System Configuration for the Best Results on page 91
- Configuring Options on Managed Devices for Better SNMP Response Time on page 93
- Managing Traps and Informs
- Using the Enterprise-Specific Utility MIB to Enhance SNMP Coverage

Tracing SNMP Activity on a Device Running Junos OS

Supported Platforms
- ACX Series, EX4600, M Series, MX Series, PTX Series, QFX Series, T Series

SNMP tracing operations track activity for SNMP agents and record the information in log files. The logged error descriptions provide detailed information to help you solve problems faster.

By default, Junos OS does not trace any SNMP activity. If you include the `traceoptions` statement at the `[edit snmp]` hierarchy level, the default tracing behavior is:

- Important activities are logged in files located in the `/var/log` directory. Each log is named after the SNMP agent that generates it. Currently, the following log files are created in the `/var/log` directory when the `traceoptions` statement is used:
 - chassisd
 - craftd
 - ilmid
 - mib2d
 - rmopd
When a trace file named `filename` reaches its maximum size, it is renamed `filename.0`, then `filename.1`, and so on, until the maximum number of trace files is reached. Then the oldest trace file is overwritten. (For more information about how log files are created, see the System Log Explorer.)

Log files can be accessed only by the user who configured the tracing operation.

You cannot change the directory (`/var/log`) in which trace files are located. However, you can customize the other trace file settings by including the following statements at the `[edit snmp]` hierarchy level:

```plaintext
[edit snmp]
traceoptions {
  file <files number> <match regular-expression> <size size> <world-readable | no-world-readable>;
  flag flag;
  memory-trace;
  no-remote-trace;
  no-default-memory-trace;
}
```

These statements are described in the following sections:

- Configuring the Number and Size of SNMP Log Files on page 210
- Configuring Access to the Log File on page 211
- Configuring a Regular Expression for Lines to Be Logged on page 211
- Configuring the Trace Operations on page 211

Configuring the Number and Size of SNMP Log Files

By default, when the trace file reaches 128 kilobytes (KB) in size, it is renamed `filename.0`, then `filename.1`, and so on, until there are three trace files. Then the oldest trace file (`filename.2`) is overwritten.

You can configure the limits on the number and size of trace files by including the following statements at the `[edit snmp traceoptions]` hierarchy level:

```plaintext
[edit snmp traceoptions]
file files number size size;
```

For example, set the maximum file size to 2 MB, and the maximum number of files to 20. When the file that receives the output of the tracing operation (`filename`) reaches 2 MB, `filename` is renamed `filename.0`, and a new file called `filename` is created. When the new `filename` reaches 2 MB, `filename.0` is renamed `filename.1` and `filename` is renamed `filename.0`. This process repeats until there are 20 trace files. Then the oldest file (`filename.19`) is overwritten by the newest file (`filename.0`).

The number of files can be from 2 through 1000 files. The file size of each file can be from 10 KB through 1 gigabyte (GB).
Configuring Access to the Log File

By default, log files can be accessed only by the user who configured the tracing operation.

To specify that any user can read all log files, include the file world-readable statement at the [edit snmp traceoptions] hierarchy level:

```
[edit snmp traceoptions]
file world-readable;
```

To explicitly set the default behavior, include the file no-world-readable statement at the [edit snmp traceoptions] hierarchy level:

```
[edit snmp traceoptions]
file no-world-readable;
```

Configuring a Regular Expression for Lines to Be Logged

By default, the trace operation output includes all lines relevant to the logged activities.

You can refine the output by including the match statement at the [edit snmp traceoptions file filename] hierarchy level and specifying a regular expression (regex) to be matched:

```
[edit snmp traceoptions]
file filename match regular-expression;
```

Configuring the Trace Operations

By default, only important activities are logged. You can specify which trace operations are to be logged by including the following flag statement (with one or more tracing flags) at the [edit snmp traceoptions] hierarchy level:

```
[edit snmp traceoptions]
flag {
  all;
  configuration;
  database;
  events;
  general;
  interface-stats;
  nonvolatile-sets;
  pdu;
  policy;
  protocol-timeouts;
  routing-socket;
  server;
  subagent;
  timer;
  varbind-error;
}
```

Table 23 on page 212 describes the meaning of the SNMP tracing flags.
<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Log all operations.</td>
<td>Off</td>
</tr>
<tr>
<td>configuration</td>
<td>Log reading of the configuration at the [edit snmp] hierarchy level.</td>
<td>Off</td>
</tr>
<tr>
<td>database</td>
<td>Log events involving storage and retrieval in the events database.</td>
<td>Off</td>
</tr>
<tr>
<td>events</td>
<td>Log important events.</td>
<td>Off</td>
</tr>
<tr>
<td>general</td>
<td>Log general events.</td>
<td>Off</td>
</tr>
<tr>
<td>interface-stats</td>
<td>Log physical and logical interface statistics.</td>
<td>Off</td>
</tr>
<tr>
<td>nonvolatile-set</td>
<td>Log nonvolatile SNMP set request handling.</td>
<td>Off</td>
</tr>
<tr>
<td>pdu</td>
<td>Log SNMP request and response packets.</td>
<td>Off</td>
</tr>
<tr>
<td>policy</td>
<td>Log policy processing.</td>
<td>Off</td>
</tr>
<tr>
<td>protocol-timeouts</td>
<td>Log SNMP response timeouts.</td>
<td>Off</td>
</tr>
<tr>
<td>routing-socket</td>
<td>Log routing socket calls.</td>
<td>Off</td>
</tr>
<tr>
<td>server</td>
<td>Log communication with processes that are generating events.</td>
<td>Off</td>
</tr>
<tr>
<td>subagent</td>
<td>Log subagent restarts.</td>
<td>Off</td>
</tr>
<tr>
<td>timer</td>
<td>Log internal timer events.</td>
<td>Off</td>
</tr>
<tr>
<td>varbind-error</td>
<td>Log variable binding errors.</td>
<td>Off</td>
</tr>
</tbody>
</table>

To display the end of the log for an agent, issue the `show log agentd | last` operational mode command:

```
[edit]
user@host# run show log agentd | last
```

where `agent` is the name of an SNMP agent.

Related Documentation

- Configuring SNMP on a Device Running Junos OS
- Configuration Statements at the [edit snmp] Hierarchy Level on page 88
- Example: Tracing SNMP Activity on page 213
- Configuring SNMP
Example: Tracing SNMP Activity

Supported Platforms
M Series, MX Series, PTX Series, T Series

Trace information about SNMP packets:

```
[edit]
snmp {
    traceoptions {
        file size 10k files 5;
        flag pdu;
        flag protocol-timeouts;
        flag varbind-error;
    }
}
```

Related Documentation
- Configuring SNMP on a Device Running Junos OS
- Tracing SNMP Activity on a Device Running Junos OS on page 209
- Configuration Statements at the [edit snmp] Hierarchy Level on page 88
This document presents the most frequently asked questions about the features and technologies used to implement SNMP services on Juniper Networks devices using the Junos operating system.

SNMP enables users to monitor network devices from a central location. Many network management systems (NMS) are based on SNMP, and support for this protocol is a key feature of most network devices.

Juniper Networks provides many different platforms that support SNMP on the Junos OS. The Junos OS includes an onboard SNMP agent that provides remote management applications with access to detailed information about the devices on the network.

A typical SNMP implementation contains three components:

- Managed devices – Such as routers and switches.
- SNMP agent – Process that resides on a managed device and communicates with the NMS.
- NMS – A combination of hardware and software used to monitor and administer the network; network device that runs SNMP manager software. Also referred to as an SNMP manager.

The SNMP agent exchanges network management information with the SNMP manager (NMS). The agent responds to requests for information and actions from the manager. The SNMP manager collects information about network connectivity, activity, and events by polling managed devices.

SNMP implementation in the Junos OS uses a master SNMP agent (known as an SNMP process or snmpd) that resides on the managed device. Various subagents reside on different modules of the Junos OS as well (such as the Routing Engine), and these subagents are managed by the snmpd.
Junos OS SNMP FAQs

Supported Platforms

EX Series, M Series, MX Series, PTX Series, QFabric System, QFX Series, SRX Series, T Series

This Frequently Asked Questions technology overview covers these SNMP-related areas:

• Junos OS SNMP Support FAQs on page 216
• Junos OS MIBs FAQs on page 217
• Junos OS SNMP Configuration FAQs on page 224
• SNMPv3 FAQs on page 228
• SNMP Interaction with Juniper Networks Devices FAQs on page 230
• SNMP Traps and Informs FAQs on page 232
• Junos OS Dual Routing Engine Configuration FAQs on page 238
• SNMP Support for Routing Instances FAQs on page 239
• SNMP Counters FAQs on page 240

Junos OS SNMP Support FAQs

This section presents frequently asked questions and answers related to SNMP support on Junos OS.

Which SNMP versions does Junos OS support?

Junos OS supports SNMP version 1 (SNMPv1), version 2 (SNMPv2c), and version 3 (SNMPv3). By default, SNMP is disabled on a Juniper Networks device.

Which ports (sockets) does SNMP use?

The default port for SNMP queries is port 161. The default port for SNMP traps and informs is port 162. The port used for SNMP traps and informs is configurable, and you can configure your system to use ports other than the default port 162. However, the SNMP listening port will remain the same; this is established on the RFC.

Is SNMP support different among the Junos OS platforms?

No, SNMP support is not different among the Junos OS platforms. SNMP configuration, interaction, and behavior are the same on any Junos OS device. The only difference that might occur across platforms is MIB support.

See also SNMP MIB Explorer for a list of MIBs that are supported across the Junos OS platforms.

Does Junos OS support the user-based security model (USM)?

Yes, Junos OS supports USM as part of its support for SNMPv3. SNMPv3 contains more security measures than previous versions of SNMP, including providing a defined USM.
SNMPv3 USM provides message security through data integrity, data origin authentication, message replay protection, and protection against disclosure of the message payload.

Does Junos OS support the view-based access control model (VACM)?

Yes, Junos OS supports VACM as part of its support for SNMPv3. SNMPv3 contains more security measures than previous versions of SNMP, including providing a defined VACM. SNMPv3 VACM determines whether a specific type of access (read or write) to the management information is allowed.

Does Junos OS support SNMP informs?

Yes, Junos OS supports SNMP informs as part of its support for SNMPv3. SNMP informs are confirmed notifications sent from SNMP agents to SNMP managers when significant events occur on a network device. When an SNMP manager receives an inform, it sends a response to the sender to verify receipt of the inform.

Can I provision or configure a device using SNMP on Junos OS?

No, provisioning or configuring a device using SNMP is not allowed on Junos OS.

Related Documentation

Junos OS MIBs FAQs

This section presents frequently asked questions and answers related to Junos OS MIBs.

What is a MIB?

A management information base (MIB) is a table of definitions for managed objects in a network device. MIBs are used by SNMP to maintain standard definitions of all of the components and their operating conditions within a network device. Each object in the MIB has an identifying code called an object identifier (OID).

MIBs are either standard or enterprise-specific. Standard MIBs are created by the Internet Engineering Task Force (IETF) and documented in various RFCs. Enterprise-specific MIBs are developed and supported by a specific equipment manufacturer.

For a list of supported standard MIBs, see “Standard SNMP MIBs Supported by Junos OS” on page 32.

For a list of Juniper Networks enterprise-specific MIBs, see “Enterprise-Specific SNMP MIBs Supported by Junos OS” on page 21.

Do MIB files reside on the Junos OS devices?

How do I compile and load the Junos OS MIBs onto an SNMP manager or NMS?
For your network management systems (NMSs) to identify and understand the MIB objects used by Junos OS, you must first load the MIB files to your NMS using a MIB compiler. A MIB compiler is a utility that parses the MIB information, such as the MIB object names, IDs, and data types for the NMS.

The Junos OS MIB package has two folders: **StandardMibs**, containing standard MIBs supported on Juniper Networks devices, and **JuniperMibs**, containing Juniper Networks enterprise-specific MIBs. You must have the required standard MIBs downloaded and decompressed before downloading any enterprise-specific MIBs. There might be dependencies that require a particular standard MIB to be present on the compiler before loading a particular enterprise-specific MIB.

The Junos OS MIB package is available in .zip and .tar formats. Download the format appropriate for your requirements.

Use the following steps to load MIB files for devices running Junos OS:

1. Navigate to the appropriate Juniper Networks software download page and locate the **Enterprise MIBs** link under the **Enterprise-Specific MIBs and Traps** section.

 NOTE: Although the link is titled **Enterprise MIBs**, both standard MIBs and enterprise-specific MIBs are available for download from this location.

2. Click the **TAR** or **ZIP** link to download the Junos OS MIB package.

3. Decompress the file (.tar or .zip) using an appropriate utility.

 NOTE: Some commonly used MIB compilers are preloaded with standard MIBs. You can skip Step 4 and Step 5 and proceed to Step 6 if you already have the standard MIBs loaded on your system.

4. Load the standard MIB files from the **StandardMibs** folder.

 Load the files in the following order:

 a. mib-SNMPv2-SMI.txt
 b. mib-SNMPv2-TC.txt
 c. mib-IANAifType-MIB.txt
 d. mib-IANA-RTPROTO-MIB.txt
 e. mib-rfc1907.txt
5. Load any remaining standard MIB files.

NOTE: You must follow the order specified in this procedure, and ensure that all standard MIBs are loaded before you load the enterprise-specific MIBs. There might be dependencies that require a particular standard MIB to be present on the compiler before loading a particular enterprise-specific MIB. Dependencies are listed in the IMPORT section of the MIB file.

6. After loading the standard MIBs, load the Juniper Networks enterprise-specific SMI MIB, `mib-jnx-smi.txt`, and the following optional SMI MIBs based on your requirements:
 - `mib-jnx-exp.txt`—Recommended for Juniper Networks experimental MIB objects
 - `mib-jnx-js-smi.txt`—Optional for Juniper Security MIB tree objects
 - `mib-jnx-ex-smi.txt`—Optional for EX Series Ethernet Switches

7. Load any remaining desired enterprise-specific MIBs from the JuniperMibs folder.

TIP: While loading a MIB file, if the compiler returns an error message indicating that any of the objects are undefined, open the MIB file using a text editor and ensure that all the MIB files listed in the IMPORT section are loaded on the compiler. If any of the MIB files listed in the IMPORT section are not loaded on the compiler, load the missing file or files first, then try to load the MIB file that failed.

The system might return an error if files are not loaded in a particular order.

What is SMI?

Structure of Management Information Version (SMI) is a subset of Abstract Syntax Notation One (ASN.1), which describes the structure of objects. SMI is the notation syntax, or “grammar”, that is the standard for writing MIBs.

Which versions of SMI does Junos OS support?

The Junos OS supports SMIv1 for SNMPv1 MIBs, and SMIv2 for SNMPv2c and enterprise MIBs.

Does Junos OS support MIB II?

Yes, Junos OS supports MIB II, the second version of the MIB standard.
The features of MIB II include:

- Additions that reflect new operational requirements.
- Backward compatibility with the original MIBs and SNMP.
- Improved support for multiprotocol entities.
- Improved readability.

Refer to the relevant release documentation for a list of MIBs that are supported. Go to http://www.juniper.net/techpubs/software/junos/index.html.

Are the same MIBs supported across all Juniper Networks devices?

There are some common MIBs supported by all the Junos OS devices, such as the Interface MIB (ifTable), System MIB, and Chassis MIB. Some MIBs are supported only by functionalities on specific platforms. For example, the Bridge MIB is supported on the EX Series Ethernet Switches and the SRX Series Services Gateways for the branch.

What is the system object identifier (SYSOID) of a device? How do I determine the SYSOID of my device?

The jnx-chas-defines (Chassis Definitions for Router Model) MIB has a jnxProductName branch for every Junos OS device. The system object ID of a device is identical to the object ID of the jnxProductName for the platform. For example, for an M7i Multiservice Edge Router, the jnxProductNameM7i is 1.3.6.1.4.1.2636.1.1.1.2.10 in the jnxProductName branch, which is identical to the SYSOID of the M7i (1.3.6.1.4.1.2636.1.1.1.2.10).

How can I determine if a MIB is supported on a platform? How can I determine which MIBs are supported by a device?

MIBs device and platform support is listed on the Junos OS Technical Documentation. See “Enterprise-Specific SNMP MIBs Supported by Junos OS” on page 21 and “Standard SNMP MIBs Supported by Junos OS” on page 32 documents to view the list of MIBs and supported Junos OS devices.

What can I do if the MIB OID query is not responding?

There can be various reasons why the MIB OID query stops responding. One reason could be that the MIB itself is unresponsive. To verify that the MIB responds, use the show snmp mib walk | get MIB name | MIB OID command:

- If the MIB responds, the communication issue exists between the SNMP master and SNMP agent. Possible reasons for this issue include network issues, an incorrect community configuration, an incorrect SNMP configuration, and so on.
- If the MIB does not respond, enable SNMP traceoptions to log PDUs and errors. All incoming and outgoing SNMP PDUs are logged. Check the traceoptions output to see if there are any errors.

If you continue to have problems with the MIB OID query, technical product support is available through the Juniper Networks Technical Assistance Center (JTAC).
What is the enterprise branch number for Junos OS?

The enterprise branch number for Junos OS is 2636. Enterprise branch numbers are used in SNMP MIB configurations, and they are also known as SMI network management private enterprise codes.

Which MIB displays the hardware and chassis details on a Juniper Networks device?

The Chassis MIB (jnxc chassis.mib) displays the hardware and chassis details for each Juniper Networks device. It provides information about the router and its components. The Chassis MIB objects represent each component and its status.

Which MIB objects can I query to determine the CPU and memory utilization of the Routing Engine, Flexible PIC Concentrator (FPC), and PIC components on a device?

Query the Chassis MIB objects jnxOperatingMemory, jnxOperatingBuffer, and jnxOperatingCPU to find out the CPU and memory utilization of the hardware components of a device.

Is the interface index (ifIndex) persistent?

The ifIndex is persistent when reboots occur if the Junos OS version remains the same, meaning the values assigned to the interfaces in the ifIndex do not change.

When there is a software upgrade, the device tries to keep the ifIndex persistent on a best effort basis. For Junos OS Release 10.0 and earlier, the ifIndex is not persistent when there is a software upgrade to Junos OS Release 10.1 and later.

Is it possible to set the ifAdminStatus?

SNMP is not allowed to set the ifAdminStatus.

Which MIB objects support SNMP set operations?

The Junos OS SNMP set operations are supported in the following MIB tables and variables:

- snmpCommunityTable
- eventTable
- alarmTable
- snmpTargetAddrExtTable
- jnxPingCtlTable
- pingCtlTable
- traceRouteCtlTable
- jnxTraceRouteCtlTable
- sysContact.0
- sysName.0
- sysLocation.0
Does Junos OS support remote monitoring (RMON)?

Yes, Junos OS supports RMON as defined in RFC 2819, Remote Network Monitoring Management Information Base. However, remote monitoring version 2 (RMON 2) is not supported.

Can I use SNMP to determine the health of the processes running on the Routing Engine?

Yes, you can use SNMP to determine the health of the Routing Engine processes by configuring the health monitoring feature. On Juniper Networks devices, RMON alarms and events provide much of the infrastructure needed to reduce the polling overhead from the NMS. However, you must set up the NMS to configure specific MIB objects into RMON alarms. This often requires device-specific expertise and customizing the monitoring application. Additionally, some MIB object instances that need monitoring are set only at initialization, or they change at runtime and cannot be configured in advance.

To address these issues, the health monitor extends the RMON alarm infrastructure to provide predefined monitoring for a selected set of object instances, such as file system usage, CPU usage, and memory usage, and includes support for unknown or dynamic object instances, such as Junos OS software processes.

To display the health monitoring configuration, use the `show snmp health-monitor` command:

```
user@host> show snmp health-monitor
interval 300;
rising-threshold 90;
falling-threshold 80;
```

When you configure the health monitor, monitoring information for certain object instances is available, as shown in Table 24 on page 223.
Table 24: Monitored Object Instances

<table>
<thead>
<tr>
<th>Object</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>jnxHrStoragePercentUsed.1</td>
<td>Monitors the following file system on the router or switch: /dev/ad0s1a:</td>
</tr>
<tr>
<td></td>
<td>This is the root file system mounted on /</td>
</tr>
<tr>
<td>jnxHrStoragePercentUsed.2</td>
<td>Monitors the following file system on the router or switch: /dev/ad0s1e:</td>
</tr>
<tr>
<td></td>
<td>This is the configuration file system mounted on /config</td>
</tr>
<tr>
<td>jnxOperatingCPU (RE0)</td>
<td>Monitor CPU usage for Routing Engines RE0 and RE1. The index values assigned to the Routing Engines depend on whether the Chassis MIB uses a zero-based or a ones-based indexing scheme. Because the indexing scheme is configurable, the correct index is determined whenever the router is initialized and when there is a configuration change. If the router or switch has only one Routing Engine, the alarm entry monitoring RE1 is removed after five failed attempts to obtain the CPU value.</td>
</tr>
<tr>
<td>jnxOperatingCPU (RE1)</td>
<td></td>
</tr>
<tr>
<td>jnxOperatingBuffer (RE0)</td>
<td>Monitor the amount of memory available on Routing Engines RE0 and RE1. Because the indexing of this object is identical to that used for jnxOperatingCPU, index values are adjusted depending on the indexing scheme used in the Chassis MIB. As with jnxOperatingCPU, the alarm entry monitoring RE1 is removed if the router or switch has only one Routing Engine.</td>
</tr>
<tr>
<td>jnxOperatingBuffer (RE1)</td>
<td></td>
</tr>
<tr>
<td>sysApplElmtRunCPU</td>
<td>Monitors the CPU usage for each Junos OS software process. Multiple instances of the same process are monitored and indexed separately.</td>
</tr>
<tr>
<td>sysApplElmtRunMemory</td>
<td>Monitors the memory usage for each Junos OS software process. Multiple instances of the same process are monitored and indexed separately.</td>
</tr>
</tbody>
</table>

The system log entries generated for any health monitor events, such as thresholds crossed and errors, have a corresponding `HEALTHMONITOR` tag rather than a generic `SNMPD_RMON_EVENTLOG` tag. However, the health monitor sends generic RMON `risingThreshold` and `fallingThreshold` traps.

Are the Ping MIBs returned in decimal notation and ASCII?

Yes, both decimal notation and ASCII are supported, which is the standard implementation in SNMP. All strings are ASCII encoded.

The following example displays the Ping MIB in hexadecimal notation:

```
pingCtlTargetAddress.2.69.72.9.116.99.112.115.97.109.112.108.101 = 0a fa 01 02
```

This translates to ASCII:

```
pingCtlTargetAddress."EH"."tcpample" = 0a fa 01 02
```

2 = length of the string
69=E
72=H
9=length of second string
116=t
99 =c
112=p
As of Junos OS Release 9.6 and later, the Junos OS CLI returns ASCII values using the command `show snmp mib get | get-next | walk ascii`.

The following example shows the output with the ASCII option:

```
user@host> show snmp mib walk pingCtlTargetAddress ascii
pingCtlTargetAddress."EH"."httpgetsamples" = http://www.yahoo.com
pingCtlTargetAddress."p1"."t2" = 74 c5 b3 06
pingCtlTargetAddress."p1"."t3" = 74 c5 b2 0c
```

The following example shows the output without the ASCII option:

```
user@host> show snmp mib walk pingCtlTargetAddress
pingCtlTargetAddress.2.69.72.13.104.116.116.112.103.101.116.115.97.109.112.108.101
   = http://www.yahoo.com
pingCtlTargetAddress.2.112.49.2.116.50 = 74 c5 b3 06
pingCtlTargetAddress.2.112.49.2.116.51 = 74 c5 b2 0c
```

You can convert decimal and ASCII values using a decimal ASCII chart like the one at `http://www.asciichart.com`.

Is IPv6 supported by the Ping MIB for remote operations?

No, IPv6 is not supported.

Is there an SNMP MIB to show Address Resolution Protocol (ARP) table information? Are both IP and MAC addresses displayed in the same table?

Yes, the Junos OS supports the standard MIB `ipNetToMediaTable`, which is described in RFC 2011, `SNMPv2 Management Information Base for the Internet Protocol using SMIv2`. This table is used for mapping IP addresses to their corresponding MAC addresses.

Related Documentation

Junos OS SNMP Configuration FAQs

This section presents frequently asked questions and answers related to Junos OS SNMP configuration.

Can the Junos OS be configured for SNMPv1 and SNMPv3 simultaneously?

Yes, SNMP has backward compatibility, meaning that all three versions can be enabled simultaneously.

Can I filter specific SNMP queries on a device?
Yes, you can filter specific SNMP queries on a device using \texttt{exclude} and \texttt{include} statements.

The following example shows a configuration that blocks read-write operation on all OIDs under .1.3.6.1.2.1.1 for the community \texttt{test}:

\begin{verbatim}
user@host# show snmp
view system-exclude {
 oid .1.3.6.1.2.1.1 exclude;
 oid .1 include;
}
community test {
 view system-exclude;
 authorization read-write;
}
\end{verbatim}

\textbf{Can I change the SNMP agent engine ID?}

Yes, the SNMP agent engine ID can be changed to the MAC address of the device, the IP address of the device, or any other desired value. Several examples are included here.

The following example shows how to use the MAC address of a device as the SNMP agent engine ID:

\begin{verbatim}
user@host# show snmp
engine-id {
 use-mac-address;
}
\end{verbatim}

The following example shows how to use the IP address of a device as the SNMP agent engine ID:

\begin{verbatim}
user@host# show snmp
engine-id {
 use-default-ip-address;
}
\end{verbatim}

The following example shows the use of a selected value, AA in this case, as the SNMP agent engine ID of a device:

\begin{verbatim}
user@host# show snmp
engine-id {
 local AA;
}
\end{verbatim}

\textbf{How can I configure a device with dual Routing Engines or a chassis cluster (SRX Series Services Gateways) for continued communication during a switchover?}

When configuring for continued communication, the SNMP configuration should be identical between the Routing Engines. However, it is best to have separate Routing Engine IDs configured for each Routing Engine, especially when using SNMPv3.

The following example shows the configuration of the Routing Engines in a dual Routing Engine device. Notice that the Routing Engine IDs are set to the MAC addresses for each Routing Engine:

\begin{verbatim}
user@host# show groups
re0 {
 system {

Copyright © 2017, Juniper Networks, Inc. 225
host-name PE3-re0;
}
]
interfaces {
 fxp0 {
 unit 0 {
 family inet {
 address 116.197.178.14/27;
 address 116.197.178.29/27 {
 master-only;
 }
 }
 }
 }
}
]
snmp {
 engine-id {
 use-mac-address;
 }
}
]
re1 {
 system {
 host-name PE3-re1;
 }
}
]
interfaces {
 fxp0 {
 unit 0 {
 family inet {
 address 116.197.178.11/27;
 address 116.197.178.29/27 {
 master-only;
 }
 }
 }
 }
}
]
snmp {
 engine-id {
 use-mac-address;
 }
}
]
The following is an example of an SNMPv3 configuration on a dual Routing Engine device:

```bash
user@host> show snmp name host1
v3 {
  v4cm {
    security-to-group {
      security-model usm {
        security-name test123 {
          group test1;
        }
        security-name juniper {
          group test1;
        }
      }
    }
    security-name tag {
      group test1;
    }
  }
```
{"access": { "group test1": { "default-context-prefix": { "security-model any": { "security-level authentication": { "read-view all": { } } } }, "context-prefix MGMT_10": { "security-model any": { "security-level authentication": { "read-view all": { } } } } }, "target-address server1": { "address": 116.197.178.20; "tag-list router1;" "routing-instance MGMT_10;" "target-parameters test;" }, "target-parameters test": { "parameters": { "message-processing-model v3;" "security-model usm;" "security-level authentication;" "security-name juniper;" } }, "notify-filter filter1;" }, "notify server": { "type": "trap;" "tag router1;" }, "notify-filter filter1": { "oid .1 include;" }, "view all": { "oid .1 include;" }, "community public": { "view all;" }, "community comm1;" "community comm2;" "community comm3": { "view all;" "authorization read-only;" "logical-system LDP-VPLS": { "routing-instance vpls-server1;" } }"}
How can I track SNMP activities?

SNMP trace operations track activity of SNMP agents and record the information in log files.

A sample `traceoptions` configuration might look like this:

```
[edit snmp]
user@host# set traceoptions flag all
```

When the `traceoptions flag all` statement is included at the `[edit snmp]` hierarchy level, the following log files are created:

- snmpd
- mib2d
- rmopd

Related Documentation

- Junos OS SNMP Support FAQs on page 216
- Junos OS MIBs FAQs on page 217
- SNMPv3 FAQs on page 228
- SNMP Interaction with Juniper Networks Devices FAQs on page 230
- SNMP Traps and Informs FAQs on page 232
- SNMP Support for Routing Instances FAQs on page 239
- SNMP Counters FAQs on page 240

SNMPv3 FAQs

This section presents frequently asked questions and answers related to SNMPv3.

Why is SNMPv3 important?

SNMP v3 provides enhanced security compared to the other versions of SNMP. It provides authentication and encryption of data. Enhanced security is important for managing devices at remote sites from the management stations.
In my system, the MIB object snmpEngineBoots is not in sync between two Routing Engines in a dual Routing Engine device. Is this normal behavior?

Yes, this is the expected behavior. Each Routing Engine runs its own SNMP process (snmpd), allowing each Routing Engine to maintain its own engine boots. However, if both routing engines have the same engine ID and the routing engine with lesser snmpEngineBoots value is selected as the master routing engine during the switchover process, the snmpEngineBoots value of the master routing engine is synchronized with the snmpEngineBoots value of the other routing engine.

Do I need the SNMP manager engine object identifier (OID) for informs?

Yes, the engine OID of the SNMP manager is required for authentication, and informs do not work without it.

I see the configuration of informs under the [edit snmp v3] hierarchy. Does this mean I cannot use informs with SNMPv2c?

Informs can be used with SNMPv2c. The following example shows the basic configuration for SNMPv3 informs on a device (note that the authentication and privacy is set to none):

```
[edit snmp]
v3 {
  usm {
    remote-engine 00000063000100a2c0a845b3 {
      user RU2_v3_sha_none {
        authentication-none;
        privacy-none;
      }
    }
  }
  vacm {
    security-to-group {
      security-model usm {
        security-name RU2_v3_sha_none {
          group g1_usm_auth;
        }
      }
    }
    access {
      group g1_usm_auth {
        default-context-prefix {
          security-model usm {
            security-level authentication {
              read-view all;
              write-view all;
              notify-view all;
            }
          }
        }
      }
    }
    target-address TA2_v3_sha_none {
      address 192.168.69.179;
    }
  }
}
```
tag-list tl1;
address-mask 255.255.252.0;
target-parameters TP2_v3_sha_none;
}
target-parameters TP2_v3_sha_none {
parameters {
 message-processing-model v3;
 security-model usm;
 security-level none;
 security-name RU2_v3_sha_none;
}
notify-filter nf1;
}

notify N1_all_tl1_informs {
type inform; # Replace “inform” with “trap” to convert informs to traps.
tag tl1;
}
notify-filter nf1 {
 oid .1 include;
}
view all {
 oid .1 include;
}
}

You can convert the SNMPv3 informs to traps by setting the value of the type statement at the [edit snmp v3 notify N1_all_tl1_informs] hierarchy level to trap as shown in the following example:

```
user@host# set snmp v3 notify N1_all_tl1_informs type trap
```

Related Documentation

SNMP Interaction with Juniper Networks Devices FAQs

This section presents frequently asked questions and answers related to how SNMP interacts with Juniper Networks devices.

How frequently should a device be polled? What is a good polling rate?

It is difficult to give an absolute number for the rate of SNMP polls per second since the rate depends on the following two factors:

- The number of variable bindings in a protocol data unit (PDU)
- The response time for an interface from the Packet Forwarding Engine

In a normal scenario where no delay is being introduced by the Packet Forwarding Engine and there is one variable per PDU (a Get request), the response time is 130+ responses per second. However, with multiple variables in an SNMP request PDU (30 to 40 for GetBulk requests), the number of responses per second is much less. Because the Packet Forwarding Engine load can vary for each system, there is greater variation in how frequently a device should be polled.
Frequent polling of a large number of counters, especially statistics, can impact the device. We recommend the following optimization on the SNMP managers:

- Use the row-by-row polling method, not the column-by-column method.
- Reduce the number of variable bindings per PDU.
- Increase timeout values in polling and discovery intervals.
- Reduce the incoming packet rate at the SNMP process (snmpd).

For better SNMP response on the device, the Junos OS does the following:

- Filters out duplicate SNMP requests.
- Excludes interfaces that are slow in response from SNMP queries.

One way to determine a rate limit is to note an increase in the Currently Active count from the `show snmp statistics extensive` command.

The following is a sample output of the `show snmp statistics extensive` command:

```
user@host> show snmp statistics extensive
SNMP statistics:
  Input:
    Packets: 226656, Bad versions: 0, Bad community names: 0,
    Bad community uses: 0, ASN parse errors: 0,
    Too bigs: 0, No such names: 0, Bad values: 0,
    Read onlys: 0, General errors: 0,
    Total request varbinds: 1967606, Total set varbinds: 0,
    Get requests: 18478, Get nexts: 75794, Set requests: 0,
    Get responses: 0, Traps: 0,
    Silent drops: 0, Proxy drops: 0, Commit pending drops: 0,
    Throttle drops: 27084, Duplicate request drops: 0
  V3 Input:
    Unknown security models: 0, Invalid messages: 0
    Unknown pdu handlers: 0, Unavailable contexts: 0
    Unknown contexts: 0, Unsupported security levels: 0
    Not in time windows: 0, Unknown user names: 0
    Unknown engine ids: 0, Wrong digests: 0, Decryption errors: 0
  Output:
    Packets: 226537, Too bigs: 0, No such names: 0,
    Bad values: 0, General errors: 0,
    Get requests: 0, Get nexts: 0, Set requests: 0,
    Get responses: 226155, Traps: 382
  SA Control Blocks:
    Total: 222984, Currently Active: 501, Max Active: 501,
    Not found: 0, Timed Out: 0, Max Latency: 25
  SA Registration:
    Registers: 0, Deregisters: 0, Removes: 0
  Trap Queue Stats:
    Current queued: 0, Total queued: 0, Discards: 0, Overflows: 0
  Trap Throttle Stats:
    Current throttled: 0, Throttles needed: 0
  Snmp Set Stats:
    Commit pending failures: 0, Config lock failures: 0
    Rpc failures: 0, Journal write failures: 0
    Mgd connect failures: 0, General commit failures: 0
```
Does SNMP open dynamic UDP ports? Why?

The SNMP process opens two additional ports (sockets): one for IPv4 and one for IPv6. This enables the SNMP process to send traps.

I am unable to perform a MIB walk on the ifIndex. Why is this?

Any variable bindings or values with an access level of not-accessible cannot be queried directly because they are part of other variable bindings in the SNMP MIB table. The ifIndex has an access level of not-accessible. Therefore, it cannot be accessed directly because it is part of the variable bindings. However, the ifIndex can be accessed indirectly through the variable bindings.

I see SNMP_IPC_READ_ERROR messages when the SNMP process restarts on my system and also during Routing Engine switchover. Is this acceptable?

Yes, it is acceptable to see SNMP_IPC_READ_ERROR messages when the SNMP process is restarted, the system reboots, or during a Routing Engine switchover. If all the processes come up successfully and the SNMP operations are working properly, then these messages can be ignored.

What is the source IP address used in the response PDUs for SNMP requests? Can this be configured?

The source IP address used in the response PDUs for SNMP requests is the IP address of the outgoing interface to reach the destination. The source IP address cannot be configured for responses. It can only be configured for traps.

Related Documentation

SNMP Traps and Informs FAQs

This section presents frequently asked questions and answers related to SNMP traps and informs.

Does the Junos OS impose any rate limiting on SNMP trap generation?

The Junos OS implements a trap-queuing mechanism to limit the number of traps that are generated and sent.

If a trap delivery fails, the trap is added back to the queue, and the delivery attempt counter and the next delivery attempt timer for the queue are reset. Subsequent attempts occur at progressive intervals of 1, 2, 4, and 8 minutes. The maximum delay between the attempts is 8 minutes, and the maximum number of attempts is 10. After 10 unsuccessful attempts, the destination queue and all traps in the queue are deleted.

Junos OS also has a throttle threshold mechanism to control the number of traps sent (default 500 traps) during a particular throttle interval (default 5 seconds). This helps ensure consistency in trap traffic, especially when a large number of traps are generated due to interface status changes.
The throttle interval begins when the first trap arrives at the throttle. All traps within the throttle threshold value are processed, and traps exceeding the threshold value are queued. The maximum size of all trap queues (the throttle queue and the destination queue) is 40,000 traps. The maximum size of any one queue is 20,000 traps. When a trap is added to the throttle queue, or if the throttle queue has exceeded the maximum size, the trap is moved to the top of the destination queue. Further attempts to send the trap from the destination queue are stopped for a 30-second period, after which the destination queue restarts sending the traps.

NOTE: For the Juniper Networks EX Series Ethernet Switch, the maximum size of all trap queues (the throttle queue and the destination queue) is 1,000 traps. The maximum size for any one queue on the EX Series is 500 traps.

I did not see a trap when I had a syslog entry with a critical severity. Is this normal? Can it be changed?

Not every syslog entry with critical severity is a trap. However, you can convert any syslog entry to a trap using the `event-options` statement.

The following example shows how to configure a `jnxsyslogTrap` whenever an `rpdl_dp_nbrdown` syslog entry message error occurs.

```
user@host> show event-options
policy snmptrap {
  events rpdl_dp_nbrdown;
  then {
    raise-trap;
  }
}
```

Are SNMP traps compliant with the Alarm Reporting Function (X.733) on the Junos OS?

No, SNMP traps on the Junos OS are not X.733 compliant.

Can I set up filters for traps or informs?

Traps and informs can be filtered based on the trap category and the object identifier. You can specify categories of traps to receive per host by using the `categories` statement at the `[edit snmp trap-group trap-group]` hierarchy level. Use this option when you want to monitor only specific modules of the Junos OS.

The following example shows a sample configuration for receiving only `link`, `vrp-events`, `services`, and `otn-alarms` traps:

```
[edit snmp]
trap-group jnpr {
  categories {
    link;
    vrp-events;
    services;
    otn-alarms;
  }
```
The Junos OS also has a more advanced filter option (\texttt{notify-filter}) for filtering specific traps or a group of traps based on their object identifiers.

The SNMPv3 configuration also supports filtering of SNMPv1 and SNMPv2 traps and excluding Juniper Networks enterprise-specific configuration management traps, as shown in the following configuration example:

```
[edit snmp]
v3 {
  vasm {
    security-to-group {
      security-model v2c {
        security-name sn_v2c_trap {
          group gr_v2c_trap;
        }
      }
    }
    access {
      group gr_v2c_trap {
        default-context-prefix {
          security-model v2c {
            security-level none {
              read-view all;
              notify-view all;
            }
          }
        }
      }
    }
  }
  target-address TA_v2c_trap {
    address 10.209.196.166;
    port 9001;
    tag-list tg1;
    target-parameters TP_v2c_trap;
  }
  target-parameters TP_v2c_trap {
    parameters {
      message-processing-model v2c;
      security-model v2c;
      security-level none;
      security-name sn_v2c_trap;
    }
    notify-filter nf1;
  }
  notify v2c_notify {
    type trap;
    tag tg1;
  }
  notify-filter nf1 {
    oid 1.3.6.1.4.1.2636.4.5 exclude;
  }
```
Can I simulate traps on a device?

Yes, you can use the `request snmp spoof-trap trap name` command for simulating a trap to the NMS that normally receives your device’s traps. You can also add required values using the `variable-bindings` parameter.

The following example shows how to simulate a trap to the local NMS using variable bindings:

```
user@host> request snmp spoof-trap linkDown variable-bindings "ifIndex[116]=116, ifAdminStatus[116]=1, ifOperStatus[116]=2, ifName[116]=ge-1/0/1"
```

How do I generate a warm start SNMPv1 trap?

When the SNMP process is restarted under normal conditions, a warm start trap is generated if the system up time is more than 5 minutes. If the system up time is less than 5 minutes, a cold start trap is generated.

The NMS sees only the MIB OIDs and numbers, but not the names of the SNMP traps. Why?

Before the NMS can recognize the SNMP trap details, such as the names of the traps, it must first compile and understand the MIBs and then parse the MIB OIDs.

In the Junos OS, how can I determine to which category a trap belongs?

For a list of common traps and their categories, see “Enterprise-Specific SNMP Traps Supported by Junos OS” on page 68.

Can I configure a trap to include the source IP address?

Yes, you can configure the `source-address`, `routing-instance`, or `logical-instance` name for the source IP address using the `trap-options` command:

```
user@host> show snmp trap-options
source-address 10.1.1.1;
```

Can I create a custom trap?

Yes, you can use the `jnxEventTrap` event script to create customized traps as needed.

In the following example, a Junos OS operations (op) script is triggered when a `UI_COMMIT_NOT_CONFIRMED` event is received. The Junos OS op script matches the complete message of the event and generates an SNMP trap.
Example: Junos OS Op Script

```plaintext
version 1.0;

ns junos = "http://xml.juniper.net/junos/*/junos";
ns xnm = "http://xml.juniper.net/xnm/1.1/xnm";
ns jcs = "http://xml.juniper.net/junos/commit-scripts/1.0";

param $event;
param $message;

match / {

/*
* trapm utility wants the following characters in the value to be escaped
* '[', ']', ' ', '=', and ','
*/
var $event-escaped = {
call escape-string($text = $event, $vec = '[] =,');
}

var $message-escaped = {
call escape-string($text = $message, $vec = '[] =,');
}

<op-script-results> {
var $rpc = <request-snmp-spoof-trap> {
<trap> "jnxEventTrap";
<variable-bindings> "jnxEventTrapDescr[0] = 'Event-Trap' , "
_ "jnxEventAvAttribute[1] = 'event' , "
_ "jnxEventAvValue[1] = " _ $event-escaped _ " , "
_ "jnxEventAvAttribute[2] = 'message' , "
_ "jnxEventAvValue[1] = " _ $message-escaped _ " ;
}

var $res = jcs:invoke($rpc);
}
}

template escape-string ($text, $vec) {

if (jcs:empty($vec)) {
  expr $text;
} else {
  var $index = 1;
  var $from = substring($vec, $index, 1);
  var $changed-value = {
    call replace-string($text, $from) {
      with $to = {
        expr "\\\";
        expr $from;
      }

    }

    call escape-string($text = $changed-value, $vec = substring($vec, $index + 1));
  }
}
}
```
template replace-string ($text, $from, $to) {
 if (contains($text, $from)) {
 var $before = substring-before($text, $from);
 var $after = substring-after($text, $from);
 var $prefix = $before _ $to;
 expr $before;
 expr $to;
 call replace-string($text = $after, $from, $to);
 } else {
 expr $text;
 }
}

After creating your customized trap, you must configure a policy on your device to tell the device what actions to take after it receives the trap.

Here is an example of a configured policy under the [edit event-options] hierarchy:

```
[edit event-options]
user@host> show
policy trap-on-event {
    events UI_COMMIT_NOT_CONFIRMED;
    attributes-match {
        UI_COMMIT_NOT_CONFIRMED.message matches complete;
    }
    then {
        event-script ev-syslog-trap.junos-op {
            arguments {
                event UI_COMMIT_NOT_CONFIRMED;
                message "[${$.message}];"
            }
        }
    }
}
```

Can I disable link up and link down traps on interfaces?

Yes, link up and link down traps can be disabled in the interface configuration. To disable the traps, use the no-traps statement at the [edit interfaces interface-name unit logical-unit-number] and [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number] hierarchies for physical and logical interfaces.

```
(traps | no-traps);
```

I see the link up traps on logical interfaces, but I do not see the link down traps. Is this normal behavior?

For Ethernet and ATM types of interfaces, Junos OS does not send link down traps for a logical interface if the physical interface is down to prevent flooding alarms for the same root cause. However, when the physical interface and logical interfaces come back up,
traps are sent indicating link up. This is because the physical interface coming up does
not necessarily mean the logical interfaces are also coming up.

For SONET types of interfaces with PPP encapsulation, Junos OS does send link down
traps for a logical interface if the physical interface is down. When the physical interface
and logical interfaces come back up, traps are sent for both the physical and logical
interfaces indicating link up.

For SONET types of interfaces with HDLC encapsulation, Junos OS does not send link
down traps for a logical interface if the physical interface is down. When the physical interface
and logical interfaces come back up, traps are sent for both the physical and logical
interfaces indicating link up.

For channelize interfaces with PPP encapsulation, Junos OS does send link down traps
for a logical interface if the physical interface is down. When the physical interface and
logical interfaces come back up, traps are sent for both the physical and logical interfaces
indicating link up.

For channelize interfaces with HDLC encapsulation, Junos OS does not send link down
traps for a logical interface if the physical interface is down. When the physical interface
and logical interfaces come back up, traps are sent for both the physical and logical
interfaces indicating link up.

Related
Documentation

Junos OS Dual Routing Engine Configuration FAQs

This section presents frequently asked questions and answers related to the configuration
of dual Routing Engines.

The SNMP configuration should be identical between the Routing Engines when
configuring for continued communication. However, we recommend having separate
Routing Engine IDs configured for each Routing Engine, when using SNMPv3.

In my system, the MIB object snmpEngineBoots is not in sync between two Routing
Engines in a dual Routing Engine device. Is this normal behavior?

Yes. This is the normal behavior. Each Routing Engine runs its own SNMP process (snmpd)
agent, allowing each Routing Engine to maintain its own engine boots.

Is there a way to identify that an address belongs to RE0, RE1, or the master Routing
Engine management interface (fxp0) by looking at an SNMP walk?

No. When you do an SNMP walk on the device, it only displays the master Routing Engine
management interface address.

What is the best way to tell if the current IP address belongs to fxp0 or a Routing
Engine, from a CLI session?
Routing Engines are mapped with the **fxp0** interface. This means that when you query RE0, the ifTable reports the **fxp0** interface address of RE0 only. Similarly, if you query RE1, the ifTable reports the **fxp0** interface address of RE1 only.

When there is a failover, the master hostname is changed since the hostname belongs to the Routing Engine. Is this correct?

Yes. You can configure the same hostname or different hostnames. Either would work.

If only the master IP address is configured (for example, 192.168.2.5), and the **sysDescr.0** object has the same string configured on both of the Routing Engines, then even after a switchover, the **sysDescr.0** object returns the same value. The following sample shows the results you get by using the `snmpget` command:

```
bng-junos-poo102:/c/svivek/PR_BRANCH/src> snmpget -c jnpr -v2c 192.168.2.5 sysDescr.0 system.sysDescr.0 = foo
```

SNMP Support for Routing Instances FAQs

This section presents frequently asked questions and answers related to how SNMP supports routing instances.

Can the SNMP manager access data for routing instances?

Yes, the Junos OS enables SNMP managers for all routing instances to request and manage SNMP data related to the corresponding routing instances and logical system networks.

Two different routing instance behaviors can occur, depending on where the clients originate:

- Clients from routing instances other than the default can access MIB objects and perform SNMP operations only on the logical system networks to which they belong.
- Clients from the default routing instance can access information related to all routing instances and logical system networks.

Routing instances are identified by either the context field in SNMPv3 requests or encoded in the community string in SNMPv1 or SNMPv2c requests.

When encoded in a community string, the routing instance name appears first and is separated from the actual community string by the `@` character.

To avoid conflicts with valid community strings that contain the `@` character, the community is parsed only if typical community string processing fails. For example, if a routing instance named **RI** is configured, an SNMP request with **RI@public** is processed within the context of the **RI** routing instance. Access control (including views, source address restrictions, and access privileges) is applied according to the actual community string (the set of data after the `@` character—in this case **public**). However, if the community string **RI@public** is configured, the PDU is processed according to that community, and the embedded routing instance name is ignored.

Logical systems perform a subset of the actions of a physical router and have their own unique routing tables, interfaces, policies, and routing instances. When a routing instance
is defined within a logical system, the logical system name must be encoded along with the routing instance using a slash (/) to separate the two. For example, if the routing instance RI is configured within the logical system LS, that routing instance must be encoded within a community string as LS/RI@public. When a routing instance is configured outside a logical system (within the default logical system), no logical system name, or / character, is needed.

Additionally, when a logical system is created, a default routing instance named default is always created within the logical system. This name should be used when querying data for that routing instance, for example LS/default@public. For SNMPv3 requests, the name logical system/routing instance should be identified directly in the context field.

Can I access a list of all routing instances on a device?

Yes, you can access a list of all the routing instances on a device using the vacmContextName object in the SNMP-VIEW-BASED-ACM MIB. In SNMP, each routing instance becomes a VACM context; this is why the routing instances appear in the vacmContextName object.

Can I access a default routing instance from a client in another logical router or routing instance?

No, the SNMP agent can only access data of the logical router to which it is connected.

Related Documentation

SNMP Counters FAQs

This section presents frequently asked questions and answers related to SNMP counters.

Which MIB should I use for interface counters?

Interface management over SNMP is based on two tables: the ifTable and its extension the ifXTable. Both are described in RFC 1213, Management Information Base for Network Management of TCP/IP-based Internets: MIB-II and RFC 2233, The Interfaces Group MIB using SMIv2.

Interfaces can have several layers, depending on the media, and each sublayer is represented by a separate row in the table. The relationship between the higher layer and lower layers is described in the ifStackTable.

The ifTable defines 32-bit counters for inbound and outbound octets (ifInOctets/ifOutOctets), packets (ifInUcastPkts/ifOutUcastPkts, ifInNUcastPkts/ifOutNUcastPkts), errors, and discards.

The ifXTable provides similar 64-bit counters, also called high capacity (HC) counters, for inbound and outbound octets (ifHCInOctets/ifHCOutOctets) and inbound packets (ifHCInUcastPkts).

When should 64-bit counters be used?
It is always good to use 64-bit counters because they contain statistics for both low and high capacity components.

Are the SNMP counters ifInOctets and ifOutOctets the same as the command reference show interfaces statistics in and out counters?

Yes, these are the same, but only if SNMP is enabled when the router boots up. If you power on a Juniper Networks device and then enable SNMP, the SNMP counters start from 0. SNMP counters do not automatically receive their statistics from the `show` command output. Similarly, using the `clear statistics` command does not clear the statistics that the SNMP counters collected, which can cause a discrepancy in the data that is seen by both processes.

Do the SNMP counters ifInOctets and ifOutOctets include the framing overhead for Point-to-Point Protocol (PPP) and High-Level Data Link Control (HDLC)?

Yes.
PART 3

Remote Monitoring (RMON) with SNMP

- RMON Overview on page 245
- Configuring RMON Alarms and Events on page 249
- Monitoring RMON Alarms and Events on page 257
- Using RMON to Monitor Network Service Quality on page 265
Understanding RMON Alarms

Supported Platforms
ACX Series, M Series, MX Series, PTX Series, SRX Series, T Series

An RMON alarm identifies:

- A specific MIB object that is monitored.
- The frequency of sampling.
- The method of sampling.
- The thresholds against which the monitored values are compared.

An RMON alarm can also identify a specific eventTable entry to be triggered when a threshold is crossed.

Configuration and operational values are defined in alarmTable in RFC 2819. Additional operational values are defined in Juniper Networks enterprise-specific extensions to alarmTable (jnxRmonAlarmTable).

This topic covers the following sections:

- alarmTable on page 245
- jnxRmonAlarmTable on page 246

alarmTable

alarmTable in the RMON MIB allows you to monitor and poll the following:

- alarmIndex—The index value for alarmTable that identifies a specific entry.
- alarmInterval—The interval, in seconds, over which data is sampled and compared with the rising and falling thresholds.
- alarmVariable—The MIB variable that is monitored by the alarm entry.
- alarmSampleType—The method of sampling the selected variable and calculating the value to be compared against the thresholds.
• **alarmValue**—The value of the variable during the last sampling period. This value is compared with the rising and falling thresholds.

• **alarmStartupAlarm**—The alarm sent when the entry is first activated.

• **alarmRisingThreshold**—The upper threshold for the sampled variable.

• **alarmFallingThreshold**—The lower threshold for the sampled variable.

• **alarmRisingEventIndex**—The *eventTable* entry used when a rising threshold is crossed.

• **alarmFallingEventIndex**—The *eventTable* entry used when a falling threshold is crossed.

• **alarmStatus**—Method for adding and removing entries from the table. It can also be used to change the state of an entry to allow modifications.

NOTE: If this object is not set to **valid**, the associated event alarm does not take any action.

jnxRmonAlarmTable

The *jnxRmonAlarmTable* is a Juniper Networks enterprise-specific extension to *alarmTable*. It provides additional operational information and includes the following objects:

• **jnxRmonAlarmGetFailCnt**—The number of times the internal **Get** request for the variable monitored by this entry has failed.

• **jnxRmonAlarmGetFailTime**—The value of **sysUpTime** when an internal **Get** request for the variable monitored by this entry last failed.

• **jnxRmonAlarmGetFailReason**—The reason an internal **Get** request for the variable monitored by this entry last failed.

• **jnxRmonAlarmGetOkTime**—The value of **sysUpTime** when an internal **Get** request for the variable monitored by this entry succeeded and the entry left the **getFailure** state.

• **jnxRmonAlarmState**—The current state of this RMON alarm entry.

For more information about the Juniper Networks enterprise-specific extensions to the RMON Events and Alarms MIB, see “RMON Events and Alarms MIB” in the *Network Management Administration Guide*.

Related Documentation

- Understanding RMON Events on page 247
- Configuring an RMON Alarm Entry and Its Attributes on page 250
- Using *alarmTable* to Monitor MIB Objects on page 257
Understanding RMON Events

Supported Platforms
ACX Series, M Series, MX Series, SRX Series, T Series

An RMON event allows you to log the crossing of thresholds of other MIB objects. It is defined in `eventTable` for the RMON MIB.

This section covers the following topics:

- `eventTable` on page 247

eventTable

`eventTable` contains the following objects:

- `eventIndex`—An index that uniquely identifies an entry in `eventTable`. Each entry defines one event that is generated when the appropriate conditions occur.

- `eventDescription`—A comment describing the event entry.

- `eventType`—Type of notification that the probe makes about this event.

- `eventCommunity`—Trap group used if an SNMP trap is to be sent. If `eventCommunity` is not configured, a trap is sent to each trap group configured with the `rmon-alarm` category.

- `eventLastTimeSent`—Value of `sysUpTime` when this event entry last generated an event.

- `eventOwner`—Any text string specified by the creating management application or the command-line interface (CLI). Typically, it is used to identify a network manager (or application) and can be used for fine access control between participating management applications.

- `eventStatus`—Status of this event entry.

NOTE: If this object is not set to `valid`, no action is taken by the associated event entry. When this object is set to `valid`, all previous log entries associated with this entry (if any) are deleted.

Related Documentation

- Understanding RMON Alarms on page 245
- Configuring an RMON Event Entry and Its Attributes on page 254
Understanding RMON Alarms and Events Configuration

Supported Platforms
ACX Series, M Series, MX Series, SRX Series, T Series

Junos OS supports monitoring routers from remote devices. These values are measured against thresholds and trigger events when the thresholds are crossed. You configure remote monitoring (RMON) alarm and event entries to monitor the value of a MIB object.

To configure RMON alarm and event entries, you include statements at the [edit snmp] hierarchy level of the configuration:

```
[edit snmp]
mon {
  alarm index {
    description text-description;
    falling-event-index index;
    falling-threshold integer;
    falling-threshold-interval seconds;
    interval seconds;
    rising-event-index index;
    rising-threshold integer;
    request-type (get-next-request | get-request | walk-request);
    sample-type (absolute-value | delta-value);
    startup-alarm (falling-alarm | rising-alarm | rising-or-falling-alarm);
    syslog-subtag syslog-subtag;
    variable oid-variable;
  }
  event index {
    community community-name;
    description description;
    type type;
  }
}
```
Minimum RMON Alarm and Event Entry Configuration

Supported Platforms ACX Series, M Series, MX Series, PTX Series, T Series

To enable RMON on the router, you must configure an alarm entry and an event entry. To do this, include the following statements at the [edit snmp rmon] hierarchy level:

```
[edit snmp rmon]
alarm index {
  rising-event-index index;
  rising-threshold integer;
  sample-type type;
  variable oid-variable;
}

```

Related Documentation • Understanding RMON Alarms and Events Configuration on page 249
• Configuring an RMON Alarm Entry and Its Attributes on page 250
• Configuring an RMON Event Entry and Its Attributes on page 254

Configuring an RMON Alarm Entry and Its Attributes

Supported Platforms M Series, MX Series, PTX Series, SRX Series, T Series

An alarm entry monitors the value of a MIB variable. You can configure how often the value is sampled, the type of sampling to perform, and what event to trigger if a threshold is crossed.

This section discusses the following topics:

• Configuring the Alarm Entry on page 251
• Configuring the Description on page 251
• Configuring the Falling Event Index or Rising Event Index on page 251
• Configuring the Falling Threshold or Rising Threshold on page 252
• Configuring the Interval on page 252
• Configuring the Falling Threshold Interval on page 252
• Configuring the Request Type on page 253
• Configuring the Sample Type on page 253
• Configuring the Startup Alarm on page 253
Configuring the Alarm Entry

An alarm entry monitors the value of a MIB variable. The rising-event-index, rising-threshold, sample-type, and variable statements are mandatory. All other statements are optional.

To configure the alarm entry, include the alarm statement and specify an index at the [edit snmp rmon] hierarchy level:

```
[edit snmp rmon]
alarm index {
    description description;
    falling-event-index index;
    falling-threshold integer;
    falling-threshold-interval seconds;
    interval seconds;
    rising-event-index index;
    rising-threshold integer;
    sample-type (absolute-value | delta-value);
    startup-alarm (falling-alarm | rising-alarm | rising-or-falling-alarm);
    variable oid-variable;
}
```

index is an integer that identifies an alarm or event entry.

Configuring the Description

The description is a text string that identifies the alarm entry.

To configure the description, include the description statement and a description of the alarm entry at the [edit snmp rmon alarm index] hierarchy level:

```
[edit snmp rmon alarm index]
description description;
```

Configuring the Falling Event Index or Rising Event Index

The falling event index identifies the event entry that is triggered when a falling threshold is crossed. The rising event index identifies the event entry that is triggered when a rising threshold is crossed.

To configure the falling event index or rising event index, include the falling-event-index or rising-event-index statement and specify an index at the [edit snmp rmon alarm index] hierarchy level:

```
[edit snmp rmon alarm index]
falling-event-index index;
rising-event-index index;
```

index can be from 0 through 65,535. The default for both the falling and rising event index is 0.
Configuring the Falling Threshold or Rising Threshold

The falling threshold is the lower threshold for the monitored variable. When the current sampled value is less than or equal to this threshold, and the value at the last sampling interval is greater than this threshold, a single event is generated. A single event is also generated if the first sample after this entry becomes valid is less than or equal to this threshold, and the associated startup alarm is equal to falling-alarm or rising-or-falling-alarm. After a falling event is generated, another falling event cannot be generated until the sampled value rises above this threshold and reaches the rising threshold. You must specify the falling threshold as an integer. Its default is 20 percent less than the rising threshold.

By default, the rising threshold is 0. The rising threshold is the upper threshold for the monitored variable. When the current sampled value is greater than or equal to this threshold, and the value at the last sampling interval is less than this threshold, a single event is generated. A single event is also generated if the first sample after this entry becomes valid is greater than or equal to this threshold, and the associated startup-alarm is equal to rising-alarm or rising-or-falling-alarm. After a rising event is generated, another rising event cannot be generated until the sampled value falls below this threshold and reaches the falling threshold. You must specify the rising threshold as an integer.

To configure the falling threshold or rising threshold, include the falling-threshold or rising-threshold statement at the [edit snmp rmon alarm index] hierarchy level:

```
[edit snmp rmon alarm index]
falling-threshold integer;  
rising-threshold integer;
```

The integer can be a value from -2,147,483,647 through 2,147,483,647.

Configuring the Interval

The interval represents the period of time, in seconds, over which the monitored variable is sampled and compared with the rising and falling thresholds.

To configure the interval, include the interval statement and specify the number of seconds at the [edit snmp rmon alarm index] hierarchy level:

```
[edit snmp rmon alarm index]
interval seconds;
```

The seconds can be a value from 1 through 2,147,483,647. The default is 60 seconds.

Configuring the Falling Threshold Interval

The falling threshold interval represents the interval between samples when the rising threshold is crossed. Once the alarm crosses the falling threshold, the regular sampling interval is used.

NOTE: You cannot configure the falling threshold interval for alarms that have the request type set to walk-request.
To configure the falling threshold interval, include the `falling-threshold interval` statement at the `[edit snmp rmon alarm index]` hierarchy level and specify the number of seconds:

```
[edit snmp rmon alarm index]
falling-threshold-interval seconds;
```

seconds can be a value from 1 through 2,147,483,647. The default is 60 seconds.

Configuring the Request Type

By default an RMON alarm can monitor only one object instance (as specified in the configuration). You can configure a `request-type` statement to extend the scope of the RMON alarm to include all object instances belonging to a MIB branch or to include the next object instance after the instance specified in the configuration.

To configure the request type, include the `request-type` statement at the `[edit snmp rmon alarm index]` hierarchy level and specify `get-next-request`, `get-request`, or `walk-request`:

```
[edit snmp rmon alarm index]
request-type (get-next-request | get-request | walk-request);
```

walk extends the RMON alarm configuration to all object instances belonging to a MIB branch. *next* extends the RMON alarm configuration to include the next object instance after the instance specified in the configuration.

Configuring the Sample Type

The sample type identifies the method of sampling the selected variable and calculating the value to be compared against the thresholds. If the value of this object is `absolute-value`, the value of the selected variable is compared directly with the thresholds at the end of the sampling interval. If the value of this object is `delta-value`, the value of the selected variable at the last sample is subtracted from the current value, and the difference is compared with the thresholds.

To configure the sample type, include the `sample-type` statement and specify the type of sample at the `[edit snmp rmon alarm index]` hierarchy level:

```
[edit snmp rmon alarm index]
sample-type (absolute-value | delta-value);
```

- *absolute-value*—Actual value of the selected variable is compared against the thresholds.
- *delta-value*—Difference between samples of the selected variable is compared against the thresholds.

Configuring the Startup Alarm

The startup alarm identifies the type of alarm that can be sent when this entry is first activated. You can specify it as `falling-alarm`, `rising-alarm`, or `rising-or-falling-alarm`.

To configure the startup alarm, include the `startup-alarm` statement and specify the type of alarm at the `[edit snmp rmon alarm index]` hierarchy level:

```
[edit snmp rmon alarm index]
startup-alarm (falling-alarm | rising-alarm | rising-or-falling-alarm);
```
• **falling-alarm**—Generated if the first sample after the alarm entry becomes active is less than or equal to the falling threshold.

• **rising-alarm**—Generated if the first sample after the alarm entry becomes active is greater than or equal to the rising threshold.

• **rising-or-falling-alarm**—Generated if the first sample after the alarm entry becomes active satisfies either of the corresponding thresholds.

The default is **rising-or-falling-alarm**.

Configuring the System Log Tag

The **syslog-subtag** statement specifies the tag to be added to the system log message. You can specify a string of not more than 80 uppercase characters as the system log tag.

To configure the system log tag, include the **syslog-subtag** statement at the `[edit snmp rmon alarm index]` hierarchy level:

```
[edit snmp rmon alarm index]
syslog-subtag syslog-subtag;
```

Configuring the Variable

The variable identifies the MIB object that is being monitored.

To configure the variable, include the **variable** statement and specify the object identifier or object name at the `[edit snmp rmon alarm index]` hierarchy level:

```
[edit snmp rmon alarm index]
variable oid-variable;
```

oid-variable is a dotted decimal (for example, `1.3.6.1.2.1.2.1.2.10.1`) or MIB object name (for example, `ifInOctets.1`).

Configuring an RMON Event Entry and Its Attributes

Supported Platforms

M Series, MX Series, PTX Series, SRX Series, T Series

An event entry generates a notification for an alarm entry when its rising or falling threshold is crossed. You can configure the type of notification that is generated. To configure the event entry, include the **event** statement at the `[edit snmp rmon]` hierarchy level. All statements except the **event** statement are optional.

```
[edit snmp rmon]
event index {
    community community-name;
    description description;
    type type;
}
```

index identifies an entry event.

community-name is the trap group that is used when generating a trap. If that trap group has the **rmon-alarm** trap category configured, a trap is sent to all the targets configured for that trap group. The community string in the trap matches the name of the trap group.
If nothing is configured, all the trap groups are examined, and traps are sent using each group with the `rmon-alarm` category set.

description is a text string that identifies the entry.

The **type** variable of an event entry specifies where the event is to be logged. You can specify the type as one of the following:

- **log**—Adds the event entry to the `logTable`.
- **log-and-trap**—Sends an SNMP trap and creates a log entry.
- **none**—Sends no notification.
- **snmptrap**—Sends an SNMP trap.

The default for the event entry type is **log-and-trap**.

Related Documentation

- Understanding RMON Alarms and Events Configuration on page 249
- Understanding RMON Alarms on page 245
- Understanding RMON Events on page 247
- Configuring an RMON Alarm Entry and Its Attributes on page 250
- Example: Configuring an RMON Alarm and Event Entry on page 255

Example: Configuring an RMON Alarm and Event Entry

Supported Platforms
M Series, MX Series, PTX Series, SRX Series, T Series

Configure an RMON alarm and event entry:

```plaintext
[edit snmp]
rmont {
  alarm 100 {
    description "input traffic on fxp0";
    falling-event-index 100;
    falling-threshold 10000;
    interval 60;
    rising-event-index 100;
    rising-threshold 100000;
    sample-type delta-value;
    startup-alarm rising-or-falling-alarm;
    variable ifInOctets.1;
  }
  event 100 {
    community bedrock;
    description "emergency events";
    type log-and-trap;
  }
}
```
Related Documentation

- Understanding RMON Alarms and Events Configuration on page 249
- Configuring an RMON Alarm Entry and Its Attributes on page 250
- Configuring an RMON Event Entry and Its Attributes on page 254
CHAPTER 14

Monitoring RMON Alarms and Events

- Using alarmTable to Monitor MIB Objects on page 257
- Using eventTable to Log Alarms on page 260

Using alarmTable to Monitor MIB Objects

Supported Platforms: M Series, MX Series, T Series

To use alarmTable to monitor a MIB object, perform the following tasks:

- Creating an Alarm Entry on page 257
- Configuring the Alarm MIB Objects on page 257
- Activating a New Row in alarmTable on page 260
- Modifying an Active Row in alarmTable on page 260
- Deactivating a Row in alarmTable on page 260

Creating an Alarm Entry

To create an alarm entry, first create a new row in alarmTable using the alarmStatus object. For example, create alarm #1 using the UCD command-line utilities:

```
snmpset -Os -v2c router community alarmStatus.1 i createRequest
```

Configuring the Alarm MIB Objects

Once you have created the new row in alarmTable, configure the following Alarm MIB objects:

- alarmInterval on page 258
- alarmVariable on page 258
- alarmSampleType on page 258
- alarmValue on page 258

NOTE: Other than alarmStatus, you cannot modify any of the objects in the entry if the associated alarmStatus object is set to valid.
The interval, in seconds, over which data is sampled and compared with the rising and falling thresholds. For example, to set `alarmInterval` for alarm #1 to 30 seconds, use the following SNMP `Set` request:

```
snmpset -Os -v2c router community alarmInterval.1 i 30
```

The object identifier of the variable to be sampled. During a `Set` request, if the supplied variable name is not available in the selected MIB view, a `badValue` error is returned. If at any time the variable name of an established `alarmEntry` is no longer available in the selected MIB view, the probe changes the status of `alarmVariable` to invalid. For example, to identify `ifInOctets.61` as the variable to be monitored, use the following SNMP `Set` request:

```
snmpset -Os -v2c router community alarmVariable.1 o .1.3.6.1.2.1.2.2.1.10.61
```

The method of sampling the selected variable and calculating the value to be compared against the thresholds. If the value of this object is `absoluteValue`, the value of the selected variable is compared directly with the thresholds at the end of the sampling interval. If the value of this object is `deltaValue`, the value of the selected variable at the last sample is subtracted from the current value, and the difference is compared with the thresholds. For example, to set `alarmSampleType` for alarm #1 to `deltaValue`, use the following SNMP `Set` request:

```
snmpset -Os -v2c router community alarmSampleType.1 i deltaValue
```

The value of the variable during the last sampling period. This value is compared with the rising and falling thresholds. If the sample type is `deltaValue`, this value equals the difference between the samples at the beginning and end of the period. If the sample type is `absoluteValue`, this value equals the sampled value at the end of the period.

An alarm that is sent when this entry is first set to valid. If the first sample after this entry becomes valid is greater than or equal to `risingThreshold`, and `alarmStartupAlarm` is equal to `risingAlarm` or `risingOrFallingAlarm`, then a single rising alarm is generated. If the first
sample after this entry becomes valid is less than or equal to fallingThreshold and alarmStartupAlarm is equal to fallingAlarm or risingOrFallingAlarm, then a single falling alarm is generated. For example, to set alarmStartupAlarm for alarm #1 to risingOrFallingAlarm, use the following SNMP Set request:

```
snmpset -Os -v2c router community alarmStartupAlarm.1 i risingOrFallingAlarm
```

alarmRisingThreshold

A threshold for the sampled variable. When the current sampled value is greater than or equal to this threshold, and the value at the last sampling interval is less than this threshold, a single event is generated. A single event is also generated if the first sample after this entry becomes valid is greater than or equal to this threshold, and the associated alarmStartupAlarm is equal to risingAlarm or risingOrFallingAlarm. After a rising event is generated, another rising event cannot be generated until the sampled value falls below this threshold and reaches alarmFallingThreshold. For example, to set alarmRisingThreshold for alarm #1 to 100000, use the following SNMP Set request:

```
snmpset -Os -v2c router community alarmRisingThreshold.1 i 100000
```

alarmFallingThreshold

A threshold for the sampled variable. When the current sampled value is less than or equal to this threshold, and the value at the last sampling interval is greater than this threshold, a single event is generated. A single event is also generated if the first sample after this entry becomes valid is less than or equal to this threshold, and the associated alarmStartupAlarm is equal to fallingAlarm or risingOrFallingAlarm. After a falling event is generated, another falling event cannot be generated until the sampled value rises above this threshold and reaches alarmRisingThreshold. For example, to set alarmFallingThreshold for alarm #1 to 10000, use the following SNMP Set request:

```
snmpset -Os -v2c router community alarmFallingThreshold.1 i 10000
```

alarmOwner

Any text string specified by the creating management application or the command-line interface (CLI). Typically, it is used to identify a network manager (or application) and can be used for fine access control between participating management applications.

alarmRisingEventIndex

The index of the eventEntry object that is used when a rising threshold is crossed. If there is no corresponding entry in eventTable, then no association exists. If this value is zero, no associated event is generated because zero is not a valid event index. For example, to set alarmRisingEventIndex for alarm #1 to 10, use the following SNMP Set request:

```
snmpset -Os -v2c router community alarmRisingEventIndex.1 i 10
```
alarmFallingEventIndex

The index of the eventEntry object that is used when a falling threshold is crossed. If there is no corresponding entry in eventTable, then no association exists. If this value is zero, no associated event is generated because zero is not a valid event index. For example, to set alarmFallingEventIndex for alarm #1 to 10, use the following SNMP Set request:

```
snmpset -Os -v2c router community alarmFallingEventIndex.1 i 10
```

Activating a New Row in alarmTable

To activate a new row in alarmTable, set alarmStatus to valid using an SNMP Set request:

```
snmpset -Os -v2c router community alarmStatus.1 i valid
```

Modifying an Active Row in alarmTable

To modify an active row, first set alarmStatus to underCreation using an SNMP Set request:

```
snmpset -Os -v2c router community alarmStatus.1 i underCreation
```

Then change the row contents using an SNMP Set request:

```
snmpset -Os -v2c router community alarmFallingThreshold.1 i 1000
```

Finally, activate the row by setting alarmStatus to valid using an SNMP Set request:

```
snmpset -Os -v2c router community alarmStatus.1 i valid
```

Deactivating a Row in alarmTable

To deactivate a row in alarmTable, set alarmStatus to invalid using an SNMP Set request:

```
snmpset -Os -v2c router community alarmStatus.1 i invalid
```

Related Documentation

- Understanding RMON Alarms on page 245
- Understanding RMON Events on page 247
- Configuring an RMON Alarm Entry and Its Attributes on page 250

Using eventTable to Log Alarms

Supported Platforms

ACX Series, M Series, MX Series, PTX Series, T Series

To use eventTable to log alarms, perform the following tasks:

- Creating an Event Entry on page 261
- Configuring the MIB Objects on page 261
Creating an Event Entry

The RMON `eventTable` controls the generation of notifications from the router. Notifications can be logs (entries to `logTable` and `syslogs`) or SNMP traps. Each event entry can be configured to generate any combination of these notifications (or no notification). When an event specifies that an SNMP trap is to be generated, the trap group that is used when sending the trap is specified by the value of the associated `eventCommunity` object. Consequently, the community in the trap message will match the value specified by `eventCommunity`. If nothing is configured for `eventCommunity`, a trap is sent using each trap group that has the `rmon-alarm` category configured.

Configuring the MIB Objects

Once you have created the new row in `eventTable`, set the following objects:

- `eventType` on page 261
- `eventCommunity` on page 261
- `eventOwner` on page 262
- `eventDescription` on page 262

eventType

The type of notification that the router generates when the event is triggered.

This object can be set to the following values:

- `log`—Adds the event entry to `logTable`.
- `log-and-trap`—Sends an SNMP trap and creates a log entry.
- `none`—Sends no notification.
- `snmptrap`—Sends an SNMP trap.

For example, to set `eventType` for event #1 to `log-and-trap`, use the following SNMP Set request:

```
snmpset -Os -v2c router community eventType.1 i log-and-trap
```

eventCommunity

The trap group that is used when generating a trap (if `eventType` is configured to send traps). If that trap group has the `rmon-alarm` trap category configured, a trap is sent to all the targets configured for that trap group. The community string in the trap matches the name of the trap group (and hence, the value of `eventCommunity`). If nothing is
configured, traps are sent to each group with the rmon-alarm category set. For example, to set eventCommunity for event #1 to boy-elroy, use the following SNMP Set request:

```
snmpset -Os -v2c router community eventCommunity.1 s "boy-elroy"
```

NOTE: The eventCommunity object is optional. If you do not set this object, then the field is left blank.

eventOwner

Any text string specified by the creating management application or the command-line interface (CLI). Typically, it is used to identify a network manager (or application) and can be used for fine access control between participating management applications.

For example, to set eventOwner for event #1 to george jetson, use the following SNMP Set request:

```
snmpset -Os -v2c router community eventOwner.1 s "george jetson"
```

NOTE: The eventOwner object is optional. If you do not set this object, then the field is left blank.

eventDescription

Any text string specified by the creating management application or the command-line interface (CLI). The use of this string is application dependent.

For example, to set eventDescription for event #1 to spacely sprockets, use the following SNMP Set request:

```
snmpset -Os -v2c router community eventDescription.1 s "spacely sprockets"
```

NOTE: The eventDescription object is optional. If you do not set this object, then the field is left blank.

Activating a New Row in eventTable

To activate the new row in eventTable, set eventStatus to valid using an SNMP Set request such as:

```
snmpset -Os -v2c router community eventStatus.1 i valid
```
Deactivating a Row in eventTable

To deactivate a row in eventTable, set eventStatus to invalid using an SNMP Set request such as:

```
nmmpset -Os -v2c router community eventStatus.1 i invalid
```
CHAPTER 15

Using RMON to Monitor Network Service Quality

- Understanding RMON for Monitoring Service Quality on page 265
- Understanding Measurement Points, Key Performance Indicators, and Baseline Values on page 269
- Defining and Measuring Network Availability on page 270
- Measuring Health on page 276
- Measuring Performance on page 282

Understanding RMON for Monitoring Service Quality

Supported Platforms

ACX Series, M Series, MX Series, PTX Series, SRX Series, T Series

Health and performance monitoring can benefit from the remote monitoring of SNMP variables by the local SNMP agents running on each router. The SNMP agents compare MIB values against predefined thresholds and generate exception alarms without the need for polling by a central SNMP management platform. This is an effective mechanism for proactive management, as long as the thresholds have baselines determined and set correctly. For more information, see RFC 2819, *Remote Network Monitoring MIB.*

This topic includes the following sections:

- Setting Thresholds on page 265
- RMON Command-Line Interface on page 266
- RMON Event Table on page 267
- RMON Alarm Table on page 267
- Troubleshooting RMON on page 268

Setting Thresholds

By setting a rising and a falling threshold for a monitored variable, you can be alerted whenever the value of the variable falls outside of the allowable operational range. (See Figure 3 on page 266.)
Events are only generated when the threshold is first crossed in any one direction rather than after each sample period. For example, if a rising threshold crossing event is raised, no more threshold crossing events will occur until a corresponding falling event. This considerably reduces the quantity of alarms that are produced by the system, making it easier for operations staff to react when alarms do occur.

To configure remote monitoring, specify the following pieces of information:

- The variable to be monitored (by its SNMP object identifier)
- The length of time between each inspection
- A rising threshold
- A falling threshold
- A rising event
- A falling event

Before you can successfully configure remote monitoring, you should identify what variables need to be monitored and their allowable operational range. This requires some period of baselining to determine the allowable operational ranges. An initial baseline period of at least three months is not unusual when first identifying the operational ranges and defining thresholds, but baseline monitoring should continue over the life span of each monitored variable.

RMON Command-Line Interface

Junos OS provides two mechanisms you use to control the Remote Monitoring agent on the router: command-line interface (CLI) and SNMP. To configure an RMON entry using the CLI, include the following statements at the [edit snmp] hierarchy level:

```plaintext
rmon {
  alarm index {
    description;
    falling-event-index;
    falling-threshold;
    intervals;
    rising-event-index;
  }
```

[Copyright © 2017, Juniper Networks, Inc.]
If you do not have CLI access, you can configure remote monitoring using the SNMP Manager or management application, assuming SNMP access has been granted. (See Table 25 on page 267.) To configure RMON using SNMP, perform SNMP Set requests to the RMON event and alarm tables.

RMON Event Table

Set up an event for each type that you want to generate. For example, you could have two generic events, *rising* and *falling*, or many different events for each variable that is being monitored (for example, *temperature rising* event, *temperature falling* event, *firewall hit* event, *interface utilization* event, and so on). Once the events have been configured, you do not need to update them.

Table 25: RMON Event Table

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eventDescription</td>
<td>Text description of this event</td>
</tr>
<tr>
<td>eventType</td>
<td>Type of event (for example, log, trap, or log and trap)</td>
</tr>
<tr>
<td>eventCommunity</td>
<td>Trap group to which to send this event (as defined in the Junos OS configuration, which is not the same as the community)</td>
</tr>
<tr>
<td>eventOwner</td>
<td>Entity (for example, manager) that created this event</td>
</tr>
<tr>
<td>eventStatus</td>
<td>Status of this row (for example, valid, invalid, or createRequest)</td>
</tr>
</tbody>
</table>

RMON Alarm Table

The RMON alarm table stores the SNMP object identifiers (including their instances) of the variables that are being monitored, together with any rising and falling thresholds and their corresponding event indexes. To create an RMON request, specify the fields shown in Table 26 on page 267.

Table 26: RMON Alarm Table

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alarmStatus</td>
<td>Status of this row (for example, valid, invalid, or createRequest)</td>
</tr>
</tbody>
</table>
Table 26: RMON Alarm Table (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alarminterval</td>
<td>Sampling period (in seconds) of the monitored variable</td>
</tr>
<tr>
<td>alarmVariable</td>
<td>OID (and instance) of the variable to be monitored</td>
</tr>
<tr>
<td>alarmValue</td>
<td>Actual value of the sampled variable</td>
</tr>
<tr>
<td>alarmSampleType</td>
<td>Sample type (absolute or delta changes)</td>
</tr>
<tr>
<td>alarmStartupAlarm</td>
<td>Initial alarm (rising, falling, or either)</td>
</tr>
<tr>
<td>alarmRisingThreshold</td>
<td>Rising threshold against which to compare the value</td>
</tr>
<tr>
<td>alarmFallingThreshold</td>
<td>Falling threshold against which to compare the value</td>
</tr>
<tr>
<td>alarmRisingEventIndex</td>
<td>Index (row) of the rising event in the event table</td>
</tr>
<tr>
<td>alarmFallingEventIndex</td>
<td>Index (row) of the falling event in the event table</td>
</tr>
</tbody>
</table>

Both the **alarmStatus** and **eventStatus** fields are **entryStatus** primitives, as defined in RFC 2579, *Textual Conventions for SMiv2*.

Troubleshooting RMON

You troubleshoot the RMON agent, **rmopd**, that runs on the router by inspecting the contents of the Juniper Networks enterprise RMON MIB, **jnxRmon**, which provides the extensions listed in Table 27 on page 268 to the RFC 2819 **alarmTable**.

Table 27: jnxRmon Alarm Extensions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>jnxRmonAlarmGetFailCnt</td>
<td>Number of times the internal Get request for the variable failed</td>
</tr>
<tr>
<td>jnxRmonAlarmGetFailTime</td>
<td>Value of sysUpTime when the last failure occurred</td>
</tr>
<tr>
<td>jnxRmonAlarmGetFailReason</td>
<td>Reason why the Get request failed</td>
</tr>
<tr>
<td>jnxRmonAlarmGetOkTime</td>
<td>Value of sysUpTime when the variable moved out of failure state</td>
</tr>
<tr>
<td>jnxRmonAlarmState</td>
<td>Status of this alarm entry</td>
</tr>
</tbody>
</table>

Monitoring the extensions in this table provides clues as to why remote alarms may not behave as expected.

Related Documentation

- Understanding Measurement Points, Key Performance Indicators, and Baseline Values on page 269
Understanding Measurement Points, Key Performance Indicators, and Baseline Values

Supported Platforms
M Series, MX Series, PTX Series, SRX Series, T Series

This chapter topic provides guidelines for monitoring the service quality of an IP network. It describes how service providers and network administrators can use information provided by Juniper Networks routers to monitor network performance and capacity. You should have a thorough understanding of the SNMP and the associated MIB supported by Junos OS.

NOTE: For a good introduction to the process of monitoring an IP network, see RFC 2330, *Framework for IP Performance Metrics*.

This topic contains the following sections:

- Measurement Points on page 269
- Basic Key Performance Indicators on page 270
- Setting Baselines on page 270

Measurement Points

Defining the measurement points where metrics are measured is equally as important as defining the metrics themselves. This section describes measurement points within the context of this chapter and helps identify where measurements can be taken from a service provider network. It is important to understand exactly where a measurement point is. Measurement points are vital to understanding the implication of what the actual measurement means.

An IP network consists of a collection of routers connected by physical links that are all running the Internet Protocol. You can view the network as a collection of routers with an ingress (entry) point and an egress (exit) point. See Figure 4 on page 269.

- Network-centric measurements are taken at measurement points that most closely map to the ingress and egress points for the network itself. For example, to measure delay across the provider network from Site A to Site B, the measurement points should be the ingress point to the provider network at Site A and the egress point at Site B.
- Router-centric measurements are taken directly from the routers themselves, but be careful to ensure that the correct router subcomponents have been identified in advance.

Figure 4: Network Entry Points

![Figure 4: Network Entry Points](image-url)
NOTE: Figure 4 on page 269 does not show the client networks at customer premises, but they would be located on either side of the ingress and egress points. Although this chapter does not discuss how to measure network services as perceived by these client networks, you can use measurements taken for the service provider network as input into such calculations.

Basic Key Performance Indicators

For example, you could monitor a service provider network for three basic key performance indicators (KPIs):

- **Availability** measures the “reachability” of one measurement point from another measurement point at the network layer (for example, using ICMP ping). The underlying routing and transport infrastructure of the provider network will support the availability measurements, with failures highlighted as unavailability.

- **Health** measures the number and type of errors that are occurring on the provider network, and can consist of both router-centric and network-centric measurements, such as hardware failures or packet loss.

- **Performance** of the provider network measures how well it can support IP services (for example, in terms of delay or utilization).

Setting Baselines

How well is the provider network performing? We recommend an initial three-month period of monitoring to identify a network’s normal operational parameters. With this information, you can recognize exceptions and identify abnormal behavior. You should continue baseline monitoring for the lifetime of each measured metric. Over time, you must be able to recognize performance trends and growth patterns.

Within the context of this chapter, many of the metrics identified do not have an allowable operational range associated with them. In most cases, you cannot identify the allowable operational range until you have determined a baseline for the actual variable on a specific network.

Related Documentation

- Understanding RMON for Monitoring Service Quality on page 265
- Defining and Measuring Network Availability on page 270
- Measuring Health on page 276
- Measuring Performance on page 282

Defining and Measuring Network Availability

Supported Platforms

ACX Series, M Series, MX Series, PTX Series, T Series
This topic includes the following sections:

- Defining Network Availability on page 271
- Measuring Availability on page 273

Defining Network Availability

Availability of a service provider’s IP network can be thought of as the reachability between the regional points of presence (POP), as shown in Figure 5 on page 271.

Figure 5: Regional Points of Presence

With the example above, when you use a full mesh of measurement points, where every POP measures the availability to every other POP, you can calculate the total availability of the service provider’s network. This KPI can also be used to help monitor the service level of the network, and can be used by the service provider and its customers to determine if they are operating within the terms of their service-level agreement (SLA).

Where a POP may consist of multiple routers, take measurements to each router as shown in Figure 6 on page 271.

Figure 6: Measurements to Each Router

Measurements include:
Path availability—Availability of an egress interface B1 as seen from an ingress interface A1.

Router availability—Percentage of path availability of all measured paths terminating on the router.

POP availability—Percentage of router availability between any two regional POPs, A and B.

Network availability—Percentage of POP availability for all regional POPs in the service provider’s network.

To measure POP availability of POP A to POP B in Figure 6 on page 271, you must measure the following four paths:

Path A1 => B1
Path A1 => B2
Path A2 => B1
Path A2 => B2

Measuring availability from POP B to POP A would require a further four measurements, and so on.

A full mesh of availability measurements can generate significant management traffic. From the sample diagram above:

- Each POP has two co-located provider edge (PE) routers, each with 2xSTM1 interfaces, for a total of 18 PE routers and 36xSTM1 interfaces.
- There are six core provider (P) routers, four with 2xSTM4 and 3xSTM1 interfaces each, and two with 3xSTM4 and 3xSTM1 interfaces each.

This makes a total of 68 interfaces. A full mesh of paths between every interface is:

\[\frac{n \times (n-1)}{2} \] gives \[68 \times (68-1) \] / 2 = 2278 paths

To reduce management traffic on the service provider’s network, instead of generating a full mesh of interface availability tests (for example, from each interface to every other interface), you can measure from each router’s loopback address. This reduces the number of availability measurements required to a total of one for each router, or:

\[\frac{n \times (n-1)}{2} \] gives \[24 \times (24-1) \] / 2 = 276 measurements

This measures availability from each router to every other router.

Monitoring the SLA and the Required Bandwidth

A typical SLA between a service provider and a customer might state:

A Point of Presence is the connection of two back-to-back provider edge routers to separate core provider routers using different links for resilience. The system is considered to be unavailable when either an entire POP becomes unavailable or for the duration of a Priority 1 fault.

An SLA availability figure of 99.999 percent for a provider’s network would relate to a down time of approximately 5 minutes per year. Therefore, to measure this proactively,
you would have to take availability measurements at a granularity of less than one every five minutes. With a standard size of 64 bytes per ICMP ping request, one ping test per minute would generate 7680 bytes of traffic per hour per destination, including ping responses. A full mesh of ping tests to 276 destinations would generate 2,119,680 bytes per hour, which represents the following:

• On an OC3/STM1 link of 155.52 Mbps, a utilization of 1.362 percent
• On an OC12/STM4 link of 622.08 Mbps, a utilization of 0.340 percent

With a size of 1500 bytes per ICMP ping request, one ping test per minute would generate 180,000 bytes per hour per destination, including ping responses. A full mesh of ping tests to 276 destinations would generate 49,680,000 bytes per hour, which represents the following:

• On an OC3/STM1 link, 31.94 percent utilization
• On an OC12/STM4 link, 7.986 percent utilization

Each router can record the results for every destination tested. With one test per minute to each destination, a total of 1 x 60 x 24 x 276 = 397,440 tests per day would be performed and recorded by each router. All ping results are stored in the pingProbeHistoryTable (see RFC 2925) and can be retrieved by an SNMP performance reporting application (for example, service performance management software from InfoVista, Inc., or Concord Communications, Inc.) for post processing. This table has a maximum size of 4,294,967,295 rows, which is more than adequate.

Measuring Availability

There are two methods you can use to measure availability:

• Proactive—Availability is automatically measured as often as possible by an operational support system.
• Reactive—Availability is recorded by a Help desk when a fault is first reported by a user or a fault monitoring system.

This section discusses real-time performance monitoring as a proactive monitoring solution.

Real-Time Performance Monitoring

Juniper Networks provides a real-time performance monitoring (RPM) service to monitor real-time network performance. Use the J-Web Quick Configuration feature to configure real-time performance monitoring parameters used in real-time performance monitoring tests. (J-Web Quick Configuration is a browser-based GUI that runs on Juniper Networks routers. For more information, see the J-Web Interface User Guide.)

Configuring Real-Time Performance Monitoring

Some of the most common options you can configure for real-time performance monitoring tests are shown in Table 28 on page 274.
Table 28: Real-Time Performance Monitoring Configuration Options

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Request Information</td>
<td></td>
</tr>
<tr>
<td>Probe Type</td>
<td>Type of probe to send as part of the test. Probe types can be:</td>
</tr>
<tr>
<td></td>
<td>• http-get</td>
</tr>
<tr>
<td></td>
<td>• http-get-metadata</td>
</tr>
<tr>
<td></td>
<td>• icmp-ping</td>
</tr>
<tr>
<td></td>
<td>• icmp-ping-timestamp</td>
</tr>
<tr>
<td></td>
<td>• tcp-ping</td>
</tr>
<tr>
<td></td>
<td>• udp-ping</td>
</tr>
<tr>
<td>Interval</td>
<td>Wait time (in seconds) between each probe transmission. The range is 1 to 255 seconds.</td>
</tr>
<tr>
<td>Test Interval</td>
<td>Wait time (in seconds) between tests. The range is 0 to 86400 seconds.</td>
</tr>
<tr>
<td>Probe Count</td>
<td>Total number of probes sent for each test. The range is 1 to 15 probes.</td>
</tr>
<tr>
<td>Destination Port</td>
<td>TCP or UDP port to which probes are sent. Use number 7—a standard TCP or UDP port number—or select a port number from 49152 through 65535.</td>
</tr>
<tr>
<td>DSCP Bits</td>
<td>Differentiated Services code point (DSCP) bits. This value must be a valid 6-bit pattern. The default is 000000.</td>
</tr>
<tr>
<td>Data Size</td>
<td>Size (in bytes) of the data portion of the ICMP probes. The range is 0 to 65507 bytes.</td>
</tr>
<tr>
<td>Data Fill</td>
<td>Contents of the data portion of the ICMP probes. Contents must be a hexadecimal value. The range is 1 to 800h.</td>
</tr>
<tr>
<td>Maximum Probe Thresholds</td>
<td></td>
</tr>
<tr>
<td>Successive Lost Probes</td>
<td>Total number of probes that must be lost successively to trigger a probe failure and generate a system log message. The range is 0 to 15 probes.</td>
</tr>
<tr>
<td>Lost Probes</td>
<td>Total number of probes that must be lost to trigger a probe failure and generate a system log message. The range is 0 to 15 probes.</td>
</tr>
<tr>
<td>Round Trip Time</td>
<td>Total round-trip time (in microseconds) from the Services Router to the remote server, which, if exceeded, triggers a probe failure and generates a system log message. The range is 0 to 60,000,000 microseconds.</td>
</tr>
<tr>
<td>Jitter</td>
<td>Total jitter (in microseconds) for a test, which, if exceeded, triggers a probe failure and generates a system log message. The range is 0 to 60,000,000 microseconds.</td>
</tr>
</tbody>
</table>
Table 28: Real-Time Performance Monitoring Configuration Options (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Deviation</td>
<td>Maximum allowable standard deviation (in microseconds) for a test, which, if exceeded, triggers a probe failure and generates a system log message. The range is 0 to 60,000,000 microseconds.</td>
</tr>
<tr>
<td>Egress Time</td>
<td>Total one-way time (in microseconds) from the router to the remote server, which, if exceeded, triggers a probe failure and generates a system log message. The range is 0 to 60,000,000 microseconds.</td>
</tr>
<tr>
<td>Ingress Time</td>
<td>Total one-way time (in microseconds) from the remote server to the router, which, if exceeded, triggers a probe failure and generates a system log message. The range is 0 to 60,000,000 microseconds.</td>
</tr>
<tr>
<td>Jitter Egress Time</td>
<td>Total outbound-time jitter (in microseconds) for a test, which, if exceeded, triggers a probe failure and generates a system log message. The range is 0 to 60,000,000 microseconds.</td>
</tr>
<tr>
<td>Jitter Ingress Time</td>
<td>Total inbound-time jitter (in microseconds) for a test, which, if exceeded, triggers a probe failure and generates a system log message. The range is 0 to 60,000,000 microseconds.</td>
</tr>
<tr>
<td>Egress Standard Deviation</td>
<td>Maximum allowable standard deviation of outbound times (in microseconds) for a test, which, if exceeded, triggers a probe failure and generates a system log message. The range is 0 to 60,000,000 microseconds.</td>
</tr>
<tr>
<td>Ingress Standard Deviation</td>
<td>Maximum allowable standard deviation of inbound times (in microseconds) for a test, which, if exceeded, triggers a probe failure and generates a system log message. The range is 0 to 60,000,000 microseconds.</td>
</tr>
</tbody>
</table>

Displaying Real-Time Performance Monitoring Information

For each real-time performance monitoring test configured on the router, monitoring information includes the round-trip time, jitter, and standard deviation. To view this information, select Monitor > RPM in the J-Web interface, or enter the `show services rpm` command-line interface (CLI) command.

To display the results of the most recent real-time performance monitoring probes, enter the `show services rpm probe-results` CLI command:

```
user@host> show services rpm probe-results
Owner: pl, Test: t1
    Target address: 10.8.4.1, Source address: 10.8.4.2, Probe type: icmp-ping
    Destination interface name: lt-0/0/0.0
    Test size: 10 probes
    Probe results:
        Response received, Sun Jul 10 19:07:34 2005
        Rtt: 50302 usec
```
Results over current test:
 Probes sent: 2, Probes received: 1, Loss percentage: 50
Measurement: Round trip time
 Minimum: 50302 usec, Maximum: 50302 usec, Average: 50302 usec,
 Jitter: 0 usec, Stddev: 0 usec
Results over all tests:
 Probes sent: 2, Probes received: 1, Loss percentage: 50
Measurement: Round trip time
 Minimum: 50302 usec, Maximum: 50302 usec, Average: 50302 usec,
 Jitter: 0 usec, Stddev: 0 usec

Related Documentation

- Understanding Measurement Points, Key Performance Indicators, and Baseline Values on page 269
- Understanding RMON for Monitoring Service Quality on page 265
- Measuring Health on page 276
- Measuring Performance on page 282

Measuring Health

Supported Platforms

M Series, MX Series, T Series

You can monitor health metrics reactively by using fault management software such as SMARTS InCharge, Micromuse Netcool Omnibus, or Concord Live Exceptions. We recommend that you monitor the health metrics shown in Table 29 on page 276.

Table 29: Health Metrics

<table>
<thead>
<tr>
<th>Metric:</th>
<th>Errors in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Number of inbound packets that contained errors, preventing them from being delivered</td>
</tr>
<tr>
<td>MIB name</td>
<td>IF-MIB (RFC 2233)</td>
</tr>
<tr>
<td>Variable name</td>
<td>ifInErrors</td>
</tr>
<tr>
<td>Variable OID</td>
<td>.1.3.6.1.31.2.2.1.14</td>
</tr>
<tr>
<td>Frequency (mins)</td>
<td>60</td>
</tr>
<tr>
<td>Allowable range</td>
<td>To be baselined</td>
</tr>
<tr>
<td>Managed objects</td>
<td>Logical interfaces</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metric:</th>
<th>Errors out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Number of outbound packets that contained errors, preventing them from being transmitted</td>
</tr>
<tr>
<td>MIB name</td>
<td>IF-MIB (RFC 2233)</td>
</tr>
</tbody>
</table>
Table 29: Health Metrics (continued)

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Description</th>
<th>Metric:</th>
<th>Variable OID</th>
<th>Frequency (mins)</th>
<th>Allowable range</th>
<th>Managed objects</th>
<th>MIB name</th>
<th>IF-MIB (RFC 2233)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ifOutErrors</td>
<td>Number of inbound packets discarded, even though no errors were detected</td>
<td>Discards in</td>
<td>.1.3.6.1.31.2.2.1.20</td>
<td>60</td>
<td>To be baselined</td>
<td>Logical interfaces</td>
<td>IF-MIB (RFC 2233)</td>
<td></td>
</tr>
<tr>
<td>ifInDiscards</td>
<td>Number of inbound packets discarded because they were of an unknown protocol</td>
<td>Unknown protocols</td>
<td>.1.3.6.1.31.2.2.1.13</td>
<td>60</td>
<td>To be baselined</td>
<td>Logical interfaces</td>
<td>IF-MIB (RFC 2233)</td>
<td></td>
</tr>
<tr>
<td>ifInUnknownProtos</td>
<td>Number of inbound packets discarded because they were of an unknown protocol</td>
<td>Unknown protocols</td>
<td>.1.3.6.1.31.2.2.1.15</td>
<td>60</td>
<td>To be baselined</td>
<td>Logical interfaces</td>
<td>IF-MIB (RFC 2233)</td>
<td></td>
</tr>
<tr>
<td>Interface oper status</td>
<td>Operational status of an interface</td>
<td>Interface operating status</td>
<td></td>
<td></td>
<td></td>
<td>Logical interfaces</td>
<td>IF-MIB (RFC 2233)</td>
<td></td>
</tr>
</tbody>
</table>
Table 29: Health Metrics (*continued*)

<table>
<thead>
<tr>
<th>Variable name</th>
<th>ifOperStatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable OID</td>
<td>.1.3.6.1.31.2.2.1.8</td>
</tr>
<tr>
<td>Frequency (mins)</td>
<td>15</td>
</tr>
<tr>
<td>Allowable range</td>
<td>1 (up)</td>
</tr>
<tr>
<td>Managed objects</td>
<td>Logical interfaces</td>
</tr>
<tr>
<td>Metric:</td>
<td>Label Switched Path (LSP) state</td>
</tr>
<tr>
<td>Description</td>
<td>Operational state of an MPLS label-switched path</td>
</tr>
<tr>
<td>MIB name</td>
<td>MPLS-MIB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable name</th>
<th>mplsLspState</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable OID</td>
<td>mplsLspEntry.2</td>
</tr>
<tr>
<td>Frequency (mins)</td>
<td>60</td>
</tr>
<tr>
<td>Allowable range</td>
<td>2 (up)</td>
</tr>
<tr>
<td>Managed objects</td>
<td>All label-switched paths in the network</td>
</tr>
<tr>
<td>Metric:</td>
<td>Component operating status</td>
</tr>
<tr>
<td>Description</td>
<td>Operational status of a router hardware component</td>
</tr>
<tr>
<td>MIB name</td>
<td>JUNIPER-MIB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable name</th>
<th>jnxOperatingState</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable OID</td>
<td>.1.3.6.1.4.1.2636.1.13.1.6</td>
</tr>
<tr>
<td>Frequency (mins)</td>
<td>60</td>
</tr>
<tr>
<td>Allowable range</td>
<td>2 (running) or 3 (ready)</td>
</tr>
<tr>
<td>Managed objects</td>
<td>All components in each Juniper Networks router</td>
</tr>
<tr>
<td>Metric:</td>
<td>Component operating temperature</td>
</tr>
<tr>
<td>Description</td>
<td>Operational temperature of a hardware component, in Celsius</td>
</tr>
<tr>
<td>MIB name</td>
<td>JUNIPER-MIB</td>
</tr>
</tbody>
</table>

| Variable name | jnxOperatingTemp |
Table 29: Health Metrics *(continued)*

<table>
<thead>
<tr>
<th>Variable OID</th>
<th>.1.3.6.1.4.1.2636.1.13.1.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (mins)</td>
<td>60</td>
</tr>
<tr>
<td>Allowable range</td>
<td>To be baselined</td>
</tr>
<tr>
<td>Managed objects</td>
<td>All components in a chassis</td>
</tr>
<tr>
<td>Metric:</td>
<td>System up time</td>
</tr>
<tr>
<td>Description</td>
<td>Time, in milliseconds, that the system has been operational.</td>
</tr>
<tr>
<td>MIB name</td>
<td>MIB-2 (RFC 1213)</td>
</tr>
<tr>
<td>Variable name</td>
<td><code>sysUpTime</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable OID</th>
<th>.1.3.6.1.1.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (mins)</td>
<td>60</td>
</tr>
<tr>
<td>Allowable range</td>
<td>Increasing only (decrement indicates a restart)</td>
</tr>
<tr>
<td>Managed objects</td>
<td>All routers</td>
</tr>
<tr>
<td>Metric:</td>
<td>No IP route errors</td>
</tr>
<tr>
<td>Description</td>
<td>Number of packets that could not be delivered because there was no IP route to their destination.</td>
</tr>
<tr>
<td>MIB name</td>
<td>MIB-2 (RFC 1213)</td>
</tr>
<tr>
<td>Variable name</td>
<td><code>ipOutNoRoutes</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable OID</th>
<th>ip.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (mins)</td>
<td>60</td>
</tr>
<tr>
<td>Allowable range</td>
<td>To be baselined</td>
</tr>
<tr>
<td>Managed objects</td>
<td>Each router</td>
</tr>
<tr>
<td>Metric:</td>
<td>Wrong SNMP community names</td>
</tr>
<tr>
<td>Description</td>
<td>Number of incorrect SNMP community names received</td>
</tr>
<tr>
<td>MIB name</td>
<td>MIB-2 (RFC 1213)</td>
</tr>
<tr>
<td>Variable name</td>
<td><code>snmpInBadCommunityNames</code></td>
</tr>
<tr>
<td>Variable OID</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>snmp.4</td>
<td>Number of valid SNMP communities used to attempt invalid operations (for example, attempting to perform SNMP Set requests)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MIB name</th>
<th>JUNIPER-MIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable name</td>
<td>snmpInBadCommunityUses</td>
</tr>
<tr>
<td>Frequency (hours)</td>
<td>24</td>
</tr>
<tr>
<td>Allowable range</td>
<td>To be baselined</td>
</tr>
<tr>
<td>Managed objects</td>
<td>Each router</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable OID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>jnxRedundancySwitchoverCount</td>
<td>Total number of redundancy switchovers reported by this entity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MIB name</th>
<th>JUNIPER-MIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable name</td>
<td>jnxRedundancySwitchoverEntry.8</td>
</tr>
<tr>
<td>Frequency (mins)</td>
<td>60</td>
</tr>
<tr>
<td>Allowable range</td>
<td>To be baselined</td>
</tr>
<tr>
<td>Managed objects</td>
<td>All Juniper Networks routers with redundant Routing Engines</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable OID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>jnxFruState</td>
<td>Operational status of each field-replaceable unit (FRU)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MIB name</th>
<th>JUNIPER-MIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable name</td>
<td>jnxFruState</td>
</tr>
<tr>
<td>Variable OID</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>ifInOctets</td>
<td>Total number of octets received on the interface, including framing characters.</td>
</tr>
<tr>
<td>ifInOctets[.1.3.6.1.2.1.2.2.1.10.x]</td>
<td>Total number of octets transmitted out of the interface, including framing characters.</td>
</tr>
</tbody>
</table>
Table 29: Health Metrics (continued)

<table>
<thead>
<tr>
<th>Variable name</th>
<th>ifOutOctets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable OID</td>
<td>.1.3.6.1.2.1.2.2.1.16.x</td>
</tr>
<tr>
<td>Frequency (mins)</td>
<td>60</td>
</tr>
<tr>
<td>Allowable range</td>
<td>To be baselined</td>
</tr>
<tr>
<td>Managed objects</td>
<td>All operational interfaces in the network</td>
</tr>
</tbody>
</table>

NOTE: Byte counts vary depending on interface type, encapsulation used and PIC supported. For example, with vlan-ccc encapsulation on a 4xFE, GE, or GE 1Q PIC, the byte count includes framing and control word overhead. (See Table 30 on page 282.)

Table 30: Counter Values for vlan-ccc Encapsulation

<table>
<thead>
<tr>
<th>PIC Type</th>
<th>Encapsulation</th>
<th>input (Unit Level)</th>
<th>Output (Unit Level)</th>
<th>SNMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>4xFE</td>
<td>vlan-ccc</td>
<td>Frame (no frame check sequence [FCS])</td>
<td>Frame (including FCS and control word)</td>
<td>ifInOctets, ifOutOctets</td>
</tr>
<tr>
<td>GE</td>
<td>vlan-ccc</td>
<td>Frame (no FCS)</td>
<td>Frame (including FCS and control word)</td>
<td>ifInOctets, ifOutOctets</td>
</tr>
<tr>
<td>GE IQ</td>
<td>vlan-ccc</td>
<td>Frame (no FCS)</td>
<td>Frame (including FCS and control word)</td>
<td>ifInOctets, ifOutOctets</td>
</tr>
</tbody>
</table>

SNMP traps are also a good mechanism to use for health management. For more information, see “Standard SNMP Traps Supported by Junos OS” on page 60 and “Enterprise-Specific SNMP Traps Supported by Junos OS” on page 68.

Related Documentation
- Understanding Measurement Points, Key Performance Indicators, and Baseline Values on page 269
- Understanding RMON for Monitoring Service Quality on page 265
- Defining and Measuring Network Availability on page 270
- Measuring Performance on page 282
- SNM MIB Explorer

Measuring Performance

Supported Platforms
- ACX Series
- M Series
- MX Series
- PTX Series
- T Series
The performance of a service provider’s network is usually defined as how well it can support services, and is measured with metrics such as delay and utilization. We suggest that you monitor the following performance metrics using applications such as InfoVista Service Performance Management or Concord Network Health (see Table 31 on page 283).

Table 31: Performance Metrics

<table>
<thead>
<tr>
<th>Metric:</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average delay</td>
<td>Average round-trip time (in milliseconds) between two measurement points.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MIB name</th>
<th>DISMAN-PING-MIB (RFC 2925)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable name</td>
<td>pingResultsAverageRtt</td>
</tr>
<tr>
<td>Variable OID</td>
<td>pingResultsEntry.6</td>
</tr>
<tr>
<td>Frequency (mins)</td>
<td>15 (or depending upon ping test frequency)</td>
</tr>
<tr>
<td>Allowable range</td>
<td>To be baselined</td>
</tr>
<tr>
<td>Managed objects</td>
<td>Each measured path in the network</td>
</tr>
<tr>
<td>Metric:</td>
<td>Interface utilization</td>
</tr>
<tr>
<td>Description</td>
<td>Utilization percentage of a logical connection.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MIB name</th>
<th>IF-MIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable name</td>
<td>(ifInOctets & ifOutOctets) * 8 / ifSpeed</td>
</tr>
<tr>
<td>Variable OID</td>
<td>ifTable entries</td>
</tr>
<tr>
<td>Frequency (mins)</td>
<td>60</td>
</tr>
<tr>
<td>Allowable range</td>
<td>To be baselined</td>
</tr>
<tr>
<td>Managed objects</td>
<td>All operational interfaces in the network</td>
</tr>
<tr>
<td>Metric:</td>
<td>Disk utilization</td>
</tr>
<tr>
<td>Description</td>
<td>Utilization of disk space within the Juniper Networks router</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MIB name</th>
<th>HOST-RESOURCES-MIB (RFC 2790)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable name</td>
<td>hrStorageSize – hrStorageUsed</td>
</tr>
<tr>
<td>Variable OID</td>
<td>hrStorageEntry.5 – hrStorageEntry.6</td>
</tr>
<tr>
<td>Frequency (mins)</td>
<td>1440</td>
</tr>
</tbody>
</table>
Table 31: Performance Metrics (continued)

Metric:	Memory utilization
Description:	Utilization of memory on the Routing Engine and FPC.
MiB name:	JUNIPER-MIB (Juniper Networks enterprise Chassis MiB)
Variable name:	jnxOperatingHeap
Variable OID:	Table for each component
Frequency (mins):	60
Allowable range:	To be baselined
Managed objects:	All Juniper Networks routers

Metric:	CPU load
Description:	Average utilization over the past minute of a CPU.
MiB name:	JUNIPER-MIB (Juniper Networks enterprise Chassis MiB)
Variable name:	jnxOperatingCPU
Variable OID:	Table for each component
Frequency (mins):	60
Allowable range:	To be baselined
Managed objects:	All Juniper Networks routers

Metric:	LSP utilization
Description:	Utilization of the MPLS label-switched path.
MiB name:	MPLS-MIB
Variable name:	mplsPathBandwidth / (mplsLspOctets * 8)
Variable OID:	mplsLspEntry.21 and mplsLspEntry.3
Frequency (mins):	60
Allowable range:	To be baselined
Table 31: Performance Metrics (continued)

<table>
<thead>
<tr>
<th>Managed objects</th>
<th>All label-switched paths in the network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric:</td>
<td>Output queue size</td>
</tr>
<tr>
<td>Description</td>
<td>Size, in packets, of each output queue per forwarding class, per interface.</td>
</tr>
<tr>
<td>MIB name</td>
<td>JUNIPER-COS-MIB</td>
</tr>
<tr>
<td>Variable name</td>
<td>jnxCosIfQQedPkts</td>
</tr>
<tr>
<td>Variable OID</td>
<td>jnxCosIfqStatsEntry.3</td>
</tr>
<tr>
<td>Frequency (mins)</td>
<td>60</td>
</tr>
<tr>
<td>Allowable range</td>
<td>To be baselined</td>
</tr>
<tr>
<td>Managed objects</td>
<td>For each forwarding class per interface in the network, once CoS is enabled.</td>
</tr>
</tbody>
</table>

This section includes the following topics:

- Measuring Class of Service on page 285
- Inbound Firewall Filter Counters per Class on page 286
- Monitoring Output Bytes per Queue on page 287
- Dropped Traffic on page 288

Measuring Class of Service

You can use class-of-service (CoS) mechanisms to regulate how certain classes of packets are handled within your network during times of peak congestion. Typically you must perform the following steps when implementing a CoS mechanism:

- Identify the type of packets that is applied to this class. For example, include all customer traffic from a specific ingress edge interface within one class, or include all packets of a particular protocol such as voice over IP (VoIP).

- Identify the required deterministic behavior for each class. For example, if VoIP is important, give VoIP traffic the highest priority during times of network congestion. Conversely, you can downgrade the importance of Web traffic during congestion, as it may not impact customers too much.

With this information, you can configure mechanisms at the network ingress to monitor, mark, and police traffic classes. Marked traffic can then be handled in a more deterministic way at egress interfaces, typically by applying different queuing mechanisms for each class during times of network congestion. You can collect information from the network to provide customers with reports showing how the network is behaving during times of congestion. (See Figure 7 on page 286.)
To generate these reports, routers must provide the following information:

- Submitted traffic—Amount of traffic received per class.
- Delivered traffic—Amount of traffic transmitted per class.
- Dropped traffic—Amount of traffic dropped because of CoS limits.

The following section outlines how this information is provided by Juniper Networks routers.

Inbound Firewall Filter Counters per Class

Firewall filter counters are a very flexible mechanism you can use to match and count inbound traffic per class, per interface. For example:

```plaintext
firewall {
  filter f1 {
    term t1 {
      from {
        dscp af11;
      }
      then {
        # Assured forwarding class 1 drop profile 1 count inbound-af11;
        accept;
      }
    }
  }
}
```

For example, Table 32 on page 286 shows additional filters used to match the other classes.

Table 32: Inbound Traffic Per Class

<table>
<thead>
<tr>
<th>DSCP Value</th>
<th>Firewall Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>af11</td>
<td>Assured forwarding class 1 drop profile 1</td>
</tr>
<tr>
<td>12</td>
<td>af12</td>
<td>Assured forwarding class 1 drop profile 2</td>
</tr>
</tbody>
</table>
Table 32: Inbound Traffic Per Class (continued)

<table>
<thead>
<tr>
<th>DSCP Value</th>
<th>Firewall Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>af21</td>
<td>Best effort class 2 drop profile 1</td>
</tr>
<tr>
<td>20</td>
<td>af22</td>
<td>Best effort class 2 drop profile 2</td>
</tr>
<tr>
<td>26</td>
<td>af31</td>
<td>Best effort class 3 drop profile 1</td>
</tr>
</tbody>
</table>

Any packet with a CoS DiffServ code point (DSCP) conforming to RFC 2474 can be counted in this way. The Juniper Networks enterprise-specific Firewall Filter MIB presents the counter information in the variables shown in Table 33 on page 287.

Table 33: Inbound Counters

<table>
<thead>
<tr>
<th>Indicator Name</th>
<th>Inbound Counters</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIB</td>
<td>jnxFirewalls</td>
</tr>
<tr>
<td>Table</td>
<td>jnxFirewallCounterTable</td>
</tr>
<tr>
<td>Index</td>
<td>jnxFWFilter.jnxFWCounter</td>
</tr>
<tr>
<td>Variables</td>
<td>jnxFWCounterPacketCount, jnxFWCounterByteCount</td>
</tr>
<tr>
<td>Description</td>
<td>Number of bytes being counted pertaining to the specified firewall filter counter</td>
</tr>
<tr>
<td>SNMP version</td>
<td>SNMPv2</td>
</tr>
</tbody>
</table>

This information can be collected by any SNMP management application that supports SNMPv2. Products from vendors such as Concord Communications, Inc., and InfoVista, Inc., provide support for the Juniper Networks Firewall MIB with their native Juniper Networks device drivers.

Monitoring Output Bytes per Queue

You can use the Juniper Networks enterprise ATM CoS MIB to monitor outbound traffic, per virtual circuit forwarding class, per interface. (See Table 34 on page 287.)

Table 34: Outbound Counters for ATM Interfaces

<table>
<thead>
<tr>
<th>Indicator Name</th>
<th>Outbound Counters</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIB</td>
<td>JUNIPER-ATM-COS-MIB</td>
</tr>
<tr>
<td>Variable</td>
<td>jnxCosAtmVcQstatsOutBytes</td>
</tr>
<tr>
<td>Index</td>
<td>ifIndex.atmVcVpi.atmVcVci.jnxCosFcId</td>
</tr>
</tbody>
</table>
Table 34: Outbound Counters for ATM Interfaces (continued)

<table>
<thead>
<tr>
<th>Indicator Name</th>
<th>Outbound Counters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Number of bytes belonging to the specified forwarding class that were transmitted on the specified virtual circuit.</td>
</tr>
<tr>
<td>SNMP version</td>
<td>SNMPv2</td>
</tr>
</tbody>
</table>

Non-ATM interface counters are provided by the Juniper Networks enterprise-specific CoS MIB, which provides information shown in Table 35 on page 288.

Table 35: Outbound Counters for Non-ATM Interfaces

<table>
<thead>
<tr>
<th>Indicator Name</th>
<th>Outbound Counters</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIB</td>
<td>JUNIPER-COS-MIB</td>
</tr>
<tr>
<td>Table</td>
<td>jnxCosfqStatsTable</td>
</tr>
<tr>
<td>Index</td>
<td>jnxCosfqIfindex.jnxCosfqFc</td>
</tr>
<tr>
<td>Variables</td>
<td>jnxCosfqTxedBytes</td>
</tr>
<tr>
<td></td>
<td>jnxCosfqTxedPkts</td>
</tr>
<tr>
<td>Description</td>
<td>Number of transmitted bytes or packets per interface per forwarding class</td>
</tr>
<tr>
<td>SNMP version</td>
<td>SNMPv2</td>
</tr>
</tbody>
</table>

Dropped Traffic

You can calculate the amount of dropped traffic by subtracting the outbound traffic from the incoming traffic:

\[
\text{Dropped} = \text{Inbound Counter} - \text{Outbound Counter}
\]

You can also select counters from the CoS MIB, as shown in Table 36 on page 288.

Table 36: Dropped Traffic Counters

<table>
<thead>
<tr>
<th>Indicator Name</th>
<th>Dropped Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIB</td>
<td>JUNIPER-COS-MIB</td>
</tr>
<tr>
<td>Table</td>
<td>jnxCosfqStatsTable</td>
</tr>
<tr>
<td>Index</td>
<td>jnxCosfqIfindex.jnxCosfqFc</td>
</tr>
<tr>
<td>Variables</td>
<td>jnxCosfqTailDropPkts</td>
</tr>
<tr>
<td></td>
<td>jnxCosfqTotalRedDropPkts</td>
</tr>
</tbody>
</table>
Table 36: Dropped Traffic Counters (continued)

<table>
<thead>
<tr>
<th>Indicator Name</th>
<th>Dropped Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>The number of tail-dropped or RED-dropped packets per interface per forwarding class</td>
</tr>
</tbody>
</table>

| SNMP version | SNMPv2 |

Related Documentation
- Understanding Measurement Points, Key Performance Indicators, and Baseline Values on page 269
- Understanding RMON for Monitoring Service Quality on page 265
- Defining and Measuring Network Availability on page 270
- Measuring Health on page 276
PART 4

Health Monitoring with SNMP

- Configuring Health Monitoring on page 293
CHAPTER 16

Configuring Health Monitoring

- Configuring Health Monitoring on Devices Running Junos OS on page 293
- Example: Configuring Health Monitoring on page 296

Configuring Health Monitoring on Devices Running Junos OS

Supported Platforms

M Series, MX Series, PTX Series, SRX Series, T Series

As the number of devices managed by a typical network management system (NMS) grows and the complexity of the devices themselves increases, it becomes increasingly impractical for the NMS to use polling to monitor the devices. A more scalable approach is to rely on network devices to notify the NMS when something requires attention.

On Juniper Networks routers, RMON alarms and events provide much of the infrastructure needed to reduce the polling overhead from the NMS. However, with this approach, you must set up the NMS to configure specific MIB objects into RMON alarms. This often requires device-specific expertise and customizing of the monitoring application. In addition, some MIB object instances that need monitoring are set only at initialization or change at runtime and cannot be configured in advance.

To address these issues, the health monitor extends the RMON alarm infrastructure to provide predefined monitoring for a selected set of object instances (for file system usage, CPU usage, and memory usage) and includes support for unknown or dynamic object instances (such as Junos OS processes).

Health monitoring is designed to minimize user configuration requirements. To configure health monitoring entries, include the `health-monitor` statement at the `[edit snmp]` hierarchy level:

```
[edit snmp]
health-monitor {
    falling-threshold percentage;
    interval seconds;
    rising-threshold percentage;
    idp {
        falling-threshold percentage;
        interval seconds;
        rising-threshold percentage;
    }
}
```
Configuring monitoring events at the `[edit snmp health-monitor]` hierarchy level sets polling intervals for the overall system health. If you set these same options at the `[edit snmp health-monitor idp]` hierarchy level, an SNMP event is generated by the device if the percentage of dataplane memory utilized by the intrusion detection and prevention (IDP) system rises above or falls below your settings.

You can use the `show snmp health-monitor` operational command to view information about health monitor alarms and logs.

This topic describes the minimum required configuration and discusses the following tasks for configuring the health monitor:

- Monitored Objects on page 294
- Minimum Health Monitoring Configuration on page 295
- Configuring the Falling Threshold or Rising Threshold on page 295
- Configuring the Interval on page 296
- Log Entries and Traps on page 296

Monitored Objects

When you configure the health monitor, monitoring information for certain object instances is available, as shown in Table 37 on page 294.

Table 37: Monitored Object Instances

<table>
<thead>
<tr>
<th>Object</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>jnxEngPartList</td>
<td>Monitors the following file system on the router or switch:</td>
</tr>
<tr>
<td></td>
<td>/dev/ad0s1a:</td>
</tr>
<tr>
<td></td>
<td>This is the root file system mounted on <code>/</code>.</td>
</tr>
<tr>
<td>jnxEngPartList</td>
<td>Monitors the following file system on the router or switch:</td>
</tr>
<tr>
<td></td>
<td>/dev/ad0s1e:</td>
</tr>
<tr>
<td></td>
<td>This is the configuration file system mounted on <code>/config</code>.</td>
</tr>
<tr>
<td>jnxOperatingCPU (RE0)</td>
<td>Monitors CPU usage for Routing Engines (RE0 and RE1). The index values assigned to Routing Engines depend on whether the Chassis MIB uses a zero-based or one-based indexing scheme. Because the indexing scheme is configurable, the proper index is determined when the router or switch is initialized and when there is a configuration change. If the router or switch has only one Routing Engine, the alarm entry monitoring RE1 is removed after five failed attempts to obtain the CPU value.</td>
</tr>
<tr>
<td>jnxOperatingCPU (RE1)</td>
<td>Monitors the amount of memory available on Routing Engines (RE0 and RE1). Because the indexing of this object is identical to that used for <code>jnxOperatingCPU</code>, index values are adjusted depending on the indexing scheme used in the Chassis MIB. As with <code>jnxOperatingCPU</code>, the alarm entry monitoring RE1 is removed if the router or switch has only one Routing Engine.</td>
</tr>
</tbody>
</table>
Table 37: Monitored Object Instances (continued)

<table>
<thead>
<tr>
<th>Object</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sysApplElmtRunCPU</td>
<td>Monitors the CPU usage for each Junos OS process (also called daemon). Multiple instances of the same process are monitored and indexed separately.</td>
</tr>
<tr>
<td>sysApplElmtRunMemory</td>
<td>Monitors the memory usage for each Junos OS process. Multiple instances of the same process are monitored and indexed separately.</td>
</tr>
</tbody>
</table>

Minimum Health Monitoring Configuration

To enable health monitoring on the router or switch, include the `health-monitor` statement at the `[edit snmp]` hierarchy level:

```
[edit snmp]
health-monitor;
```

Configuring the Falling Threshold or Rising Threshold

The falling threshold is the lower threshold (expressed as a percentage of the maximum possible value) for the monitored variable. When the current sampled value is less than or equal to this threshold, and the value at the last sampling interval is greater than this threshold, a single event is generated. A single event is also generated if the first sample after this entry becomes valid is less than or equal to this threshold. After a falling event is generated, another falling event cannot be generated until the sampled value rises above this threshold and reaches the rising threshold. You must specify the falling threshold as a percentage of the maximum possible value. The default is 70 percent.

By default, the rising threshold is 80 percent of the maximum possible value for the monitored object instance. The rising threshold is the upper threshold for the monitored variable. When the current sampled value is greater than or equal to this threshold, and the value at the last sampling interval is less than this threshold, a single event is generated. A single event is also generated if the first sample after this entry becomes valid is greater than or equal to this threshold. After a rising event is generated, another rising event cannot be generated until the sampled value falls below this threshold and reaches the falling threshold. You must specify the rising threshold as a percentage of the maximum possible value for the monitored variable.

To configure the falling threshold or rising threshold, include the `falling-threshold` or `rising-threshold` statement at the `[edit snmp health-monitor]` hierarchy level:

```
[edit snmp health-monitor]
falling-threshold percentage;
rising-threshold percentage;
```

`percentage` can be a value from 1 through 100.

The falling and rising thresholds apply to all object instances monitored by the health monitor.
Configuring the Interval

The interval represents the period of time, in seconds, over which the object instance is sampled and compared with the rising and falling thresholds.

To configure the interval, include the interval statement and specify the number of seconds at the [edit snmp health-monitor] hierarchy level:

```
[edit snmp health-monitor]
interval seconds;
```

seconds can be a value from 1 through 2147483647. The default is 300 seconds (5 minutes).

Log Entries and Traps

The system log entries generated for any health monitor events (thresholds crossed, errors, and so on) have a corresponding HEALTH_MONITOR tag rather than a generic SNMP_RMON_EVENTLOG tag. However, the health monitor sends generic RMON risingThreshold and fallingThreshold traps.

Related Documentation
- Understanding RMON Alarms and Events Configuration on page 249
- Configuring an RMON Alarm Entry and Its Attributes on page 250
- Configuring an RMON Event Entry and Its Attributes on page 254
- Example: Configuring Health Monitoring on page 296
- Understanding Device Management Functions in Junos OS on page 3
- health-monitor on page 693

Example: Configuring Health Monitoring

Supported Platforms
M Series, MX Series, PTX Series, SRX Series, T Series

Configure the health monitor:

```
[edit snmp]
health-monitor {
    falling-threshold 85;
    interval 600;
    rising-threshold 75;
}
```

In this example, the sampling interval is every 600 seconds (10 minutes), the falling threshold is 85 percent of the maximum possible value for each object instance monitored, and the rising threshold is 75 percent of the maximum possible value for each object instance monitored.

Related Documentation
- Configuring Health Monitoring on Devices Running Junos OS on page 293
PART 5

Gathering Statistics for Accounting Purposes Using Accounting Options, Source Class Usage and Destination Class Usage Options

- Accounting Options, Source Class Usage and Destination Class Usage Options Overview on page 299
- Configuring Accounting Options, Source Class Usage and Destination Class Usage Options on page 303
Accounting Options, Source Class Usage and Destination Class Usage Options Overview

- Accounting Options Overview on page 299
- Understanding Source Class Usage and Destination Class Usage Options on page 300

Accounting Options Overview

Supported Platforms

ACX Series, M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

An accounting profile represents common characteristics of collected accounting data, including the following:

- Collection interval
- File to contain accounting data
- Specific fields and counter names on which to collect statistics

You can configure multiple accounting profiles, as described in Table 38 on page 299.

Table 38: Types of Accounting Profiles

<table>
<thead>
<tr>
<th>Type of Profile</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface profile</td>
<td>Collects the specified error and statistic information.</td>
</tr>
<tr>
<td>Filter profile</td>
<td>Collects the byte and packet counts for the counter names specified in the filter profile.</td>
</tr>
<tr>
<td>MIB profile</td>
<td>Collects selected MIB statistics and logs them to a specified file.</td>
</tr>
<tr>
<td>Routing Engine profile</td>
<td>Collects selected Routing Engine statistics and logs them to a specified file.</td>
</tr>
<tr>
<td>Class usage profile</td>
<td>Collects class usage statistics and logs them to a specified file.</td>
</tr>
</tbody>
</table>
You can maintain packet counts based on the entry and exit points for traffic passing through your network. Entry and exit points are identified by source and destination prefixes grouped into disjoint sets defined as source classes and destination classes. You can define classes based on a variety of parameters, such as routing neighbors, autonomous systems, and route filters.

Source class usage (SCU) counts packets sent to customers by performing lookups on the IP source address and the IP destination address. SCU makes it possible to track traffic originating from specific prefixes on the provider core and destined for specific prefixes on the customer edge. You must enable SCU accounting on both the inbound and outbound physical interfaces.

Destination class usage (DCU) counts packets from customers by performing lookups of the IP destination address. DCU makes it possible to track traffic originating from the customer edge and destined for specific prefixes on the provider core router.

On T Series Core Routers and M320 Multiservice Edge Routers, the source class and destination classes are not carried across the platform fabric. The implications of this are as follows:

- On T Series and M320 routers, SCU and DCU accounting is performed before the packet enters the fabric.
- On T Series and M320 routers, DCU is performed before output filters are evaluated.
- On M Series platforms, DCU is performed after output filters are evaluated.
- If an output filter drops traffic on M Series devices, the dropped packets are excluded from DCU statistics.
- If an output filter drops traffic on T Series and M320 routers, the dropped packets are included in DCU statistics.

NOTE: SCU and DCU is supported on PTX series routers when enhanced-mode is configured on the chassis.
On MX Series platforms with MPC/MIC interfaces, SCU and DCU are performed after output filters are evaluated. Packets dropped by output filters are not included in SCU or DCU statistics.

On MX Series platforms with non-MPC/MIC interfaces, SCU and DCU are performed before output filters are evaluated. Packets dropped by output filters are included in SCU and DCU statistics.

On PTX Series platforms, SCU and DCU accounting is performed before output filters are evaluated. Packets dropped by output filters are included in SCU and DCU statistics.

On Enhanced Scaling FPCs (T640-FPC1-ES, T640-FPC2-ES, T640-FPC3-ES, T640-FPC4-1P-ES, and T1600-FPC4-ES), the source class accounting is performed at ingress. Starting with Junos OS Release 14.2, the SCU accounting is performed at ingress on a T4000 Type 5 FPC. The implications of this are as follows:

- SCU accounting is performed when packets traverse from T4000 Type 5 FPC (ingress FPC) to Enhanced Scaling FPCs (egress FPC).
- SCU accounting is performed when packets traverse from Enhanced Scaling FPCs (ingress FPC) to T4000 Type 5 FPC (egress FPC).

NOTE: When the interface statistics are cleared and then the routing engine is replaced, the SCU and DCU statistics will not match the statistics of the previous routing engine.

For more information about source class usage, see the *Routing Policies, Firewall Filters, and Traffic Policers Feature Guide* and the *Junos OS Network Interfaces Library for Routing Devices*.

Related Documentation

- Example: *Grouping Source and Destination Prefixes into a Forwarding Class*
- Configuring SCU or DCU on page 324
- Configuring SCU on a Virtual Loopback Tunnel Interface on page 326
- Configuring Class Usage Profiles on page 328
- Configuring the MIB Profile on page 330
- Configuring the Routing Engine Profile on page 333
CHAPTER 18

Configuring Accounting Options, Source Class Usage and Destination Class Usage Options

- Configuration Statements at the [edit accounting-options] Hierarchy Level on page 303
- Accounting Options Configuration on page 304
- Configuring Accounting-Data Log Files on page 312
- Configuring the Interface Profile on page 317
- Configuring the Filter Profile on page 320
- Example: Configuring a Filter Profile on page 322
- Example: Configuring Interface-Specific Firewall Counters and Filter Profiles on page 323
- Configuring SCU or DCU on page 324
- Configuring SCU on a Virtual Loopback Tunnel Interface on page 326
- Configuring Class Usage Profiles on page 328
- Configuring the MiB Profile on page 330
- Configuring the Routing Engine Profile on page 333

Configuration Statements at the [edit accounting-options] Hierarchy Level

Supported Platforms M Series, MX Series, SRX Series, T Series

This topic shows all possible configuration statements at the [edit accounting-options] hierarchy level and their level in the configuration hierarchy. When you are configuring Junos OS, your current hierarchy level is shown in the banner on the line preceding the user@host# prompt.

[edit]
accounting-options {
 class-usage-profile profile-name {
 file filename;
 interval minutes;
 destination-classes {
 destination-class-name;
 }
 source-classes {
 }
source-class-name;
}
}

file filename {
archive-sites {
}
files number;
nonpersistent;
size bytes;
start-time time;
transfer-interval minutes;
}
filter-profile profile-name {
counters {
counter-name;
}
file filename;
interval minutes;
}

interface-profile profile-name {
fields {
field-name;
}
file filename;
interval minutes;
}

mib-profile profile-name {
file filename;
interval seconds;
object-names {
mib-object-name;
}
operation operation-name;
}
routing-engine-profile profile-name {
fields {
field-name;
}
file filename;
interval minutes;
}

Related Documentation
- Accounting Options Overview on page 299
- Accounting Options Configuration on page 304

Accounting Options Configuration

Supported Platforms
- M Series, MX Series, PTX Series, SRX Series, T Series, vSRX
This topic contains the following sections:

- Accounting Options—Full Configuration on page 305
- Minimum Accounting Options Configuration on page 308

Accounting Options—Full Configuration

To configure accounting options, include the following statements at the [edit accounting-options] hierarchy level:

```plaintext
accounting-options {
  class-usage-profile profile-name {
    file filename;
    interval minutes;
    destination-classes {
      destination-class-name:
    }
    source-classes {
      source-class-name:
    }
    file filename {
      archive-sites {
        site-name;
      }
      files number;
      nonpersistent;
      size bytes;
      source-classes time;
      transfer-interval minutes;
    }
    filter-profile profile-name {
      counters {
        counter-name;
      }
      file filename;
      interval minutes;
    }
  }
  flat-file-profile profile-name{
    fields {
      all-fields;
      egress-stats {
        all-fields;
        input-bytes;
        input-packets;
        output-bytes;
        output-packets;
        queue-id;
        red-drop-bytes;
        red-drop-packets;
        tail-drop-packets;
      }
      general-param {
        all-fields;
        accounting-type;
      }
    }
  }
```
descr;
line-id;
logical-interface;
nas-port-id;
physical-interface;
routing-instance;
timestamp;
vlan-id;
}
ingress-stats {
 all-fields;
drop-packets;
input-bytes;
input-packets;
output-bytes;
output-packets;
queue-id;
}
}
l2-stats {
 all-fields;
 input-mcast-bytes;
 input-mcast-packets;
}
fields {
 all-fields;
egress-stats {
 all-fields;
 input-bytes;
 input-packets;
 output-bytes;
 output-packets;
 queue-id;
 red-drop-bytes;
 red-drop-packets;
 tail-drop-packets;
}
}
general-param {
 all-fields;
 accounting-type;
descr;
line-id;
logical-interface;
nas-port-id;
physical-interface;
routing-instance;
timestamp;
vlan-id;
}
ingress-stats {
 all-fields;
drop-packets;
input-bytes;
input-packets;
output-bytes;
output-packets;
queue-id;
}
Chapter 18: Configuring Accounting Options, Source Class Usage and Destination Class Usage Options

```json
}
general-param {
    all-fields;
    accounting-type;
    descr;
    line-id;
    logical-interface;
    nas-port-id;
    physical-interface;
    routing-instance;
    timestamp;
    vlan-id;
}
ingress-stats {
    all-fields;
    drop-packets;
    input-bytes;
    input-packets;
    output-bytes;
    output-packets;
    queue-id;
}
l2-stats {
    all-fields;
    input-mcast-bytes;
    input-mcast-packets;
}
overall-packet {
    all-fields;
    input-bytes;
    input-discards;
    input-errors;
    input-packets;
    inputv6-bytes;
    inputv6-packets;
    output-bytes;
    output-errors;
    output-packets;
    outputv6-bytes;
    outputv6-packets;
}
}
file filename;
format (csv | ipdr)
interval minutes;
schema-version schema-name;
}
interface-profile profile-name {
    fields {
        field-name;
    }
    file filename;
    interval minutes;
}
mb-profile profile-name {
    file filename;
```
interval seconds;
object-names {
 mib-object-name;
}
operation operation-name;
}
routing-engine-profile profile-name {
 fields {
 field-name;
 }
 file filename;
 interval minutes;
}

By default, accounting options are disabled.

NOTE: Do not configure MIB objects related to interface octets or packets for a MIB profile, because doing so can cause the SNMP walk or a CLI show command to time out.

Minimum Accounting Options Configuration

To enable accounting options on the router, you must perform at least the following tasks:

- Configure accounting options by including a file statement and one or more source-class-usage, destination-class-profile, filter-profile, interface-profile, mib-profile, or routing-engine-profile statements at the [edit accounting-options] hierarchy level:

 [edit]
 accounting-options {
 class-usage-profile profile-name {
 file filename;
 interval minutes;
 source-classes {
 source-class-name;
 }
 }
 destination-classes {
 destination-class-name;
 }
 file filename {
 archive-sites {
 site-name;
 }
 files number;
 size bytes;
 transfer-interval minutes;
 }
 filter-profile profile-name {
 counters {
 counter-name;
 }
 }
 }

Copyright © 2017, Juniper Networks, Inc.
file \textit{filename};
interval \textit{minutes};
}

\textbf{flat-file-profile} \textit{profile-name}{
\textbf{fields} {
 all-fields;
 \textbf{egress-stats} {
 all-fields;
 input-bytes;
 input-packets;
 output-bytes;
 output-packets;
 queue-id;
 red-drop-bytes;
 red-drop-packets;
 tail-drop-packets;
 }
 \textbf{general-param} {
 all-fields;
 accounting-type;
 descr;
 line-id;
 logical-interface;
 nas-port-id;
 physical-interface;
 routing-instance;
 timestamp;
 vlan-id;
 }
 \textbf{ingress-stats} {
 all-fields;
 drop-packets;
 input-bytes;
 input-packets;
 output-bytes;
 output-packets;
 queue-id;
 }
 \textbf{l2-stats} {
 all-fields;
 input-mcast-bytes;
 input-mcast-packets;
 }
 \textbf{overall-packet} {
 all-fields;
 input-bytes;
 input-discards;
 input-errors;
 input-packets;
 inputv6-bytes;
 inputv6-packets;
 output-bytes;
 output-errors;
 output-packets;
 outputv6-bytes;
 outputv6-packets;
}
file filename;
format (csv | ipdr)
interval minutes;
schema-version schema-name;

flat-file-profile profile-name{
fields {
 all-fields;
 egress-stats {
 all-fields;
 input-bytes;
 input-packets;
 output-bytes;
 output-packets;
 queue-id;
 red-drop-bytes;
 red-drop-packets;
 tail-drop-packets;
 }
 general-param {
 all-fields;
 accounting-type;
 descr;
 line-id;
 logical-interface;
 nas-port-id;
 physical-interface;
 routing-instance;
 timestamp;
 vlan-id;
 }
 ingress-stats {
 all-fields;
 drop-packets;
 input-bytes;
 input-packets;
 output-bytes;
 output-packets;
 queue-id;
 }
 l2-stats {
 all-fields;
 input-mcast-bytes;
 input-mcast-packets;
 }
 overall-packet {
 all-fields;
 input-bytes;
 input-discards;
 input-errors;
 input-packets;
 inputv6-bytes;
 inputv6-packets;
 output-bytes;
 }
}
• Apply the profiles to the chosen interfaces or filters.

Apply an interface profile to a physical or logical interface by including the `accounting-profile` statement at either the `[edit interfaces interface-name]` or the `[edit interfaces interface-name unit logical-unit-number]` hierarchy level.

```
[edit interfaces]
interface-name {
    accounting-profile profile-name;
    unit logical-unit-number {
        accounting-profile profile-name;
    }
}
```

NOTE: You do not apply destination class profiles to interfaces. Although the interface needs to have the `destination-class-usage` statement configured, the destination class profile automatically finds all interfaces with the destination class configured.
Apply a filter profile to a firewall filter by including the `accounting-profile` statement at the `[edit firewall filter filter-name]` hierarchy level:

```
[edit firewall]
filter filter-name {
    accounting-profile profile-name;
}
```

You do not need to apply the Routing Engine profile to an interface because the statistics are collected on the Routing Engine itself.

Related Documentation
- Accounting Options Overview on page 299
- Understanding Device Management Functions in Junos OS on page 3
- Configuring Accounting-Data Log Files on page 312
- Configuring the Interface Profile on page 317
- Configuring the Filter Profile on page 320
- Configuration Statements at the [edit accounting-options] Hierarchy Level on page 303

Configuring Accounting-Data Log Files

An accounting profile specifies what statistics to collect and write to a log file. To configure an accounting-data log file, include the `file` statement at the `[edit accounting-options]` hierarchy level:

```
[edit accounting-options]
cleanup-interval {
    interval days;
}
file filename {
    archive-sites {
        site-name;
    }
    backup-on-failure (master-and-slave | master-only);
    files number;
    nonpersistent;
    push-backup-to-master;
    size bytes;
    start-time time;
    transfer-interval minutes;
}
```

where `filename` is the name of the file in which to write accounting data.

If the filename contains spaces, enclose it in quotation marks (" "). The filename cannot contain a forward slash (/). The file is created in the `/var/log` directory and can contain data from multiple profiles.
All accounting-data log files include header and trailer sections that start with a # in the first column. The header contains the file creation time, the hostname, and the columns that appear in the file. The trailer contains the time that the file was closed.

Whenever any configured value changes that affects the columns in a file, the file creates a new profile layout record that contains a new list of columns.

You must configure the file size; all other properties are optional.

- Configuring How Long Backup Files Are Retained on page 313
- Configuring the Maximum Size of the File on page 313
- Configuring Archive Sites for the Files on page 314
- Configuring Local Backup for Accounting Files on page 314
- Configuring Files to Be Compressed on page 315
- Configuring the Maximum Number of Files on page 315
- Configuring the Storage Location of the File on page 315
- Configuring Files to Be Saved After a Change in Mastership on page 316
- Configuring the Start Time for File Transfer on page 316
- Configuring the Transfer Interval of the File on page 316

Configuring How Long Backup Files Are Retained

You can configure how many days the files are retained in the local directory before they are deleted.

NOTE: Files saved to the /var/log/pfedBackup directory are always compressed to conserve local storage, regardless of whether the compress statement is configured.

To configure retention for backup files:

- Specify the number of days.

  ```
  [edit accounting-options]
  user@host# set cleanup-interval interval days
  ```

 NOTE: Files are retained for 1 day if you do not configure this option.

 This value, whether configured or default, applies to all configured files at the [edit accounting-options file] hierarchy level.

Configuring the Maximum Size of the File

To configure the maximum size of the file:

- Specify the size.
The `size` statement is the maximum size of the log file, in bytes, kilobytes (KB), megabytes (MB), or gigabytes (GB). The minimum value for `bytes` is 256 KB. You must configure `bytes`; the remaining attributes are optional.

Configuring Archive Sites for the Files

After a file reaches its maximum size or the `transfer-interval` time is exceeded, the file is closed, renamed, and, if you configured an archive site, transferred to a remote host.

To configure the sites where files are archived:

- Specify one or more site names.

  ```
  [edit accounting-options file filename]
  user@host# set archive-sites site-name
  ```

 where `site-name` is any valid FTP URL. For more information about specifying valid FTP URLs, see the [Junos OS Administration Library](https://www.juniper.net/documentation/junos/en_US/admin/library/). You can specify more than one URL, in any order. When a file is archived, the router or switch attempts to transfer the file to the first URL in the list, trying the next site in the list only if the transfer does not succeed.

 The log file is stored at the archive site with a filename of the format `router-name_log-filename_timestamp`.

Configuring Local Backup for Accounting Files

You can configure the router to save a copy of the accounting file locally when the normal transfer of the files to the archive site fails. The file is saved to the `/var/log/pfedBackup` directory of the relevant Routing Engine. You must specify whether only the files from the master Routing Engine are saved or files are saved from both the master Routing Engine and the backup (slave) Routing Engine.

- **NOTE:** Files saved to the `/var/log/pfedBackup` directory are always compressed to conserve local storage, regardless of whether the `compress` statement is configured.

To configure local backup in the event of failure:

- Specify local backup and which files are saved.

  ```
  [edit accounting-options file filename]
  user@host# set backup-on-failure (master-and-slave | master-only)
  ```

 Disabling this feature deletes the backed-up accounting files from the directory.

- **NOTE:** When you do not configure this option, the file is saved on failure into the local directory specified as the last site in the list of archive sites.
Configuring Files to Be Compressed

By default, accounting files are transferred in an uncompressed format. To conserve resources during transmission and on the archive site, you can configure compression for the files.

NOTE: Files saved to the /var/log/pfedBackup directory are always compressed to conserve local storage, regardless of whether the compress statement is configured.

To configure the router to compress accounting files when they are transferred:

• Specify compression.

```
[edit accounting-options file filename]
user@host# set compress
```

Configuring the Maximum Number of Files

To configure the maximum number of files:

• Specify the number.

```
[edit accounting-options file filename]
user@host# set files number
```

When a log file reaches its maximum size, it is renamed `filename.0`, then `filename.1`, and so on, until the maximum number of log files is reached. Then the oldest log file is overwritten. The minimum value for `number` is 3 and the default value is 10.

Configuring the Storage Location of the File

On J Series Services Routers, the files are stored by default on the compact flash drive. Alternatively, you can configure the files to be stored in the mfs/var/log directory (on DRAM) instead of the cf/var/log directory (on the compact flash drive).

To configure the storage location on DRAM:

• Specify nonpersistent storage.

```
[edit accounting-options file filename]
user@host# set nonpersistent
```

This feature is useful for minimizing read/write traffic on the router’s compact flash drive.

NOTE: If log files for accounting data are stored on DRAM, these files are lost when you reboot the router. We recommend that you back up these files periodically.
Configuring Files to Be Saved After a Change in Mastership

You can configure the router to save the accounting files from the new backup Routing Engine to the new master Routing Engine when a change in mastership occurs. The files are stored in the /var/log/pfedBackup directory on the router. The master Routing Engine includes these accounting files with its own current accounting files when it transfers the files from the backup directory to the archive site at the next transfer interval. Configure this option when the new backup Routing Engine is not able to connect to the archive site; for example, when the site is not connected by means of an out-of-band interface or the path to the site is routed through a line card.

To configure the backup Routing Engine files to be saved when mastership changes:

- Specify the backup.

  ```
  [edit accounting-options file filename]
  user@host# set push-backup-to-master
  ```

NOTE: The backup Routing Engine's files on the master Routing Engine are sent at each interval even though the files remain the same. If this is more activity than you want, consider using the backup-on-failure master-and-slave statement instead.

Configuring the Start Time for File Transfer

To configure the start time for transferring files:

- Specify the time.

  ```
  [edit accounting-options file filename]
  user@host# set start-time YYYY-MM-DD.hh:mm
  ```

For example, 10:00 a.m. on January 30, 2007 is represented as 2007-01-30.10:00.

Configuring the Transfer Interval of the File

To configure the interval at which files are transferred:

- Specify the interval.

  ```
  [edit accounting-options file filename]
  user@host# set transfer-interval minutes
  ```

The range for transfer-interval is 5 through 2880 minutes. The default is 30 minutes.

TIP:

Junos OS saves the existing log file and creates a new file at the configured transfer intervals irrespective of whether:

- The file has reached the maximum size.
An archive site is configured. When you have a relatively small transfer interval configured and if no archive site is configured, data can be lost as Junos OS overwrites the log files when the maximum number of log files is reached. To ensure that the log information is saved for a reasonably long time:

- Configure an archive site to archive the log files every time a new log file is created.
- Configure the maximum value (2880 minutes) for transfer-interval so that new files are created less frequently; that is, only when the file exceeds the maximum size limit or once in 2 days.

Related Documentation
- Accounting Options Overview on page 299
- Understanding Device Management Functions in Junos OS on page 3
- Accounting Options Configuration on page 304
- Configuring the Interface Profile on page 317
- Configuring the Filter Profile on page 320
- Configuration Statements at the [edit accounting-options] Hierarchy Level on page 303

Configuring the Interface Profile

Supported Platforms
M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

An interface profile specifies the information collected and written to a log file. You can configure a profile to collect error and statistic information for input and output packets on a particular physical or logical interface.

To configure an interface profile, include the `interface-profile` statement at the `[edit accounting-options]` hierarchy level:

```
[edit accounting-options]
interface-profile profile-name {
  fields {
    field-name;
  }
  file filename;
  interval minutes;
}
```

By default, the Packet Forwarding Engine (PFE) periodically collects the statistics for all interfaces. To improve the performance, you can optionally disable the periodic refresh by including the `periodic-refresh disable` statement at the `[edit accounting-options]` hierarchy level.
Each accounting profile must have a unique **profile-name**. To apply a profile to a physical or logical interface, include the `accounting-profile` statement at either the `[edit interfaces interface-name]` or the `[edit interfaces interface-name unit logical-unit-number]` hierarchy level. You can also apply an accounting profile at the `[edit firewall family family-type filter filter-name]` hierarchy level. For more information, see the *Routing Policies, Firewall Filters, and Traffic Policers Feature Guide*.

To configure an interface profile, perform the tasks described in the following sections:

- Configuring Fields on page 318
- Configuring the File Information on page 318
- Configuring Cleared Statistics to be Reported in the Flat File on page 318
- Configuring the Interval on page 319
- Example: Configuring the Interface Profile on page 319

Configuring Fields

An interface profile must specify what statistics are collected. To configure which statistics should be collected for an interface, include the `fields` statement at the `[edit accounting-options interface-profile profile-name]` hierarchy level:

```
[edit accounting-options interface-profile profile-name]
fields {
    field-name;
}
```

Configuring the File Information

Each accounting profile logs its statistics to a file in the `/var/log` directory.

To configure which file to use, include the `file` statement at the `[edit accounting-options interface-profile profile-name]` hierarchy level:

```
[edit accounting-options interface-profile profile-name]
file filename;
```

You must specify a `file` statement for the interface profile that has already been configured at the `[edit accounting-options]` hierarchy level.

Configuring Cleared Statistics to be Reported in the Flat File

When you issue the `clear interfaces statistics` command for a logical interface configured to collect accounting statistics, all accounting statistics received on that interface from the Packet Forwarding Engine are cleared. The current values when the command is issued become the new baseline and the statistics counters are reset to zero. The new values, starting from zero, are displayed in the CLI. However, they are not reported that way in the accounting flat file associated with the interface. Instead, the values as reported in the file continue to increment as if the command had not been issued.

You can change this result by including the `allow-clear` statement in the interface profile. In this case, when you issue the `clear interfaces statistics` command, the statistics are reset to zero and reported to the flat file.
To configure reporting of cleared accounting statistics to the flat file, specify reporting:

```
[edit accounting-options interface-profile profile-name]
allow-clear;
```

Configuring the Interval

Each interface with an accounting profile enabled has statistics collected once per interval time specified for the accounting profile. Statistics collection time is scheduled evenly over the configured interval. To configure the interval, include the `interval` statement at the `[edit accounting-options interface-profile profile-name]` hierarchy level:

```
[edit accounting-options interface-profile profile-name]
interval minutes;
```

NOTE: The minimum interval allowed is 1 minute. Configuring a low interval in an accounting profile for a large number of interfaces might cause serious performance degradation.

The range for the `interval` statement is 1 through 2880 minutes. The default is 30 minutes.

Example: Configuring the Interface Profile

Configure the interface profile:

```
[edit]
accounting-options {
  file if_stats {
    size 40 files 5;
  }
  interface-profile if_profile1 {
    file if_stats;
    interval 30;
    fields {
      input-bytes;
      output-bytes;
      input-packets;
      output-packets;
      input-multicast;
      output-multicast;
    }
  }
  interface-profile if_profile2 {
    file if_stats;
    interval 30;
    fields {
      input-bytes;
      output-bytes;
      input-packets;
      output-packets;
      input-multicast;
      output-multicast;
    }
  }
}
```
interfaces {
 xe-1/0/0 {
 accounting-profile if_profile1;
 unit 0 {
 accounting-profile if_profile2;
 ...
 }
 }
}

The two interface profiles, if-profile1 and if-profile2, write data to the same file, if-stats. The if-stats file might look like the following:

 #FILE CREATED 976823478 2000-12-14-19:51:18
 #hostname host
 #profile-layout
 if_profile2,epoch-timestamp,interface-name,snmp-index,input-bytes,output-bytes,
 input-packets,output-packets,input-multicast,output-multicast
 #profile-layout
 if_profile1,epoch-timestamp,interface-name,snmp-index,input-bytes,output-bytes,
 input-packets
 if_profile2,976823538,xe-1/0/0.0,8,134696815,3681534,501088,40723,0,0
 if_profile1,976823538,xe-1/0/0,7,134696815,3681534
 ...
 #FILE CLOSED 976824378 2000-12-14-20:06:18

Related Documentation

- Accounting Options Overview on page 299
- Understanding Device Management Functions in Junos OS on page 3
- Accounting Options Configuration on page 304
- Configuring Accounting-Data Log Files on page 312
- Configuring the Filter Profile on page 320
- Configuration Statements at the [edit accounting-options] Hierarchy Level on page 303

Configuring the Filter Profile

Supported Platforms M Series, MX Series, PTX Series, T Series

A filter profile specifies error and statistics information collected and written to a file. A filter profile must specify counter names for which statistics are collected.

To configure a filter profile, include the filter-profile statement at the [edit accounting-options] hierarchy level:

 [edit accounting-options]
 filter-profile profile-name {
 counters {
 counter-name;
 }
 file filename;
 interval minutes;
 }
To apply the filter profile, include the `accounting-profile` statement at the `[edit firewall filter filter-name]` hierarchy level.

To configure a filter profile, perform the tasks described in the following sections:

- Configuring the Counters on page 321
- Configuring the File Information on page 321
- Configuring the Interval on page 322

Configuring the Counters

Statistics are collected for all counters specified in the filter profile. To configure the counters, include the `counters` statement at the `[edit accounting-options filter-profile profile-name]` hierarchy level:

```
[edit accounting-options filter-profile profile-name]
counters {
}
```

Configuring the File Information

Each accounting profile logs its statistics to a file in the `/var/log` directory.

To configure which file to use, include the `file` statement at the `[edit accounting-options filter-profile profile-name]` hierarchy level:

```
[edit accounting-options filter-profile profile-name]
file filename;
```

You must specify a filename for the filter profile that has already been configured at the `[edit accounting-options]` hierarchy level.

NOTE: The limit on the total number of characters per line in a log file equals 1023. If this limit is exceeded, the output written to the log file is incomplete. Ensure that you limit the number of counters or requested data so that this character limit is not exceeded.

NOTE: If the configured file size or transfer interval is exceeded, Junos OS closes the file and starts a new one. By default, the transfer interval value is 30 minutes. If the transfer interval is not configured, Junos OS closes the file and starts a new one when the file size exceeds its configured value or the default transfer interval value exceeds 30 minutes. To avoid transferring files every 30 minutes, specify a different value for the transfer interval.
Configuring the Interval

Each filter with an accounting profile enabled has statistics collected once per interval time specified for the accounting profile. Statistics collection time is scheduled evenly over the configured interval. To configure the interval, include the `interval` statement at the `[edit accounting-options filter-profile profile-name]` hierarchy level:

```
[edit accounting-options filter-profile profile-name]
interval;
```

NOTE: The minimum interval allowed is 1 minute. Configuring a low interval in an accounting profile for a large number of filters might cause serious performance degradation.

The range for the `interval` statement is 1 through 2880 minutes. The default is 30 minutes.

Related Documentation
- Accounting Options Overview on page 299
- Understanding Device Management Functions in Junos OS on page 3
- Accounting Options Configuration on page 304
- Configuring Accounting-Data Log Files on page 312

Example: Configuring a Filter Profile

Supported Platforms M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

Configure a filter profile:

```
[edit]
accounting-options {
  file fw_accounting {
    size 500k files 4;
  }
  filter-profile fw_profile1 {
    file fw_accounting;
    interval 60;
    counters {
      counter1;
      counter2;
      counter3;
    }
  }
}
firewall {
  filter myfilter {
    accounting-profile fw_profile1;
    ...
    term accept-all {
      then {
        count counter1;
        accept;
      }
    }
  }
}
```
The filter profile, `fw-profile1`, writes data to the file `fw_accounting`. The file might look like the following:

```
# FILE CREATED 976825278 2000-12-14-20:21:18
# hostname host
# profile-layout
fw_profile1,epoch-timestamp,filter-name,counter-name,packet-count,byte-count
fw_profile1,976826058,myfilter,counter1,163,10764
...
# FILE CLOSED 976826178 2000-12-14-20:36:18
```

Related Documentation

- Configuring the Filter Profile on page 320
- Example: Configuring Interface-Specific Firewall Counters and Filter Profiles on page 323

Example: Configuring Interface-Specific Firewall Counters and Filter Profiles

Supported Platforms
M Series, MX Series, SRX Series, T Series, vSRX

To collect and log count statistics collected by firewall filters on a per-interface basis, you must configure a filter profile and include the interface-specific statement at the [edit firewall filter filter-name] hierarchy level.

Configure the firewall filter accounting profile:

```
[edit accounting-options]
file cust1_accounting { 
    size 500k;
}
filter-profile cust1_profile { 
    file cust1_accounting;
    interval 1;
    counters {
        r1;
    }
}
```

Configure the interface-specific firewall counter:

```
[edit firewall]
filter f3 { 
    accounting-profile cust1_profile; 
    interface-specific; 
    term f3-term { 
        then { 
            count r1; 
            accept; 
        } 
    }
}
```
Apply the firewall filter to an interface:

```
[edit interfaces]
ex-1/0/0 {
    unit 0 {
        family inet {
            filter {
                input f3;
                output f3;
            }
            address 20.20.20.30/24;
        }
    }
}
```

The following example shows the contents of the `cust1_accounting` file in the `/var/log` folder that might result from the preceding configuration:

```
# FILE CREATED 995495212 2001-07-18-22:26:52
# hostname host
# profile-layout cust1_profile,epoch-timestamp,interfaces,filter-name,counter-name,packet-count,byte-count
cust1_profile,995495572,xe-1/0/0.0,f3-xe-1/0/0.0-i,r1-xe-1/0/0.0-i,5953,1008257
cust1_profile,995495602,xe-1/0/0.0,f3-xe-1/0/0.0-o,r1-xe-1/0/0.0-o,5929,1006481
...
```

If the `interface-specific` statement is not included in the configuration, the following output might result:

```
# FILE CREATED 995495212 2001-07-18-22:26:52
# hostname host
# profile-layout cust1_profile,epoch-timestamp,interfaces,filter-name,counter-name,packet-count,byte-count
cust1_profile,995495572,xe-1/0/0.0,f3-xe-1/0/0.0-i,r1-xe-1/0/0.0-i,5953,1008257
cust1_profile,995495602,xe-1/0/0.0,f3-xe-1/0/0.0-o,r1-xe-1/0/0.0-o,5929,1006481
...
```

Related Documentation
- Configuring the Filter Profile on page 320
- Configuring the Interface Profile on page 317

Configuring SCU or DCU

Supported Platforms
- M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

To configure SCU or DCU, perform the following tasks described in this section:
NOTE: We recommend that you stop the network traffic on an interface before you modify the DCU or SCU configuration for that interface. Modifying the DCU or SCU configuration without stopping the traffic might corrupt the DCU or SCU statistics. Before you restart the traffic after modifying the configuration, enter the `clear interfaces statistics` command.

- Creating Prefix Route Filters in a Policy Statement on page 325
- Applying the Policy to the Forwarding Table on page 325
- Enabling Accounting on Inbound and Outbound Interfaces on page 325

Creating Prefix Route Filters in a Policy Statement

To define prefix router filters:

```
[edit policy-options]
policy-statement scu-1 {
    term term1;
    from {
        route-filter 192.0.2.0/24 or longer;
    }
    then source-class gold;
}
```

Applying the Policy to the Forwarding Table

To apply the policy to the forwarding table:

```
[edit]
routing-options {
    forwarding-table {
        export scu-1;
    }
}
```

Enabling Accounting on Inbound and Outbound Interfaces

To enable accounting on inbound and outbound interfaces:

```
[edit]
interfaces {
    so-6/1/0 {
        unit 0 {
            family inet;
            accounting {
                destination-class-usage;
                source-class-usage {
                    output;
                }
            }
        }
    }
}
[edit]
```
interfaces {
exe-0/1/0 {
 unit 0 {
 family inet6 {
 accounting {
 source-class-usage {
 input;
 }
 }
 }
 }
}
}

Optionally, you can include the input and output statements on a single interface as shown:

[edit]
interfaces {
exe-0/1/2 {
 unit 0 {
 family inet6 {
 accounting {
 source-class-usage {
 input;
 output;
 }
 }
 }
 }
}
}

For more information about configuring route filters and source classes in a routing policy, see the Routing Policies, Firewall Filters, and Traffic Policers Feature Guide and the Junos OS Network Interfaces Library for Routing Devices.

Related Documentation
- Understanding Source Class Usage and Destination Class Usage Options on page 300
- Configuring SCU on a Virtual Loopback Tunnel Interface on page 326
- Configuring Class Usage Profiles on page 328
- Configuring the MiB Profile on page 330
- Configuring the Routing Engine Profile on page 333

Configuring SCU on a Virtual Loopback Tunnel Interface

Supported Platforms
- M Series, MX Series, SRX Series, T Series, vSRX
To configure source class usage on the virtual loopback tunnel interface, perform the tasks described in the following sections:

- **Example: Configuring a Virtual Loopback Tunnel Interface on a Provider Edge Router Equipped with a Tunnel PIC** on page 327
- **Example: Mapping the VRF Instance Type to the Virtual Loopback Tunnel Interface** on page 327
- **Example: Sending Traffic Received from the Virtual Loopback Interface Out the Source Class Output Interface** on page 328

Example: Configuring a Virtual Loopback Tunnel Interface on a Provider Edge Router Equipped with a Tunnel PIC

Define a virtual loop interface on a provider edge router with a Tunnel PIC:

```conf
[edit interfaces]
vt-0/3/0 {
  unit 0 {
    family inet {
      accounting {
        source-class-usage {
          input;
        }
      }
    }
  }
}
```

Example: Mapping the VRF Instance Type to the Virtual Loopback Tunnel Interface

Map the VRF instance type to the virtual loopback tunnel interface:

```conf
[edit]
routing-instances {
  VPN-A {
    instance-type vrf;
    interface at-2/1/1.0;
    interface vt-0/3/0.0;
    route-distinguisher 10.255.14.225;
    vrf-import import-policy-name;
    vrf-export export-policy-name;
    protocols {
      bgp {
        group to-r4 {
          local-address 10.27.253.1;
          peer-as 400;
          neighbor 10.27.253.2;
        }
      }
    }
  }
}
```
NOTE: For SCU and DCU to work, do not include the vrf-table-label statement at the [edit routing-instances instance-name] hierarchy level.

Example: Sending Traffic Received from the Virtual Loopback Interface Out the Source Class Output Interface

Send traffic received from the virtual loopback tunnel interface out of the source class output interface:

```plaintext
[edit interfaces]
at-1/1/0 {
    unit 0 {
        family inet {
            accounting {
                source-class-usage {
                    output;
                }
            }
        }
    }
}
```

For more information about configuring source class usage on the virtual loopback tunnel interface, see the Junos OS Network Interfaces Library for Routing Devices.

Related Documentation

- Understanding Source Class Usage and Destination Class Usage Options on page 300
- Configuring SCU or DCU on page 324
- Configuring Class Usage Profiles on page 328
- Configuring the MIB Profile on page 330
- Configuring the Routing Engine Profile on page 333

Configuring Class Usage Profiles

Supported Platforms

M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

To collect class usage statistics, perform the tasks described in these sections:

- Configuring a Class Usage Profile on page 328
- Configuring the File Information on page 329
- Configuring the Interval on page 329
- Creating a Class Usage Profile to Collect Source Class Usage Statistics on page 329
- Creating a Class Usage Profile to Collect Destination Class Usage Statistics on page 330

Configuring a Class Usage Profile

You can configure the class usage profile to collect statistics for particular source and destination classes.
To configure the class usage profile to filter by source classes, include the `source-classes` statement at the `[edit accounting-options class-usage-profile profile-name]` hierarchy level:

```plaintext
[source-classes {
    source-class-name;
}]
```

To configure the class usage profile to filter by destination classes, include the `destination-classes` statement at the `[edit accounting-options class-usage-profile profile-name]` hierarchy level:

```plaintext
[destination-classes {
    destination-class-name;
}]
```

Configuring the File Information

Each accounting profile logs its statistics to a file in the `/var/log` directory.

To specify which file to use, include the `file` statement at the `[edit accounting-options class-usage-profile profile-name]` hierarchy level:

```plaintext
[file filename]
```

You must specify a filename for the source class usage profile that has already been configured at the `[edit accounting-options]` hierarchy level. You can also specify a filename for the destination class usage profile configured at the `[edit accounting-options]` hierarchy level.

Configuring the Interval

Each interface with a class usage profile enabled has statistics collected once per interval specified for the accounting profile. Statistics collection time is scheduled evenly over the configured interval. To configure the interval, include the `interval` statement at the `[edit accounting-options class-usage-profile profile-name]` hierarchy level:

```plaintext
[interval]
```

Creating a Class Usage Profile to Collect Source Class Usage Statistics

To create a class usage profile to collect source class usage statistics:

```plaintext
[edit]
accounting-options {
    class-usage-profile scu-profile1;
    file usage-stats;
    interval 15;
    source-classes {
        gold;
        silver;
        bronze;
    }
}
```
The class usage profile, `scu-profile1`, writes data to the file `usage_stats`. The file might look like the following:

```
#FILE CREATED 976825278 2000-12-14-20:21:18
#profile-layout, scu_profile,epoch-timestamp,interface-name,source-class, packet-count,byte-count
scu_profile,980313078,xe-1/0/0.0,gold,82,6888
scu_profile,980313078,xe-1/0/0.0,silver,164,13776
scu_profile,980313078,xe-1/0/0.0,bronze,0,0
...```

Creating a Class Usage Profile to Collect Destination Class Usage Statistics

To create a class usage profile to collect destination class usage statistics:

```
[edit]
accounting-options {
 class-usage-profile dcu-profile1;
 file usage-stats
 interval 15;
 destination-classes {
 gold;
 silver;
 bronze;
 }
}
```

The class usage profile, `dcu-profile1`, writes data to the file `usage-stats`. The file might look like the following:

```
#FILE CREATED 976825278 2000-12-14-20:21:18
#profile-layout, dcu_profile,epoch-timestamp,interface-name,destination-class, packet-count,byte-count
dcu_profile,980313078,xe-1/0/0.0,gold,82,6888
dcu_profile,980313078,xe-1/0/0.0,silver,164,13776
dcu_profile,980313078,xe-1/0/0.0,bronze,0,0
dcu_profile,980313678,xe-1/0/0.0,gold,82,6888
dcu_profile,980313678,xe-1/0/0.0,silver,246,20664
dcu_profile,980313678,xe-1/0/0.0,bronze,0,0
```

Related Documentation

- Understanding Source Class Usage and Destination Class Usage Options on page 300
- Configuring SCU or DCU on page 324
- Configuring SCU on a Virtual Loopback Tunnel Interface on page 326
- Configuring the Routing Engine Profile on page 333

Configuring the MIB Profile

Supported Platforms

- M Series
- MX Series
- PTX Series
- SRX Series
- T Series
- vSRX
The MIB profile collects MIB statistics and logs them to a file. The MIB profile specifies the SNMP operation and MIB object names for which statistics are collected.

To configure a MIB profile, include the `mib-profile` statement at the `[edit accounting-options]` hierarchy level:

```
[edit accounting-options]
mib-profile profile-name {
 file filename;
 interval minutes;
 object-names {
 mib-object-name;
 }
 operation operation-name;
}
```

To configure a MIB profile, perform the tasks described in the following sections:

- Configuring the File Information on page 331
- Configuring the Interval on page 331
- Configuring the MIB Operation on page 331
- Configuring MIB Object Names on page 332
- Example: Configuring a MIB Profile on page 332

### Configuring the File Information

Each accounting profile logs its statistics to a file in the `/var/log` directory.

To configure which file to use, include the `file` statement at the `[edit accounting-options mib-profile profile-name]` hierarchy level:

```
[edit accounting-options mib-profile profile-name]
file filename;
```

You must specify a `filename` for the MIB profile that has already been configured at the `[edit accounting-options]` hierarchy level.

### Configuring the Interval

A MIB profile has statistics collected once per interval time specified for the profile. Statistics collection time is scheduled evenly over the configured interval. To configure the interval, include the `interval` statement at the `[edit accounting-options mib-profile profile-name]` hierarchy level:

```
[edit accounting-options mib-profile profile-name]
interval;
```

The range for the `interval` statement is 1 through 2880 minutes. The default is 30 minutes.

### Configuring the MIB Operation

A MIB profile must specify the operation that is used to collect MIB statistics. To configure which operation is used to collect MIB statistics, include the `operation` statement at the `[edit accounting-options mib-profile profile-name]` hierarchy level:

```
[edit accounting-options mib-profile profile-name]
operation operation-name;
```
operation operation-name;
You can configure a get, get-next, or walk operation. The default operation is walk.

Configuring MIB Object Names

A MIB profile must specify the MIB objects for which statistics are to be collected. To configure the MIB objects for which statistics are collected, include the objects-names statement at the [edit accounting-options mib-profile profile-name] hierarchy level:

[edit accounting-options mib-profile profile-name]
object-names {
  mib-object-name;
}
You can include multiple MIB object names in the configuration.

NOTE: In Junos OS Release 15.1X49-D10 and later, do not configure MIB objects related to interface octets or packets for a MIB profile, because it can cause the SNMP walk or a CLI show command to time out.

Example: Configuring a MIB Profile

Configure a MIB profile:

[edit accounting-options]
mib-profile mstatistics {
  file stats;
  interval 60;
  operation walk;
  objects-names {
    ipCidrRouteStatus;
  }
}

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1X49-D10</td>
<td>In Junos OS Release 15.1X49-D10 and later, do not configure MIB objects related to interface octets or packets for a MIB profile, because it can cause the SNMP walk or a CLI show command to time out.</td>
</tr>
</tbody>
</table>

Related Documentation

- Understanding Source Class Usage and Destination Class Usage Options on page 300
- Configuring SCU or DCU on page 324
- Configuring SCU on a Virtual Loopback Tunnel Interface on page 326
- Configuring Class Usage Profiles on page 328
- Configuring the Routing Engine Profile on page 333
Configuring the Routing Engine Profile

Supported Platforms  M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

The Routing Engine profile collects Routing Engine statistics and logs them to a file. The Routing Engine profile specifies the fields for which statistics are collected.

To configure a Routing Engine profile, include the `routing-engine-profile` statement at the `[edit accounting-options]` hierarchy level:

```
[edit accounting-options]
routing-engine-profile profile-name {
 fields {
 field-name;
 }
 file filename;
 interval minutes;
}
```

To configure a Routing Engine profile, perform the tasks described in the following sections:

- Configuring Fields on page 333
- Configuring the File Information on page 333
- Configuring the Interval on page 334
- Example: Configuring a Routing Engine Profile on page 334

Configuring Fields

A Routing Engine profile must specify what statistics are collected. To configure which statistics should be collected for the Routing Engine, include the `fields` statement at the `[edit accounting-options routing-engine-profile profile-name]` hierarchy level:

```
[edit accounting-options routing-engine-profile profile-name]
fields {
 field-name;
}
```

Configuring the File Information

Each accounting profile logs its statistics to a file in the `/var/log` directory.

To configure which file to use, include the `file` statement at the `[edit accounting-options routing-engine-profile profile-name]` hierarchy level:

```
[edit accounting-options routing-engine-profile profile-name]
file filename;
```

You must specify a `filename` for the Routing Engine profile that has already been configured at the `[edit accounting-options]` hierarchy level.
Configuring the Interval

A Routing Engine profile has statistics collected once per interval time specified for the profile. Statistics collection time is scheduled evenly over the configured interval. To configure the interval, include the `interval` statement at the `[edit accounting-options routing-engine-profile profile-name]` hierarchy level:

```
[edit accounting-options routing-engine-profile profile-name]
interval;
```

The range for `interval` is 1 through 2880 minutes. The default is 30 minutes.

Example: Configuring a Routing Engine Profile

Configure a Routing Engine profile:

```
[edit accounting-options]
file my-file {
 size 300k;
}
routing-engine-profile profile-1 {
 file my-file;
 fields {
 host-name;
 date;
 time-of-day;
 uptime;
 cpu-load-1;
 cpu-load-5;
 cpu-load-15;
 }
}
```

Related Documentation

- Understanding Source Class Usage and Destination Class Usage Options on page 300
- Configuring SCU or DCU on page 324
- Configuring SCU on a Virtual Loopback Tunnel Interface on page 326
- Configuring Class Usage Profiles on page 328
- Configuring the MIB Profile on page 330
PART 6

Configuring Monitoring Options

- Configuring Interface Alarms on page 337
- Using RPM to Measure Network Performance on page 349
- Configuring IP Monitoring on page 379
Configuring Interface Alarms

• Alarm Overview on page 337
• Example: Configuring Interface Alarms on page 343
• Monitoring Active Alarms on a Device on page 346
• Monitoring Alarms on page 347

Alarm Overview

Supported Platforms  SRX Series

Alarms alert you to conditions on a network interface, on the device chassis, or in the system software that might prevent the device from operating normally. You can set the conditions that trigger alarms on an interface. Chassis and system alarm conditions are preset.

An active alarm lights the ALARM LED on the front panel of the device. You can monitor active alarms from the J-Web user interface or the CLI. When an alarm condition triggers an alarm, the device lights the yellow (amber) ALARM LED on the front panel. When the condition is corrected, the light turns off.

This section contains the following topics:

• Alarm Types on page 337
• Alarm Severity on page 338
• Alarm Conditions on page 338

Alarm Types

The device supports three types of alarms:

• Interface alarms indicate a problem in the state of the physical links on fixed or installed Physical Interface Modules (PIMs). To enable interface alarms, you must configure them.

• Chassis alarms indicate a failure on the device or one of its components. Chassis alarms are preset and cannot be modified.
- System alarms indicate a missing rescue configuration or software license, where valid. System alarms are preset and cannot be modified, although you can configure them to appear automatically in the J-Web user interface or CLI.

Starting with Junos OS Release 15.1X49-D60 and Junos OS Release 17.3R1, a new system alarm is introduced to indicate that the PICs (I/O card or SPC) have failed to come online during system start time.

**NOTE:** Run the following commands when the CLI prompt indicates that an alarm has been raised:

- `show system alarms`
- `show chassis alarms`
- `show chassis fpc pic-status`

For more information about the CLI commands, see `show system alarms`, `show chassis alarms`, and `show chassis fpc (View)`.

### Alarm Severity

Alarms have two severity levels:

- **Major (red)**—Indicates a critical situation on the device that has resulted from one of the following conditions. A red alarm condition requires immediate action.
  - One or more hardware components have failed.
  - One or more hardware components have exceeded temperature thresholds.
  - An alarm condition configured on an interface has triggered a critical warning.

- **Minor (yellow)**—Indicates a noncritical condition on the device that, if left unchecked, might cause an interruption in service or degradation in performance. A yellow alarm condition requires monitoring or maintenance.

A missing rescue configuration or software license generates a yellow system alarm.

### Alarm Conditions

To enable alarms on a device interface, you must select an alarm condition and an alarm severity. In contrast, alarm conditions and severity are preconfigured for chassis alarms and system alarms.

**NOTE:** For information about chassis alarms for your device, see the Hardware Guide for your device.
This section contains the following topics:

- Interface Alarm Conditions on page 339
- System Alarm Conditions on page 342

### Interface Alarm Conditions

Table 39 on page 339 lists the interface conditions, sorted by interface type, that you can configure for an alarm. You can configure each alarm condition to trigger either a major (red) alarm or minor a (yellow) alarm. The corresponding configuration option is included.

For the services stateful firewall filters (NAT, IDP, and IPsec), which operate on an internal adaptive services module within a device, you can configure alarm conditions on the integrated services and services interfaces.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Alarm Condition</th>
<th>Description</th>
<th>Configuration Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS1 (T1)</td>
<td>Alarm indication signal (AIS)</td>
<td>The normal T1 traffic signal contained a defect condition and has been replaced by the AIS. A transmission interruption occurred at the remote endpoint or upstream of the remote endpoint. This all-ones signal is transmitted to prevent consequential downstream failures or alarms.</td>
<td>ais</td>
</tr>
<tr>
<td></td>
<td>Yellow alarm</td>
<td>The remote endpoint is in yellow alarm failure. This condition is also known as a far-end alarm failure.</td>
<td>ylw</td>
</tr>
<tr>
<td>Ethernet</td>
<td>Link is down</td>
<td>The physical link is unavailable.</td>
<td>link-down</td>
</tr>
<tr>
<td>Integrated services</td>
<td>Hardware or software failure</td>
<td>On the adaptive services module, either the hardware associated with the module or the software that drives the module has failed.</td>
<td>failure</td>
</tr>
<tr>
<td>Interface</td>
<td>Alarm Condition</td>
<td>Description</td>
<td>Configuration Option</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Serial</td>
<td>Clear-to-send (CTS) signal absent</td>
<td>The remote endpoint of the serial link is not transmitting a CTS signal. The CTS signal must be present before data can be transmitted across a serial link.</td>
<td>cts-absent</td>
</tr>
<tr>
<td></td>
<td>Data carrier detect (DCD) signal absent</td>
<td>The remote endpoint of the serial link is not transmitting a DCD signal. Because the DCD signal transmits the state of the device, no signal probably indicates that the remote endpoint of the serial link is unavailable.</td>
<td>dcd-absent</td>
</tr>
<tr>
<td></td>
<td>Data set ready (DSR) signal absent</td>
<td>The remote endpoint of the serial link is not transmitting a DSR signal. The DSR signal indicates that the remote endpoint is ready to receive and transmit data across the serial link.</td>
<td>dsr-absent</td>
</tr>
<tr>
<td></td>
<td>Loss of receive clock</td>
<td>The clock signal from the remote endpoint is not present. Serial connections require clock signals to be transmitted from one endpoint and received by the other endpoint of the link.</td>
<td>loss-of-rx-clock</td>
</tr>
<tr>
<td></td>
<td>Loss of transmit clock</td>
<td>The local clock signal is not present. Serial connections require clock signals to be transmitted from one endpoint and received by the other endpoint of the link.</td>
<td>loss-of-tx-clock</td>
</tr>
<tr>
<td>Services</td>
<td>Services module hardware down</td>
<td>A hardware problem has occurred on the device's services module. This error typically means that one or more of the CPUs on the module has failed.</td>
<td>hw-down</td>
</tr>
<tr>
<td></td>
<td>Services link down</td>
<td>The link between the device and its services module is unavailable.</td>
<td>linkdown</td>
</tr>
<tr>
<td></td>
<td>Services module held in reset</td>
<td>The device's services module is stuck in reset mode. If the services module fails to start up five or more times in a row, the services module is held in reset mode. Startup fails when the amount of time from CPU release to CPU halt is less than 300 seconds.</td>
<td>pic-hold-reset</td>
</tr>
<tr>
<td></td>
<td>Services module reset</td>
<td>The device's services module is resetting. The module resets after it crashes or is reset from the CLI, or when it takes longer than 60 seconds to start up.</td>
<td>pic-reset</td>
</tr>
<tr>
<td></td>
<td>Services module software down</td>
<td>A software problem has occurred on the device's services module.</td>
<td>sw-down</td>
</tr>
</tbody>
</table>
Table 39: Interface Alarm Conditions (*continued*)

<table>
<thead>
<tr>
<th>Interface</th>
<th>Alarm Condition</th>
<th>Description</th>
<th>Configuration Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>E3</td>
<td>Alarm indication signal (AIS)</td>
<td>The normal E3 traffic signal contained a defect condition and has been replaced by the AIS. A transmission interruption occurred at the remote endpoint or upstream of the remote endpoint. This all-ones signal is transmitted to prevent consequential downstream failures or alarms.</td>
<td>ais</td>
</tr>
<tr>
<td></td>
<td>Loss of signal (LOS)</td>
<td>No remote E3 signal is being received at the E3 interface.</td>
<td>los</td>
</tr>
<tr>
<td></td>
<td>Out of frame (OOF)</td>
<td>An OOF condition has existed for 10 seconds. This alarm applies only to E3 interfaces configured in frame mode. The OOF failure is cleared when no OOF or LOS defects have occurred for 20 seconds.</td>
<td>oof</td>
</tr>
<tr>
<td></td>
<td>Remote defect indication</td>
<td>An AIS, LOS, or OOF condition exists. This alarm applies only to E3 interfaces configured in frame mode.</td>
<td>rdi</td>
</tr>
</tbody>
</table>
### Table 39: Interface Alarm Conditions (continued)

<table>
<thead>
<tr>
<th>Interface</th>
<th>Alarm Condition</th>
<th>Description</th>
<th>Configuration Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3 (DS3)</td>
<td>Alarm indication signal</td>
<td>The normal T3 traffic signal contained a defect condition and has been replaced by the AIS. A transmission interruption occurred at the remote endpoint or upstream of the remote endpoint. This all-ones signal is transmitted to prevent consequential downstream failures or alarms.</td>
<td>ais</td>
</tr>
<tr>
<td></td>
<td>Excessive number of zeros</td>
<td>The bit stream received from the upstream host has more consecutive zeros than are allowed in a T3 frame.</td>
<td>exz</td>
</tr>
<tr>
<td></td>
<td>Far-end receive failure (FERF)</td>
<td>The remote endpoint of the connection has failed. A FERF differs from a yellow alarm, because the failure can be any failure, not just an OOF or LOS failure.</td>
<td>ferf</td>
</tr>
<tr>
<td></td>
<td>Idle alarm</td>
<td>The Idle signal is being received from the remote endpoint.</td>
<td>idle</td>
</tr>
<tr>
<td></td>
<td>Line code violation</td>
<td>Either the line encoding along the T3 link is corrupted or a mismatch between the encoding at the local and remote endpoints of a T3 connection occurred.</td>
<td>lcv</td>
</tr>
<tr>
<td></td>
<td>Loss of frame (LOF)</td>
<td>An OOF or loss-of-signal LOS condition has existed for 10 seconds. The LOF failure is cleared when no OOF or LOS defects have occurred for 20 seconds. A LOF failure is also called a red failure.</td>
<td>lof</td>
</tr>
<tr>
<td></td>
<td>Loss of signal (LOS)</td>
<td>No remote T3 signal is being received at the T3 interface.</td>
<td>los</td>
</tr>
<tr>
<td></td>
<td>Phase-locked loop out of lock</td>
<td>The clocking signals for the local and remote endpoints no longer operate in lock-step.</td>
<td>pll</td>
</tr>
<tr>
<td></td>
<td>Yellow alarm</td>
<td>The remote endpoint is in yellow alarm failure. This condition is also known as a far-end alarm failure.</td>
<td>ylw</td>
</tr>
</tbody>
</table>

### System Alarm Conditions

Table 40 on page 342 lists the two preset system alarms, the condition that triggers each alarm, and the action you take to correct the condition.

### Table 40: System Alarm Conditions and Corrective Actions

<table>
<thead>
<tr>
<th>Alarm Type</th>
<th>Alarm Condition</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>The rescue configuration is not set.</td>
<td>Set the rescue configuration.</td>
</tr>
</tbody>
</table>
Table 40: System Alarm Conditions and Corrective Actions (continued)

<table>
<thead>
<tr>
<th>Alarm Type</th>
<th>Alarm Condition</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>License</td>
<td>You have configured at least one software feature that requires a feature license, but no valid license for the feature is currently installed.</td>
<td>Install a valid license key.</td>
</tr>
<tr>
<td></td>
<td><strong>NOTE:</strong> This alarm indicates that you are in violation of the software license agreement. You must install a valid license key to be in compliance with all agreements.</td>
<td></td>
</tr>
</tbody>
</table>

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1X49-D60</td>
<td>Starting with Junos OS Release 15.1X49-D60 and Junos OS Release 17.3R1, a new system alarm is introduced to indicate that the PICs (I/O card or SPC) have failed to come online during system start time.</td>
</tr>
</tbody>
</table>

Related Documentation
- Example: Configuring Interface Alarms on page 343
- Monitoring Active Alarms on a Device on page 346
- Monitoring Alarms on page 347
- System Log Messages

Example: Configuring Interface Alarms

Supported Platforms
- SRX Series

This example shows how to configure interface alarms.
- Requirements on page 343
- Overview on page 344
- Configuration on page 344
- Verification on page 346

Requirements
Before you begin:
- Establish basic connectivity.
- Select the network interface on which to apply an alarm and the condition you want to trigger the alarm. See “Alarm Overview” on page 337.
Overview

In this example, you enable interface alarms by explicitly setting alarm conditions. You configure the system to generate a red interface alarm when a yellow alarm is detected on a DS1 link. You configure the system to generate a red interface alarm when a link-down failure is detected on an Ethernet link.

For a serial link, you set cts-absent and dcd-absent to yellow to signify either the CST or the DCD signal is not detected. You set loss-of-rx-clock and loss-of-tx-clock to red alarm to signify either the receiver clock signal or the transmission clock signal is not detected.

For a T3 link, you set the interface alarm to red when the remote endpoint is experiencing a failure. You set exz to yellow alarm when the upstream bit has more consecutive zeros than are permitted in a T3 interface. You then set a red alarm when there is loss-of-signal on the interface.

Finally, you configure the system to display active system alarms whenever a user with the login class admin logs in to the device.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set chassis alarm ds1 ylw red
set chassis alarm ethernet link-down red
set chassis alarm serial cts-absent yellow dcd-absent yellow
set chassis alarm serial loss-of-rx-clock red loss-of-tx-clock red
set chassis alarm t3 ylw red exz yellow los red
set chassis alarm login-alarms
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure interface alarms:

1. Configure an alarm.

   [edit]
   
   user@host# edit chassis alarm

2. Specify the interface alarms on a DS1 and an Ethernet link.

   [edit chassis alarm]
   
   user@host# set ds1 ylw red
   user@host# set ethernet link-down red

3. Specify the interface alarms on a serial link.
4. Specify the interface alarms on a T3 link.

   [edit chassis alarm]
   user@host# set serial cts-absent yellow
   user@host# set serial dcd-absent yellow
   user@host# set serial loss-of-rx-clock red
   user@host# set serial loss-of-tx-clock red

5. Configure the system to display active system alarms.

   [edit]
   user@host# edit system login
   user@host# set class admin login-alarms

Results: From configuration mode, confirm your configuration by entering the `show chassis alarms` and `show system login` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

   [edit]
   user@host# show chassis alarms
   t3 { exz yellow;
         los red;
         ylw red;
       }
   ds1 { ylw red;
       }
   ethernet { link-down red;
             }
   serial { loss-of-rx-clock red;
            loss-of-tx-clock red;
            dcd-absent yellow;
            cts-absent yellow;
           }
   [edit]
   user@host# show system login
   show system login
   show system login

If you are done configuring the device, enter **commit** from configuration mode.
Verification

Verifying the Alarm Configurations

Purpose
Confirm that the configuration is working properly.
Verify that the alarms are configured.

Action
From configuration mode, enter the `show chassis alarms` command. Verify that the output shows the intended configuration of the alarms.

Related Documentation
- Alarm Overview on page 337
- Monitoring Active Alarms on a Device on page 346
- Monitoring Alarms on page 347

Monitoring Active Alarms on a Device

Supported Platforms
SRX Series, vSRX

Purpose
Use to monitor and filter alarms on a Juniper Networks device.

Action
Select Monitor>Events and Alarms>View Alarms in the J-Web user interface. The J-Web View Alarms page displays the following information about preset system and chassis alarms:

- Type—Type of alarm: System, Chassis, or All.
- Severity—Severity class of the alarm: Minor or Major.
- Description—Description of the alarm.
- Time—Time that the alarm was registered.

To filter which alarms appear, use the following options:

- Alarm Type—Specifies which type of alarm to monitor: System, Chassis, or All. System alarms include FRU detection alarms (power supplies removed, for instance). Chassis alarms indicate environmental alarms such as temperature.
- Severity—Specifies the alarm severity that you want to monitor: Major, Minor, or All. A major (red) alarm condition requires immediate action. A minor (yellow) condition requires monitoring and maintenance.
- Description—Specifies the alarms you want to monitor. Enter a brief synopsis of the alarms that you want to monitor.
- Date From—Specifies the beginning of the date range that you want to monitor. Set the date using the calendar pick tool.
To—Specifies the end of the date range that you want to monitor. Set the date using the calendar pick tool.

Go—Executes the options that you specified.

Reset—Clears the options that you specified.

Alternatively, you can enter the following `show` commands in the CLI editor:

- `show chassis alarms`
- `show system alarms`

### Related Documentation
- Alarm Overview on page 337
- Example: Configuring Interface Alarms on page 343
- Monitoring Alarms on page 347

## Monitoring Alarms

**Supported Platforms** SRX Series, vSRX

**Purpose** Use the monitoring functionality to view the alarms page.

**Action** To monitor alarms, select one of the following in the J-Web user interface:

- If you are using SRX5400, SRX5600, or SRX5800 platforms, select Monitor > Events and Alarms > View Alarms.
- Select Monitor > Alarms > View Alarms.

### Meaning

Table 41 on page 347 summarizes key output fields in the alarms page.

### Table 41: Alarms Monitoring Page

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm Filter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm Type</td>
<td>Specifies the type of alarm to monitor:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>System</strong> – System alarms include FRU detection alarms (power supplies removed, for instance).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Chassis</strong> – Chassis alarms indicate environmental alarms such as temperature.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>All</strong> – Indicates to display all the types of alarms.</td>
<td></td>
</tr>
</tbody>
</table>
### Table 41: Alarms Monitoring Page (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severity</td>
<td>Specifies the alarm severity that you want to monitor</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>• Major– A major (red) alarm condition requires immediate action.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Minor– A minor (yellow) condition requires monitoring and maintenance.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• All– Indicates to display all the severities.</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Enter a brief synopsis of the alarms you want to monitor.</td>
<td>—</td>
</tr>
<tr>
<td>Date From</td>
<td>Specifies the beginning of the date range that you want to monitor. Set the date using the calendar pick tool.</td>
<td>—</td>
</tr>
<tr>
<td>To</td>
<td>Specifies the end of the date range that you want to monitor. Set the date using the calendar pick tool.</td>
<td>—</td>
</tr>
<tr>
<td>Go</td>
<td>Executes the options that you specified.</td>
<td>—</td>
</tr>
<tr>
<td>Reset</td>
<td>Clears the options that you specified.</td>
<td>—</td>
</tr>
<tr>
<td>Alarm Details</td>
<td>Displays the following information about each alarm:</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>• Type– Type of alarm: System, Chassis, or All.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Severity– Severity class of the alarm: Minor or Major.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Description– Description of the alarm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Time– Time that the alarm was registered.</td>
<td></td>
</tr>
</tbody>
</table>

**Related Documentation**
- Monitoring Active Alarms on a Device on page 346
- Monitoring Events on page 488
- Monitoring Security Events by Policy on page 469
CHAPTER 20

Using RPM to Measure Network Performance

- RPM Overview on page 349
- IPv6 RPM Probes on page 353
- Two-Way Active Measurement Protocol (TWAMP) Overview on page 354
- Guidelines for Configuring RPM Probes for IPv6 on page 356
- RPM Support for VPN Routing and Forwarding on page 357
- Example: Configuring Basic RPM Probes on page 358
- Example: Configuring RPM Using TCP and UDP Probes on page 362
- Example: Configuring RPM Probes for BGP Monitoring on page 365
- Directing RPM Probes to Select BGP Devices on page 368
- Configuring IPv6 RPM Probes on page 368
- Tuning RPM Probes on page 369
- RPM Configuration Options on page 370
- Monitoring RPM Probes on page 374

RPM Overview

**Supported Platforms**  
SRX1500, SRX300, SRX320, SRX340, vSRX

The real-time performance monitoring (RPM) feature allows network operators and their customers to accurately measure the performance between two network endpoints. With the RPM tool, you configure and send probes to a specified target and monitor the analyzed results to determine packet loss, round-trip time, and jitter.

RPM allows you to perform service-level monitoring. When RPM is configured on a device, the device calculates network performance based on packet response time, jitter, and packet loss. These values are gathered by Hypertext Transfer Protocol (HTTP) GET requests, Internet Control Message Protocol (ICMP) requests, and TCP and UDP requests, depending on the configuration.
This section contains the following topics:

- RPM Probes on page 350
- RPM Tests on page 351
- Probe and Test Intervals on page 351
- Jitter Measurement with Hardware Timestamping on page 351
- RPM Statistics on page 352
- RPM Thresholds and Traps on page 353
- RPM for BGP Monitoring on page 353

RPM Probes

You gather RPM statistics by sending out probes to a specified probe target, identified by an IP address or URL. When the target receives the probe, it generates responses, which are received by the device. By analyzing the transit times to and from the remote server, the device can determine network performance statistics.

The device sends out the following probe types:

- HTTP GET request at a target URL
- HTTP GET request for metadata at a target URL
- ICMP echo request to a target address (the default)
- ICMP timestamp request to a target address
- UDP ping packets to a target device
- UDP timestamp requests to a target address
- TCP ping packets to a target device

UDP and TCP probe types require that the remote server be configured as an RPM receiver so that it generates responses to the probes.

The RPM probe results are also available in the form of MIB objects through the SNMP protocol.

---

**NOTE:** On SRX300, SRX320, SRX340, SRX1500 devices and vSRX instances, when you configure basic RPM probes, the following combination of the configuration parameters is not supported:

Source address and destination port and next-hop.

Configuring RPM probe with these parameters prevents sending out RPM probes to a specified probe target. We recommend you to configure either the source address or destination port and next-hop to configure RPM probe.
RPM Tests

Each probed target is monitored over the course of a test. A test represents a collection of probes, sent out at regular intervals, as defined in the configuration. Statistics are then returned for each test. Because a test is a collection of probes that have been monitored over some amount of time, test statistics such as standard deviation and jitter can be calculated and included with the average probe statistics.

Probe and Test Intervals

Within a test, RPM probes are sent at regular intervals, configured in seconds. When the total number of probes has been sent and the corresponding responses received, the test is complete. You can manually set the probe interval for each test to control how the RPM test is conducted.

After all the probes for a particular test have been sent, the test begins again. The time between tests is the test interval. You can manually set the test interval to tune RPM performance.

NOTE: On SRX340 devices, the RPM server operation with icmp is not supported. The RPM server works fine with TCP and UDP.

Jitter Measurement with Hardware Timestamping

Jitter is the difference in relative transit time between two consecutive probes.

You can timestamp the following RPM probes to improve the measurement of latency or jitter:

- ICMP ping
- ICMP ping timestamp
- UDP ping
- UDP ping timestamp

NOTE: The device supports hardware timestamping of UDP ping and UDP ping timestamp RPM probes only if the destination port is UDP-ECHO (port 7).

Timestamping takes place during the forwarding process of the device originating the probe (the RPM client), but not on the remote device that is the target of the probe (the RPM server).

The supported encapsulations on a device for timestamping are Ethernet including VLAN, synchronous PPP, and Frame Relay. The only logical interface supported is an It services interface.
RPM probe generation with hardware timestamp can be retrieved through the SNMP protocol.

**RPM Statistics**

At the end of each test, the device collects the statistics for packet round-trip time, packet inbound and outbound times (for ICMP timestamp probes only), and probe loss as shown in Table 42 on page 352.

### Table 42: RPM Statistics

<table>
<thead>
<tr>
<th>RPM Statistics</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Round-Trip Times</strong></td>
<td></td>
</tr>
<tr>
<td>Minimum round-trip time</td>
<td>Shortest round-trip time from the Juniper Networks device to the remote server, as measured over the course of the test</td>
</tr>
<tr>
<td>Maximum round-trip time</td>
<td>Longest round-trip time from the Juniper Networks device to the remote server, as measured over the course of the test</td>
</tr>
<tr>
<td>Average round-trip time</td>
<td>Average round-trip time from the Juniper Networks device to the remote server, as measured over the course of the test</td>
</tr>
<tr>
<td>Standard deviation round-trip time</td>
<td>Standard deviation of the round-trip times from the Juniper Networks device to the remote server, as measured over the course of the test</td>
</tr>
<tr>
<td><strong>Jitter</strong></td>
<td>Difference between the maximum and minimum round-trip times, as measured over the course of the test</td>
</tr>
<tr>
<td><strong>Inbound and Outbound Times (ICMP Timestamp Probes Only)</strong></td>
<td></td>
</tr>
<tr>
<td>Minimum egress time</td>
<td>Shortest one-way time from the Juniper Networks device to the remote server, as measured over the course of the test</td>
</tr>
<tr>
<td>Maximum ingress time</td>
<td>Shortest one-way time from the remote server to the Juniper Networks device, as measured over the course of the test</td>
</tr>
<tr>
<td>Average egress time</td>
<td>Average one-way time from the Juniper Networks device to the remote server, as measured over the course of the test</td>
</tr>
<tr>
<td>Average ingress time</td>
<td>Average one-way time from the remote server to the Juniper Networks device, as measured over the course of the test</td>
</tr>
<tr>
<td>Standard deviation egress time</td>
<td>Standard deviation of the one-way times from the Juniper Networks device to the remote server, as measured over the course of the test</td>
</tr>
<tr>
<td>Standard deviation ingress time</td>
<td>Standard deviation of the one-way times from the remote server to the Juniper Networks device, as measured over the course of the test</td>
</tr>
<tr>
<td>Egress jitter</td>
<td>Difference between the maximum and minimum outbound times, as measured over the course of the test</td>
</tr>
<tr>
<td>Ingress jitter</td>
<td>Difference between the maximum and minimum inbound times, as measured over the course of the test</td>
</tr>
</tbody>
</table>
Table 42: RPM Statistics (continued)

<table>
<thead>
<tr>
<th>RPM Statistics</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe Counts</td>
<td></td>
</tr>
<tr>
<td>Probes sent</td>
<td>Total number of probes sent over the course of the test</td>
</tr>
<tr>
<td>Probe responses received</td>
<td>Total number of probe responses received over the course of the test</td>
</tr>
<tr>
<td>Loss percentage</td>
<td>Percentage of probes sent for which a response was not received</td>
</tr>
</tbody>
</table>

RPM Thresholds and Traps

You can configure RPM threshold values for the round-trip times, ingress (inbound) times, and egress (outbound) times that are measured for each probe, as well as for the standard deviation and jitter values that are measured for each test. Additionally, you can configure threshold values for the number of successive lost probes within a test and the total number of lost probes within a test.

If the result of a probe or test exceeds any threshold, the device generates a system log message and sends any Simple Network Management Protocol (SNMP) notifications (traps) that you have configured.

RPM for BGP Monitoring

When managing peering networks that are connected using Border Gateway Protocol (BGP), you might need to find out if a path exists between the Juniper Networks device and its configured BGP neighbors. You can ping each BGP neighbor manually to determine the connection status, but this method is not practical when the device has a large number of BGP neighbors configured.

In the device, you can configure RPM probes to monitor the BGP neighbors and determine if they are active.

Related Documentation

- RPM Configuration Options on page 370
- RPM Support for VPN Routing and Forwarding on page 357
- Example: Configuring Basic RPM Probes on page 358
- Monitoring RPM Probes on page 374
- Determine What Causes Jitter and Latency on the Multilink Bundle on page 603

IPv6 RPM Probes

Supported Platforms

- vSRX
Starting with Junos OS Release 15.1X49-D10, Route Engine-based RPM can send and receive IPv6 probe packets to monitor performance on IPv6 networks.

A probe request is a standard IPv6 packet with corresponding TCP, UDP, and ICMPv6 headers. A probe response is also a standard IPv6 packet with corresponding TCP, UDP, and ICMPv6 headers. No RPM header is appended to the standard packet for RE-based RPM. An IPv6-based RPM test occurs between an IPv6 RPM client and IPv6 RPM server.

**NOTE:** You can have both IPv4 tests and IPv6 tests in the same probe.

---

**Related Documentation**
- Guidelines for Configuring RPM Probes for IPv6 on page 356
- Configuring IPv6 RPM Probes on page 368

---

**Two-Way Active Measurement Protocol (TWAMP) Overview**

**Supported Platforms**

**SRX Series**

The Two-Way Active Measurement Protocol (TWAMP) is a standard protocol framework that defines the following separation of sessions based on the client/server architecture:

- **Control Connection**—The control connection negotiates the setting up of one or more test sessions between a TWAMP client and server. It is used to set up performance measurement sessions.

  The remote operation process or daemon (rmopd) in the Junos OS Routing Engine (RE) takes care of all the control plane handling that includes both the client and server control message exchanges. The packet path processing for the control connection is the same as any other control process. Once the server-greeting, setup-response, and setup-start messages are successful, the TWAMP client starts the session creation message processing. One or more test sessions are created with the following tuples:

  - Client/server Dynamic IP (DIP)
  - Client/server Source IP (SIP)
  - Client/server UDP port

- **Test Session**—The test session exchanges the probe packets to measure the performance metrics. Each test session between a client and server can use different QoS values to test QoS behavior on the network path for different packet priorities.

  The timestamps on the test probes on the transmitter side should be just before the packet is sent out on the link or wire. Similarly, timestamps on the test probes on the receiver side should be done as soon as the probe packets are received from the link or wire. This will help in calculating a fairly accurate round trip time (RTT), delay, and jitter characteristics of the probes. The test probes can also be set to different QoS values to test the QoS behavior on the network path.

  **Figure 8 on page 355** explains the TWAMP elements, which are implemented as client and server.
SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 devices have the following limitations for TWAMP support:

- TWAMP for IPv6 is not supported.
- Authentication is not supported.

Four different TWAMP devices can perform the four logical roles of TWAMP control-client, server, session-sender, and session-reflector. A common implementation combines the roles of control-client and session-sender in one device (known as the TWAMP controller or TWAMP client) and the roles of server and session-reflector in the other device (known as the TWAMP responder or TWAMP server). In this case, each device runs both the TWAMP-Control (between control-client and server) and TWAMP-Test (between session-sender and session-reflector) protocols.

The four elements are shown in Figure 9 on page 355.

**Figure 9: Four Elements of TWAMP**

**Benefits of TWAMP**

TWAMP configuration helps you to activate, test, monitor, and troubleshoot your network end-to-end without a dedicated test device. TWAMP defines an open protocol for measuring two-way or round-trip metrics with greater accuracy than other methods by using timestamps (processing delays can be factored as well). TWAMP is often used to check service-level agreement (SLA) compliance, and the TWAMP feature is often presented in that context.
Although TWAMP is a two-way measurement protocol, it is still possible to measure one-way packet loss; that is, separate loss values for the forward and backward directions. This is possible because the reflector places its own sequence number in the packet.

Related Documentation

Guidelines for Configuring RPM Probes for IPv6

Supported Platforms vSRX

Starting with Junos OS Release 15.1X49-D10, you can configure RPM Probes for IPv6.

Keep the following guidelines in mind when you configure IPv6 addresses for RPM destinations or servers:

- IPv6 RPM uses ICMPv6 probe requests. You cannot configure ICMP or ICMP timestamp probe types.
- Only Routing Engine-based RPM is supported for IPv6 targets including VRF support, specification of the size of the data portion of ICMPv6 probes, data pattern, and traffic class.
- You can configure probes with a combination of IPv4 and IPv6 tests. However, an individual test must be either IPv4 or IPv6.
- Routing Engine-based RPM does not support hardware-based, or one-way hardware-based timestamping.
- We recommend that you include the probe-limit statement at the [edit services rpm] hierarchy level to set the limit on concurrent probes to 10. Higher concurrent probes can result in higher spikes.
- SNMP set operation is permitted only on ICMP probes and it is not supported for other probe types.
- The following table describes the IPv6 special address prefixes that you cannot configure in a probe.

<table>
<thead>
<tr>
<th>IPv6 Address Type</th>
<th>IPv6 Address Prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node-Scoped Unicast</td>
<td>::/128 is the loopback address</td>
</tr>
<tr>
<td></td>
<td>::/128 is the unspecified address</td>
</tr>
<tr>
<td>IPv4-Mapped Addresses</td>
<td>::FFFF:0:0/96</td>
</tr>
<tr>
<td>IPv4-Compatible Addresses</td>
<td>::&lt;ipv4-address&gt;/96</td>
</tr>
<tr>
<td>Link-Scoped Unicast</td>
<td>fe80::/10</td>
</tr>
<tr>
<td>Unique-Local</td>
<td>fc00::/7</td>
</tr>
<tr>
<td>Documentation Prefix</td>
<td>2001:db8::/32</td>
</tr>
</tbody>
</table>

Copyright © 2017, Juniper Networks, Inc.
<table>
<thead>
<tr>
<th>IPV6 Address Type</th>
<th>IPV6 Address Prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>6to4</td>
<td>2002::/16</td>
</tr>
<tr>
<td>6bone</td>
<td>5f00::/8</td>
</tr>
<tr>
<td>ORCHID</td>
<td>2001:10::/28</td>
</tr>
<tr>
<td>Teredo</td>
<td>2001::/32</td>
</tr>
<tr>
<td>Default Route</td>
<td>::/0</td>
</tr>
<tr>
<td>Multicast</td>
<td>ff00::/8</td>
</tr>
</tbody>
</table>

- In Routing Engine-based RPM, route-trip time (RTT) spikes might occur because of queuing delays, even with a single test.
- Since RPM might open TCP and UDP ports to communicate between the RPM server and RPM client, we recommend that you use firewalls and distributed denial-of-service (DDoS) attack filters to protect against security threats.

### Related Documentation
- Configuring IPv6 RPM Probes on page 368

### RPM Support for VPN Routing and Forwarding

**Supported Platforms**

SRX1500, SRX300, SRX320, SRX340, vSRX

Real-time performance monitoring (RPM) is supported on all Juniper Network devices.

VRF in a Layer 3 VPN implementation allows multiple instances of a routing table to coexist within the same device at the same time. Because the routing instances are independent, the same or overlapping IPv4 or IPv6 addresses can be used without conflicting each other.

RPM ICMP and UDP probe with VPN routing and forwarding (VRF) has been improved. In previous releases, the RPM probes specified to a VRF table were not handled by the real-time forwarding process (FWDD-RT). In Junos OS Release 10.0, RPM probes specified to a VRF table are handled by the FWDD-RT, thereby providing more accurate results.

This feature supports RPM ICMP and UDP probes configured with routing instances of type VRF.

**Related Documentation**

- RPM Overview on page 349
- RPM Configuration Options on page 370
- Monitoring RPM Probes on page 374
Example: Configuring Basic RPM Probes

Supported Platforms  
SRX1500, SRX300, SRX320, SRX340, vSRX

This example shows how to configure basic RPM probes to measure performance between two network endpoints.

- Requirements on page 358
- Overview on page 358
- Configuration on page 358
- Verification on page 361

Requirements

Before you begin:

- Establish basic connectivity.

Overview

In this example, you configure basic probes for two RPM owners, customerA and customerB. You configure the RPM test as icmp-test for customerA with a test interval of 15 seconds and specify a probe type as icmp-ping-timestamp, a probe timestamp, and a target address as 192.178.16.5. You then configure the RPM thresholds and corresponding SNMP traps to catch ingress (inbound) times greater than 3000 microseconds.

Then you configure the RPM test as http-test for customerB with a test interval of 30 seconds and specify a probe type as http-get and a target URL as http://customerB.net. Finally, you configure RPM thresholds and corresponding SNMP traps as probe-failure and test-failure to catch three or more successive lost probes and total lost probes of 10.

NOTE: On SRX300, SRX320, SRX340, SRX1500 devices and vSRX instances, when you configure basic RPM probes, the following combination of the configuration parameters is not supported:

- Source address and destination port and next-hop.

Configuring RPM probe with these parameters prevents sending out RPM probes to a specified probe target. We recommend you to configure either the source address or destination port and next-hop to configure RPM probe.

Configuration

CLI Quick Configuration  
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network
configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```plaintext
set services rpm probe customerA test icmp-test probe-interval 15
set services rpm probe customerA test icmp-test probe-type icmp-ping-timestamp
set services rpm probe customerA test icmp-test hardware-timestamp
set services rpm probe customerA test icmp-test target address 192.178.16.5
set services rpm probe customerA test icmp-test thresholds ingress-time 3000
set services rpm probe customerA test icmp-test traps ingress-time-exceeded
set services rpm probe customerB test http-test probe-interval 30
set services rpm probe customerB test http-test probe-type http-get
set services rpm probe customerB test http-test target url http://customerB.net
set services rpm probe customerB test http-test thresholds successive-loss 3
set services rpm probe customerB test http-test thresholds total-loss 10
set services rpm probe customerB test http-test traps probe-failure
set services rpm probe customerB test http-test traps test-failure
```

**Step-by-Step Procedure**

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure basic RPM probes:

1. Configure the RPM.
   ```plaintext
 [edit]
 user@host# edit services rpm
   ```

2. Configure the RPM owners.
   ```plaintext
 [edit services rpm]
 user@host# set probe customerA
 user@host# set probe customerB
   ```

3. Configure the RPM test for customerA.
   ```plaintext
 [edit services rpm]
 user@host# edit probe customerA
 user@host# set test icmp-test probe-interval 15
 user@host# set test icmp-test probe-type icmp-ping-timestamp
   ```

4. Specify a probe timestamp and a target address.
   ```plaintext
 [edit services rpm probe customerA]
 user@host# set test icmp-test hardware-timestamp
 user@host# set test icmp-test target address 192.178.16.5
   ```

5. Configure RPM thresholds and corresponding SNMP traps.
   ```plaintext
 [edit services rpm probe customerA]
 user@host# set test icmp-test thresholds ingress-time 3000
 user@host# set test icmp-test traps ingress-time-exceeded
   ```
6. Configure the RPM test for customerB.

   [edit]
   user@host# edit services rpm probe customerB
   user@host# set test http-test probe-interval 30

7. Specify a probe type and a target URL.

   [edit services rpm probe customerB]
   user@host# set test http-test probe-type http-get
   user@host# set test http-test target url http://customerB.net

8. Configure RPM thresholds and corresponding SNMP traps.

   [edit services rpm probe customerB]
   user@host# set test http-test thresholds successive-loss 3
   user@host# set test http-test thresholds total-loss 10
   user@host# set test http-test traps probe-failure
   user@host# set test http-test traps test-failure

Results

From configuration mode, confirm your configuration by entering the show services rpm command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

   [edit]
   user@host# show services rpm
   probe customerA { 
   test icmp-test { 
   probe-type icmp-ping-timestamp; 
   target address 192.0.2.2; 
   probe-interval 15; 
   thresholds [ 
   ingress-time 3000; 
   ] 
   traps ingress-time-exceeded; 
   hardware-timestamp; 
   } 
   
   probe customerB { 
   test http-test { 
   probe-type http-get 
   target url http://customerB.net; 
   probe-interval 30; 
   thresholds [ 
   successive-loss 3; 
   total-loss 10; 
   ] 
   traps [ probe-failure test-failure ]; 
   } 
   } 

If you are done configuring the device, enter commit from configuration mode.
Verification

Confirm that the configuration is working properly.

- Verifying RPM Services on page 361
- Verifying RPM Statistics on page 361

Verifying RPM Services

Purpose

Verify that the RPM configuration is within the expected values.

Action

From configuration mode, enter the `show services rpm` command. The output shows the values that are configured for RPM on the device.

Verifying RPM Statistics

Purpose

Verify that the RPM probes are functioning and that the RPM statistics are within expected values.

Action

From configuration mode, enter the `show services rpm probe-results` command.

```
user@host> show services rpm probe-results

Owner: customerD, Test: icmp-test
Probe type: icmp-ping-timestamp
Minimum Rtt: 312 usec, Maximum Rtt: 385 usec, Average Rtt: 331 usec,
Jitter Rtt: 73 usec, Stddev Rtt: 27 usec
Minimum egress time: 0 usec, Maximum egress time: 0 usec,
Average egress time: 0 usec, Jitter egress time: 0 usec,
Stddev egress time: 0 usec
Minimum ingress time: 0 usec, Maximum ingress time: 0 usec,
Average ingress time: 0 usec, Jitter ingress time: 0 usec,
Stddev ingress time: 0 usec
Probes sent: 5, Probes received: 5, Loss percentage: 0

Owner: customerE, Test: http-test
Target address: 192.176.17.4, Target URL: http://customerB.net,
Probe type: http-get
Minimum Rtt: 1093 usec, Maximum Rtt: 1372 usec, Average Rtt: 1231 usec,
Jitter Rtt: 279 usec, Stddev Rtt: 114 usec
Probes sent: 3, Probes received: 3, Loss percentage: 0

Owner: Rpm-Bgp-Owner, Test: Rpm-Bgp-Test-1
Target address: 10.209.152.37, Probe type: icmp-ping, Test size: 5 probes
Routing Instance Name: LR1/R1
Probe results:
 Response received, Fri Oct 28 05:20:23 2005
 Rtt: 662 usec
Results over current test:
 Probes sent: 5, Probes received: 5, Loss percentage: 0
Measurement: Round trip time
 Minimum: 529 usec, Maximum: 662 usec, Average: 585 usec,
 Jitter: 133 usec, Stddev: 53 usec
Results over all tests:
```
Probes sent: 5, Probes received: 5, Loss percentage: 0
Measurement: Round trip time
Minimum: 529 usec, Maximum: 662 usec, Average: 585 usec,
Jitter: 133 usec, Stddev: 53 usec

Related Documentation
- RPM Overview on page 349
- RPM Configuration Options on page 370
- Tuning RPM Probes on page 369

Example: Configuring RPM Using TCP and UDP Probes

Supported Platforms
SRX1500, SRX300, SRX320, SRX340, vSRX

This example shows how to configure RPM using TCP and UDP probes.

- Requirements on page 362
- Overview on page 362
- Configuration on page 362
- Verification on page 364

Requirements

Before you begin:

- Establish basic connectivity.
- Configure the probe owner, the test, and the specific parameters of the RPM probe. See “Example: Configuring Basic RPM Probes” on page 358.

Overview

In this example, you configure both the host (device A) and the remote device (device B) to act as TCP and UDP servers. You configure a probe for customerC, which uses TCP packets. Device B is configured as an RPM server for both TCP and UDP packets, using an It services interface as the destination interface, and ports 50000 and 50037, respectively.

CAUTION: Use probe classification with caution, because improper configuration can cause packets to be dropped.

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network
configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter **commit** from configuration mode.

```
{device A}
set services rpm probe customerC test tcp-test probe-interval 5
set services rpm probe customerC test tcp-test probe-type tcp-ping
set services rpm probe customerC test tcp-test target address 192.162.45.6
set services rpm probe customerC test tcp-test destination-interface It-0/0/0
set services rpm probe customerC test tcp-test destination-port 50000

{device B}
set services rpm probe-server tcp port 50000
set services rpm probe-server udp port 50037
```

### Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see **Using the CLI Editor in Configuration Mode** in the **CLI User Guide**.

To configure RPM using TCP and UDP probes:

1. Configure the RPM owner on device A.
   ```
 [device A]
 [edit]
 user@host# edit services rpm
 user@host# set probe customerC
   ```

2. Configure the RPM test.
   ```
 [device A]
 [edit services rpm]
 user@host# edit services rpm probe customerC
 user@host# set test tcp-test probe-interval 5
   ```

3. Set the probe type.
   ```
 [device A]
 [edit services rpm probe customerC]
 user@host# set test tcp-test probe-type tcp-ping
   ```

4. Specify the target address.
   ```
 [device A]
 [edit services rpm probe customerC]
 user@host# set test tcp-test target address 192.162.45.6
   ```

5. Configure the destination interface.
   ```
 [device A]
 [edit services rpm probe customerC]
 user@host# set test tcp-test destination-interface It-0/0/0
   ```

6. Configure port 50000 as the TCP port to which the RPM probes are sent.
7. Configure device B to act as a TCP server using port 50000.

[device B]
[edit]
user@host# edit services rpm
user@host# set probe-server tcp port 50000

8. Configure device B to act as a UDP server using port 50037.

[device B]
[edit services rpm]
user@host# set probe-server udp port 50037

Results From configuration mode, confirm your configuration by entering the show services rpm command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

[edit]
user@host# show services rpm
probe customerC {
    test tcp-test {
        probe-type tcp-ping;
        target address 192.162.45.6;
        probe-interval 5;
        destination-port 50000;
        destination-interface lt-0/0/0.0;
    }
}
probe-server {
    tcp {
        port 50000;
    }
    udp {
        port 50037;
    }
}

If you are done configuring the device, enter commit from configuration mode.

Verification

Verifying RPM Probe Servers

Purpose Confirm that the configuration is working properly.

Verify that the device is configured to receive and transmit TCP and UDP RPM probes on the correct ports.
Action

From configuration mode, enter the `show services rpm active-servers` command. The output shows a list of the protocols and corresponding ports for which the device is configured as an RPM server.

```
user@host> show services rpm active-servers
Protocol: TCP, Port: 50000
Protocol: UDP, Port: 50037
```

Related Documentation

- RPM Overview on page 349
- RPM Configuration Options on page 370
- Example: Configuring Basic RPM Probes on page 358
- Example: Configuring RPM Probes for BGP Monitoring on page 365
- Tuning RPM Probes on page 369

Example: Configuring RPM Probes for BGP Monitoring

Supported Platforms

SRX1500, SRX300, SRX320, SRX340, vSRX

This example shows how to configure RPM probes to monitor BGP neighbors.

- Requirements on page 365
- Overview on page 365
- Configuration on page 366
- Verification on page 367

Requirements

Before you begin:

- Configure the BGP parameters under RPM configuration to send RPM probes to BGP neighbors. See “Example: Configuring Basic RPM Probes” on page 358.
- Use TCP or UDP probes by configure both the probe server (Juniper Networks device) and the probe receiver (the remote device) to transmit and receive RPM probes on the same TCP or UDP port. See “Example: Configuring RPM Using TCP and UDP Probes” on page 362.

Overview

In this example, you specify a hexadecimal value that you want to use for the data portion of the RPM probe as ABCD123. (It ranges from 1 through 2048 characters.) You specify the data size of the RPM probe as 1024 bytes. (The value ranges from 0 through 65,507.)

Then you configure destination port 50000 as the TCP port to which the RPM probes are sent. You specify the number of probe results to be saved in the probe history as 25.
(It ranges from 0 through 255, and the default is 50.) You set the probe count to 5 and probe interval as 1. (The probe count ranges from 1 through 15, and the default is 1; and the probe interval ranges from 1 through 255, and the default is 3.) You then specify tcp-ping as the type of probe to be sent as part of the test.

Finally, you set the test interval as 60. The value ranges from 0 through 86,400 seconds for the interval between tests.

**Configuration**

**CLI Quick Configuration**

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the `[edit]` hierarchy level, and then enter `commit` from configuration mode.

```plaintext
set services rpm bgp data-fill ABCD123 data-size 1024
set services rpm bgp destination-port 50000 history-size 25
set services rpm bgp probe-count 5 probe-interval 1
set services rpm bgp probe-type tcp-ping test-interval 60
```

**Step-by-Step Procedure**

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode* in the *CLI User Guide*.

To configure RPM probes to monitor BGP neighbors:

1. Configure the RPM and BGP.
   ```plaintext
 [edit]
 user@host# edit services rpm bgp
   ```

2. Specify a hexadecimal value.
   ```plaintext
 [edit services rpm bgp]
 user@host# set data-fill ABCD123
   ```

3. Specify the data size of the RPM probe.
   ```plaintext
 [edit services rpm bgp]
 user@host# set data-size 1024
   ```

4. Configure the destination port.
   ```plaintext
 [edit services rpm bgp]
 user@host# set destination-port 50000
   ```

5. Specify the number of probes.
   ```plaintext
 [edit services rpm bgp]
 user@host# set history-size 25
   ```

6. Set the probe count and probe interval.
[edit services rpm bgp]
user@host# set probe-count 5 probe-interval 1

7. Specify the type of probe.

[edit services rpm bgp]
user@host# set probe-type tcp-ping

---

NOTE: If you do not specify the probe type the default ICMP probes are sent.

8. Set the test interval.

[edit services rpm bgp]
user@host# set test-interval 60

---

Results

From configuration mode, confirm your configuration by entering the `show services rpm` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show services rpm
bgp {
 probe-type tcp-ping;
 probe-count 5;
 probe-interval 1;
 test-interval 60;
 destination-port 50000;
 history-size 25;
 data-size 1024;
 data-fill ABCD123;
}
```

If you are done configuring the device, enter `commit` from configuration mode.

---

Verification

Verifying RPM Probes for BGP Monitoring

Purpose

Confirm that the configuration is working properly.

Verify that the RPM probes for BGP monitoring is configured.

Action

From configuration mode, enter the `show services rpm` command.

Related Documentation

- RPM Overview on page 349
- RPM Configuration Options on page 370
Directing RPM Probes to Select BGP Devices

Supported Platforms

SRX1500, SRX300, SRX320, SRX340, vSRX

If a device has a large number of BGP neighbors configured, you can direct (filter) the RPM probes to a selected group of BGP neighbors rather than to all the neighbors. To identify the BGP devices to receive RPM probes, you can configure routing instances.

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To direct RPM probes to select BGP neighbors:

1. Configure routing instance RII to send RPM probes to BGP neighbors within the routing instance.

   [edit services rpm bgp]
   user@host# set routing-instances RII

2. If you are done configuring the device, enter commit from configuration mode.

Configuring IPv6 RPM Probes

Supported Platforms

vSRX

Starting with Junos OS Release 15.1X49-D10, you can configure IPv6 destination addresses for an IPv6-based RPM probe test.

To configure an IPv6 RPM test:

1. Specify the RPM probe owner for the probe you want to configure as an IPv6 test.

   [edit services rpm]
   user@host# edit probe customerA

2. Specify a name for the test.

   [edit services rpm probe customerA]
3. Specify the probe type.
   
   ```
 [edit services rpm probe customerA test ipv6-test]
 user@host# set probe-type icmp6-ping
   ```

4. Specify the target address for the test.
   
   ```
 [edit services rpm probe customerA test ipv6-test]
 user@host# set target inet6-address 2001::2
   ```

5. Configure the remaining RPM test parameters.

   **Related Documentation**
   - Guidelines for Configuring RPM Probes for IPv6 on page 356

   **Tuning RPM Probes**

   **Supported Platforms**
   - SRX1500, SRX300, SRX320, SRX340, vSRX

   After configuring an RPM probe, you can set parameters to control probe functions, such as the interval between probes, the total number of concurrent probes that a system can handle, and the source address used for each probe packet. See “Example: Configuring Basic RPM Probes” on page 358.

   The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

   To tune RPM probes:
   
   1. Set the maximum number of concurrent probes allowed on the system to 10.
      
      ```
 [edit services rpm]
 user@host# set probe-limit 10
      ```

   2. Access the ICMP probe of customer A.
      
      ```
 [edit]
 user@host# edit services rpm probe customerA test icmp-test
      ```

   3. Set the time between probe transmissions to 15 seconds.
      
      ```
 [edit services rpm probe customerA test icmp-test]
 user@host# set probe-interval 15
      ```

   4. Set the number of probes within a test to 10.
      
      ```
 [edit services rpm probe customerA test icmp-test]
 user@host# set probe-count 10
      ```
5. Set the source address for each probe packet to **192.168.2.9**. If you do not explicitly configure a source address, the address on the outgoing interface through which the probe is sent is used as the source address.

```
[edit services rpm probe customerA test icmp-test]
user@host# set source-address 192.168.2.9
```

6. If you are done configuring the device, enter **commit** from configuration mode.

**Related Documentation**
- RPM Overview on page 349
- RPM Configuration Options on page 370
- Example: Configuring RPM Probes for BGP Monitoring on page 365

**RPM Configuration Options**

**Supported Platforms**

| SRX1500, SRX300, SRX320, SRX340, vSRX |

You can configure real-time performance monitoring (RPM) parameters. See Table 43 on page 370 for a summary of the configuration options.

**Table 43: RPM Configuration Summary**

<table>
<thead>
<tr>
<th>Field</th>
<th>Function</th>
<th>Your Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Probe Owners</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Owner Name</strong> (required)</td>
<td>Identifies an RPM owner for which one or more RPM tests are configured. In most implementations, the owner name identifies a network on which a set of tests is being run (a particular customer, for example).</td>
<td>Type the name of the RPM owner.</td>
</tr>
<tr>
<td>Identification</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Test name</strong> (required)</td>
<td>Uniquely identifies the RPM test</td>
<td>Type the name of the RPM test.</td>
</tr>
<tr>
<td><strong>Target</strong> (Address or URL) (required)</td>
<td>IPv4 or IPv6 address or URL of probe target</td>
<td>Type the IPv4 address, in dotted decimal notation, IPv6 address, or the URL of the probe target. If the target is a URL, type a fully formed URL that includes http://.</td>
</tr>
<tr>
<td>Source Address</td>
<td>Explicitly configured IPv4 or IPv6 address to be used as the probe source address</td>
<td>Type the source address to be used for the probe. If the source address is not one of the device's assigned addresses, the packet uses the outgoing interface's address as its source.</td>
</tr>
<tr>
<td>Routing Instance</td>
<td>Particular routing instance over which the probe is sent</td>
<td>Type the routing instance name. The routing instance applies only to probes of type <strong>icmp</strong>, <strong>icmp6-ping</strong>, and <strong>icmp-timestamp</strong>. The default routing instance is <strong>inet.0</strong>.</td>
</tr>
<tr>
<td>History Size</td>
<td>Number of probe results saved in the probe history</td>
<td>Type a number between 0 and 255. The default history size is 50 probes.</td>
</tr>
</tbody>
</table>
### Table 43: RPM Configuration Summary (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Function</th>
<th>Your Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Request Information</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probe Type (required)</td>
<td>Specifies the type of probe to send as part of the test.</td>
<td>Select the desired probe type from the list:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• http-get</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• http-get-metadata</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• icmp6-ping</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• icmp-ping</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• icmp-ping-timestamp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• tcp-ping</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• udp-ping</td>
</tr>
<tr>
<td>Interval</td>
<td>Sets the wait time (in seconds) between each probe transmission</td>
<td>Type a number between 1 and 255 (seconds).</td>
</tr>
<tr>
<td>Test Interval (required)</td>
<td>Sets the wait time (in seconds) between tests.</td>
<td>Type a number between 0 and 86400 (seconds).</td>
</tr>
<tr>
<td>Probe Count</td>
<td>Sets the total number of probes to be sent for each test.</td>
<td>Type a number between 1 and 15.</td>
</tr>
<tr>
<td>Destination Port</td>
<td>Specifies the TCP or UDP port to which probes are sent.</td>
<td>Type the number 7—a standard TCP or UDP port number—or a port number from 49152 through 65535.</td>
</tr>
<tr>
<td></td>
<td>To use TCP or UDP probes, you must configure the remote server as a probe receiver. Both the probe server and the remote server must be Juniper Networks devices configured to receive and transmit RPM probes on the same TCP or UDP port.</td>
<td></td>
</tr>
<tr>
<td>DSCP Bits</td>
<td>Specifies the Differentiated Services code point (DSCP) bits. This value must be a valid 6–bit pattern. The default is 000000.</td>
<td>Type a valid 6–bit pattern.</td>
</tr>
<tr>
<td>Data Size</td>
<td>Specifies the size of the data portion of the ICMP probes.</td>
<td>Type a size (in bytes) between 0 and 65507.</td>
</tr>
<tr>
<td>Data Fill</td>
<td>Specifies the contents of the data portion of the ICMP probes.</td>
<td>Type a hexadecimal value between 1 and 800h to use as the contents of the ICMP probe data.</td>
</tr>
<tr>
<td>Hardware Timestamp</td>
<td>Enables timestamping of RPM probe messages. You can timestamp the following RPM probes to improve the measurement of latency or jitter:</td>
<td>To enable timestamping, select the check box.</td>
</tr>
<tr>
<td></td>
<td>• ICMP ping</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ICMP ping timestamp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• UDP ping—destination port UDP-ECHO (port 7) only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• UDP ping timestamp—destination port UDP-ECHO (port 7) only</td>
<td></td>
</tr>
</tbody>
</table>
Table 43: RPM Configuration Summary *(continued)*

<table>
<thead>
<tr>
<th>Field</th>
<th>Function</th>
<th>Your Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Successive Lost Probes</td>
<td>Sets the total number of probes that must be lost successively to trigger a probe failure and generate a system log message.</td>
<td>Type a number between 0 and 15.</td>
</tr>
<tr>
<td>Lost Probes</td>
<td>Sets the total number of probes that must be lost to trigger a probe failure and generate a system log message.</td>
<td>Type a number between 0 and 15.</td>
</tr>
<tr>
<td>Round Trip Time</td>
<td>Sets the total round-trip time (in microseconds), from the device to the remote server, that triggers a probe failure and generates a system log message.</td>
<td>Type a number between 0 and 60,000,000 (microseconds).</td>
</tr>
<tr>
<td>Jitter</td>
<td>Sets the total jitter (in microseconds), for a test, that triggers a probe failure and generates a system log message.</td>
<td>Type a number between 0 and 60,000,000 (microseconds).</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>Sets the maximum allowable standard deviation (in microseconds) for a test, which, if exceeded, triggers a probe failure and generates a system log message.</td>
<td>Type a number between 0 and 60,000,000 (microseconds).</td>
</tr>
<tr>
<td>Egress Time</td>
<td>Sets the total one-way time (in microseconds), from the device to the remote server, that triggers a probe failure and generates a system log message.</td>
<td>Type a number between 0 and 60,000,000 (microseconds).</td>
</tr>
<tr>
<td>Ingress Time</td>
<td>Sets the total one-way time (in microseconds), from the remote server to the device, that triggers a probe failure and generates a system log message.</td>
<td>Type a number between 0 and 60,000,000 (microseconds).</td>
</tr>
<tr>
<td>Jitter Egress Time</td>
<td>Sets the total outbound-time jitter (in microseconds), for a test, that triggers a probe failure and generates a system log message.</td>
<td>Type a number between 0 and 60,000,000 (microseconds).</td>
</tr>
<tr>
<td>Jitter Ingress Time</td>
<td>Sets the total inbound-time jitter (in microseconds), for a test, that triggers a probe failure and generates a system log message.</td>
<td>Type a number between 0 and 60,000,000 (microseconds).</td>
</tr>
<tr>
<td>Egress Standard Deviation</td>
<td>Sets the maximum allowable standard deviation of outbound times (in microseconds) for a test, which, if exceeded, triggers a probe failure and generates a system log message.</td>
<td>Type a number between 0 and 60,000,000 (microseconds).</td>
</tr>
<tr>
<td>Ingress Standard Deviation</td>
<td>Sets the maximum allowable standard deviation of inbound times (in microseconds) for a test, which, if exceeded, triggers a probe failure and generates a system log message.</td>
<td>Type a number between 0 and 60,000,000 (microseconds).</td>
</tr>
<tr>
<td>Traps</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 43: RPM Configuration Summary *(continued)*

<table>
<thead>
<tr>
<th>Field</th>
<th>Function</th>
<th>Your Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egress Jitter Exceeded</td>
<td>Generates SNMP traps when the threshold for jitter in outbound time is exceeded.</td>
<td>• To enable SNMP traps for this condition, select the check box.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• To disable SNMP traps, clear the check box.</td>
</tr>
<tr>
<td>Egress Standard Deviation Exceeded</td>
<td>Generates SNMP traps when the threshold for standard deviation in outbound times is exceeded.</td>
<td>• To enable SNMP traps for this condition, select the check box.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• To disable SNMP traps, clear the check box.</td>
</tr>
<tr>
<td>Egress Time Exceeded</td>
<td>Generates SNMP traps when the threshold for maximum outbound time is exceeded.</td>
<td>• To enable SNMP traps for this condition, select the check box.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• To disable SNMP traps, clear the check box.</td>
</tr>
<tr>
<td>Ingress Jitter Exceeded</td>
<td>Generates SNMP traps when the threshold for jitter in inbound time is exceeded.</td>
<td>• To enable SNMP traps for this condition, select the check box.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• To disable SNMP traps, clear the check box.</td>
</tr>
<tr>
<td>Ingress Standard Deviation Exceeded</td>
<td>Generates SNMP traps when the threshold for standard deviation in inbound times is exceeded.</td>
<td>• To enable SNMP traps for this condition, select the check box.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• To disable SNMP traps, clear the check box.</td>
</tr>
<tr>
<td>Ingress Time Exceeded</td>
<td>Generates traps when the threshold for maximum inbound time is exceeded.</td>
<td>• To enable SNMP traps for this condition, select the check box.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• To disable SNMP traps, clear the check box.</td>
</tr>
<tr>
<td>Jitter Exceeded</td>
<td>Generates traps when the threshold for jitter in round-trip time is exceeded.</td>
<td>• To enable SNMP traps for this condition, select the check box.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• To disable SNMP traps, clear the check box.</td>
</tr>
<tr>
<td>Probe Failure</td>
<td>Generates traps when the threshold for the number of successive lost probes is reached.</td>
<td>• To enable SNMP traps for this condition, select the check box.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• To disable SNMP traps, clear the check box.</td>
</tr>
<tr>
<td>RTT Exceeded</td>
<td>Generates traps when the threshold for maximum round-trip time is exceeded.</td>
<td>• To enable SNMP traps for this condition, select the check box.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• To disable SNMP traps, clear the check box.</td>
</tr>
<tr>
<td>Standard Deviation Exceeded</td>
<td>Generates traps when the threshold for standard deviation in round-trip times is exceeded.</td>
<td>• To enable SNMP traps for this condition, select the check box.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• To disable SNMP traps, clear the check box.</td>
</tr>
<tr>
<td>Test Completion</td>
<td>Generates traps when a test is completed.</td>
<td>• To enable SNMP traps for this condition, select the check box.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• To disable SNMP traps, clear the check box.</td>
</tr>
<tr>
<td>Test Failure</td>
<td>Generates traps when the threshold for the total number of lost probes is reached.</td>
<td>• To enable SNMP traps for this condition, select the check box.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• To disable SNMP traps, clear the check box.</td>
</tr>
</tbody>
</table>

**Performance Probe Server**
Table 43: RPM Configuration Summary (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Function</th>
<th>Your Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP Probe Server</td>
<td>Specifies the port on which the device is to receive and transmit TCP probes.</td>
<td>Type the number 7—a standard TCP or UDP port number—or a port number from 49160 through 65535.</td>
</tr>
<tr>
<td>UDP Probe Server</td>
<td>Specifies the port on which the device is to receive and transmit UDP probes.</td>
<td>Type the number 7—a standard TCP or UDP port number—or a port number from 49160 through 65535.</td>
</tr>
</tbody>
</table>

**NOTE:** On SRX300, SRX320, SRX340, SRX1500 devices and vSRX instances, when you configure basic RPM probes, the following combination of the configuration parameters is not supported:

- Source address and destination port and next-hop.

Configuring RPM probe with these parameters prevents sending out RPM probes to a specified probe target. We recommend you to configure either the source address or destination port and next-hop to configure RPM probe.

**Related Documentation**
- RPM Overview on page 349
- Example: Configuring Basic RPM Probes on page 358
- Example: Configuring RPM Using TCP and UDP Probes on page 362
- Example: Configuring RPM Probes for BGP Monitoring on page 365

**Monitoring RPM Probes**

**Supported Platforms** SRX1500, SRX300, SRX320, SRX340, vSRX

The RPM information includes the round-trip time, jitter, and standard deviation values for each configured RPM test on the device. To view these RPM properties, select Troubleshoot > RPM > View RPM in the J-Web user interface, or in configuration mode enter the show command:

```
[edit]
user@host# run show services rpm probe-results
```

In addition to the RPM statistics for each RPM test, the J-Web user interface displays the round-trip times and cumulative jitter graphically. Figure 10 on page 375 shows sample graphs for an RPM test.
In Figure 10 on page 375, the round-trip time and jitter values are plotted as a function of the system time. Large spikes in round-trip time or jitter indicate a slower outbound (egress) or inbound (ingress) time for the probe sent at that particular time.

Table 44 on page 375 summarizes key output fields in RPM displays.

### Table 44: Summary of Key RPM Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Currently Running Tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graph</td>
<td></td>
<td>Click the <strong>Graph</strong> link to display the graph (if it is not already displayed) or to update the graph for a particular test.</td>
</tr>
<tr>
<td>Owner</td>
<td>Configured owner name of the RPM test.</td>
<td></td>
</tr>
<tr>
<td>Test Name</td>
<td>Configured name of the RPM test.</td>
<td></td>
</tr>
</tbody>
</table>
Table 44: Summary of Key RPM Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe Type</td>
<td>Type of RPM probe configured for the specified test:</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>• http-get</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• http-get-metadata</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• icmp-ping</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• icmp6-ping</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• icmp-ping-timestamp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• tcp-ping</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• udp-ping</td>
<td></td>
</tr>
<tr>
<td>Target Address</td>
<td>IPv4 address, IPv6 address, or URL of the remote server that is being probed by the RPM test.</td>
<td>–</td>
</tr>
<tr>
<td>Source Address</td>
<td>Explicitly configured IPv4 or IPv6 source address that is included in the probe packet headers.</td>
<td>If no source address is configured, the RPM probe packets use the outgoing interface as the source address, and the Source Address field is empty.</td>
</tr>
<tr>
<td>Minimum RTT</td>
<td>Shortest round-trip time from the Juniper Networks device to the remote server, as measured over the course of the test.</td>
<td>–</td>
</tr>
<tr>
<td>Maximum RTT</td>
<td>Longest round-trip time from the Juniper Networks device to the remote server, as measured over the course of the test.</td>
<td>–</td>
</tr>
<tr>
<td>Average RTT</td>
<td>Average round-trip time from the Juniper Networks device to the remote server, as measured over the course of the test.</td>
<td>–</td>
</tr>
<tr>
<td>Standard Deviation RTT</td>
<td>Standard deviation of round-trip times from the Juniper Networks device to the remote server, as measured over the course of the test.</td>
<td>–</td>
</tr>
<tr>
<td>Probes Sent</td>
<td>Total number of probes sent over the course of the test.</td>
<td>–</td>
</tr>
<tr>
<td>Loss Percentage</td>
<td>Percentage of probes sent for which a response was not received.</td>
<td>–</td>
</tr>
</tbody>
</table>

Round-Trip Time for a Probe

<table>
<thead>
<tr>
<th>Samples</th>
<th>Total number of probes used for the data set.</th>
<th>The Juniper Networks device maintains records of the most recent 50 probes for each configured test. These 50 probes are used to generate RPM statistics for a particular test.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earliest Sample</td>
<td>System time when the first probe in the sample was received.</td>
<td>–</td>
</tr>
<tr>
<td>Latest Sample</td>
<td>System time when the last probe in the sample was received.</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 44: Summary of Key RPM Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Value</td>
<td>Average round-trip time for the 50-probe sample.</td>
<td></td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>Standard deviation of the round-trip times for the 50-probe sample.</td>
<td></td>
</tr>
<tr>
<td>Lowest Value</td>
<td>Shortest round-trip time from the device to the remote server, as measured over the 50-probe sample.</td>
<td></td>
</tr>
<tr>
<td>Time of Lowest Sample</td>
<td>System time when the lowest value in the 50-probe sample was received.</td>
<td></td>
</tr>
<tr>
<td>Highest Value</td>
<td>Longest round-trip time from the Juniper Networks device to the remote server, as measured over the 50-probe sample.</td>
<td></td>
</tr>
<tr>
<td>Time of Highest Sample</td>
<td>System time when the highest value in the 50-probe sample was received.</td>
<td></td>
</tr>
<tr>
<td>Cumulative Jitter for a Probe</td>
<td>Total number of probes used for the data set.</td>
<td>The Juniper Networks device maintains records of the most recent 50 probes for each configured test. These 50 probes are used to generate RPM statistics for a particular test.</td>
</tr>
<tr>
<td>Earliest Sample</td>
<td>System time when the first probe in the sample was received.</td>
<td></td>
</tr>
<tr>
<td>Latest Sample</td>
<td>System time when the last probe in the sample was received.</td>
<td></td>
</tr>
<tr>
<td>Mean Value</td>
<td>Average jitter for the 50-probe sample.</td>
<td></td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>Standard deviation of the jitter values for the 50-probe sample.</td>
<td></td>
</tr>
<tr>
<td>Lowest Value</td>
<td>Smallest jitter value, as measured over the 50-probe sample.</td>
<td></td>
</tr>
<tr>
<td>Time of Lowest Sample</td>
<td>System time when the lowest value in the 50-probe sample was received.</td>
<td></td>
</tr>
<tr>
<td>Highest Value</td>
<td>Highest jitter value, as measured over the 50-probe sample.</td>
<td></td>
</tr>
<tr>
<td>Time of Highest Sample</td>
<td>System time when the highest jitter value in the 50-probe sample was received.</td>
<td></td>
</tr>
</tbody>
</table>
Related Documentation

- RPM Overview on page 349
- RPM Support for VPN Routing and Forwarding on page 357
- RPM Configuration Options on page 370
CHAPTER 21

Configuring IP Monitoring

- IP Monitoring Overview on page 379
- Understanding IP Monitoring Test Parameters on page 380
- Example: Configuring IP Monitoring on SRX Series Devices on page 381
- Understanding IP Monitoring Through Redundant Ethernet Interface Link Aggregation Groups on page 384
- Example: Configuring IP Monitoring on SRX Series Devices on page 384
- Example: Configuring Chassis Cluster Redundancy Group IPAddress Monitoring on page 390

IP Monitoring Overview

**Supported Platforms**

SRX Series, vSRX

This feature monitors IP on standalone SRX Series devices or a chassis cluster redundant Ethernet (reth) interface. Existing RPM probes are sent to an IP address to check for reachability. The user takes action based on the reachability result. Supported action currently is preferred static route injection to system route table.

The actions supported are:

- Adding or deleting a new static route that has a higher priority (lower preference) value than a route configured through the CLI command `set routing-options static route`
- Defining multiple probe names under the same IP monitoring policy. If any probe fails, the action is taken. If all probes are reachable, the action is reverted
- Configuring multiple tests in one RPM probe. All tests must fail for the RPM probe to be considered unreachable. If at least one test reaches its target, the RPM probe is considered reachable
- Configuring multiple failure thresholds in one RPM test. If one threshold is reached, the test fails. If no thresholds are reached, the test succeeds.
- Specifying the no-preempt option. If the no-preempt option is specified, the policy does not perform preemptive failback when it is in a failover state or when the RPM probe test recovers from a failure.
• Setting preferred metric values. If the preferred metric value is set, during failover, the route is injected with the set preferred metric value.

• Enabling and disabling interfaces.
  
  • **Interface-Enable**—On a physical or logical interface, when the interface-enable action is configured, the initial state of the interface is disable after startup, and it continues to remain in the disable state as long as the associated RPM probe is in the pass state. When the associated RPM probe fails, the configured physical and logical interfaces are enabled.

  • **Interface-Disable**—On a physical or logical interface, when the interface-disable action is configured, the interface state remains unchanged. When the associated RPM probe fails, the physical and logical interfaces are disabled.

  NOTE: Multiple probe names and actions can be defined for the same IP monitoring policy.

**Related Documentation**

- Understanding IP Monitoring Test Parameters on page 380

**Understanding IP Monitoring Test Parameters**

**Supported Platforms**

SRX1500, SRX300, SRX320, SRX340, SRX550M, vSRX

Each probed target is monitored over the course of a test, which represents a collection of probes during which statistics such as standard deviation and jitter are collected are calculated. During a test, probes are generated and responses collected at a rate defined by the probe interval, the number of seconds between probes.

NOTE: To avoid flap, an action is reverted only at the end of a test cycle. During the test cycle, if no threshold is reached, the action is reverted. Although action-failover takes place based on a predefined condition of a monitored IP, when the condition is reversed, the IP becomes reachable on the original route, and the newly added route is deleted. Recovery is performed only when all RPM probes report the IP as reachable.

Table 45 on page 380 lists the test parameters and its default values:

**Table 45: Test Parameters and Default Values**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>probe-count</td>
<td>1</td>
</tr>
<tr>
<td>probe-interval</td>
<td>3 seconds</td>
</tr>
<tr>
<td>test-interval</td>
<td>1 second</td>
</tr>
</tbody>
</table>
Table 46 on page 381 lists the supported threshold and its description:

Table 46: Threshold Supported and Description

<table>
<thead>
<tr>
<th>Threshold</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Successive-Loss</td>
<td>Successive loss count of probes</td>
</tr>
<tr>
<td>Total-Loss</td>
<td>Total probe lost count</td>
</tr>
</tbody>
</table>

Related Documentation

• IP Monitoring Overview on page 379

Example: Configuring IP Monitoring on SRX Series Devices

Supported Platforms

SRX1500, SRX300, SRX320, SRX340, SRX550M, vSRX

This example shows how to monitor IP on SRX300, SRX320, SRX340, SRX550M, and SRX1500 devices.

• Requirements on page 381
• Overview on page 381
• Configuration on page 381
• Verification on page 383

Requirements

Before you begin:

Configure the following RPM options for RPM test:

• target-address
• probe-count
• probe-interval
• test-interval
• thresholds
• next-hop

Overview

This example shows how to set up IP monitoring on an SRX Series device.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.
set services rpm probe Probe-Payment-Server test paysvr target address 1.1.1.10
set services rpm probe Probe-Payment-Server test paysvr probe-count 10
set services rpm probe Probe-Payment-Server test paysvr probe-interval 5
set services rpm probe Probe-Payment-Server test paysvr test-interval 5
set services rpm probe Probe-Payment-Server test paysvr thresholds successive-loss 10
set services rpm probe Probe-Payment-Server test paysvr next-hop 2.2.2.1
set services ip-monitoring policy Payment-Server-Tracking match rpm-probe
  Probe-Payment-Server
set services ip-monitoring policy Payment-Server-Tracking then preferred-route route
  1.1.1.0/24 next-hop 1.1.1.99

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure IP monitoring on an SRX Series Services Gateway:

1. Configure the target address under the RPM probe.
   
   ```
 [edit]
 user@host# set services rpm probe Probe-Payment-Server test paysvr target address 1.1.1.10
   ```

2. Configure the probe count under the RPM probe.
   
   ```
 [edit]
 user@host# set services rpm probe Probe-Payment-Server test paysvr probe-count 10
   ```

3. Configure the probe interval (in seconds) under the RPM probe.
   
   ```
 [edit]
 user@host# set services rpm probe Probe-Payment-Server test paysvr probe-interval 5
   ```

4. Configure the test interval (in seconds) under the RPM probe.
   
   ```
 [edit]
 user@host# set services rpm probe Probe-Payment-Server test paysvr test-interval 5
   ```

5. Configure the threshold successive loss count under the RPM
   
   ```
 [edit]
 user@host# set services rpm probe Probe-Payment-Server test paysvr thresholds successive-loss 10
   ```

6. Configure the next-hop IP address under the RPM probe.
   
   ```
 [edit]
 user@host# set services rpm probe Probe-Payment-Server test paysvr next-hop 2.2.2.1
   ```
7. Configure the IP monitoring policy under services.

    [edit]
    user@host# set services ip-monitoring policy Payment-Server-Tracking match
    rpm-probe Probe-Payment-Server

    NOTE: The following steps are not mandatory. You can configure
    interface actions and route actions independently, or you can configure
    both the interface action and the route action together in one IP
    monitoring policy.

8. Configure the IP monitoring preferred route under services.

    [edit]
    user@host# set services ip-monitoring policy Payment-Server-Tracking then
    preferred-routeroute 1.1.0.0/24 preferred-metric 4

9. Configure the IP monitoring interface actions.

    • Enable
    
    [edit]
    user@host# set services ip-monitoring policy Payment-Server-Tracking then
    interface ge-0/0/1 enable

    • Disable
    
    [edit]
    user@host# set services ip-monitoring policy Payment-Server-Tracking then
    interface fe-0/0/[4-6] disable

10. Configure the no-preempt option.

    [edit]
    user@host# set services ip-monitoring policy Payment-Server-Tracking no-preempt

Verification

Verifying IP Monitoring

Purpose
Verify the IP monitoring status of a policy.

Action
To verify the configuration is working properly, enter the following command:
show services ip-monitoring status <policy-name>

Related Documentation
• IP Monitoring Overview on page 379
• Understanding IP Monitoring Test Parameters on page 380
Understanding IP Monitoring Through Redundant Ethernet Interface Link Aggregation Groups

**Supported Platforms**

SRX1500, SRX5400, SRX5600, SRX5800, vSRX

IP monitoring checks the reachability of an upstream device. It is designed to check the end-to-end connectivity of configured IP addresses and allows a redundancy group (RG) to automatically failover when the monitored IP address is not reachable through the redundant Ethernet. Both the primary and secondary devices in the chassis cluster monitor specific IP addresses to determine whether an upstream device in the network is reachable.

A redundant Ethernet interface contains physical interfaces from both the primary and secondary nodes in the SRX Series chassis cluster. In a redundant Ethernet interface, two physical interfaces are configured with each node contributing one physical interface. In a redundant Ethernet interface LAG, more than two physical interfaces are configured in the redundant Ethernet interface.

**Related Documentation**

- IP Monitoring Overview on page 379

**Example: Configuring IP Monitoring on SRX Series Devices**

**Supported Platforms**

SRX1500, SRX5600, SRX5800, vSRX

This example shows how to monitor IP on SRX1500, SRX5600, and SRX5800 devices with chassis cluster enabled.

- Requirements on page 384
- Overview on page 384
- Configuration on page 385
- Verification on page 387

**Requirements**

- You need two SRX5800 Services Gateways with identical hardware configurations, one SRX Series device and one EX8208 Ethernet Switch.
- Physically connect the two SRX5800 devices (back-to-back for the fabric and control ports) and ensure that they are the same models. Configure/add these two devices in a cluster.

**Overview**

IP address monitoring checks end-to-end reachability of configured IP address and allows a redundancy group to automatically fail over when not reachable through the child link of redundant Ethernet interface (known as a reth) interface. Redundancy groups on both devices in a cluster can be configured to monitor specific IP addresses to determine whether an upstream device in the network is reachable.
This example shows how to set up IP monitoring on an SRX Series device.

NOTE: IP monitoring is not supported on an NP-IOC card.

NOTE: IP monitoring does not support MIC online/offline status on SRX devices.

Topology

Figure 11 on page 385 shows the topology used in this example.

In this example, two SRX5800 devices in a chassis cluster are connected to an SRX1500 device through an EX8208 Ethernet Switch. The example shows how the redundancy groups can be configured to monitor key upstream resources reachable through redundant Ethernet interfaces on either node in a cluster.

Configuration

• Configuring IP Monitoring on SRX Series Device on page 386

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```bash
set chassis cluster reth-count 1
set chassis cluster redundancy-group 0 node 0 priority 254
set chassis cluster redundancy-group 0 node 1 priority 1
```
set chassis cluster redundancy-group 1 node 0 priority 200
set chassis cluster redundancy-group 1 node 1 priority 199
set chassis cluster redundancy-group 1 ip-monitoring global-weight 255
set chassis cluster redundancy-group 1 ip-monitoring global-threshold 80
set chassis cluster redundancy-group 1 ip-monitoring retry-interval 3
set chassis cluster redundancy-group 1 ip-monitoring retry-count 10
set chassis cluster redundancy-group 1 ip-monitoring family inet 192.0.0.1 weight 80
set chassis cluster redundancy-group 1 ip-monitoring family inet 192.0.0.1 interface reth0.0 secondary-ip-address 192.0.2.2
set interfaces ge-0/0/1 gigether-options redundant-parent reth0
set interfaces ge-4/0/1 gigether-options redundant-parent reth0
set interfaces reth0 redundant-ether-options redundancy-group 1
set interfaces reth0 unit 0 family inet address 192.0.2.1/24
set routing-options static route 192.0.0.1/32 next-hop 192.0.2.3

Configuring IP Monitoring on SRX Series Device

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure IP monitoring on an SRX Series device:

1. Specify the number of redundant Ethernet interfaces.
   
   [primary:node0][edit]
   user@host# set chassis cluster reth-count 1

2. Specify a redundancy group's priority for primacy on each node of the cluster. The higher number takes precedence.
   
   [primary:node0][edit]
   user@host# set chassis cluster redundancy-group 0 node 0 priority 254
   user@host# set chassis cluster redundancy-group 0 node 1 priority 1
   user@host# set chassis cluster redundancy-group 1 node 0 priority 200
   user@host# set chassis cluster redundancy-group 1 node 1 priority 199

3. Configure the redundant Ethernet interfaces to redundancy-group 1.
   
   [primary:node0][edit]
   user@host# set interfaces reth0 redundant-ether-options redundancy-group 1
   user@host# set interfaces reth0 unit 0 family inet address 192.0.2.1/24

4. Assign child interfaces for the redundant Ethernet interfaces from node 0 and node 1.
   
   [primary:node0][edit]
   user@host# set interfaces ge-0/0/1 gigether-options redundant-parent reth0
   user@host# set interfaces ge-4/0/1 gigether-options redundant-parent reth0

5. Configure the static route to the IP address that is to be monitored.
   
   [primary:node0][edit]
   user@host# set routing-options static route 192.0.0.1/32 next-hop 192.0.2.3
6. Configure IP monitoring under redundancy-group 1 with global weight and global threshold.

```
[primary:node0][edit]
user@host# set chassis cluster redundancy-group 1 ip-monitoring global-weight 255
user@host# set chassis cluster redundancy-group 1 ip-monitoring global-threshold 80
```

7. Specify the retry interval.

```
[primary:node0][edit]
user@host# set chassis cluster redundancy-group 1 ip-monitoring retry-interval 3
```

8. Specify the retry count.

```
[primary:node0][edit]
user@host# set chassis cluster redundancy-group 1 ip-monitoring retry-count 10
```

9. Assign a weight to the IP address to be monitored, and configure a secondary IP address that will be used to send ICMP packets from the secondary node to track the IP being monitored.

```
[primary:node0][edit]
user@host# set chassis cluster redundancy-group 1 ip-monitoring family inet 192.0.0.1 weight 80
user@host# set chassis cluster redundancy-group 1 ip-monitoring family inet 192.0.0.1 interface reth0.0 secondary-ip-address 192.0.2.2
```

---

**NOTE:**
- The redundant Ethernet (reth0) IP address, 192.0.2.1/24, is used to send ICMP packets from node 0 to check the reachability of the monitored IP.
- The secondary IP address, 192.0.2.2, should belong to the same network as the reth0 IP address.
- The secondary IP address is used to send ICMP packets from node 1 to check the reachability of the monitored IP.

---

**Verification**

Confirm the configuration is working properly.

- Verifying Chassis Cluster Status—Before Failover on page 388
- Verifying Chassis Cluster IP Monitoring Status—Before Failover on page 388
- Verifying Chassis Cluster Status—After Failover on page 388
- Verifying Chassis Cluster IP Monitoring Status—After Failover on page 389
Verifying Chassis Cluster Status—Before Failover

**Purpose**
Verify the chassis cluster status, failover status, and redundancy group information before failover.

**Action**
From operational mode, enter the `show chassis cluster status` command.

```
show chassis cluster status
```

<table>
<thead>
<tr>
<th>Cluster ID: 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Redundancy group: 0, Failover count: 0</td>
</tr>
<tr>
<td>node0</td>
</tr>
<tr>
<td>node1</td>
</tr>
<tr>
<td>Redundancy group: 1, Failover count: 0</td>
</tr>
<tr>
<td>node0</td>
</tr>
<tr>
<td>node1</td>
</tr>
</tbody>
</table>

Verifying Chassis Cluster IP Monitoring Status—Before Failover

**Purpose**
Verify the IP status being monitored from both nodes and the failover count for both nodes before failover.

**Action**
From operational mode, enter the `show chassis cluster ip-monitoring status redundancy-group 1` command.

```
show chassis cluster ip-monitoring status redundancy-group 1
```

node0:
```
Redundancy group: 1
IP address Status Failure count Reason
192.0.0.1 reachable 0 n/a
```

node1:
```
Redundancy group: 1
IP address Status Failure count Reason
192.0.0.1 reachable 0 n/a
```

Verifying Chassis Cluster Status—After Failover

**Purpose**
Verify the chassis cluster status, failover status, and redundancy group information after failover.
NOTE: If the IP address is not reachable, the following output will be displayed.

**Action**  
From operational mode, enter the `show chassis cluster status` command.

```
show chassis cluster status
```

**Cluster ID: 11**

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>254</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>1</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Redundancy group: 0, Failover count: 0

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>0</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>199</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Redundancy group: 1, Failover count: 1

**Verifying Chassis Cluster IP Monitoring Status—After Failover**

**Purpose**  
Verify the IP status being monitored from both nodes and the failover count for both nodes after failover.

**Action**  
From operational mode, enter the `show chassis cluster ip-monitoring status redundancy-group 1` command.

```
show chassis cluster ip-monitoring status redundancy-group 1
```

**node0:**

```
Redundancy group: 1
IP address Status Failure count Reason
192.0.0.1 unreachable 1 unknown
```

**node1:**

```
Redundancy group: 1
IP address Status Failure count Reason
192.0.0.1 reachable 0 n/a
```

**Related Documentation**  
- Example: Configuring an Active/Passive Chassis Cluster on SRX Series Services Gateways
Example: Configuring Chassis Cluster Redundancy Group IP Address Monitoring

Supported Platforms  
SRX Series, vSRX

This example shows how to configure redundancy group IP address monitoring for an SRX Series device in a chassis cluster.

- Requirements on page 390
- Overview on page 390
- Configuration on page 391
- Verification on page 392

Requirements

Before you begin:

- Set the chassis cluster node ID and cluster ID. See Example: Setting the Chassis Cluster Node ID and Cluster ID for SRX Series Devices
- Configure the chassis cluster management interface. See Example: Configuring the Chassis Cluster Management Interface.
- Configure the chassis cluster fabric. See Example: Configuring the Chassis Cluster Fabric Interfaces.

Overview

You can configure redundancy groups to monitor upstream resources by pinging specific IP addresses that are reachable through redundant Ethernet interfaces on either node in a cluster. You can also configure global threshold, weight, retry interval, and retry count parameters for a redundancy group. When a monitored IP address becomes unreachable, the weight of that monitored IP address is deducted from the redundancy group IP address monitoring global threshold. When the global threshold reaches 0, the global weight is deducted from the redundancy group threshold. The retry interval determines the ping interval for each IP address monitored by the redundancy group. The pings are sent as soon as the configuration is committed. The retry count sets the number of allowed consecutive ping failures for each IP address monitored by the redundancy group.

In this example, you configure the following settings for redundancy group 1:

- IP address to monitor—10.1.1.10
- IP address monitoring global-weight—100
- IP address monitoring global-threshold—200

NOTE: The threshold applies cumulatively to all IP addresses monitored by the redundancy group.

- IP address retry-interval—3 seconds
• IP address retry-count—10
• Weight—150
• Redundant Ethernet interface—reth1.0
• Secondary IP address—10.1.1.101

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
[primary:node0][edit]
user@host# set chassis cluster redundancy-group 1 ip-monitoring global-weight 100
set chassis cluster redundancy-group 1 ip-monitoring global-threshold 200
set chassis cluster redundancy-group 1 ip-monitoring retry-interval 3
set chassis cluster redundancy-group 1 ip-monitoring retry-count 10
set chassis cluster redundancy-group 1 ip-monitoring family inet 10.1.1.10 weight 150
interface reth1.0 secondary-ip-address 10.1.1.101
```

Step-by-Step Procedure
To configure redundancy group IP address monitoring:

1. Specify a global monitoring weight.
   ```
 [primary:node0][edit]
 user@host# set chassis cluster redundancy-group 1 ip-monitoring global-weight 100
   ```

2. Specify the global monitoring threshold.
   ```
 [primary:node0][edit]
 user@host# set chassis cluster redundancy-group 1 ip-monitoring global-threshold 200
   ```

3. Specify the retry interval.
   ```
 [primary:node0][edit]
 user@host# set chassis cluster redundancy-group 1 ip-monitoring retry-interval 3
   ```

4. Specify the retry count.
   ```
 [primary:node0][edit]
 user@host# set chassis cluster redundancy-group 1 ip-monitoring retry-count 10
   ```

5. Specify the IP address to be monitored, weight, redundant Ethernet interface, and secondary IP address.
   ```
 [primary:node0][edit]
 user@host# set chassis cluster redundancy-group 1 ip-monitoring family inet 10.1.1.10 weight 100 interface reth1.0 secondary-ip-address 10.1.1.101
   ```
Results

From configuration mode, confirm your configuration by entering the `show chassis cluster redundancy-group 1` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For brevity, this `show` command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).

```
[primary:node0][edit]
user@host# show chassis cluster redundancy-group 1
ip-monitoring {
 global-weight 100;
 global-threshold 200;
 family {
 inet {
 10.1.1.10 {
 weight 100;
 interface reth1.0 secondary-ip-address 10.1.1.101;
 }
 }
 }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

Verification

Verifying the Status of Monitored IP Addresses for a Redundancy Group

Purpose

Verify the status of monitored IP addresses for a redundancy group.

Action

From operational mode, enter the `show chassis cluster ip-monitoring status` command. For information about a specific group, enter the `show chassis cluster ip-monitoring status redundancy-group` command.

```
{primary:node0}
user@host> show chassis cluster ip-monitoring status
node0:

Redundancy group: 1
Global threshold: 200
Current threshold: -120

<table>
<thead>
<tr>
<th>IP address</th>
<th>Status</th>
<th>Failure count</th>
<th>Reason</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.1.10</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
<td>220</td>
</tr>
<tr>
<td>10.1.1.101</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
<td>100</td>
</tr>
</tbody>
</table>

node1:

Redundancy group: 1
Global threshold: 200
Current threshold: -120
IP Address Monitoring

<table>
<thead>
<tr>
<th>IP address</th>
<th>Status</th>
<th>Failure count</th>
<th>Reason</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.1.10</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
<td>220</td>
</tr>
<tr>
<td>10.1.1.101</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
<td>100</td>
</tr>
</tbody>
</table>

Related Documentation
- Understanding Chassis Cluster Redundancy Group Interface Monitoring
- Understanding Chassis Cluster Redundancy Group IP Address Monitoring
- Understanding Chassis Cluster Redundancy Group Failover
PART 7

Monitoring Common Security Features

- Displaying Real-Time Information from Device to Host on page 397
- Monitoring Application Layer Gateways Features on page 403
- Monitoring Interfaces and Switching Functions on page 431
- Monitoring NAT on page 449
- Monitoring Security Policies on page 461
- Monitoring Events, Services and System on page 487
- Monitoring Unified Threat Management Features on page 497
- Monitoring VPNs on page 511
Displaying Real-Time Information from Device to Host

- Displaying Real-Time Monitoring Information on page 397
- Displaying Multicast Path Information on page 399

Displaying Real-Time Monitoring Information

Supported Platforms

SRX Series, vSRX

To display real-time monitoring information about each device between the device and a specified destination host, enter the **traceroute monitor** command with the following syntax:

```
user@host> traceroute monitor host <count number> <inet | inet6> <interval seconds> <no-resolve> <size bytes> <source source-address> <summary>
```

Table 47 on page 397 describes the **traceroute monitor** command options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>host</td>
<td>Sends traceroute packets to the hostname or IP address you specify.</td>
</tr>
<tr>
<td>count number</td>
<td>(Optional) Limits the number of ping requests, in packets, to send in summary mode. If you do not specify a count, ping requests are continuously sent until you press Q.</td>
</tr>
<tr>
<td>inet</td>
<td>(Optional) Forces the traceroute packets to an IPv4 destination.</td>
</tr>
<tr>
<td>inet6</td>
<td>(Optional) Forces the traceroute packets to an IPv6 destination.</td>
</tr>
<tr>
<td>interval seconds</td>
<td>(Optional) Sets the interval between ping requests, in seconds. The default value is 1 second.</td>
</tr>
<tr>
<td>no-resolve</td>
<td>(Optional) Suppresses the display of the hostnames of the hops along the path.</td>
</tr>
<tr>
<td>size bytes</td>
<td>(Optional) Sets the size of the ping request packet. The size can be from 0 through 65,468 bytes. The default packet size is 64 bytes.</td>
</tr>
<tr>
<td>source address</td>
<td>(Optional) Uses the source address that you specify, in the traceroute packet.</td>
</tr>
</tbody>
</table>
Table 47: CLI tracercoute monitor Command Options (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>summary</td>
<td>(Optional) Displays the summary tracercoute information.</td>
</tr>
</tbody>
</table>

To quit the tracercoute monitor command, press Q.

The following is sample output from a tracercoute monitor command:

```
user@host> tracercoute monitor host2
```

```
My tracercoute [v0.69]
host (0.0.0.0)(tos=0x0 psize=64 bitpattern=0x00)
Keys:  Help   Display mode   Restart statistics   Order of fields   quit

Packets
Loss%  Snt
Pings

<table>
<thead>
<tr>
<th>Host</th>
<th>Last</th>
<th>Avg</th>
<th>Best</th>
<th>Wrst</th>
<th>StDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 173.24.232.66</td>
<td>9.4</td>
<td>8.6</td>
<td>4.8</td>
<td>9.9</td>
<td>2.1</td>
</tr>
<tr>
<td>2. 173.24.232.66</td>
<td>7.9</td>
<td>17.2</td>
<td>7.9</td>
<td>29.4</td>
<td>11.0</td>
</tr>
<tr>
<td>3. 173.24.232.66</td>
<td>9.9</td>
<td>9.3</td>
<td>8.7</td>
<td>9.9</td>
<td>0.5</td>
</tr>
<tr>
<td>4. 173.24.232.66</td>
<td>9.9</td>
<td>9.8</td>
<td>9.5</td>
<td>10.0</td>
<td>0.2</td>
</tr>
</tbody>
</table>
```

Table 48 on page 398 summarizes the output fields of the display.

Table 48: CLI tracercoute monitor Command Output Summary

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>host</td>
<td>Hostname or IP address of the device issuing the tracercoute monitor command.</td>
</tr>
<tr>
<td>psize</td>
<td>Size of ping request packet, in bytes.</td>
</tr>
</tbody>
</table>

Keys

<table>
<thead>
<tr>
<th>Help</th>
<th>Displays the Help for the CLI commands.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display mode</td>
<td>Toggles the display mode.</td>
</tr>
<tr>
<td>Restart statistics</td>
<td>Restarts the tracercoute monitor command.</td>
</tr>
<tr>
<td>Order of fields</td>
<td>Sets the order of the displayed fields.</td>
</tr>
</tbody>
</table>
Table 48: CLI traceroute monitor Command Output Summary (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>quit</td>
<td>Quits the traceroute monitor command. Press Q to quit the traceroute monitor command.</td>
</tr>
</tbody>
</table>

Packets

<table>
<thead>
<tr>
<th>number</th>
<th>Number of the hop (device) along the route to the final destination host.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host</td>
<td>Hostname or IP address of the device at each hop.</td>
</tr>
<tr>
<td>Loss%</td>
<td>Percent of packet loss. The number of ping responses divided by the number of ping requests, specified as a percentage.</td>
</tr>
</tbody>
</table>

Pings

<table>
<thead>
<tr>
<th>Snt</th>
<th>Number of ping requests sent to the device at this hop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last</td>
<td>Most recent round-trip time, in milliseconds, to the device at this hop.</td>
</tr>
<tr>
<td>Avg</td>
<td>Average round-trip time, in milliseconds, to the device at this hop.</td>
</tr>
<tr>
<td>Best</td>
<td>Shortest round-trip time, in milliseconds, to the device at this hop.</td>
</tr>
<tr>
<td>Wrst</td>
<td>Longest round-trip time, in milliseconds, to the device at this hop.</td>
</tr>
<tr>
<td>StDev</td>
<td>Standard deviation of round-trip times, in milliseconds, to the device at this hop.</td>
</tr>
</tbody>
</table>

Related Documentation

- Displaying Log and Trace Files on page 546

Displaying Multicast Path Information

Supported Platforms

| SRX Series |

To display information about a multicast path from a source to the device, enter the mtrace from-source command with the following syntax:

```
user@host> mtrace from-source source host <extra-hops number> <group address> <interval seconds> <max-hops number> <max-queries number> <response host> <routing-instance routing-instance-name> <ttl number> <wait-time seconds> <loop> <multicast-response | unicast-response> <no-resolve> <no-router-alert> <brief | detail>
```

Table 49 on page 399 describes the mtrace from-source command options.

Table 49: CLI mtrace from-source Command Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>source host</td>
<td>Traces the path to the specified hostname or IP address.</td>
</tr>
</tbody>
</table>
Table 49: CLI mtrace from-source Command Options (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>extra-hops number</td>
<td>(Optional) Sets the number of extra hops to trace past nonresponsive devices. Specify a value from 0 through 255.</td>
</tr>
<tr>
<td>group address</td>
<td>(Optional) Traces the path for the specified group address. The default value is 192.0.2.0.</td>
</tr>
<tr>
<td>interval seconds</td>
<td>(Optional) Sets the interval between statistics gathering. The default value is 10.</td>
</tr>
<tr>
<td>max-hops number</td>
<td>(Optional) Sets the maximum number of hops to trace toward the source. Specify a value from 0 through 255. The default value is 32.</td>
</tr>
<tr>
<td>max-queries number</td>
<td>(Optional) Sets the maximum number of query attempts for any hop. Specify a value from 1 through 32. The default value is 3.</td>
</tr>
<tr>
<td>response host</td>
<td>(Optional) Sends the response packets to the specified hostname or IP address. By default, the response packets are sent to the device.</td>
</tr>
<tr>
<td>routing-instance</td>
<td>(Optional) Traces the routing instance you specify.</td>
</tr>
<tr>
<td>routing-instance-name</td>
<td>(Optional) Sets the time-to-live (TTL) value in the IP header of the query packets. Specify a hop count from 0 through 255. The default value for local queries to the all routers multicast group is 1. Otherwise, the default value is 127.</td>
</tr>
<tr>
<td>ttl number</td>
<td>(Optional) Sets the time to wait for a response packet. The default value is 3 seconds.</td>
</tr>
<tr>
<td>wait-time seconds</td>
<td>(Optional) Loops indefinitely, displaying rate and loss statistics. To quit the mtrace command, press Ctrl-C.</td>
</tr>
<tr>
<td>loop</td>
<td>(Optional) Forces the responses to use multicast.</td>
</tr>
<tr>
<td>multicast-response</td>
<td>(Optional) Forces the response packets to use unicast.</td>
</tr>
<tr>
<td>brief</td>
<td>(Optional) Does not display hostnames.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Does not display packet rates and losses.</td>
</tr>
</tbody>
</table>

The following is sample output from the mtrace from-source command:

```bash
user@host> mtrace from-source source 192.1.4.1 group 224.1.1.1

Mtrace from 192.1.4.1 to 192.1.30.2 via group 224.1.1.1 Querying full reverse path... * * 0 ? (192.1.30.2) -1 ? (192.1.30.1) PIM thresh^ 1 -2 routerC.mycompany.net (192.1.40.2) PIM thresh^ 1 -3 hostA.mycompany.net (192.1.4.1) Round trip time 22 ms; total ttl of 2 required. Waiting to accumulate statistics...Results after 10 seconds: Source Response Dest Overall
```
Packet Statistics For Traffic From 192.1.4.1 192.1.30.2

<table>
<thead>
<tr>
<th>Hop</th>
<th>Source</th>
<th>Protocol</th>
<th>TTL</th>
<th>Destination</th>
<th>Rate</th>
<th>Lost/Sent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>192.1.4.1</td>
<td>v</td>
<td>2</td>
<td>192.1.40.2</td>
<td>0/0</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>192.168.195.37</td>
<td>v</td>
<td>?</td>
<td>192.1.30.1</td>
<td>0 pps</td>
<td>192.1.40.1</td>
</tr>
<tr>
<td>3</td>
<td>192.1.30.2</td>
<td>v</td>
<td>3</td>
<td>192.1.30.2</td>
<td>?/0</td>
<td>0 pps</td>
</tr>
</tbody>
</table>

Each line of the trace display is usually in the following format (depending on the options selected and the responses from the devices along the path):

`hop-number host (ip-address) protocol ttl`

Table 50 on page 401 summarizes the output fields of the display.

NOTE: The packet statistics gathered from Juniper Networks devices and routing nodes always display as 0.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>hop-number</code></td>
<td>Number of the hop (device) along the path.</td>
</tr>
<tr>
<td><code>host</code></td>
<td>Hostname, if available, or IP address of the device. If the no-resolve option was entered in the command, the hostname is not displayed.</td>
</tr>
<tr>
<td><code>ip-address</code></td>
<td>IP address of the device.</td>
</tr>
<tr>
<td><code>protocol</code></td>
<td>Protocol used.</td>
</tr>
<tr>
<td><code>ttl</code></td>
<td>TTL threshold.</td>
</tr>
<tr>
<td><code>Round trip time milliseconds ms</code></td>
<td>Total time between the sending of the query packet and the receiving of the response packet.</td>
</tr>
<tr>
<td><code>total ttl of number required</code></td>
<td>Total number of hops required to reach the source.</td>
</tr>
<tr>
<td><code>Source</code></td>
<td>Source IP address of the response packet.</td>
</tr>
<tr>
<td><code>Response Dest</code></td>
<td>Response destination IP address.</td>
</tr>
<tr>
<td><code>Overall</code></td>
<td>Average packet rate for all traffic at each hop.</td>
</tr>
<tr>
<td><code>Packet Statistics For Traffic From</code></td>
<td>Number of packets lost, number of packets sent, percentage of packets lost, and average packet rate at each hop.</td>
</tr>
<tr>
<td><code>Receiver</code></td>
<td>IP address receiving the multicast packets.</td>
</tr>
<tr>
<td><code>Query Source</code></td>
<td>IP address of the host sending the query packets.</td>
</tr>
</tbody>
</table>
Related Documentation

• Monitoring Overview on page 7
CHAPTER 23

Monitoring Application Layer Gateways

Features

- Monitoring H.323 ALG Information on page 403
- Monitoring MGCP ALGs on page 404
- Monitoring SCCP ALGs on page 408
- Monitoring SIP ALGs on page 410
- Monitoring Voice ALG H.323 on page 414
- Monitoring Voice ALG MGCP on page 417
- Monitoring Voice ALG SCCP on page 420
- Monitoring Voice ALG SIP on page 423
- Monitoring Voice ALG Summary on page 428

Monitoring H.323 ALG Information

Supported Platforms
SRX Series

Purpose
View the H.323 ALG counters information.

Action
Select Monitor>ALGs>H323 in the J-Web user interface, or enter the show security alg h323 counters command.

Table 51 on page 403 summarizes key output fields in the H.323 counters display.

Table 51: Summary of Key H.323 Counters Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.323 Counters Information</td>
<td>Number of H.323 ALG packets received.</td>
<td>–</td>
</tr>
<tr>
<td>Packets received</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packets dropped</td>
<td>Number of H.323 ALG packets dropped.</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 51: Summary of Key H.323 Counters Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS message received</td>
<td>Number of incoming RAS (Endpoint Registration, Admission, and Status) messages per second per gatekeeper received and processed.</td>
<td>–</td>
</tr>
<tr>
<td>Q.931 message received</td>
<td>Counter for Q.931 message received.</td>
<td>–</td>
</tr>
<tr>
<td>H.245 message received</td>
<td>Counter for H.245 message received.</td>
<td>–</td>
</tr>
<tr>
<td>Number of calls</td>
<td>Total number of H.323 ALG calls.</td>
<td>–</td>
</tr>
<tr>
<td>Number of active calls</td>
<td>Number of active H.323 ALG calls.</td>
<td>This counter displays the number of call legs and might not display the exact number of voice calls that are active. For instance, for a single active voice call between two endpoints, this counter might display a value of 2.</td>
</tr>
<tr>
<td>H.323 Error Counters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decoding errors</td>
<td>Number of decoding errors.</td>
<td>–</td>
</tr>
<tr>
<td>Message flood dropped</td>
<td>Error counter for message flood dropped.</td>
<td>–</td>
</tr>
<tr>
<td>NAT errors</td>
<td>H.323 ALG Network Address Translation (NAT) errors.</td>
<td>–</td>
</tr>
<tr>
<td>Resource manager errors</td>
<td>H.323 ALG resource manager errors.</td>
<td>–</td>
</tr>
</tbody>
</table>

Related Documentation
- Monitoring Overview on page 7
- Monitoring Interfaces on page 436

Monitoring MGCP ALGs

Supported Platforms
- SRX1500, SRX300, SRX320, SRX340, vSRX
This section contains the following topics:

- Monitoring MGCP ALG Calls on page 405
- Monitoring MGCP ALG Counters on page 405
- Monitoring MGCP ALG Endpoints on page 407

Monitoring MGCP ALG Calls

Supported Platforms
SRX Series, vSRX

Purpose
View information about MGCP ALG calls.

Action
Select Monitor>ALGs>MGCP>Calls in the J-Web user interface. To view detailed information, select the endpoint on the MGCP calls page.

Alternatively, enter the `show security alg mgcp calls` command.

Table 52 on page 405 summarizes key output fields in the MGCP calls display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGCP Calls Information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endpoint@GW</td>
<td>Endpoint name.</td>
<td>–</td>
</tr>
<tr>
<td>Zone</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>trust</td>
<td>Trust zone.</td>
<td>–</td>
</tr>
<tr>
<td>untrust</td>
<td>Untrust zone.</td>
<td>–</td>
</tr>
<tr>
<td>Call ID</td>
<td>Call identifier for ALG MGCP.</td>
<td>–</td>
</tr>
<tr>
<td>RM Group</td>
<td>Resource manager group ID.</td>
<td>–</td>
</tr>
<tr>
<td>Call Duration</td>
<td>Duration for which connection is active.</td>
<td>–</td>
</tr>
<tr>
<td>Connection Id</td>
<td>Connection identifier for MGCP ALG calls.</td>
<td>–</td>
</tr>
</tbody>
</table>

Calls Details: Endpoint

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local SDP</td>
<td>IP address of the MGCP ALG local call owner, as per the Session Description Protocol (SDP).</td>
<td>–</td>
</tr>
<tr>
<td>Remote SDP</td>
<td>Remote IP address of the MGCP ALG remote call owner, as per the Session Description Protocol (SDP).</td>
<td>–</td>
</tr>
</tbody>
</table>

Monitoring MGCP ALG Counters

Supported Platforms
SRX Series, vSRX

Purpose
View MGCP ALG counters information.
Action Select Monitor>ALGs>MGCP>Counters in the J-Web user interface, or enter the show security alg mgcp counters command.

Table 53 on page 406 summarizes key output fields in the MGCP counters display.

Table 53: Summary of Key MGCP Counters Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGCP Counters Information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packets received</td>
<td>Number of MGCP ALG packets received.</td>
<td>–</td>
</tr>
<tr>
<td>Packets dropped</td>
<td>Number of MGCP ALG packets dropped.</td>
<td>–</td>
</tr>
<tr>
<td>Message received</td>
<td>Number of MGCP ALG messages received.</td>
<td>–</td>
</tr>
<tr>
<td>Number of connections</td>
<td>Number of MGCP ALG connections.</td>
<td>–</td>
</tr>
<tr>
<td>Number of active connections</td>
<td>Number of active MGCP ALG connections.</td>
<td>–</td>
</tr>
<tr>
<td>Number of calls</td>
<td>Number of MGCP ALG calls.</td>
<td>–</td>
</tr>
<tr>
<td>Number of active calls</td>
<td>Number of MGCP ALG active calls.</td>
<td>–</td>
</tr>
<tr>
<td>Number of active transactions</td>
<td>Number of active transactions.</td>
<td>–</td>
</tr>
<tr>
<td>Number of re-transmission</td>
<td>Number of MGCP ALG retransmissions.</td>
<td>–</td>
</tr>
<tr>
<td>Error Counters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown-method</td>
<td>MGCP ALG unknown method errors.</td>
<td>–</td>
</tr>
<tr>
<td>Decoding error</td>
<td>MGCP ALG decoding errors.</td>
<td>–</td>
</tr>
<tr>
<td>Transaction error</td>
<td>MGCP ALG transaction errors.</td>
<td>–</td>
</tr>
<tr>
<td>Call error</td>
<td>MGCP ALG counter errors.</td>
<td>–</td>
</tr>
<tr>
<td>Connection error</td>
<td>MGCP ALG connection errors.</td>
<td>–</td>
</tr>
<tr>
<td>Connection flood drop</td>
<td>MGCP ALG connection flood drop errors.</td>
<td>–</td>
</tr>
<tr>
<td>Message flood drop</td>
<td>MGCP ALG message flood drop errors.</td>
<td>–</td>
</tr>
<tr>
<td>IP resolve error</td>
<td>MGCP ALG IP address resolution errors.</td>
<td>–</td>
</tr>
<tr>
<td>NAT error</td>
<td>MGCP ALG Network Address Translation (NAT) errors.</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 53: Summary of Key MGCP Counters Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource manager error</td>
<td>MGCP ALG resource manager errors.</td>
<td>--</td>
</tr>
</tbody>
</table>

Monitoring MGCP ALG Endpoints

Supported Platforms SRX Series, vSRX

Purpose View information about MGCP ALG endpoints.

Action Select Monitor>ALGs>MGCP>Endpoints in the J-Web user interface. To view detailed information, select the gateway on the MGCP endpoints page.

Alternatively, enter the `show security alg mgcp endpoints` command.

Table 54 on page 407 summarizes key output fields in the MGCP endpoints display.

Table 54: Summary of Key MGCP Endpoints Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGCP Endpoints</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gateway</td>
<td>IP address of the gateway.</td>
<td>--</td>
</tr>
<tr>
<td>Zone</td>
<td>• trust—Trust zone.</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>• untrust—Untrust zone.</td>
<td></td>
</tr>
<tr>
<td>IP</td>
<td>IP address.</td>
<td>--</td>
</tr>
<tr>
<td>Endpoints: Gateway name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endpoint</td>
<td>Endpoint name.</td>
<td>--</td>
</tr>
<tr>
<td>Transaction #</td>
<td>Transaction identifier.</td>
<td>--</td>
</tr>
<tr>
<td>Call #</td>
<td>Call identifier.</td>
<td>--</td>
</tr>
<tr>
<td>Notified Entity</td>
<td>The certificate authority (CA) currently controlling the gateway.</td>
<td>--</td>
</tr>
</tbody>
</table>

Related Documentation
- Monitoring Overview on page 7
- Monitoring Interfaces on page 436
Monitoring SCCP ALGs

Supported Platforms: SRX1500, SRX300, SRX320, SRX340, vSRX

This section contains the following topics:

- Monitoring SCCP ALG Calls on page 408
- Monitoring SCCP ALG Counters on page 408

Monitoring SCCP ALG Calls

Supported Platforms: SRX Series, vSRX

Purpose: View information about SCCP ALG calls.

Action: Select Monitor>ALGs>SCCP>Calls in the J-Web user interface. To view detailed information, select the client IP address on the SCCP calls page.

Alternatively, enter the `show security alg sccp calls` command.

Table 55 on page 408 summarizes key output fields in the SCCP calls display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCCP Calls Information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Client IP</td>
<td>IP address of the client.</td>
<td>–</td>
</tr>
<tr>
<td>Zone</td>
<td>Client zone identifier.</td>
<td>–</td>
</tr>
<tr>
<td>Call Manager</td>
<td>IP address of the call manager.</td>
<td>–</td>
</tr>
<tr>
<td>Conference ID</td>
<td>Conference call identifier.</td>
<td>–</td>
</tr>
<tr>
<td>RM Group</td>
<td>Resource manager group identifier.</td>
<td>–</td>
</tr>
</tbody>
</table>

Monitoring SCCP ALG Counters

Supported Platforms: SRX Series, vSRX

Purpose: View SCCP ALG counters information.

Action: Select Monitor>ALGs>SCCP>Count in the J-Web user interface, or enter the `show security alg sccp counters` command.

Table 56 on page 409 summarizes key output fields in the SCCP counters display.
Table 56: Summary of Key SCCP Counters Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCCP Counters Information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clients currently registered</td>
<td>Number of SCCP ALG clients currently registered.</td>
<td>–</td>
</tr>
<tr>
<td>Active calls</td>
<td>Number of active SCCP ALG calls.</td>
<td>–</td>
</tr>
<tr>
<td>Total calls</td>
<td>Total number of SCCP ALG calls.</td>
<td>–</td>
</tr>
<tr>
<td>Packets received</td>
<td>Number of SCCP ALG packets received.</td>
<td>–</td>
</tr>
<tr>
<td>PDU processed</td>
<td>Number of SCCP ALG protocol data units (PDUs) processed.</td>
<td>–</td>
</tr>
<tr>
<td>Current call rate</td>
<td>Number of calls per second.</td>
<td>–</td>
</tr>
<tr>
<td>Error counters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packets dropped</td>
<td>Number of packets dropped by the SCCP ALG.</td>
<td>–</td>
</tr>
<tr>
<td>Decode errors</td>
<td>SCCP ALG decoding errors.</td>
<td>–</td>
</tr>
<tr>
<td>Protocol errors</td>
<td>Number of protocol errors.</td>
<td>–</td>
</tr>
<tr>
<td>Address translation errors</td>
<td>Number of Network Address Translation (NAT) errors encountered by SCCP ALG.</td>
<td>–</td>
</tr>
<tr>
<td>Policy lookup errors</td>
<td>Number of packets dropped because of a failed policy lookup.</td>
<td>–</td>
</tr>
<tr>
<td>Unknown PDUs</td>
<td>Number of unknown protocol data units (PDUs).</td>
<td>–</td>
</tr>
<tr>
<td>Maximum calls exceed</td>
<td>Number of times the maximum SCCP calls limit was exceeded.</td>
<td>–</td>
</tr>
<tr>
<td>Maximum call rate exceed</td>
<td>Number of times the maximum SCCP call rate exceeded.</td>
<td>–</td>
</tr>
<tr>
<td>Initialization errors</td>
<td>Number of initialization errors.</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 56: Summary of Key SCCP Counters Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal errors</td>
<td>Number of internal errors.</td>
<td></td>
</tr>
<tr>
<td>Unsupported feature</td>
<td>Number of unsupported feature errors.</td>
<td></td>
</tr>
<tr>
<td>Non specific error</td>
<td>Number of nonspecific errors.</td>
<td></td>
</tr>
</tbody>
</table>

Related Documentation

- Monitoring Overview on page 7
- Monitoring Interfaces on page 436

Monitoring SIP ALGs

Supported Platforms

SRX Series, vSRX

This section contains the following topics:

- Monitoring SIP ALG Calls on page 410
- Monitoring SIP ALG Counters on page 411
- Monitoring SIP ALG Rate Information on page 413
- Monitoring SIP ALG Transactions on page 414

Monitoring SIP ALG Calls

Supported Platforms

SRX Series, vSRX

Purpose

View information about SIP ALG calls.

Action

Select Monitor>ALGs>SIP>Calls in the J-Web user interface. To view detailed information, select the Call Leg on the SIP calls page.

Alternatively, enter the show security alg sip calls detail command.

Table 57 on page 410 summarizes key output fields in the SIP calls display.

Table 57: Summary of Key SIP Calls Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIP Calls Information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Call Leg</td>
<td>Call length identifier.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 57: Summary of Key SIP Calls Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone</td>
<td>Client zone identifier.</td>
<td>–</td>
</tr>
<tr>
<td>RM Group</td>
<td>Resource manager group identifier.</td>
<td>–</td>
</tr>
<tr>
<td>Local Tag</td>
<td>Local tag for the SIP ALG User Agent server.</td>
<td>–</td>
</tr>
<tr>
<td>Remote Tag</td>
<td>Remote tag for the SIP ALG User Agent server.</td>
<td>–</td>
</tr>
</tbody>
</table>

Monitoring SIP ALG Counters

Supported Platforms SRX Series, vSRX

Purpose View SIP ALG counters information.

Action Select Monitor>ALGs>SIP>Count in the J-Web user interface, or enter the `show security alg sip counters` command.

Table 58 on page 411 summarizes key output fields in the SIP counters display.

Table 58: Summary of Key SIP Counters Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVITE</td>
<td>Number of INVITE requests sent.</td>
<td>An INVITE request is sent to invite another user to participate in a session.</td>
</tr>
<tr>
<td>CANCEL</td>
<td>Number of CANCEL requests sent.</td>
<td>A user can send a CANCEL request to cancel a pending INVITE request. A CANCEL request has no effect if the SIP server processing the INVITE had sent a final response for the INVITE before it received the CANCEL.</td>
</tr>
<tr>
<td>ACK</td>
<td>Number of ACK requests sent.</td>
<td>The user from whom the INVITE originated sends an ACK request to confirm reception of the final response to the INVITE request.</td>
</tr>
<tr>
<td>BYE</td>
<td>Number of BYE requests sent.</td>
<td>A user sends a BYE request to abandon a session. A BYE request from either user automatically terminates the session.</td>
</tr>
<tr>
<td>REGISTER</td>
<td>Number of REGISTER requests sent.</td>
<td>A user sends a REGISTER request to a SIP registrar server to inform it of the current location of the user. A SIP registrar server records all the information it receives in REGISTER requests and makes this information available to any SIP server attempting to locate a user.</td>
</tr>
</tbody>
</table>
Table 58: Summary of Key SIP Counters Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTIONS</td>
<td>Number of OPTIONS requests sent.</td>
<td>An OPTION message is used by the User Agent (UA) to obtain information about the capabilities of the SIP proxy. A server responds with information about what methods, session description protocols, and message encoding it supports.</td>
</tr>
<tr>
<td>INFO</td>
<td>Number of INFO requests sent.</td>
<td>An INFO message is used to communicate mid-session signaling information along the signaling path for the call.</td>
</tr>
<tr>
<td>MESSAGE</td>
<td>Number of MESSAGE requests sent.</td>
<td>SIP messages consist of requests from a client to a server and responses to the requests from a server to a client with the purpose of establishing a session (or a call).</td>
</tr>
<tr>
<td>NOTIFY</td>
<td>Number of NOTIFY requests sent.</td>
<td>A NOTIFY message is sent to inform subscribers of changes in state to which the subscriber has a subscription.</td>
</tr>
<tr>
<td>REFER</td>
<td>Number of REFER requests sent.</td>
<td>A REFER request is used to refer the recipient (identified by the Request-URI) to a third party by the contact information provided in the request.</td>
</tr>
<tr>
<td>SUBSCRIBE</td>
<td>Number of SUBSCRIBE requests sent.</td>
<td>A SUBSCRIBE request is used to request current state and state updates from a remote node.</td>
</tr>
<tr>
<td>UPDATE</td>
<td>Number of UPDATE requests sent.</td>
<td>An UPDATE request is used to create a temporary opening in the firewall (pinhole) for new or updated Session Description Protocol (SDP) information. The following header fields are modified: Via, From, To, Call-ID, Contact, Route, and Record-Route.</td>
</tr>
</tbody>
</table>

SIP Error Counters

Total Pkt-in	SIP ALG total packets received.	–
Total Pkt dropped on error	Number of packets dropped by the SIP ALG.	–
Transaction error	SIP ALG transaction errors.	–
Call error	SIP ALG call errors.	–
IP resolve error	SIP ALG IP address resolution errors.	–
NAT error	SIP ALG NAT errors.	–
Table 58: Summary of Key SIP Counters Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource manager error</td>
<td>SIP ALG resource manager errors.</td>
<td>–</td>
</tr>
<tr>
<td>RR header exceeded max</td>
<td>Number of times the SIP ALG RR (Record-Route) headers exceeded the maximum limit.</td>
<td>–</td>
</tr>
<tr>
<td>Contact header exceeded max</td>
<td>Number of times the SIP ALG contact header exceeded the maximum limit.</td>
<td>–</td>
</tr>
<tr>
<td>Call dropped due to limit</td>
<td>SIP ALG calls dropped because of call limits.</td>
<td>–</td>
</tr>
<tr>
<td>SIP stack error</td>
<td>SIP ALG stack errors.</td>
<td>–</td>
</tr>
</tbody>
</table>

Monitoring SIP ALG Rate Information

Supported Platforms: SRX Series, vSRX

Purpose: View SIP ALG rate information.

Action: Select Monitor>ALGs>SIP>Rate in the J-Web user interface, or enter the `show security alg sip rate` command.

Table 59 on page 413 summarizes key output fields in the SIP rate display.

Table 59: Summary of Key SIP Rate Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU ticks per microseconds is</td>
<td>SIP ALG CPU ticks per microsecond.</td>
<td>–</td>
</tr>
<tr>
<td>Time taken for the last message in microseconds is</td>
<td>Time, in microseconds, that the last SIP ALG message needed to transit the network.</td>
<td>–</td>
</tr>
<tr>
<td>Number of messages in 10 minutes</td>
<td>Total number of SIP ALG messages transiting the network in 10 minutes.</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 59: Summary of Key SIP Rate Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time taken by the messages in 10 minutes</td>
<td>Total time, in microseconds, during an interval of less than 10 minutes for the specified number of SIP ALG messages to transit the network.</td>
<td>--</td>
</tr>
<tr>
<td>Rate</td>
<td>Number of SIP ALG messages per second transiting the network.</td>
<td>--</td>
</tr>
</tbody>
</table>

Monitoring SIP ALG Transactions

Supported Platforms: SRX Series, vSRX

Purpose: View information about SIP ALG transactions.

Action: Select Monitor > ALGs > SIP > Transactions in the J-Web user interface, or enter the show security alg sip transactions command.

Table 60 on page 414 summarizes key output fields in the SIP transactions display.

Table 60: Summary of Key SIP Transactions Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIP Transactions Information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transaction Name</td>
<td>UAS—SIP ALG User Agent server transaction name.</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>UAC—SIP ALG User Agent client transaction name.</td>
<td>--</td>
</tr>
<tr>
<td>Method</td>
<td>The method to be performed on the resource. Possible methods:</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>• INVITE—Initiate call</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ACK—Confirm final response</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• BYE—Terminate and transfer call</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CANCEL—Cancel searches and “ringing”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OPTIONS—Features support by the other side</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• REGISTER—Register with location service</td>
<td></td>
</tr>
</tbody>
</table>

Related Documentation:
• Monitoring Overview on page 7
• Monitoring Interfaces on page 436

Monitoring Voice ALG H.323

Supported Platforms: SRX Series

Purpose: Use the monitoring functionality to view the ALG H.323 page.
Action

To monitor ALG H.323 select Monitor > Security > Voice ALGs > H.323 in the J-Web user interface.

Meaning

Table 61 on page 415 summarizes key output fields in the ALG H.323 page.

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Chassis Member</td>
<td>Display the list of virtual chassis member.</td>
<td>Select one of the virtual chassis members listed.</td>
</tr>
<tr>
<td>Refresh Interval (30 sec)</td>
<td>Displays the time interval set for page refresh.</td>
<td>Select the time interval from the drop-down list.</td>
</tr>
<tr>
<td>Refresh</td>
<td>Displays the option to refresh the page.</td>
<td>–</td>
</tr>
<tr>
<td>Clear</td>
<td>Provides an option to clear the monitor summary.</td>
<td>Click clear to clear the monitor summary.</td>
</tr>
</tbody>
</table>

H.323 Counter Summary

<table>
<thead>
<tr>
<th>Category</th>
<th>Displays the following categories:</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Packets received</td>
<td>Number of ALG H.323 packets received.</td>
<td></td>
</tr>
<tr>
<td>• Packets dropped</td>
<td>Number of ALG H.323 packets dropped.</td>
<td></td>
</tr>
<tr>
<td>• RAS message received</td>
<td>Number of incoming RAS (Registration, Admission, and Status) messages per second per gatekeeper received and processed.</td>
<td></td>
</tr>
<tr>
<td>• Q.931 message received</td>
<td>Counter for Q.931 message received.</td>
<td></td>
</tr>
<tr>
<td>• H.245 message received</td>
<td>Counter for H.245 message received.</td>
<td></td>
</tr>
<tr>
<td>• Number of calls</td>
<td>Total number of ALG H.323 calls.</td>
<td></td>
</tr>
<tr>
<td>• Number of active calls</td>
<td>Number of active ALG H.323 calls.</td>
<td></td>
</tr>
<tr>
<td>• Number of DSCP Marked</td>
<td>Number of DSCP Marked on ALG H.323 calls.</td>
<td></td>
</tr>
</tbody>
</table>

Count

Provides count of response codes for each H.323 counter summary category. –

H.323 Error Counter
Table 61: ALG H.323 Monitoring Page (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Displays the following categories:</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>• Decoding errors—Number of decoding errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Message flood dropped—Error counter for message flood dropped.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• NAT errors—H.323 ALG NAT errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Resource manager errors—H.323 ALG resource manager errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DSCP Marked errors—H.323 ALG DSCP marked errors.</td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td>Provides count of response codes for each H.323 error counter category.</td>
<td>–</td>
</tr>
<tr>
<td>Counter Summary Chart</td>
<td>Provides the graphical representation of the packets received.</td>
<td>–</td>
</tr>
<tr>
<td>H.323 Message Counter</td>
<td>Displays the following categories:</td>
<td>–</td>
</tr>
<tr>
<td>Category</td>
<td>• RRQ—Registration Request message counter.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RCF—Registration Confirmation Message.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ARQ—Admission Request message counter.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ACF—Admission Confirmation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• URQ—Unregistration Request.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• UCF—Unregistration Confirmation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DRQ—Disengage Request.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DCF—Disengage Confirmation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Oth RAS—Other incoming Registration, Admission, and Status messages message counter.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Setup—Timeout value, in seconds, for the response of the outgoing setup message.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Alert—Alert message type.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Connect—Connect setup process.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CallProd—Number of call production messages sent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Info—Number of info requests sent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RelCmpl—Number of Rel Cmpl message ssent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Facility—Number of facility messages sent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Empty—Empty capabilities to the support message counter.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OLC—Open Local Channel message counter.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OLC ACK—Open Local Channel Acknowledge message counter.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Oth H245—Other H.245 message counter</td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td>Provides count of response codes for each H.323 message counter category.</td>
<td>–</td>
</tr>
</tbody>
</table>
Related Documentation
- Monitoring Voice ALG Summary on page 428
- Monitoring Voice ALG MGCP on page 417
- Monitoring Voice ALG SCCP on page 420
- Monitoring Voice ALG SIP on page 423

Monitoring Voice ALG MGCP

Supported Platforms SRX1500, SRX300, SRX320, SRX340, vSRX

Purpose Use the monitoring functionality to view the voice ALG MGCP page.

Action To monitor ALG MGCP, select Monitor>Security>Voice ALGs>MGCP in the J-Web user interface.

Meaning Table 62 on page 417 summarizes key output fields in the voice ALG MGCP page.

Table 62: Voice ALG MGCP Monitoring Page

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Chassis Member</td>
<td>Displays the list of virtual chassis member.</td>
<td>Select one of the virtual chassis members listed.</td>
</tr>
<tr>
<td>Refresh Interval (30 sec)</td>
<td>Displays the time interval set for page refresh.</td>
<td>Select the time interval from the drop-down list.</td>
</tr>
<tr>
<td>Refresh</td>
<td>Displays the option to refresh the page.</td>
<td>–</td>
</tr>
<tr>
<td>Clear</td>
<td>Provides an option to clear the monitor summary.</td>
<td>Click Clear to clear the monitor summary.</td>
</tr>
</tbody>
</table>

Counters

MGCP Counters Summary
Table 62: Voice ALG MGCP Monitoring Page (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Displays the following categories:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Packets Received—Number of ALG MGCP packets received.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Packets Dropped—Number of ALG MGCP packets dropped.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Message received—Number of ALG MGCP messages received.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Number of connections—Number of ALG MGCP connections.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Number of active connections—Number of active ALG MGCP connections.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Number of calls—Number of ALG MGCP calls.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Number of active calls—Number of active ALG MGCP calls.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Number of active transactions—Number of active transactions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Number of transactions—Number of transactions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Number of re-transmission—Number of ALG MGCP retransmissions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Number of active endpoints—Number of MGCP active endpoints.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Number of DSCP marked—Number of MGCP DSCPs marked.</td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td>Provides the count of response codes for each MGCP counter summary category.</td>
<td></td>
</tr>
<tr>
<td>MGCP Error Counter</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 62: Voice ALG MGCP Monitoring Page (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Displays the following categories:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Unknown-method — MGCP ALG unknown method errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Decoding error — MGCP ALG decoding errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Transaction error — MGCP ALG transaction errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Call error — MGCP ALG call counter errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Connection error — MGCP ALG connection errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Connection flood drop — MGCP ALG connection flood drop errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Message flood drop — MGCP ALG message flood drop error.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• IP resolve error — MGCP ALG IP address resolution errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• NAT error — MGCP ALG NAT errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Resource manager error — MGCP ALG resource manager errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DSCP Marked error — MGCP ALG DSCP marked errors.</td>
<td></td>
</tr>
</tbody>
</table>

| Count | Provides the count of response codes for each summary error counter category. | |

| Counter Summary Chart | Displays the Counter Summary Chart. | |

<table>
<thead>
<tr>
<th>MGCP Packet Counters</th>
<th>Displays the following categories:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRCX</td>
<td>Create Connection</td>
<td></td>
</tr>
<tr>
<td>MDCX</td>
<td>Modify Connection</td>
<td></td>
</tr>
<tr>
<td>DLCX</td>
<td>Delete Connection</td>
<td></td>
</tr>
<tr>
<td>AUEP</td>
<td>Audit Endpoint</td>
<td></td>
</tr>
<tr>
<td>AUCX</td>
<td>Audit Connection</td>
<td></td>
</tr>
<tr>
<td>NTFY</td>
<td>Notify MGCP</td>
<td></td>
</tr>
<tr>
<td>RSIP</td>
<td>Restart in Progress</td>
<td></td>
</tr>
<tr>
<td>EPCF</td>
<td>Endpoint Configuration</td>
<td></td>
</tr>
<tr>
<td>RQNT</td>
<td>Request for Notification</td>
<td></td>
</tr>
<tr>
<td>000-199</td>
<td>Respond code is 0-199</td>
<td></td>
</tr>
<tr>
<td>200-299</td>
<td>Respond code is 200-299</td>
<td></td>
</tr>
<tr>
<td>300-399</td>
<td>Respond code is 300-399</td>
<td></td>
</tr>
</tbody>
</table>

| Count | Provides count of response codes for each MGCP packet counter category. | |

| Calls | | |

Copyright © 2017, Juniper Networks, Inc.
Table 62: Voice ALG MGCP Monitoring Page (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endpoint@GW</td>
<td>Displays the endpoint name.</td>
<td></td>
</tr>
<tr>
<td>Zone</td>
<td>Displays the following options:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• trust—Trust zone.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• untrust—Untrust zone.</td>
<td></td>
</tr>
<tr>
<td>Endpoint IP</td>
<td>Displays the endpoint IP address.</td>
<td></td>
</tr>
<tr>
<td>Call ID</td>
<td>Displays the call identifier for ALG MGCP.</td>
<td></td>
</tr>
<tr>
<td>RM Group</td>
<td>Displays the resource manager group ID.</td>
<td></td>
</tr>
<tr>
<td>Call Duration</td>
<td>Displays the duration for which connection is active.</td>
<td></td>
</tr>
</tbody>
</table>

Related Documentation

- Monitoring Voice ALG Summary on page 428
- Monitoring Voice ALG H.323 on page 414
- Monitoring Voice ALG SCCP on page 420
- Monitoring Voice ALG SIP on page 423

Monitoring Voice ALG SCCP

Supported Platforms

SRX1500, SRX300, SRX320, SRX340, vSRX

Purpose

Use the monitoring functionality to view the voice ALG SCCP page.

Action

To monitor voice ALG SCCP, select Monitor>Security>Voice ALGs>SCCP in the J-Web user interface.

Meaning

Table 63 on page 420 summarizes key output fields in the voice ALG SCCP page.

Table 63: Voice ALG SCCP Monitoring Page

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Chassis Member</td>
<td>Displays the list of virtual chassis member.</td>
<td>Select one of the virtual chassis members listed.</td>
</tr>
<tr>
<td>Refresh Interval (30 sec)</td>
<td>Displays the time interval set for page refresh.</td>
<td>Select the time interval from the drop-down list.</td>
</tr>
<tr>
<td>Refresh</td>
<td>Displays the option to refresh the page.</td>
<td></td>
</tr>
</tbody>
</table>
Table 63: Voice ALG SCCP Monitoring Page (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear</td>
<td>Provides an option to clear the monitor summary.</td>
<td>Click Clear to clear the monitor summary.</td>
</tr>
</tbody>
</table>

SCCP Call Statistics

<table>
<thead>
<tr>
<th>Category</th>
<th>Displays the following categories:</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Active client sessions— Number of active SCCP ALG client sessions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Active calls— Number of active SCCP ALG calls.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Total calls— Total number of SCCP ALG calls.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Packets received— Number of SCCP ALG packets received.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PDUs processed— Number of SCCP ALG protocol data units (PDUs) processed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Current call rate— Number of calls per second.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DSCPs Marked— Number of DSCP marked.</td>
<td></td>
</tr>
</tbody>
</table>

| Count | Provides count of response codes for each SCCP call statistics category. | – |

| Call Statistics Chart | Displays the Call Statistics chart. | – |

SCCP Error Counters
Table 63: Voice ALG SCCP Monitoring Page (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Displays the following categories:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Packets dropped— Number of packets dropped by the SCCP ALG.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Decode errors— Number of SCCP ALG decoding errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Protocol errors— Number of protocol errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Address translation errors— Number of NAT errors encountered by SCCP ALG.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Policy lookup errors— Number of packets dropped because of a failed policy lookup.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Unknown PDUs— Number of unknown PDUs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Maximum calls exceed— Number of times the maximum SCCP calls limit was exceeded.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Maximum call rate exceed— Number of times the maximum SCCP call rate was exceeded.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Initialization errors— Number of initialization errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Internal errors— Number of internal errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Nonspecific errors— Number of nonspecific errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No active calls to be deleted— Number of no active calls to be deleted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No active client sessions to be deleted— Number of no active client sessions to be deleted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Session cookie created error— Number of session cookie created errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Invalid NAT cookies deleted— Number of invalid NAT cookies deleted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• NAT cookies not found— Number of NAT cookies not found.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DSCP Marked Error— Number of DSCP marked errors.</td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td>Provides count of response codes for each SCCP error counter category.</td>
<td></td>
</tr>
<tr>
<td>Calls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Client IP</td>
<td>Displays the IP address of the client.</td>
<td></td>
</tr>
<tr>
<td>Zone</td>
<td>Displays the client zone identifier.</td>
<td></td>
</tr>
<tr>
<td>Call Manager</td>
<td>Displays the IP address of the call manager.</td>
<td></td>
</tr>
<tr>
<td>Conference ID</td>
<td>Displays the conference call identifier.</td>
<td></td>
</tr>
<tr>
<td>RM Group</td>
<td>Displays the resource manager group identifier.</td>
<td></td>
</tr>
</tbody>
</table>
Related Documentation

- Monitoring Voice ALG Summary on page 428
- Monitoring Voice ALG H.323 on page 414
- Monitoring Voice ALG MGCP on page 417
- Monitoring Voice ALG SIP on page 423

Monitoring Voice ALG SIP

Supported Platforms
SRX Series, vSRX

Purpose
Use the monitoring functionality to view the voice ALG SIP page.

Action
To monitor voice ALG SIP select **Monitor>Security>Voice ALGs>SIP** in the J-Web user interface.

Meaning
Table 64 on page 423 summarizes key output fields in the voice ALG SIP page.

Table 64: Voice ALG SIP Monitoring Page

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Chassis Member</td>
<td>Displays the list of virtual chassis members.</td>
<td>Select one of the virtual chassis members listed.</td>
</tr>
<tr>
<td>Refresh Interval (30 sec)</td>
<td>Displays the time interval set for page refresh.</td>
<td>Select the time interval from the drop-down list.</td>
</tr>
<tr>
<td>Refresh</td>
<td>Displays the option to refresh the page.</td>
<td>--</td>
</tr>
<tr>
<td>Clear</td>
<td>Provides an option to clear the monitor summary.</td>
<td>Click Clear to clear the monitor summary.</td>
</tr>
</tbody>
</table>

Counters

SIP Counters Information
Table 64: Voice ALG SIP Monitoring Page (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Displays the SIP counter information. The available options are:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• BYE — Number of BYE requests sent. A user sends a BYE request</td>
<td></td>
</tr>
<tr>
<td></td>
<td>to abandon a session. A BYE request from either user automatically</td>
<td></td>
</tr>
<tr>
<td></td>
<td>terminates the session.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• REGISTER — Number of REGISTER requests sent. A user sends</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a REGISTER request to a SIP registrar server to inform it of the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>current location of the user. The SIP registrar server records all</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the information it receives in REGISTER requests and makes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>this information available to any SIP server attempting to locate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a user.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OPTIONS — Number of OPTIONS requests sent. An OPTION message</td>
<td></td>
</tr>
<tr>
<td></td>
<td>is used by the User Agent (UA) to obtain information about the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>capabilities of the SIP proxy. A server responds with information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>about what methods, session description protocols, and message</td>
<td></td>
</tr>
<tr>
<td></td>
<td>encoding it supports.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• INFO — Number of INFO requests sent. An INFO message is used</td>
<td></td>
</tr>
<tr>
<td></td>
<td>to communicate mid-session signaling information along the signaling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>path for the call.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MESSAGE — Number of MESSAGE requests sent. SIP messages</td>
<td></td>
</tr>
<tr>
<td></td>
<td>consist of requests from a client to the server and responses to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the requests from the server to a client for the purpose of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>establishing a session (or a call).</td>
<td></td>
</tr>
</tbody>
</table>
Table 64: Voice ALG SIP Monitoring Page (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>• NOTIFY — Number of NOTIFY requests sent. A NOTIFY message is sent to inform subscribers about the change in state of the subscription.</td>
</tr>
<tr>
<td></td>
<td>• PRACK — Number of PRACK requests sent. The PRACK request plays the same role as the ACK request, but for provisional responses.</td>
</tr>
<tr>
<td></td>
<td>• PUBLISH — Number of PUBLISH requests sent. The PUBLISH request is used for publishing the event state. PUBLISH is similar to REGISTER that allows a user to create, modify, and remove state in another entity which manages this state on behalf of the user.</td>
</tr>
<tr>
<td></td>
<td>• REFER — Number of REFER requests sent. A REFER request is used to refer the recipient (identified by the Request-URI) to a third party identified by the contact information provided in the request.</td>
</tr>
<tr>
<td></td>
<td>• SUBSCRIBE — Number of SUBSCRIBE requests sent. A SUBSCRIBE request is used to request current state and state information updates from a remote node.</td>
</tr>
<tr>
<td></td>
<td>• UPDATE — Number of UPDATE requests sent. An UPDATE request is used to create a temporary opening in the firewall (pinhole) for new or updated Session Description Protocol (SDP) information. The following header fields are modified: Via, From, To, Call-ID, Contact, Route, and Record-Route.</td>
</tr>
<tr>
<td></td>
<td>• BENOTIFY — Number of BENOTIFY requests sent. A BENOTIFY request is used to reduce the unnecessary SIP signaling traffic on application servers. Applications that do not need a response for a NOTIFY request can enhance performance by enabling BENOTIFY.</td>
</tr>
<tr>
<td></td>
<td>• SERVICE — Number of SERVICE requests sent. The SERVICE method is used by a SIP client to request a service from a SIP server. It is a standard SIP message and will be forwarded until it reaches the server or end user that is performing the service.</td>
</tr>
<tr>
<td></td>
<td>• OTHER — Number of OTHER requests sent.</td>
</tr>
<tr>
<td>T, RT</td>
<td>Displays the transmit and retransmit method.</td>
</tr>
<tr>
<td>1xx, RT</td>
<td>Displays one transmit and retransmit method.</td>
</tr>
<tr>
<td>2xx, RT</td>
<td>Displays two transmit and retransmit methods.</td>
</tr>
<tr>
<td>3xx, RT</td>
<td>Displays three transmit and retransmit methods.</td>
</tr>
<tr>
<td>4xx, RT</td>
<td>Displays four transmit and retransmit methods.</td>
</tr>
<tr>
<td>5xx, RT</td>
<td>Displays five transmit and retransmit methods.</td>
</tr>
<tr>
<td>6xx, RT</td>
<td>Displays six transmit and retransmit methods.</td>
</tr>
</tbody>
</table>

Calls

- **Call ID** Displays the call ID.
Table 64: Voice ALG SIP Monitoring Page (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Displays the call method used</td>
<td>–</td>
</tr>
<tr>
<td>State</td>
<td>Displays the state of the ALG SIP</td>
<td>–</td>
</tr>
<tr>
<td>Group ID</td>
<td>Displays the group identifier</td>
<td>–</td>
</tr>
<tr>
<td>Invite Method Chart</td>
<td>Displays the invite method chart. The available options are:</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>• T/RT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1xx/ RT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2xx/ RT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 3xx/ RT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 4xx/ RT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 5xx/ RT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 6xx/ RT</td>
<td></td>
</tr>
</tbody>
</table>

SIP Error Counters
Table 64: Voice ALG SIP Monitoring Page (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Displays the SIP error counters. The available options are:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Total Pkt-in— Number of SIP ALG total packets received.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Total Pkt dropped on error— Number of packets dropped by the SIP ALG.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Call error— SIP Number of ALG call errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• IP resolve error— Number of SIP ALG IP address resolution errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• NAT error— SIP Number of ALG NAT errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Resource manager error— Number of SIP ALG resource manager errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RR header exceeded max— Number of times the SIP ALG RR (Record-Route) headers exceeded the maximum limit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Contact header exceeded max— Number of times the SIP ALG contact header exceeded the maximum limit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Call dropped due to limit— Number of SIP ALG calls dropped because of call limits.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SIP stack error— Number of SIP ALG stack errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SIP Decode error— Number of SIP ALG decode errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SIP unknown method error— Number of SIP ALG unknown method errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SIP DSCP marked— SIP ALG DSCP marked.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SIP DSCP marked error— Number of SIP ALG DSCP marked.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RTO message sent— Number of SIP ALG marked RTO messages sent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RTO message received— Number of SIP ALG RTO messages received.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RTO buffer allocation failure— Number of SIP ALG RTO buffer allocation failures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RTO buffer transmit failure— Number of SIP ALG RTO buffer transmit failures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RTO send processing error— Number of SIP ALG RTO send processing errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RTO receiving processing error— Number of SIP ALG RTO receiving processing errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RTO receive invalid length— Number of SIP ALG RTOs receiving invalid length.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RTO receive call process error— Number of SIP ALG RTO receiving call process errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RTO receive call allocation error— Number of SIP ALG RTO receiving call allocation error.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RTO receive call register error— Number of SIP ALG RTO receiving call register errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RTO receive invalid status error— Number of SIP ALG RTO receiving register errors.</td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td>Provides count of response codes for each SIP ALG counter category.</td>
<td></td>
</tr>
</tbody>
</table>
Related Documentation

- Monitoring Voice ALG Summary on page 428
- Monitoring Voice ALG H.323 on page 414
- Monitoring Voice ALG MGCP on page 417
- Monitoring Voice ALG SCCP on page 420

Monitoring Voice ALG Summary

Supported Platforms
SRX Series, vSRX

Purpose
Use the monitoring functionality to view the voice ALG summary page.

Action
To monitor voice ALG summary, select Monitor > Security > Voice ALGs > Summary in the J-Web user interface.

Meaning
Table 65 on page 428 summarizes key output fields in the voice ALG summary page.

Table 65: Voice ALG Summary Monitoring Page

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Chassis Member</td>
<td>Display the list of virtual chassis member.</td>
<td>Select one of the virtual chassis members listed.</td>
</tr>
<tr>
<td>Refresh Interval (30 sec)</td>
<td>Displays the time interval set for page refresh.</td>
<td>Select the time interval from the drop-down list.</td>
</tr>
<tr>
<td>Refresh</td>
<td>Displays the option to refresh the page.</td>
<td>–</td>
</tr>
<tr>
<td>Clear</td>
<td>Provides an option to clear the monitor summary.</td>
<td>Click Clear to clear the monitor summary.</td>
</tr>
<tr>
<td>Protocol Name</td>
<td>Displays the protocols configured.</td>
<td>–</td>
</tr>
<tr>
<td>Total Calls</td>
<td>Displays the total number of calls.</td>
<td>–</td>
</tr>
<tr>
<td>Number of Active Calls</td>
<td>Displays the number of active calls.</td>
<td>–</td>
</tr>
<tr>
<td>Number of Received Packets</td>
<td>Displays the number of packets received.</td>
<td>–</td>
</tr>
<tr>
<td>Number of Errors</td>
<td>Displays the number of errors.</td>
<td>–</td>
</tr>
<tr>
<td>H.323 Calls Chart</td>
<td>Displays the H.323 calls chart.</td>
<td>–</td>
</tr>
<tr>
<td>MGCP Calls Chart</td>
<td>Displays the MGCP calls chart.</td>
<td>–</td>
</tr>
<tr>
<td>SCCP Calls Chart</td>
<td>Displays the SCCP calls chart.</td>
<td>–</td>
</tr>
<tr>
<td>SIP Calls Chart</td>
<td>Displays the SIP calls chart.</td>
<td>–</td>
</tr>
</tbody>
</table>
Related Documentation

- Monitoring Voice ALG H.323 on page 414
- Monitoring Voice ALG MGCP on page 417
- Monitoring Voice ALG SCCP on page 420
- Monitoring Voice ALG SIP on page 423
CHAPTER 24
Monitoring Interfaces and Switching Functions

- Displaying Real-Time Interface Information on page 431
- Monitoring Address Pools on page 433
- Monitoring Ethernet Switching on page 434
- Monitoring GVRP on page 435
- Monitoring Interfaces on page 436
- Monitoring MPLS Traffic Engineering Information on page 437
- Monitoring PPP on page 443
- Monitoring PPPoE on page 443
- Monitoring Spanning Tree on page 447
- Monitoring the WAN Acceleration Interface on page 448

Displaying Real-Time Interface Information

Supported Platforms SRX Series, vSRX

Enter the `monitor interface` command to display real-time traffic, error, alarm, and filter statistics about a physical or logical interface:

```
user@host> monitor interface (interface-name | traffic)
```

Replace `interface-name` with the name of a physical or logical interface. If you specify the `traffic` option, statistics for all active interfaces display.

The real-time statistics update every second. The `Current delta` and `Delta` columns display the amount the statistics counters have changed since the `monitor interface` command was entered or since you cleared the delta counters. Table 66 on page 432 and Table 67 on page 432 list the keys you use to control the display using the `interface-name` and `traffic` options. (The keys are not case sensitive.)
Table 66: CLI monitor interface Output Control Keys

<table>
<thead>
<tr>
<th>Key</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>Clears (returns to 0) the delta counters in the Current delta column. The statistics counters are not cleared.</td>
</tr>
<tr>
<td>f</td>
<td>Freezes the display, halting the update of the statistics and delta counters.</td>
</tr>
<tr>
<td>i</td>
<td>Displays information about a different interface. You are prompted for the name of a specific interface.</td>
</tr>
<tr>
<td>n</td>
<td>Displays information about the next interface. The device scrolls through the physical and logical interfaces in the same order in which they are displayed by the <code>show interfaces terse</code> command.</td>
</tr>
<tr>
<td>q or ESC</td>
<td>Quits the command and returns to the command prompt.</td>
</tr>
<tr>
<td>t</td>
<td>Thaws the display, resuming the update of the statistics and delta counters.</td>
</tr>
</tbody>
</table>

Table 67: CLI monitor interface traffic Output Control Keys

<table>
<thead>
<tr>
<th>Key</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>Displays the statistics in units of bytes and bytes per second (bps).</td>
</tr>
<tr>
<td>c</td>
<td>Clears (returns to 0) the delta counters in the Delta column. The statistics counters are not cleared.</td>
</tr>
<tr>
<td>d</td>
<td>Displays the Delta column instead of the rate column—in bps or packets per second (pps).</td>
</tr>
<tr>
<td>p</td>
<td>Displays the statistics in units of packets and packets per second (pps).</td>
</tr>
<tr>
<td>q or ESC</td>
<td>Quits the command and returns to the command prompt.</td>
</tr>
<tr>
<td>r</td>
<td>Displays the rate column—in bps and pps—instead of the Delta column.</td>
</tr>
</tbody>
</table>

The following are sample displays from the `monitor interface` command:

```
user@host> monitor interface fe-0/0/0

host1                   Seconds: 5                   Time: 04:38:40
Delay: 3/0/10
Interface: fe-0/0/0, Enabled, Link is Up
Encapsulation: Ethernet, Speed: 1000mbps
Traffic statistics:                                          Current delta
  Input bytes:     885405423 (3248 bps)                  [2631]
  Output bytes:    137411893 (3344 bps)                 [10243]
  Input packets:   7155064 (2 pps)                       [28]
  Output packets:  636071 (1 pps)                        [23]
Error statistics:                                           Current delta
  Input errors:    0                               [0]
```
Input drops: 0 [0]
Input framing errors: 0 [0]
Policed discards: 0 [0]
L3 incompletes: 0 [0]
L2 channel errors: 0 [0]
L2 mismatch timeouts: 0 [0]
Carrier transitions: 1 [0]
Output errors: 0 [0]
Output drops: 0 [0]
Aged packets: 0 [0]
Active alarms: None
Active defects: None

Input MAC/Filter statistics:
Unicast packets: 73083 [16]
Broadcast packets: 3629058 [5]
Multicast packets: 3511364 [3]
Oversized frames: 0 [0]
Packet reject count: 0 [0]
DA rejects: 0 [0]
SA rejects: 0 [0]

Output MAC/Filter statistics:
Unicast packets: 629555 [28]
Broadcast packets: 6494 Multicast packet [0]

NOTE: The output fields that display when you enter the monitor interface
interface-name command are determined by the interface you specify.

user@host> monitor interface traffic

<table>
<thead>
<tr>
<th>Interface</th>
<th>Link</th>
<th>Input packets</th>
<th>(pps)</th>
<th>Output packets</th>
<th>(pps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fe-0/0/0</td>
<td>Up</td>
<td>42334</td>
<td>(5)</td>
<td>23306</td>
<td>(3)</td>
</tr>
<tr>
<td>fe-0/0/1</td>
<td>Up</td>
<td>587525876</td>
<td>(12252)</td>
<td>589621478</td>
<td>(12891)</td>
</tr>
</tbody>
</table>

Related Documentation
• Monitoring Interfaces on page 436

Monitoring Address Pools

Supported Platforms SRX Series, vSRX

Purpose Use the monitoring functionality to view the Address Pools page.

Action To monitor Address Pools, select Monitor>Access>Address Pools in the J-Web user interface.

Meaning Table 68 on page 433 summarizes key output fields in the Address Pools page.

Table 68: Address Pools Monitoring Page
<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address Pool Properties</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 68: Address Pools Monitoring Page (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address Pool Name</td>
<td>Displays the name of the address pool.</td>
<td>-</td>
</tr>
<tr>
<td>Network Address</td>
<td>Displays the IP network address of the address pool.</td>
<td>-</td>
</tr>
<tr>
<td>Address Ranges</td>
<td>Displays the name, the lower limit, and the upper limit of the address range.</td>
<td>-</td>
</tr>
<tr>
<td>Primary DNS</td>
<td>Displays the primary-dns IP address.</td>
<td>-</td>
</tr>
<tr>
<td>Secondary DNS</td>
<td>Displays the secondary-dns IP address.</td>
<td>-</td>
</tr>
<tr>
<td>Primary WINS</td>
<td>Displays the primary-wins IP address.</td>
<td>-</td>
</tr>
<tr>
<td>Secondary WINS</td>
<td>Displays the secondary-wins IP address.</td>
<td>-</td>
</tr>
<tr>
<td>Address Pool Address Assignment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP Address</td>
<td>Displays the IP address of the address pool.</td>
<td>-</td>
</tr>
<tr>
<td>Hardware Address</td>
<td>Displays the hardware MAC address of the address pool.</td>
<td>-</td>
</tr>
<tr>
<td>Host/User</td>
<td>Displays the user name using the address pool.</td>
<td>-</td>
</tr>
<tr>
<td>Type</td>
<td>Displays the authentication type used by the address pool</td>
<td>The authentication types can be extended authentication (XAuth) or IKE Authentication.</td>
</tr>
</tbody>
</table>

Related Documentation
- Monitoring Interfaces on page 436
- Threats Monitoring Report on page 502

Monitoring Ethernet Switching

Supported Platforms SRX Series, vSRX

Purpose View information about the Ethernet Switching interface details.

Action Select Monitor > Switching > Ethernet Switching in the J-Web user interface, or enter the following CLI commands:
- show ethernet-switching table
- show ethernet-switching mac-learning-log
Table 69 on page 435 summarizes the Ethernet Switching output fields.

Table 69: Summary of Ethernet Switching Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN</td>
<td>The VLAN for which Ethernet Switching is enabled.</td>
<td></td>
</tr>
<tr>
<td>MAC Address</td>
<td>The MAC address associated with the VLAN. If a VLAN range has been configured for a VLAN, the output displays the MAC addresses for the entire series of VLANs that were created with that name.</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>The type of MAC address. Values are:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• static—The MAC address is manually created.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• learn—The MAC address is learned dynamically from a packet’s source MAC address.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• flood—The MAC address is unknown and flooded to all members.</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>The time remaining before the entry ages out and is removed from the Ethernet switching table.</td>
<td></td>
</tr>
<tr>
<td>Interfaces</td>
<td>Interface associated with learned MAC addresses or All-members (flood entry).</td>
<td></td>
</tr>
<tr>
<td>VLAN-ID</td>
<td>The VLAN ID.</td>
<td></td>
</tr>
<tr>
<td>MAC Address</td>
<td>The learned MAC address.</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Timestamp when the MAC address was added or deleted from the log.</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>Indicates the MAC address learned on the interface.</td>
<td></td>
</tr>
</tbody>
</table>

Related Documentation
- Monitoring Overview on page 7
- Monitoring Interfaces on page 436

Monitoring GVRP

Supported Platforms
SRX1500, SRX300, SRX320, SRX340, vSRX

Purpose
Use the monitoring functionality to view the GVRP page.

Action
To monitor GVRP select **Monitor > Switching > GVRP** in the J-Web user interface.

Meaning
Table 70 on page 436 summarizes key output fields in the GVRP page.
Table 70: GVRP Monitoring Page

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global GVRP Configuration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GVRP Status</td>
<td>Displays whether GVRP is enabled or disabled.</td>
<td></td>
</tr>
<tr>
<td>GVRP Timer</td>
<td>Displays the GVRP timer in millisecond.</td>
<td></td>
</tr>
<tr>
<td>Join</td>
<td>The number of milliseconds the interfaces must wait before sending VLAN advertisements.</td>
<td></td>
</tr>
<tr>
<td>Leave</td>
<td>The number of milliseconds an interface must wait after receiving a Leave message to remove the interface from the VLAN specified in the message.</td>
<td></td>
</tr>
<tr>
<td>Leave All</td>
<td>The interval in milliseconds at which Leave All messages are sent on interfaces. Leave All messages maintain current GVRP VLAN membership information in the network.</td>
<td></td>
</tr>
<tr>
<td>GVRP Interface Details</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface Name</td>
<td>The interface on which GVRP is configured.</td>
<td></td>
</tr>
<tr>
<td>Protocol Status</td>
<td>Displays whether GVRP is enabled or disabled.</td>
<td></td>
</tr>
</tbody>
</table>

Related Documentation
- Monitoring Ethernet Switching on page 434
- Monitoring Spanning Tree on page 447

Monitoring Interfaces

Supported Platforms SRX Series, vSRX

Purpose View general information about all physical and logical interfaces for a device.

Action Select **Monitor>Interfaces** in the J-Web user interface. The J-Web Interfaces page displays the following details about each device interface:

- **Port**—Indicates the interface name.
- **Admin Status**—Indicates whether the interface is enabled (Up) or disabled (Down).
- **Link Status**—Indicates whether the interface is linked (Up) or not linked (Down).
- **Address**—Indicates the IP address of the interface.
- **Zone**—Indicates whether the zone is an untrust zone or a trust zone.
• Services—Indicates services that are enabled on the device, such as HTTP and SSH.
• Protocols—Indicates protocols that are enabled on the device, such as BGP and IGMP.
• Input Rate graph—Displays interface bandwidth utilization. Input rates are shown in bytes per second.
• Output Rate graph—Displays interface bandwidth utilization. Output rates are shown in bytes per second.
• Error Counters chart—Displays input and output error counters in the form of a bar chart.
• Packet Counters chart—Displays the number of broadcast, unicast, and multicast packet counters in the form of a pie chart. (Packet counter charts are supported only for interfaces that support MAC statistics.)

To change the interface display, use the following options:
• Port for FPC—Controls the member for which information is displayed.
• Start/Stop button—Starts or stops monitoring the selected interfaces.
• Show Graph—Displays input and output packet counters and error counters in the form of charts.
• Pop-up button—Displays the interface graphs in a separate pop-up window.
• Details—Displays extensive statistics about the selected interface, including its general status, traffic information, IP address, I/O errors, class-of-service data, and statistics.
• Refresh Interval—Indicates the duration of time after which you want the data on the page to be refreshed.
• Clear Statistics—Clears the statistics for the selected interface.

Alternatively, you can enter the following show commands in the CLI to view interface status and traffic statistics:
• show interfaces terse

NOTE: On SRX Series devices, on configuring identical IPs on a single interface, you will not see a warning message; instead, you will see a syslog message.

• show interfaces detail
• show interfaces extensive
• show interfaces interface-name

Monitoring MPLS Traffic Engineering Information

Supported Platforms SRX1500, SRX300, SRX320, SRX340, vSRX
This section contains the following topics:

- Monitoring MPLS Interfaces on page 438
- Monitoring MPLS LSP Information on page 438
- Monitoring MPLS LSP Statistics on page 439
- Monitoring RSVP Session Information on page 441
- Monitoring MPLS RSVP Interfaces Information on page 442

Monitoring MPLS Interfaces

Supported Platforms SRX Series, vSRX

Purpose View the interfaces on which MPLS is configured, including operational state and any administrative groups applied to an interface.

Action Select Monitor>MPLS>Interfaces in the J-Web user interface, or enter the `show mpls interface` command.

Table 71 on page 438 summarizes key output fields in the MPLS interface information display.

Table 71: Summary of Key MPLS Interface Information Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of the interface on which MPLS is configured.</td>
<td>–</td>
</tr>
<tr>
<td>State</td>
<td>State of the specified interface: Up or Dn (down).</td>
<td>–</td>
</tr>
<tr>
<td>Administrative groups</td>
<td>Administratively assigned colors of the MPLS link configured on the interface.</td>
<td>–</td>
</tr>
</tbody>
</table>

Monitoring MPLS LSP Information

Supported Platforms SRX Series, vSRX

Purpose View all label-switched paths (LSPs) configured on the services router, including all inbound (ingress), outbound (egress), and transit LSP information.

Action Select Monitor>MPLS>LSP Information in the J-Web user interface, or enter the `show mpls lsp` command.

Table 72 on page 439 summarizes key output fields in the MPLS LSP information display.
Table 72: Summary of Key MPLS LSP Information Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress LSP</td>
<td>Information about LSPs on the inbound device. Each session has one line of output.</td>
<td>–</td>
</tr>
<tr>
<td>Egress LSP</td>
<td>Information about the LSPs on the outbound device. Each session has one line of output.</td>
<td>MPLS learns this information by querying RSVP, which holds all the transit and outbound session information.</td>
</tr>
<tr>
<td>Transit LSP</td>
<td>Number of LSPs on the transit routers and the state of these paths.</td>
<td>MPLS learns this information by querying RSVP, which holds all the transit and outbound session information.</td>
</tr>
<tr>
<td>To</td>
<td>Destination (outbound device) of the session.</td>
<td>–</td>
</tr>
<tr>
<td>From</td>
<td>Source (inbound device) of the session.</td>
<td>–</td>
</tr>
<tr>
<td>State</td>
<td>State of the path. It can be Up, Down, or AdminDn. AdminDn indicates that the LSP is being taken down gracefully.</td>
<td>–</td>
</tr>
<tr>
<td>Rt</td>
<td>Number of active routes (prefixes) installed in the routing table.</td>
<td>For inbound RSVP sessions, the routing table is the primary IPv4 table (inet.0). For transit and outbound RSVP sessions, the routing table is the primary MPLS table (mpls.0).</td>
</tr>
<tr>
<td>Active Path</td>
<td>Name of the active path: Primary or Secondary. This field is used for inbound LSPs only.</td>
<td>–</td>
</tr>
<tr>
<td>P</td>
<td>An asterisk (*) in this column indicates that the LSP is a primary path.</td>
<td>This field is used for inbound LSPs only.</td>
</tr>
<tr>
<td>LSPname</td>
<td>Configured name of the LSP.</td>
<td>–</td>
</tr>
<tr>
<td>Style</td>
<td>RSVP reservation style. This field consists of two parts. The first is the number of active reservations. The second is the reservation style, which can be FF (fixed filter), SE (shared explicit), or WF (wildcard filter).</td>
<td>This field is used for outbound and transit LSPs only.</td>
</tr>
<tr>
<td>Labelin</td>
<td>Incoming label for this LSP.</td>
<td>–</td>
</tr>
<tr>
<td>Labelout</td>
<td>Outgoing label for this LSP.</td>
<td>–</td>
</tr>
<tr>
<td>Total</td>
<td>Total number of LSPs displayed for the particular type—ingress (inbound), egress (outbound), or transit.</td>
<td>–</td>
</tr>
</tbody>
</table>

Monitoring MPLS LSP Statistics

Supported Platforms SRX Series, vSRX
Purpose
Display statistics for LSP sessions currently active on the device, including the total number of packets and bytes forwarded through an LSP.

Action
Select Monitor>MPLS>LSP Statistics in the J-Web user interface, or enter the `show mpls lsp statistics` command.

NOTE: Statistics are not available for LSPs on the outbound device, because the penultimate device in the LSP sets the label to 0. Also, as the packet arrives at the outbound device, the hardware removes its MPLS header and the packet reverts to being an IPv4 packet. Therefore, it is counted as an IPv4 packet, not an MPLS packet.

Table 73 on page 440 summarizes key output fields in the MPLS LSP statistics display.

Table 73: Summary of Key MPLS LSP Statistics Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress LSP</td>
<td>Information about LSPs on the inbound device. Each session has one line of output.</td>
<td>–</td>
</tr>
<tr>
<td>Egress LSP</td>
<td>Information about the LSPs on the outbound device. Each session has one line of output.</td>
<td>MPLS learns this information by querying RSVP, which holds all the transit and outbound session information.</td>
</tr>
<tr>
<td>Transit LSP</td>
<td>Number of LSPs on the transit routers and the state of these paths.</td>
<td>MPLS learns this information by querying RSVP, which holds all the transit and outbound session information.</td>
</tr>
<tr>
<td>To</td>
<td>Destination (outbound device) of the session.</td>
<td>–</td>
</tr>
<tr>
<td>From</td>
<td>Source (inbound device) of the session.</td>
<td>–</td>
</tr>
<tr>
<td>State</td>
<td>State of the path: Up, Down, or AdminDn.</td>
<td>AdminDn indicates that the LSP is being taken down gracefully.</td>
</tr>
<tr>
<td>Packets</td>
<td>Total number of packets received on the LSP from the upstream neighbor.</td>
<td>–</td>
</tr>
<tr>
<td>Bytes</td>
<td>Total number of bytes received on the LSP from the upstream neighbor.</td>
<td>–</td>
</tr>
<tr>
<td>LSPname</td>
<td>Configured name of the LSP.</td>
<td>–</td>
</tr>
<tr>
<td>Total</td>
<td>Total number of LSPs displayed for the particular type—ingress (inbound), egress (outbound), or transit.</td>
<td>–</td>
</tr>
</tbody>
</table>
Monitoring RSVP Session Information

Supported Platforms SRX Series, vSRX

Purpose View information about RSVP-signaled LSP sessions currently active on the device, including inbound (ingress) and outbound (egress) addresses, LSP state, and LSP name.

Action Select Monitor>MPLS>RSVP Sessions in the J-Web user interface, or enter the `show rsvp session` command.

Table 74 on page 441 summarizes key output fields in the RSVP session information display.

Table 74: Summary of Key RSVP Session Information Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress LSP</td>
<td>Information about inbound RSVP sessions. Each session has one line of output.</td>
<td>–</td>
</tr>
<tr>
<td>Egress LSP</td>
<td>Information about outbound RSVP sessions. Each session has one line of output.</td>
<td>MPLS learns this information by querying RSVP, which holds all the transit and outbound session information.</td>
</tr>
<tr>
<td>Transit LSP</td>
<td>Information about transit RSVP sessions.</td>
<td>MPLS learns this information by querying RSVP, which holds all the transit and outbound session information.</td>
</tr>
<tr>
<td>To</td>
<td>Destination (outbound device) of the session.</td>
<td>–</td>
</tr>
<tr>
<td>From</td>
<td>Source (inbound device) of the session.</td>
<td>–</td>
</tr>
<tr>
<td>State</td>
<td>State of the path: Up, Down, or AdminDn.</td>
<td>AdminDn indicates that the LSP is being taken down gracefully.</td>
</tr>
<tr>
<td>Rt</td>
<td>Number of active routes (prefixes) installed in the routing table.</td>
<td>For inbound RSVP sessions, the routing table is the primary IPv4 table (inet.0). For transit and outbound RSVP sessions, the routing table is the primary MPLS table (mpls.0).</td>
</tr>
<tr>
<td>Style</td>
<td>RSVP reservation style. This field consists of two parts. The first is the number of active reservations. The second is the reservation style, which can be FF (fixed filter), SE (shared explicit), or WF (wildcard filter).</td>
<td>This field is used for outbound and transit LSPs only.</td>
</tr>
<tr>
<td>Labelin</td>
<td>Incoming label for this RSVP session.</td>
<td>–</td>
</tr>
<tr>
<td>Labelout</td>
<td>Outgoing label for this RSVP session.</td>
<td>–</td>
</tr>
<tr>
<td>LSPname</td>
<td>Configured name of the LSP.</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 74: Summary of Key RSVP Session Information Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>Total number of RSVP sessions displayed for the particular type—ingress (inbound), egress (outbound), or transit.</td>
<td>–</td>
</tr>
</tbody>
</table>

Monitoring MPLS RSVP Interfaces Information

Supported Platforms
SRX Series, vSRX

Purpose
View information about the interfaces on which RSVP is enabled, including the interface name, total bandwidth through the interface, and total current reserved and reservable (available) bandwidth on the interface.

Action
Select Monitor> MPLS> RSVP Interfaces in the J-Web user interface, or enter the `show rsvp interface` command.

Table 75 on page 442 summarizes key output fields in the RSVP interfaces information display.

Table 75: Summary of Key RSVP Interfaces Information Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSVP Interface</td>
<td>Number of interfaces on which RSVP is active. Each interface has one line of output.</td>
<td>–</td>
</tr>
<tr>
<td>Interface</td>
<td>Name of the interface.</td>
<td>–</td>
</tr>
<tr>
<td>State</td>
<td>State of the interface:</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>• Disabled—No traffic engineering information is displayed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Down—The interface is not operational.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enabled—Displays traffic engineering information.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Up—The interface is operational.</td>
<td></td>
</tr>
<tr>
<td>Active resv</td>
<td>Number of reservations that are actively reserving bandwidth on the interface.</td>
<td>–</td>
</tr>
<tr>
<td>Subscription</td>
<td>User-configured subscription factor.</td>
<td>–</td>
</tr>
<tr>
<td>Static BW</td>
<td>Total interface bandwidth, in bits per second (bps).</td>
<td>–</td>
</tr>
<tr>
<td>Available BW</td>
<td>Amount of bandwidth that RSVP is allowed to reserve, in bits per second (bps). It is equal to (static bandwidth X subscription factor).</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 75: Summary of Key RSVP Interfaces Information Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved BW</td>
<td>Currently reserved bandwidth, in bits per second (bps).</td>
<td>–</td>
</tr>
<tr>
<td>Highwater mark</td>
<td>Highest bandwidth that has ever been reserved on this interface, in bits per second (bps).</td>
<td>–</td>
</tr>
</tbody>
</table>

Related Documentation
- Understanding Ping MPLS on page 557
- MPLS Connection Checking Overview on page 555
- Monitoring Overview on page 7
- Monitoring Interfaces on page 436

Monitoring PPP

Supported Platforms
SRX1500, SRX300, SRX320, SRX340

Purpose
Display PPP monitoring information, including PPP address pool information, session status for PPP interfaces, cumulative statistics for all PPP interfaces, and a summary of PPP sessions.

NOTE: PPP monitoring information is available only in the CLI. The J-Web user interface does not include pages for displaying PPP monitoring information.

Action
Enter the following CLI commands:
- show ppp address-pool *pool-name*
- show ppp interface *interface-name*
- show ppp statistics
- show ppp summary

Related Documentation
- Monitoring Overview on page 7
- Monitoring Interfaces on page 436

Monitoring PPPoE

Supported Platforms
SRX1500, SRX300, SRX320, SRX340
Purpose Display the session status for PPPoE interfaces, cumulative statistics for all PPPoE interfaces on the device, and the PPPoE version configured on the device.

Action Select Monitor>PPPoE in the J-Web user interface. To view interface-specific properties in the J-Web interface, select the interface name on the PPPoE page.

Table 76 on page 444 summarizes key output fields in PPPoE displays.

Table 76: Summary of Key PPPoE Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPPoE Interfaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td>Name of the PPPoE interface.</td>
<td>Click the interface name to display PPPoE information for the interface.</td>
</tr>
<tr>
<td>State</td>
<td>State of the PPPoE session on the interface.</td>
<td>--</td>
</tr>
<tr>
<td>Session ID</td>
<td>Unique session identifier for the PPPoE session.</td>
<td>To establish a PPPoE session, first the device acting as a PPPoE client obtains the Ethernet address of the PPPoE server or access concentrator, and then the client and the server negotiate a unique session ID. This process is referred to as PPPoE active discovery and is made up of four steps: initiation, offer, request, and session confirmation. The access concentrator generates the session ID for session confirmation and sends it to the PPPoE client in a PPPoE Active Discovery Session-Confirmation (PADS) packet.</td>
</tr>
<tr>
<td>Service Name</td>
<td>Type of service required from the access concentrator.</td>
<td>Service Name identifies the type of service provided by the access concentrator, such as the name of the Internet service provider (ISP), class, or quality of service.</td>
</tr>
<tr>
<td>Configured AC Name</td>
<td>Configured access concentrator name.</td>
<td>--</td>
</tr>
<tr>
<td>Session AC Names</td>
<td>Name of the access concentrator.</td>
<td>--</td>
</tr>
<tr>
<td>AC MAC Address</td>
<td>Media access control (MAC) address of the access concentrator.</td>
<td>--</td>
</tr>
<tr>
<td>Session Uptime</td>
<td>Number of seconds the current PPPoE session has been running.</td>
<td>--</td>
</tr>
<tr>
<td>Auto-Reconnect Timeout</td>
<td>Number of seconds to wait before reconnecting after a PPPoE session is terminated.</td>
<td>--</td>
</tr>
<tr>
<td>Idle Timeout</td>
<td>Number of seconds a PPPoE session can be idle without disconnecting.</td>
<td>--</td>
</tr>
</tbody>
</table>
Table 76: Summary of Key PPPoE Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underlying Interface</td>
<td>Name of the underlying logical Ethernet or ATM interface on which PPPoE is running—for example, ge-0/0/0.1.</td>
<td>--</td>
</tr>
<tr>
<td>PPPoE Statistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active PPPoE Sessions</td>
<td>Total number of active PPPoE sessions.</td>
<td>--</td>
</tr>
<tr>
<td>Packet Type</td>
<td>Packets sent and received during the PPPoE session, categorized by packet type and packet error:</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>• PADI—PPPoE Active Discovery Initiation packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PADO—PPPoE Active Discovery Offer packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PADR—PPPoE Active Discovery Request packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PADS—PPPoE Active Discovery Session-Confirmation packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PADT—PPPoE Active Discovery Terminate packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Service Name Error—Packets for which the Service-Name request could not be honored.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• AC System Error—Packets for which the access concentrator experienced an error in processing the host request. For example, the host had insufficient resources to create a virtual circuit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Generic Error—Packets that indicate an unrecoverable error occurred.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Malformed Packet—Malformed or short packets that caused the packet handler to disregard the frame as unreadable.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Unknown Packet—Unrecognized packets.</td>
<td></td>
</tr>
<tr>
<td>Sent</td>
<td>Number of the specific type of packet sent from the PPPoE client.</td>
<td>--</td>
</tr>
<tr>
<td>Received</td>
<td>Number of the specific type of packet received by the PPPoE client.</td>
<td>--</td>
</tr>
<tr>
<td>Timeout</td>
<td>Information about the timeouts that occurred during the PPPoE session.</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>• PADI—Number of timeouts that occurred for the PADI packet.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PADO—Number of timeouts that occurred for the PADO packet. (This value is always 0 and is not supported.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PADR—Number of timeouts that occurred for the PADR packet.</td>
<td></td>
</tr>
</tbody>
</table>
Table 76: Summary of Key PPPoE Output Fields *(continued)*

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sent</td>
<td>Number of the timeouts that occurred for PADI, PADO, and PADR packets.</td>
<td>--</td>
</tr>
<tr>
<td>PPPoE Version</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Sessions</td>
<td>Maximum number of active PPPoE sessions the device can support. The default is 256 sessions.</td>
<td>--</td>
</tr>
<tr>
<td>PADI Resend Timeout</td>
<td>Initial time (in seconds) the device waits to receive a PADO packet for the PADI packet sent—for example, 2 seconds. This timeout doubles for each successive PADI packet sent.</td>
<td>The PPPoE Active Discovery Initiation (PADI) packet is sent to the access concentrator to initiate a PPPoE session. Typically, the access concentrator responds to a PADI packet with a PPPoE Active Discovery Offer (PADO) packet. If the access concentrator does not send a PADO packet, the device sends the PADI packet again after timeout period is elapsed. The PADI Resend Timeout doubles for each successive PADI packet sent. For example, if the PADI Resend Timeout is 2 seconds, the second PADI packet is sent after 2 seconds, the third after 4 seconds, the fourth after 8 seconds, and so on.</td>
</tr>
<tr>
<td>PADR Resend Timeout</td>
<td>Initial time (in seconds) the device waits to receive a PADS packet for the PADR packet sent. This timeout doubles for each successive PADR packet sent.</td>
<td>The PPPoE Active Discovery Request (PADR) packet is sent to the access concentrator in response to a PADO packet, and to obtain the PPPoE session ID. Typically, the access concentrator responds to a PADR packet with a PPPoE Active Discovery Session-Confirmation (PADS) packet, which contains the session ID. If the access concentrator does not send a PADS packet, the device sends the PADR packet again after the PADR Resend Timeout period is elapsed. The PADR Resend Timeout doubles for each successive PADR packet sent.</td>
</tr>
<tr>
<td>Maximum Resend Timeout</td>
<td>Maximum value (in seconds) that the PADI or PADR resend timer can accept—for example, 64 seconds. The maximum value is 64.</td>
<td>--</td>
</tr>
<tr>
<td>Maximum Configured AC</td>
<td>Time (in seconds), within which the configured access concentrator must respond.</td>
<td>--</td>
</tr>
</tbody>
</table>

Alternatively, enter the following CLI commands:

- `show pppoe interfaces`
- `show pppoe statistics`
- `show pppoe version`

You can also view status information about the PPPoE interface by entering the `show interfaces pp0` command in the CLI editor.
Related Documentation
- Monitoring Overview on page 7
- Monitoring Interfaces on page 436
- Monitoring DHCP Client Bindings on page 487

Monitoring Spanning Tree

Supported Platforms SRX1500, SRX300, SRX320, SRX340, vSRX

Purpose Use the monitoring functionality to view the Spanning Tree page.

Action To monitor spanning tree, select Monitor>Switching>Spanning Tree in the J-Web user interface.

Meaning Table 77 on page 447 summarizes key output fields in the spanning tree page.

Table 77: Spanning Tree Monitoring Page

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Context ID</td>
<td>An internally generated identifier.</td>
<td>–</td>
</tr>
<tr>
<td>Enabled Protocol</td>
<td>Spanning tree protocol type enabled.</td>
<td>–</td>
</tr>
<tr>
<td>Root ID</td>
<td>Bridge ID of the elected spanning tree root bridge.</td>
<td>The bridge ID consists of a configurable bridge priority and the MAC address of the bridge.</td>
</tr>
<tr>
<td>Bridge ID</td>
<td>Locally configured bridge ID.</td>
<td>–</td>
</tr>
<tr>
<td>Inter instance ID</td>
<td>An internally generated instance identifier.</td>
<td>–</td>
</tr>
<tr>
<td>Extended system ID</td>
<td>Extended system generated instance identifier.</td>
<td>–</td>
</tr>
<tr>
<td>Maximum age</td>
<td>Maximum age of received bridge protocol data units (BPDUs).</td>
<td>–</td>
</tr>
<tr>
<td>Number of topology changes</td>
<td>Total number of STP topology changes detected since the switch last booted.</td>
<td>–</td>
</tr>
<tr>
<td>Forward delay</td>
<td>Spanning tree forward delay.</td>
<td>–</td>
</tr>
<tr>
<td>Interface List</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface Name</td>
<td>Interface configured to participate in the STP instance.</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 77: Spanning Tree Monitoring Page (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port ID</td>
<td>Logical interface identifier configured to participate in the STP instance.</td>
<td>–</td>
</tr>
<tr>
<td>Designated Port ID</td>
<td>Port ID of the designated port for the LAN segment to which the interface is attached.</td>
<td>–</td>
</tr>
<tr>
<td>Port Cost</td>
<td>Configured cost for the interface.</td>
<td>–</td>
</tr>
<tr>
<td>State</td>
<td>STP port state. Forwarding (FWD), blocking (BLK), listening, learning, or disabled.</td>
<td>–</td>
</tr>
<tr>
<td>Role</td>
<td>MSTP or RSTP port role. Designated (DESG), backup (BKUP), alternate (ALT), or root.</td>
<td>–</td>
</tr>
</tbody>
</table>

Related Documentation
- Monitoring Ethernet Switching on page 434
- Monitoring GVRP on page 435

Monitoring the WAN Acceleration Interface

Supported Platforms
SRX1500, SRX300, SRX320, SRX340, vSRX

Purpose
View status information and traffic statistics for the WAN acceleration interface.

Action
Select Monitor > WAN Acceleration in the J-Web user interface, or select Monitor > Interfaces and select the interface name (`wx-slot/0/0`). Alternatively, enter the following CLI command:

```
[edit]
user@host# show interfaces wx-slot/0/0 detail
```

Related Documentation
- Monitoring Overview on page 7
- Monitoring Interfaces on page 436
CHAPTER 25

Monitoring NAT

- Monitoring NAT on page 449

Monitoring NAT

Supported Platforms

SRX Series, vSRX

This section contains the following topics:
- Monitoring Source NAT Information on page 449
- Monitoring Destination NAT Information on page 455
- Monitoring Static NAT Information on page 457
- Monitoring Incoming Table Information on page 458
- Monitoring Interface NAT Port Information on page 459

Monitoring Source NAT Information

Supported Platforms

SRX Series, vSRX

Purpose

Display configured information about source Network Address Translation (NAT) rules, pools, persistent NAT, and paired addresses.

Action

Select Monitor>NAT>Source NAT in the J-Web user interface, or enter the following CLI commands:
- `show security nat source summary`
- `show security nat source pool pool-name`
- `show security nat source persistent-nat-table`
- `show security nat source paired-address`

Table 78 on page 449 describes the available options for monitoring source NAT.

Table 78: Source NAT Monitoring Page

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
<td>Action</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Rule-set Name</td>
<td>Name of the rule set.</td>
<td>Select all rule sets or a specific rule set to display from the list.</td>
</tr>
<tr>
<td>Total rules</td>
<td>Number of rules configured.</td>
<td>–</td>
</tr>
<tr>
<td>ID</td>
<td>Rule ID number.</td>
<td>–</td>
</tr>
<tr>
<td>Name</td>
<td>Name of the rule.</td>
<td>–</td>
</tr>
<tr>
<td>From</td>
<td>Name of the routing instance/zone/interface from which the packet flows.</td>
<td>–</td>
</tr>
<tr>
<td>To</td>
<td>Name of the routing instance/zone/interface to which the packet flows.</td>
<td>–</td>
</tr>
<tr>
<td>Source address range</td>
<td>Source IP address range in the source pool.</td>
<td>–</td>
</tr>
<tr>
<td>Destination address range</td>
<td>Destination IP address range in the source pool.</td>
<td>–</td>
</tr>
<tr>
<td>Source ports</td>
<td>Source port numbers.</td>
<td>–</td>
</tr>
<tr>
<td>IP protocol</td>
<td>IP protocol.</td>
<td>–</td>
</tr>
<tr>
<td>Action</td>
<td>Action taken for a packet that matches a rule.</td>
<td>–</td>
</tr>
<tr>
<td>Persistent NAT type</td>
<td>Persistent NAT type.</td>
<td>–</td>
</tr>
<tr>
<td>Inactivity timeout</td>
<td>Inactivity timeout interval for the persistent NAT binding.</td>
<td>–</td>
</tr>
<tr>
<td>Alarm threshold</td>
<td>Utilization alarm threshold.</td>
<td>–</td>
</tr>
<tr>
<td>Max session number</td>
<td>The maximum number of sessions.</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 78: Source NAT Monitoring Page (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
</table>
| Sessions (Succ/Failed/Current) | Successful, failed, and current sessions.
 • Succ—Number of successful session installations after the NAT rule is matched.
 • Failed—Number of unsuccessful session installations after the NAT rule is matched.
 • Current—Number of sessions that reference the specified rule. | |
| Translation Hits | Number of times a translation in the translation table is used for a source NAT rule. | |
| Pools | | |
| Pool Name | The names of the pools. | Select all pools or a specific pool to display from the list. |
| Total Pools | Total pools added. | |
| ID | ID of the pool. | |
| Name | Name of the source pool. | |
| Address range | IP address range in the source pool. | |
| Single/Twin ports | Number of allocated single and twin ports. | |
| Port | Source port number in the pool. | |
| Address assignment | Displays the type of address assignment. | |
| Alarm threshold | Utilization alarm threshold. | |
| Port overloading factor | Port overloading capacity. | |
| Routing instance | Name of the routing instance. | |
| Total addresses | Total IP address, IP address set, or address book entry. | |
| Host address base | Host base address of the original source IP address range. | |
Table 78: Source NAT Monitoring Page (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation hits</td>
<td>Number of times a translation in the translation table is used for source NAT.</td>
<td>–</td>
</tr>
<tr>
<td>Top 10 Translation Hits</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>Graph</td>
<td>Displays the graph of top 10 translation hits.</td>
<td>–</td>
</tr>
<tr>
<td>Persistent NAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistent NAT table statistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>binding total</td>
<td>Displays the total number of persistent NAT bindings for the FPC.</td>
<td>–</td>
</tr>
<tr>
<td>binding in use</td>
<td>Number of persistent NAT bindings that are in use for the FPC.</td>
<td>–</td>
</tr>
<tr>
<td>enode total</td>
<td>Total number of persistent NAT enodes for the FPC.</td>
<td>–</td>
</tr>
<tr>
<td>enode in use</td>
<td>Number of persistent NAT enodes that are in use for the FPC.</td>
<td>–</td>
</tr>
<tr>
<td>Persistent NAT table</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source NAT pool</td>
<td>Name of the pool.</td>
<td>Select all pools or a specific pool to display from the list.</td>
</tr>
<tr>
<td>Internal IP</td>
<td>Internal IP address.</td>
<td>Select all IP addresses or a specific IP address to display from the list.</td>
</tr>
<tr>
<td>Internal port</td>
<td>Displays the internal ports configured in the system.</td>
<td>Select the port to display from the list.</td>
</tr>
<tr>
<td>Internal protocol</td>
<td>Internal protocols.</td>
<td>Select all protocols or a specific protocol to display from the list.</td>
</tr>
<tr>
<td>Reflective IP</td>
<td>Translated IP address of the source IP address.</td>
<td>–</td>
</tr>
<tr>
<td>Reflective port</td>
<td>Displays the translated number of the port.</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 78: Source NAT Monitoring Page (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflective protocol</td>
<td>Translated protocol.</td>
<td>–</td>
</tr>
<tr>
<td>Source NAT pool</td>
<td>Name of the source NAT pool where persistent NAT is used.</td>
<td>–</td>
</tr>
<tr>
<td>Type</td>
<td>Persistent NAT type.</td>
<td>–</td>
</tr>
<tr>
<td>Left time/Conf time</td>
<td>Inactivity timeout period that remains and the configured timeout value.</td>
<td>–</td>
</tr>
<tr>
<td>Current session num/Max session num</td>
<td>Number of current sessions associated with the persistent NAT binding and the maximum number of sessions.</td>
<td>–</td>
</tr>
<tr>
<td>Source NAT rule</td>
<td>Name of the source NAT rule to which this persistent NAT binding applies.</td>
<td>–</td>
</tr>
<tr>
<td>External node table</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal IP</td>
<td>Internal transport IP address of the outgoing session from internal to external.</td>
<td>–</td>
</tr>
<tr>
<td>Internal port</td>
<td>Internal port number of the outgoing session from internal to external.</td>
<td>–</td>
</tr>
<tr>
<td>External IP</td>
<td>External IP address of the outgoing session from internal to external.</td>
<td>–</td>
</tr>
<tr>
<td>External port</td>
<td>External port of the outgoing session from internal to external.</td>
<td>–</td>
</tr>
<tr>
<td>Zone</td>
<td>External zone of the outgoing session from internal to external.</td>
<td>–</td>
</tr>
<tr>
<td>Paired Address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pool name</td>
<td>Name of the pool.</td>
<td>Select all pools or a specific pool to display from the list.</td>
</tr>
<tr>
<td>Specified Address</td>
<td>IP address.</td>
<td>Select all addresses, or select the internal or external IP address to display, and enter the IP address.</td>
</tr>
<tr>
<td>Pool name</td>
<td>Displays the selected pool or pools.</td>
<td>–</td>
</tr>
<tr>
<td>Internal address</td>
<td>Displays the internal IP address.</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 78: Source NAT Monitoring Page (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>External address</td>
<td>Displays the external IP address.</td>
<td>–</td>
</tr>
<tr>
<td>Resource Usage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pool name</td>
<td>Name of the pool.</td>
<td>To view additional usage information for Port Address Translation (PAT) pools, select a pool name. The information displays under Detail Port Utilization for Specified Pool.</td>
</tr>
<tr>
<td>Pool type</td>
<td>Pool type: PAT or Non-PAT.</td>
<td>–</td>
</tr>
<tr>
<td>Port overloading factor</td>
<td>Port overloading capacity for PAT pools.</td>
<td>–</td>
</tr>
<tr>
<td>Address</td>
<td>Addresses in the pool.</td>
<td>–</td>
</tr>
<tr>
<td>Used</td>
<td>Number of used resources in the pool.</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>For Non-PAT pools, the number of used IP addresses is displayed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For PAT pools, the number of used ports is displayed.</td>
<td></td>
</tr>
<tr>
<td>Available</td>
<td>Number of available resources in the pool.</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>For Non-PAT pools, the number of available IP addresses is displayed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For PAT pools, the number of available ports is displayed.</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Number of used and available resources in the pool.</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>For Non-PAT pools, the total number of used and available IP addresses is displayed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For PAT pools, the total number of used and available ports is displayed.</td>
<td></td>
</tr>
<tr>
<td>Usage</td>
<td>Percent of resources used.</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>For Non-PAT pools, the percent of IP addresses used is displayed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For PAT pools, the percent of ports, including single and twin ports, is displayed.</td>
<td></td>
</tr>
<tr>
<td>Peak usage</td>
<td>Percent of resources used during the peak date and time.</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 78: Source NAT Monitoring Page (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address Name</td>
<td>IP addresses in the PAT pool.</td>
<td>Select the IP address for which you want to display detailed usage information.</td>
</tr>
<tr>
<td>Factor-index</td>
<td>Index number.</td>
<td>–</td>
</tr>
<tr>
<td>Port-range</td>
<td>Displays the number of ports allocated at a time.</td>
<td>–</td>
</tr>
<tr>
<td>Used</td>
<td>Displays the number of used ports.</td>
<td>–</td>
</tr>
<tr>
<td>Available</td>
<td>Displays the number of available ports.</td>
<td>–</td>
</tr>
<tr>
<td>Total</td>
<td>Displays the number of used and available ports.</td>
<td>–</td>
</tr>
<tr>
<td>Usage</td>
<td>Displays the percentage of ports used during the peak date and time.</td>
<td>–</td>
</tr>
</tbody>
</table>

Monitoring Destination NAT Information

Supported Platforms
SRX Series, vSRX

Purpose
View the destination Network Address Translation (NAT) summary table and the details of the specified NAT destination address pool information.

Action
Select Monitor > NAT > Destination NAT in the J-Web user interface, or enter the following CLI commands:

- `show security nat destination summary`
- `show security nat destination pool pool-name`

Table 79 on page 455 summarizes key output fields in the destination NAT display.

Table 79: Summary of Key Destination NAT Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rule-set Name</td>
<td>Name of the rule set.</td>
<td>Select all rule sets or a specific rule set to display from the list.</td>
</tr>
<tr>
<td>Total rules</td>
<td>Number of rules configured.</td>
<td>–</td>
</tr>
<tr>
<td>ID</td>
<td>Rule ID number.</td>
<td>–</td>
</tr>
<tr>
<td>Name</td>
<td>Name of the rule.</td>
<td>–</td>
</tr>
<tr>
<td>Field</td>
<td>Values</td>
<td>Action</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>Ruleset Name</td>
<td>Name of the rule set.</td>
<td>–</td>
</tr>
<tr>
<td>From</td>
<td>Name of the routing instance/zone/interface from which the packet flows.</td>
<td>–</td>
</tr>
<tr>
<td>Source address range</td>
<td>Source IP address range in the source pool.</td>
<td>–</td>
</tr>
<tr>
<td>Destination address range</td>
<td>Destination IP address range in the source pool.</td>
<td>–</td>
</tr>
<tr>
<td>Destination port</td>
<td>Destination port in the destination pool.</td>
<td>–</td>
</tr>
<tr>
<td>IP protocol</td>
<td>IP protocol.</td>
<td>–</td>
</tr>
<tr>
<td>Action</td>
<td>Action taken for a packet that matches a rule.</td>
<td>–</td>
</tr>
<tr>
<td>Alarm threshold</td>
<td>Utilization alarm threshold.</td>
<td>–</td>
</tr>
</tbody>
</table>
| Sessions (Succ/Failed/Current) | Successful, failed, and current sessions.
 • Succ—Number of successful session installations after the NAT rule is matched.
 • Failed—Number of unsuccessful session installations after the NAT rule is matched.
 • Current—Number of sessions that reference the specified rule. | – |
| Translation hits | Number of times a translation in the translation table is used for a destination NAT rule. | – |
| Pools | | |
| Pool Name | The names of the pools. | |
| Total Pools | Total pools added. | – |
| ID | ID of the pool. | – |
| Name | Name of the destination pool. | – |
| Address range | IP address range in the destination pool. | – |
Table 79: Summary of Key Destination NAT Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>Destination port number in the pool.</td>
<td>–</td>
</tr>
<tr>
<td>Routing instance</td>
<td>Name of the routing instance.</td>
<td>–</td>
</tr>
<tr>
<td>Total addresses</td>
<td>Total IP address, IP address set, or address book entry.</td>
<td>–</td>
</tr>
<tr>
<td>Translation hits</td>
<td>Number of times a translation in the translation table is used for destination NAT.</td>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Top 10 Translation Hits</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Graph</td>
<td>Displays the graph of top 10 translation hits.</td>
</tr>
</tbody>
</table>

Monitoring Static NAT Information

Supported Platforms SRX Series, vSRX

Purpose View static NAT rule information.

Action Select Monitor > NAT > Static NAT in the J-Web user interface, or enter the following CLI command:

```
show security nat static rule
```

Table 80 on page 457 summarizes key output fields in the static NAT display.

Table 80: Summary of Key Static NAT Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule-set Name</td>
<td>Name of the rule set.</td>
<td>Select all rule sets or a specific rule set to display from the list.</td>
</tr>
<tr>
<td>Total rules</td>
<td>Number of rules configured.</td>
<td>–</td>
</tr>
<tr>
<td>ID</td>
<td>Rule ID number.</td>
<td>–</td>
</tr>
<tr>
<td>Position</td>
<td>Position of the rule that indicates the order in which it applies to traffic.</td>
<td>–</td>
</tr>
<tr>
<td>Name</td>
<td>Name of the rule.</td>
<td>–</td>
</tr>
<tr>
<td>Ruleset Name</td>
<td>Name of the rule set.</td>
<td>–</td>
</tr>
<tr>
<td>From</td>
<td>Name of the routing instance/interface/zone from which the packet comes</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 80: Summary of Key Static NAT Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source addresses</td>
<td>Source IP addresses.</td>
<td>–</td>
</tr>
<tr>
<td>Source ports</td>
<td>Source port numbers.</td>
<td>–</td>
</tr>
<tr>
<td>Destination addresses</td>
<td>Destination IP address and subnet mask.</td>
<td>–</td>
</tr>
<tr>
<td>Destination ports</td>
<td>Destination port numbers.</td>
<td>–</td>
</tr>
<tr>
<td>Host addresses</td>
<td>Name of the host addresses.</td>
<td>–</td>
</tr>
<tr>
<td>Host ports</td>
<td>Host port numbers.</td>
<td></td>
</tr>
<tr>
<td>Netmask</td>
<td>Subnet IP address.</td>
<td>–</td>
</tr>
<tr>
<td>Host routing instance</td>
<td>Name of the routing instance from which the packet comes.</td>
<td>–</td>
</tr>
<tr>
<td>Alarm threshold</td>
<td>Utilization alarm threshold.</td>
<td>–</td>
</tr>
<tr>
<td>Sessions (Succ/ Failed/ Current)</td>
<td>Successful, failed, and current sessions.</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>• Succ—Number of successful session installations after the NAT rule is matched.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Failed—Number of unsuccessful session installations after the NAT rule is matched.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Current—Number of sessions that reference the specified rule.</td>
<td></td>
</tr>
<tr>
<td>Translation hits</td>
<td>Number of times a translation in the translation table is used for a static NAT rule.</td>
<td>–</td>
</tr>
<tr>
<td>Top 10 Translation Hits Graph</td>
<td>Displays the graph of top 10 translation hits.</td>
<td>–</td>
</tr>
</tbody>
</table>

Monitoring Incoming Table Information

Supported Platforms SRX Series, vSRX

Purpose View NAT table information.

Action
Select Monitor>NAT>Incoming Table in the J-Web user interface, or enter the following CLI command:

```
show security nat incoming-table
```
Table 81 on page 459 summarizes key output fields in the incoming table display.

Table 81: Summary of Key Incoming Table Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics</td>
<td></td>
</tr>
<tr>
<td>In use</td>
<td>Number of entries in the NAT table.</td>
</tr>
<tr>
<td>Maximum</td>
<td>Maximum number of entries possible in the NAT table.</td>
</tr>
<tr>
<td>Entry allocation failed</td>
<td>Number of entries failed for allocation.</td>
</tr>
<tr>
<td>Incoming Table</td>
<td></td>
</tr>
<tr>
<td>Clear</td>
<td></td>
</tr>
<tr>
<td>Destination</td>
<td>Destination IP address and port number.</td>
</tr>
<tr>
<td>Host</td>
<td>Host IP address and port number that the destination IP address is mapped to.</td>
</tr>
<tr>
<td>References</td>
<td>Number of sessions referencing the entry.</td>
</tr>
<tr>
<td>Timeout</td>
<td>Timeout, in seconds, of the entry in the NAT table.</td>
</tr>
<tr>
<td>Source-pool</td>
<td>Name of source pool where translation is allocated.</td>
</tr>
</tbody>
</table>

Monitoring Interface NAT Port Information

Supported Platforms
SRX Series, vSRX

Purpose
View port usage for an interface source pool information.

Action
To monitoring interface NAT port information, do one of the following:

- If you are using SRX5400, SRX5600, or SRX5800 platforms, select **Monitor > Firewall/NAT > Interface NAT** in the J-Web user interface or enter the CLI command `show security nat interface-nat-ports`.

- Select **Monitor > NAT > Interface NAT Ports** in the J-Web user interface.

Table 82 on page 459 summarizes key output fields in the interface NAT display.

Table 82: Summary of Key Interface NAT Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface NAT Summary Table</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pool Index</td>
<td>Port pool index.</td>
<td>–</td>
</tr>
<tr>
<td>Total Ports</td>
<td>Total number of ports in a port pool.</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 82: Summary of Key Interface NAT Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Ports Allocated</td>
<td>Number of ports allocated one at a time that are in use.</td>
<td>–</td>
</tr>
<tr>
<td>Single Ports Available</td>
<td>Number of ports allocated one at a time that are free for use.</td>
<td>–</td>
</tr>
<tr>
<td>Twin Ports Allocated</td>
<td>Number of ports allocated two at a time that are in use.</td>
<td>–</td>
</tr>
<tr>
<td>Twin Ports Available</td>
<td>Number of ports allocated two at a time that are free for use.</td>
<td>–</td>
</tr>
</tbody>
</table>

Related Documentation
- Monitoring Overview on page 7
- Monitoring Interfaces on page 436
Monitoring Security Policies

- Monitoring Policy Statistics on page 461
- Monitoring Routing Information on page 462
- Monitoring Security Events by Policy on page 469
- Monitoring Security Features on page 471

Monitoring Policy Statistics

Supported Platforms: SRX Series, vSRX

Purpose: Monitor and record traffic that Junos OS permits or denies based on previously configured policies.

Action: To monitor traffic, enable the count and log options.

- Count—Configurable in an individual policy. If count is enabled, statistics are collected for sessions that enter the device for a given policy, and for the number of packets and bytes that pass through the device in both directions for a given policy. For counts (only for packets and bytes), you can specify that alarms be generated whenever the traffic exceeds specified thresholds. See `count (Security Policies)`.

- Log—Logging capability can be enabled with security policies during session initialization (`session-init`) or session close (`session-close`) stage. See `log (Security Policies)`.

- To view logs from denied connections, enable log on `session-init`.
- To log sessions after their conclusion/tear-down, enable log on `session-close`.

NOTE: Session log is enabled at real time in the flow code which impacts the user performance. If both session-close and session-init are enabled, performance is further degraded as compared to enabling session-init only.

For details about information collected for session logs, see `Information Provided in Session Log Entries for SRX Series Services Gateways`.
Monitoring Routing Information

Supported Platforms: SRX Series, vSRX

Purpose: View information about the routes in a routing table, including destination, protocol, state, and parameter information.

Action: Select Monitor>Routing>Route Information in the J-Web user interface, or enter the following CLI commands:
- show route terse
- show route detail

NOTE: When you use an HTTPS connection in the Microsoft Internet Explorer browser to save a report from this page in the J-Web interface, the error message "Internet Explorer was not able to open the Internet site" is displayed. This problem occurs because the Cache-Control: no cache HTTP header is added on the server side and Internet Explorer does not allow you to download the encrypted file with the Cache-Control: no cache HTTP header set in the response from the server.

As a workaround, refer to Microsoft Knowledge Base article 323308, which is available at this URL: http://support.microsoft.com/kb/323308. Also, you can alternatively use HTTP in the Internet Explorer browser or use HTTPS in the Mozilla Firefox browser to save a file from this page.
Table 83 on page 463 describes the different filters, their functions, and the associated actions.

Table 84 on page 463 summarizes key output fields in the routing information display.

Table 83: Filtering Route Messages

<table>
<thead>
<tr>
<th>Field</th>
<th>Function</th>
<th>Your Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination Address</td>
<td>Specifies the destination address of the route.</td>
<td>Enter the destination address.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Specifies the protocol from which the route was learned.</td>
<td>Enter the protocol name.</td>
</tr>
<tr>
<td>Next hop address</td>
<td>Specifies the network layer address of the directly reachable neighboring system (if applicable) and the interface used to reach it.</td>
<td>Enter the next hop address.</td>
</tr>
<tr>
<td>Receive protocol</td>
<td>Specifies the dynamic routing protocol using which the routing information was received through a particular neighbor.</td>
<td>Enter the routing protocol.</td>
</tr>
<tr>
<td>Best route</td>
<td>Specifies only the best route available.</td>
<td>Select the view details of the best route.</td>
</tr>
<tr>
<td>Inactive routes</td>
<td>Specifies the inactive routes.</td>
<td>Select the view details of inactive routes.</td>
</tr>
<tr>
<td>Exact route</td>
<td>Specifies the exact route.</td>
<td>Select the view details of the exact route.</td>
</tr>
<tr>
<td>Hidden routes</td>
<td>Specifies the hidden routes.</td>
<td>Select the view details of hidden routes.</td>
</tr>
<tr>
<td>Search</td>
<td>Applies the specified filter and displays the matching messages.</td>
<td>To apply the filter and display messages, click Search.</td>
</tr>
</tbody>
</table>

Table 84: Summary of Key Routing Information Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Route Addresses</td>
<td>The list of static route addresses.</td>
<td>–</td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol from which the route was learned: Static, Direct, Local, or the name of a particular protocol.</td>
<td>–</td>
</tr>
<tr>
<td>Preference</td>
<td>The preference is the individual preference value for the route.</td>
<td>The route preference is used as one of the route selection criteria.</td>
</tr>
</tbody>
</table>
Table 84: Summary of Key Routing Information Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next-Hop</td>
<td>Network Layer address of the directly reachable neighboring system (if applicable) and the interface used to reach it.</td>
<td>If a next hop is listed as Discard, all traffic with that destination address is discarded rather than routed. This value generally means that the route is a static route for which the discard attribute has been set. If a next hop is listed as Reject, all traffic with that destination address is rejected. This value generally means that the address is unreachable. For example, if the address is a configured interface address and the interface is unavailable, traffic bound for that address is rejected. If a next hop is listed as Local, the destination is an address on the host (either the loopback address or Ethernet management port 0 address, for example).</td>
</tr>
<tr>
<td>Age</td>
<td>How long the route has been active.</td>
<td>—</td>
</tr>
<tr>
<td>State</td>
<td>Flags for this route.</td>
<td>There are many possible flags.</td>
</tr>
<tr>
<td>AS Path</td>
<td>AS path through which the route was learned. The letters of the AS path indicate the path origin:</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>I—IGP.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E—EGP.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>?—Incomplete. Typically, the AS path was aggregated.</td>
<td></td>
</tr>
</tbody>
</table>

Monitoring RIP Routing Information

Supported Platforms SRX Series, vSRX

Purpose View RIP routing information, including a summary of RIP neighbors and statistics.

Action Select Monitor > Routing > RIP Information in the J-Web user interface, or enter the following CLI commands:

- show rip statistics
- show rip neighbors

Table 85 on page 464 summarizes key output fields in the RIP routing display in the J-Web user interface.

Table 85: Summary of Key RIP Routing Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIP Statistics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 85: Summary of Key RIP Routing Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol Name</td>
<td>The RIP protocol name.</td>
<td></td>
</tr>
<tr>
<td>Port number</td>
<td>The port on which RIP is enabled.</td>
<td></td>
</tr>
<tr>
<td>Hold down time</td>
<td>The interval during which routes are neither advertised nor updated.</td>
<td></td>
</tr>
<tr>
<td>Global routes learned</td>
<td>Number of RIP routes learned on the logical interface.</td>
<td></td>
</tr>
<tr>
<td>Global routes held down</td>
<td>Number of RIP routes that are not advertised or updated during the hold-down interval.</td>
<td></td>
</tr>
<tr>
<td>Global request dropped</td>
<td>Number of requests dropped.</td>
<td></td>
</tr>
<tr>
<td>Global responses dropped</td>
<td>Number of responses dropped.</td>
<td></td>
</tr>
<tr>
<td>RIP Neighbors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Details</td>
<td>Tab used to view the details of the interface on which RIP is enabled.</td>
<td></td>
</tr>
<tr>
<td>Neighbor</td>
<td>Name of the RIP neighbor.</td>
<td>This value is the name of the interface on which RIP is enabled. Click the name to see the details for this neighbor.</td>
</tr>
<tr>
<td>State</td>
<td>State of the RIP connection: Up or Dn (Down).</td>
<td></td>
</tr>
<tr>
<td>Source Address</td>
<td>Local source address.</td>
<td>This value is the configured address of the interface on which RIP is enabled.</td>
</tr>
<tr>
<td>Destination Address</td>
<td>Destination address.</td>
<td>This value is the configured address of the immediate RIP adjacency.</td>
</tr>
<tr>
<td>Send Mode</td>
<td>The mode of sending RIP messages.</td>
<td></td>
</tr>
<tr>
<td>Receive Mode</td>
<td>The mode in which messages are received.</td>
<td></td>
</tr>
<tr>
<td>In Metric</td>
<td>Value of the incoming metric configured for the RIP neighbor.</td>
<td></td>
</tr>
</tbody>
</table>

Monitoring OSPF Routing Information

Supported Platforms
SRX Series, vSRX
Purpose View OSPF routing information, including a summary of OSPF neighbors, interfaces, and statistics.

Action Select Monitor>Routing>OSPF Information in the J-Web user interface, or enter the following CLI commands:

- show ospf neighbors
- show ospf interfaces
- show ospf statistics

Table 86 on page 466 summarizes key output fields in the OSPF routing display in the J-Web user interface.

Table 86: Summary of Key OSPF Routing Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPF Interfaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Details</td>
<td>Tab used to view the details of the selected OSPF.</td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td>Name of the interface running OSPF.</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>State of the interface: BDR, Down, DR, DRother, Loop, PtToPt, or Waiting.</td>
<td>The Down state, indicating that the interface is not functioning, and PtToPt state, indicating that a point-to-point connection has been established, are the most common states.</td>
</tr>
<tr>
<td>Area</td>
<td>Number of the area that the interface is in.</td>
<td></td>
</tr>
<tr>
<td>DR ID</td>
<td>ID of the area's designated device.</td>
<td></td>
</tr>
<tr>
<td>BDR ID</td>
<td>ID of the area's backup designated device.</td>
<td></td>
</tr>
<tr>
<td>Neighbors</td>
<td>Number of neighbors on this interface.</td>
<td></td>
</tr>
<tr>
<td>OSPF Statistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packets tab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sent</td>
<td>Displays the total number of packets sent.</td>
<td></td>
</tr>
<tr>
<td>Received</td>
<td>Displays the total number of packets received.</td>
<td></td>
</tr>
<tr>
<td>Details tab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flood Queue Depth</td>
<td>Number of entries in the extended queue.</td>
<td></td>
</tr>
<tr>
<td>Total Retransmits</td>
<td>Number of retransmission entries enqueued.</td>
<td></td>
</tr>
<tr>
<td>Total Database Summaries</td>
<td>Total number of database description packets.</td>
<td></td>
</tr>
</tbody>
</table>
Table 86: Summary of Key OSPF Routing Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPF Neighbors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td>Address of the neighbor.</td>
<td>–</td>
</tr>
<tr>
<td>Interface</td>
<td>Interface through which the neighbor is reachable.</td>
<td>–</td>
</tr>
<tr>
<td>State</td>
<td>State of the neighbor: Attempt, Down, Exchange, ExStart, Full, Init, Loading, or 2way.</td>
<td>Generally, only the Down state, indicating a failed OSPF adjacency, and the Full state, indicating a functional adjacency, are maintained for more than a few seconds. The other states are transitional states that a neighbor is in only briefly while an OSPF adjacency is being established.</td>
</tr>
<tr>
<td>ID</td>
<td>ID of the neighbor.</td>
<td>–</td>
</tr>
<tr>
<td>Priority</td>
<td>Priority of the neighbor to become the designated router.</td>
<td>–</td>
</tr>
<tr>
<td>Activity Time</td>
<td>The activity time.</td>
<td>–</td>
</tr>
<tr>
<td>Area</td>
<td>Area that the neighbor is in.</td>
<td>–</td>
</tr>
<tr>
<td>Options</td>
<td>Option bits received in the hello packets from the neighbor.</td>
<td>–</td>
</tr>
<tr>
<td>DR Address</td>
<td>Address of the designated router.</td>
<td>–</td>
</tr>
<tr>
<td>BDR Address</td>
<td>Address of the backup designated router.</td>
<td>–</td>
</tr>
<tr>
<td>Uptime</td>
<td>Length of time since the neighbor came up.</td>
<td>–</td>
</tr>
<tr>
<td>Adjacency</td>
<td>Length of time since the adjacency with the neighbor was established.</td>
<td>–</td>
</tr>
</tbody>
</table>

Monitoring BGP Routing Information

Supported Platforms
SRX Series, vSRX

Purpose
Monitor BGP routing information on the routing device, including a summary of BGP routing and neighbor information.

Action
Select Monitor > Routing > BGP Information in the J-Web user interface, or enter the following CLI commands:

- `show bgp summary`
- `show bgp neighbor`

Table 87 on page 468 summarizes key output fields in the BGP routing display in the J-Web user interface.

Table 87: Summary of Key BGP Routing Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP Peer Summary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Groups</td>
<td>Number of BGP groups.</td>
<td>-</td>
</tr>
<tr>
<td>Total Peers</td>
<td>Number of BGP peers.</td>
<td>-</td>
</tr>
<tr>
<td>Down Peers</td>
<td>Number of unavailable BGP peers.</td>
<td>-</td>
</tr>
<tr>
<td>Unconfigured Peers</td>
<td>Address of each BGP peer.</td>
<td>-</td>
</tr>
<tr>
<td>RIB Summary tab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIB Name</td>
<td>Name of the RIB group.</td>
<td>-</td>
</tr>
<tr>
<td>Total Prefixes</td>
<td>Total number of prefixes from the peer, both active and inactive, that are in the routing table.</td>
<td>-</td>
</tr>
<tr>
<td>Active Prefixes</td>
<td>Number of prefixes received from the EBGP peers that are active in the routing table.</td>
<td>-</td>
</tr>
<tr>
<td>Suppressed Prefixes</td>
<td>Number of routes received from EBGP peers currently inactive because of damping or other reasons.</td>
<td>-</td>
</tr>
<tr>
<td>History Prefixes</td>
<td>History of the routes received or suppressed.</td>
<td>-</td>
</tr>
<tr>
<td>Dumped Prefixes</td>
<td>Number of routes currently inactive because of damping or other reasons. These routes do not appear in the forwarding table and are not exported by routing protocols.</td>
<td>-</td>
</tr>
<tr>
<td>Pending Prefixes</td>
<td>Number of pending routes.</td>
<td>-</td>
</tr>
<tr>
<td>State</td>
<td>Status of the graceful restart process for this routing table: BGP restart is complete, BGP restart in progress, VPN restart in progress, or VPN restart is complete.</td>
<td>-</td>
</tr>
<tr>
<td>BGP Neighbors</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Details</td>
<td>Click this button to view the selected BGP neighbor details.</td>
<td>-</td>
</tr>
<tr>
<td>Peer Address</td>
<td>Address of the BGP neighbor.</td>
<td>-</td>
</tr>
<tr>
<td>Autonomous System</td>
<td>AS number of the peer.</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 87: Summary of Key BGP Routing Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peer State</td>
<td>Current state of the BGP session:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Active—BGP is initiating a TCP connection in an attempt to connect to a peer. If the connection is successful, BGP sends an open message.</td>
<td>Generally, the most common states are Active, which indicates a problem establishing the BGP connection, and Established, which indicates a successful session setup. The other states are transition states, and BGP sessions normally do not stay in those states for extended periods of time.</td>
</tr>
<tr>
<td></td>
<td>• Connect—BGP is waiting for the TCP connection to become complete.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Established—The BGP session has been established, and the peers are exchanging BGP update messages.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Idle—This is the first stage of a connection. BGP is waiting for a Start event.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OpenConfirm—BGP has acknowledged receipt of an open message from the peer and is waiting to receive a keepalive or notification message.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OpenSent—BGP has sent an open message and is waiting to receive an open message from the peer.</td>
<td></td>
</tr>
<tr>
<td>Elapsed Time</td>
<td>Elapsed time since the peering session was last reset.</td>
<td>–</td>
</tr>
<tr>
<td>Description</td>
<td>Description of the BGP session.</td>
<td>–</td>
</tr>
</tbody>
</table>

Related Documentation
- Monitoring Overview on page 7
- Monitoring Interfaces on page 436

Monitoring Security Events by Policy

Supported Platforms
SRX Series, vSRX

Purpose
Monitor security events by policy and display logged event details with the J-Web user interface.

Action
To monitor security events by policy:

1. Select one of the following in the J-Web user interface:
 - If you are using SRX5400, SRX5600, or SRX5800 platforms, select **Monitor>Events and Alarms>Security Events**.
 - Select **Monitor>Alarms>Policy Log**.

The View Policy Log pane appears. **Table 88 on page 470 describes the content of this pane.**
Table 88: View Policy Log Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log file name</td>
<td>Name of the event log files to search.</td>
</tr>
<tr>
<td>Policy name</td>
<td>Name of the policy of the events to be retrieved.</td>
</tr>
<tr>
<td>Source address</td>
<td>Source address of the traffic that triggered the event.</td>
</tr>
<tr>
<td>Destination address</td>
<td>Destination address of the traffic that triggered the event.</td>
</tr>
<tr>
<td>Event type</td>
<td>Type of event that was triggered by the traffic.</td>
</tr>
<tr>
<td>Application</td>
<td>Application of the traffic that triggered the event.</td>
</tr>
<tr>
<td>Source port</td>
<td>Source port of the traffic that triggered the event.</td>
</tr>
<tr>
<td>Destination port</td>
<td>Destination port of the traffic that triggered the event.</td>
</tr>
<tr>
<td>Source zone</td>
<td>Source zone of the traffic that triggered the event.</td>
</tr>
<tr>
<td>Destination zone</td>
<td>Destination zone of the traffic that triggered the event.</td>
</tr>
<tr>
<td>Source NAT rule</td>
<td>Source NAT rule of the traffic that triggered the event.</td>
</tr>
<tr>
<td>Destination NAT rule</td>
<td>Destination NAT rule of the traffic that triggered the event.</td>
</tr>
<tr>
<td>Is global policy</td>
<td>Specifies that the policy is a global policy.</td>
</tr>
</tbody>
</table>

If your device is not configured to store session log files locally, the Create log configuration button is displayed in the lower-right portion of the View Policy Log pane.

- To store session log files locally, click **Create log configuration**.

If session logs are being sent to an external log collector (stream mode has been configured for log files), a message appears indicating that event mode must be configured to view policy logs.

NOTE: Reverting to event mode will discontinue event logging to the external log collector.

- To reset the **mode** option to **event**, enter the **set security log** command.

2. Enter one or more search fields in the View Policy Log pane and click **Search** to display events matching your criteria.

For example, enter the event type **Session Close** and the policy **pol1** to display event details from all Session Close logs that contain the specified policy. To reduce search
results further, add more criteria about the particular event or group of events that you want displayed.

The Policy Events Detail pane displays information from each matching session log. Table 89 on page 471 describes the contents of this pane.

Table 89: Policy Events Detail Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timestamp</td>
<td>Time when the event occurred.</td>
</tr>
<tr>
<td>Policy name</td>
<td>Policy that triggered the event.</td>
</tr>
<tr>
<td>Record type</td>
<td>Type of event log providing the data.</td>
</tr>
<tr>
<td>Source IP/Port</td>
<td>Source address (and port, if applicable) of the event traffic.</td>
</tr>
<tr>
<td>Destination IP/Port</td>
<td>Destination address (and port, if applicable) of the event traffic.</td>
</tr>
<tr>
<td>Service name</td>
<td>Service name of the event traffic.</td>
</tr>
<tr>
<td>NAT source IP/Port</td>
<td>NAT source address (and port, if applicable) of the event traffic.</td>
</tr>
<tr>
<td>NAT destination IP/Port</td>
<td>NAT destination address (and port, if applicable) of the event traffic.</td>
</tr>
</tbody>
</table>

Related Documentation

- Monitoring Overview on page 7
- Monitoring Interfaces on page 436
- Monitoring Alarms on page 347
- Monitoring Events on page 488

Monitoring Security Features

Supported Platforms SRX Series, vSRX

This section contains the following topics:

- Monitoring Policies on page 472
- Checking Policies on page 474
- Monitoring Screen Counters on page 477
- Monitoring IDP Status on page 479
- Monitoring Flow Gate Information on page 481
- Monitoring Firewall Authentication Table on page 481
Monitoring Policies

Supported Platforms
SRX Series, vSRX

Purpose
Display, sort, and review policy activity for every activated policy configured on the device. Policies are grouped by Zone Context (the from and to zones of the traffic) to control the volume of data displayed at one time. From the policy list, select a policy to display statistics and current network activity.

Action
To review policy activity:

2. Select the Zone Context of the policy you want to monitor, and click Filter. All policies within the zone context appear in match sequence.

3. Select a policy, and click Clear Statistics to set all counters to zero for the selected policy.

Table 90: Security Policies Monitoring Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone Context (Total #)</td>
<td>Displays a list of all from and to zone combinations for the configured policies. The total number of active policies for each context is specified in the Total # field. By default, the policies from the first Zone Context are displayed.</td>
<td>To display policies for a different context, select a zone context and click Filter. Both inactive and active policies appear for each context. However, the Total # field for a context specifies the number of active policies only.</td>
</tr>
</tbody>
</table>
| Default Policy action | Specifies the action to take for traffic that does not match any of the policies in the context:
- permit-all—Permit all traffic that does not match a policy.
- deny-all—Deny all traffic that does not match a policy. | -- |
| From Zone | Displays the source zone to be used as match criteria for the policy. | -- |
| To Zone | Displays the destination zone to be used as match criteria for the policy. | -- |
| Name | Displays the name of the policy. | -- |
| Source Address | Displays the source addresses to be used as match criteria for the policy. Address sets are resolved to their individual names. (In this case, only the names are given, not the IP addresses.) | -- |
Table 90: Security Policies Monitoring Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination Address</td>
<td>Displays the destination addresses (or address sets) to be used as match criteria for the policy. Addresses are entered as specified in the destination zone's address book.</td>
<td></td>
</tr>
<tr>
<td>Source Identity</td>
<td>Displays the name of the source identities set for the policy.</td>
<td>To display the value of the source identities, hover the mouse on this field. Unknown source identities are also displayed.</td>
</tr>
<tr>
<td>Application</td>
<td>Displays the name of a predefined or custom application signature to be used as match criteria for the policy.</td>
<td></td>
</tr>
<tr>
<td>Dynamic App</td>
<td>Displays the dynamic application signatures to be used as match criteria if an application firewall rule set is configured for the policy. For a network firewall, a dynamic application is not defined.</td>
<td>The rule set appears in two lines. The first line displays the configured dynamic application signatures in the rule set. The second line displays the default dynamic application signature. If more than two dynamic application signatures are specified for the rule set, hover over the output field to display the full list in a tooltip.</td>
</tr>
<tr>
<td>Action</td>
<td>Displays the action portion of the rule set if an application firewall rule set is configured for the policy. • permit—Permits access to the network services controlled by the policy. A green background signifies permission. • deny—Denies access to the network services controlled by the policy. A red background signifies denial.</td>
<td>The action portion of the rule set appears in two lines. The first line identifies the action to be taken when the traffic matches a dynamic application signature. The second line displays the default action when traffic does not match a dynamic application signature.</td>
</tr>
<tr>
<td>NW Services</td>
<td>Displays the network services permitted or denied by the policy if an application firewall rule set is configured. Network services include: • gprs-gtp-profile—Specify a GPRS Tunneling Protocol profile name. • idp—Perform intrusion detection and prevention. • redirect-wx—Set WX redirection. • reverse-redirect-wx—Set WX reverse redirection. • uac-policy—Enable unified access control enforcement of the policy.</td>
<td></td>
</tr>
<tr>
<td>Policy Hit Counters</td>
<td>Provides a representation of the value over time for a specified counter. The graph is blank if Policy Counters indicates no data. As a selected counter accumulates data, the graph is updated at each refresh interval.</td>
<td>To toggle a graph on and off, click the counter name below the graph.</td>
</tr>
</tbody>
</table>
Table 90: Security Policies Monitoring Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy Counters</td>
<td>Lists statistical counters for the selected policy if Count is enabled. The following counters are available for each policy:</td>
<td>To graph or to remove a counter from the Policy Hit Counters Graph, toggle the counter name. The names of enabled counters appear below the graph.</td>
</tr>
<tr>
<td></td>
<td>• input-bytes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• input-byte-rate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• output-bytes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• output-byte-rate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• input-packets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• input-packet-rate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• output-packets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• output-packet-rate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• session-creations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• session-creation-rate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• active-sessions</td>
<td></td>
</tr>
</tbody>
</table>

Checking Policies

Supported Platforms
SRX Series, vSRX

Purpose
Enter match criteria and conduct a policy search. The search results include all policies that match the traffic criteria in the sequence in which they will be encountered.

Because policy matches are listed in the sequence in which they would be encountered, you can determine whether a specific policy is being applied correctly or not. The first policy in the list is applied to all matching traffic. Policies listed after this one remain in the “shadow” of the first policy and are never encountered by this traffic.

By manipulating the traffic criteria and policy sequence, you can tune policy application to suit your needs. During policy development, you can use this feature to establish the appropriate sequence of policies for optimum traffic matches. When troubleshooting, use this feature to determine if specific traffic is encountering the appropriate policy.

Action
1. Select **Monitor > Security > Policy > Shadow Policies** in the J-Web user interface. The Check Policies page appears. Table 91 on page 475 explains the content of this page.

2. In the top pane, enter the From Zone and To Zone to supply the context for the search.

3. Enter match criteria for the traffic, including the source address and port, the destination address and port, and the protocol of the traffic.

4. Enter the number of matching policies to display.
5. Click **Search** to find policies matching your criteria. The lower pane displays all policies matching the criteria up to the number of policies you specified.
 - The first policy will be applied to all traffic with this match criteria.
 - Remaining policies will not be encountered by any traffic with this match criteria.

6. To manipulate the position and activation of a policy, select the policy and click the appropriate button:
 - **Move**—Moves the selected policy up or down to position it at a more appropriate point in the search sequence.
 - **Move to**—Moves the selected policy by allowing you to drag and drop it to a different location on the same page.

Table 91: Check Policies Output

<table>
<thead>
<tr>
<th>Field</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check Policies Search Input Pane</td>
<td></td>
</tr>
<tr>
<td>From Zone</td>
<td>Name or ID of the source zone. If a From Zone is specified by name, the name is translated to its ID internally.</td>
</tr>
<tr>
<td>To Zone</td>
<td>Name or ID of the destination zone. If a To Zone is specified by name, the name is translated to its ID internally.</td>
</tr>
<tr>
<td>Source Address</td>
<td>Address of the source in IP notation.</td>
</tr>
<tr>
<td>Source Port</td>
<td>Port number of the source.</td>
</tr>
<tr>
<td>Destination Address</td>
<td>Address of the destination in IP notation.</td>
</tr>
<tr>
<td>Destination Port</td>
<td>Port number of the destination.</td>
</tr>
<tr>
<td>Source Identity</td>
<td>Name of the source identity.</td>
</tr>
</tbody>
</table>
Table 91: Check Policies Output *(continued)*

<table>
<thead>
<tr>
<th>Field</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>Name or equivalent value of the protocol to be matched.</td>
</tr>
<tr>
<td>ah</td>
<td>51</td>
</tr>
<tr>
<td>egp</td>
<td>8</td>
</tr>
<tr>
<td>esp</td>
<td>50</td>
</tr>
<tr>
<td>gre</td>
<td>47</td>
</tr>
<tr>
<td>icmp</td>
<td>1</td>
</tr>
<tr>
<td>igmp</td>
<td>2</td>
</tr>
<tr>
<td>igp</td>
<td>9</td>
</tr>
<tr>
<td>ipip</td>
<td>94</td>
</tr>
<tr>
<td>ipv6</td>
<td>41</td>
</tr>
<tr>
<td>ospf</td>
<td>89</td>
</tr>
<tr>
<td>pgm</td>
<td>113</td>
</tr>
<tr>
<td>pim</td>
<td>103</td>
</tr>
<tr>
<td>rdp</td>
<td>27</td>
</tr>
<tr>
<td>rsvp</td>
<td>46</td>
</tr>
<tr>
<td>sctp</td>
<td>132</td>
</tr>
<tr>
<td>tcp</td>
<td>6</td>
</tr>
<tr>
<td>udp</td>
<td>17</td>
</tr>
<tr>
<td>vrrp</td>
<td>112</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result Count</th>
<th>(Optional) Number of policies to display. Default value is 1. Maximum value is 16.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check Policies List</td>
<td></td>
</tr>
<tr>
<td>From Zone</td>
<td>Name of the source zone.</td>
</tr>
<tr>
<td>To Zone</td>
<td>Name of the destination zone.</td>
</tr>
<tr>
<td>Total Policies</td>
<td>Number of policies retrieved.</td>
</tr>
<tr>
<td>Default Policy action</td>
<td>The action to be taken if no match occurs.</td>
</tr>
<tr>
<td>Name</td>
<td>Policy name</td>
</tr>
</tbody>
</table>
Table 91: Check Policies Output (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Address</td>
<td>Name of the source address (not the IP address) of a policy. Address sets are resolved to their individual names.</td>
</tr>
<tr>
<td>Destination Address</td>
<td>Name of the destination address or address set. A packet’s destination address must match this value for the policy to apply to it.</td>
</tr>
<tr>
<td>Source Identity</td>
<td>Name of the source identity for the policy.</td>
</tr>
<tr>
<td>Application</td>
<td>Name of a preconfigured or custom application of the policy match.</td>
</tr>
<tr>
<td>Action</td>
<td>Action taken when a match occurs as specified in the policy.</td>
</tr>
<tr>
<td>Hit Counts</td>
<td>Number of matches for this policy. This value is the same as the Policy Lookups in a policy statistics report.</td>
</tr>
<tr>
<td>Active Sessions</td>
<td>Number of active sessions matching this policy.</td>
</tr>
</tbody>
</table>

Alternatively, to list matching policies using the CLI, enter the `show security match-policies` command and include your match criteria and the number of matching policies to display.

Monitoring Screen Counters

Supported Platforms
- SRX Series, vSRX

Purpose
View screen statistics for a specified security zone.

Action
Select `Monitor > Security > Screen Counters` in the J-Web user interface, or enter the following CLI command:

```plaintext
show security screen statistics zone zone-name
```

Table 92 on page 477 summarizes key output fields in the screen counters display.

Table 92: Summary of Key Screen Counters Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICMP Flood</td>
<td>Internet Control Message Protocol (ICMP) flood counter.</td>
<td>An ICMP flood typically occurs when ICMP echo requests use all resources in responding, such that valid network traffic can no longer be processed.</td>
</tr>
<tr>
<td>UDP Flood</td>
<td>User Datagram Protocol (UDP) flood counter.</td>
<td>UDP flooding occurs when an attacker sends IP packets containing UDP datagrams with the purpose of slowing down the resources, such that valid connections can no longer be handled.</td>
</tr>
</tbody>
</table>
Table 92: Summary of Key Screen Counters Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP Winnuke</td>
<td>Number of Transport Control Protocol (TCP)</td>
<td>WinNuke is a denial-of-service (DoS) attack targeting any computer on the Internet running Windows.</td>
</tr>
<tr>
<td></td>
<td>Winnuke attacks.</td>
<td></td>
</tr>
<tr>
<td>TCP Port Scan</td>
<td>Number of TCP port scans.</td>
<td>The purpose of this attack is to scan the available services in the hopes that at least one port will respond, thus identifying a service to target.</td>
</tr>
<tr>
<td>ICMP Address Sweep</td>
<td>Number of ICMP address sweeps.</td>
<td>An IP address sweep can occur with the intent of triggering responses from active hosts.</td>
</tr>
<tr>
<td>IP Tear Drop</td>
<td>Number of teardrop attacks.</td>
<td>Teardrop attacks exploit the reassembly of fragmented IP packets.</td>
</tr>
<tr>
<td>TCP SYN Attack</td>
<td>Number of TCP SYN attacks.</td>
<td>–</td>
</tr>
<tr>
<td>IP Spoofing</td>
<td>Number of IP spoofs.</td>
<td>IP spoofing occurs when an invalid source address is inserted in the packet header to make the packet appear to come from a trusted source.</td>
</tr>
<tr>
<td>ICMP Ping of Death</td>
<td>ICMP ping of death counter.</td>
<td>Ping of death occurs when IP packets are sent that exceed the maximum legal length (65,535 bytes).</td>
</tr>
<tr>
<td>IP Source Route</td>
<td>Number of IP source route attacks.</td>
<td>–</td>
</tr>
<tr>
<td>TCP Land Attack</td>
<td>Number of land attacks.</td>
<td>Land attacks occur when attacker sends spoofed SYN packets containing the IP address of the victim as both the destination and source IP address.</td>
</tr>
<tr>
<td>TCP SYN Fragment</td>
<td>Number of TCP SYN fragments.</td>
<td>–</td>
</tr>
<tr>
<td>TCP No Flag</td>
<td>Number of TCP headers without flags set.</td>
<td>A normal TCP segment header has at least one control flag set.</td>
</tr>
<tr>
<td>IP Unknown Protocol</td>
<td>Number of unknown Internet protocols.</td>
<td>–</td>
</tr>
<tr>
<td>IP Bad Options</td>
<td>Number of invalid options.</td>
<td>–</td>
</tr>
<tr>
<td>IP Record Route Option</td>
<td>Number of packets with the IP record route option enabled.</td>
<td>This option records the IP addresses of the network devices along the path that the IP packet travels.</td>
</tr>
<tr>
<td>IP Timestamp Option</td>
<td>Number of IP timestamp option attacks.</td>
<td>This option records the time (in Universal Time) when each network device receives the packet during its trip from the point of origin to its destination.</td>
</tr>
</tbody>
</table>
Table 92: Summary of Key Screen Counters Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Security Option</td>
<td>Number of IP security option attacks.</td>
<td>–</td>
</tr>
<tr>
<td>IP Loose route Option</td>
<td>Number of IP loose route option attacks.</td>
<td>This option specifies a partial route list for a packet to take on its journey from source to destination.</td>
</tr>
<tr>
<td>IP Strict Source Route Option</td>
<td>Number of IP strict source route option attacks.</td>
<td>This option specifies the complete route list for a packet to take on its journey from source to destination.</td>
</tr>
<tr>
<td>IP Stream Option</td>
<td>Number of stream option attacks.</td>
<td>This option provides a way for the 16-bit SATNET stream identifier to be carried through networks that do not support streams.</td>
</tr>
<tr>
<td>ICMP Fragment</td>
<td>Number of ICMP fragments.</td>
<td>Because ICMP packets contain very short messages, there is no legitimate reason for ICMP packets to be fragmented. If an ICMP packet is so large that it must be fragmented, something is amiss.</td>
</tr>
<tr>
<td>ICMP Large Packet</td>
<td>Number of large ICMP packets.</td>
<td>–</td>
</tr>
<tr>
<td>TCP SYN FiN Packet</td>
<td>Number of TCP SYN FIN packets.</td>
<td>–</td>
</tr>
<tr>
<td>TCP FiN without ACK</td>
<td>Number of TCP FIN flags without the acknowledge (ACK) flag.</td>
<td>–</td>
</tr>
<tr>
<td>TCP SYN-ACK-ACK Proxy</td>
<td>Number of TCP flags enabled with SYN-ACK-ACK.</td>
<td>To prevent flooding with SYN-ACK-ACK sessions, you can enable the SYN-ACK-ACK proxy protection screen option. After the number of connections from the same IP address reaches the SYN-ACK-ACK proxy threshold, Junos OS rejects further connection requests from that IP address.</td>
</tr>
<tr>
<td>IP Block Fragment</td>
<td>Number of IP block fragments.</td>
<td>–</td>
</tr>
</tbody>
</table>

Monitoring IDP Status

Supported Platforms
SRX Series, vSRX

Purpose
View detailed information about the IDP Status, Memory, Counters, Policy Rulebase Statistics, and Attack table statistics.

Action
To view Intrusion Detection and Prevention (IDP) table information, do one of the following:
- If you are using SRX5400, SRX5600, or SRX5800 platforms, select `Monitor > Security > IDP > Status` in the J-Web user interface, or enter the following CLI commands:

  ```
  show security idp status
  show security idp memory
  ```

- Select `Monitor > Security > IPS > Status` in the J-Web user interface.

Table 93 on page 480 summarizes key output fields in the IDP display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDP Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status of IDP</td>
<td>Displays the status of the current IDP policy.</td>
<td>–</td>
</tr>
<tr>
<td>Up Since</td>
<td>Displays the time from when the IDP policy first began running on the system.</td>
<td>–</td>
</tr>
<tr>
<td>Packets/Second</td>
<td>Displays the number of packets received and returned per second.</td>
<td>–</td>
</tr>
<tr>
<td>Peak</td>
<td>Displays the maximum number of packets received per second and the time when the maximum was reached.</td>
<td>–</td>
</tr>
<tr>
<td>Kbits/Second</td>
<td>Displays the aggregated throughput (kilobits per second) for the system.</td>
<td>–</td>
</tr>
<tr>
<td>Peak Kbits</td>
<td>Displays the maximum kilobits per second and the time when the maximum was reached.</td>
<td>–</td>
</tr>
<tr>
<td>Latency (Microseconds)</td>
<td>Displays the delay, in microseconds, for a packet to receive and return by a node.</td>
<td>–</td>
</tr>
<tr>
<td>Current Policy</td>
<td>Displays the name of the current installed IDP policy.</td>
<td>–</td>
</tr>
<tr>
<td>IDP Memory Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDP Memory Statistics</td>
<td>Displays the status of all IDP data plane memory.</td>
<td>–</td>
</tr>
<tr>
<td>PIC Name</td>
<td>Displays the name of the PIC.</td>
<td>–</td>
</tr>
<tr>
<td>Total IDP Data Plane Memory (MB)</td>
<td>Displays the total memory space, in megabytes, allocated for the IDP data plane.</td>
<td>–</td>
</tr>
<tr>
<td>Used (MB)</td>
<td>Displays the used memory space, in megabytes, for the data plane.</td>
<td>–</td>
</tr>
<tr>
<td>Available (MB)</td>
<td>Displays the available memory space, in megabytes, for the data plane.</td>
<td>–</td>
</tr>
</tbody>
</table>
Monitoring Flow Gate Information

Supported Platforms
SRX Series, vSRX

Purpose
View information about temporary openings known as pinholes or gates in the security firewall.

Action
Select **Monitor > Security > Flow Gate** in the J-Web user interface, or enter the **show security flow gate** command.

Table 94 on page 481 summarizes key output fields in the flow gate display.

Table 94: Summary of Key Flow Gate Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Gate Information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hole</td>
<td>Range of flows permitted by the pinhole.</td>
<td>–</td>
</tr>
<tr>
<td>Translated</td>
<td>Tuples used to create the session if it matches the pinhole:</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>• Source address and port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Destination address and port</td>
<td></td>
</tr>
<tr>
<td>Protocol</td>
<td>Application protocol, such as UDP or TCP.</td>
<td>–</td>
</tr>
<tr>
<td>Application</td>
<td>Name of the application.</td>
<td>–</td>
</tr>
<tr>
<td>Age</td>
<td>Idle timeout for the pinhole.</td>
<td>–</td>
</tr>
<tr>
<td>Flags</td>
<td>Internal debug flags for pinhole.</td>
<td>–</td>
</tr>
<tr>
<td>Zone</td>
<td>Incoming zone.</td>
<td>–</td>
</tr>
<tr>
<td>Reference count</td>
<td>Number of resource manager references to the pinhole.</td>
<td>–</td>
</tr>
<tr>
<td>Resource</td>
<td>Resource manager information about the pinhole.</td>
<td>–</td>
</tr>
</tbody>
</table>

Monitoring Firewall Authentication Table

Supported Platforms
SRX Series, vSRX

Purpose
View information about the authentication table, which divides firewall authentication user information into multiple parts.

Action
Select **Monitor > Security > Firewall Authentication > Authentication Table** in the J-Web user interface. To view detailed information about the user with a particular identifier, select...
the ID on the Authentication Table page. To view detailed information about the user at a particular source IP address, select the Source IP on the Authentication Table page.

Alternatively, enter the following CLI show commands:

- `show security firewall-authentication users`
- `show security firewall-authentication users address ip-address`
- `show security firewall-authentication users identifier identifier`

Table 95 on page 482 summarizes key output fields in firewall authentication table display.

Table 95: Summary of Key Firewall Authentication Table Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firewall authentication users</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total users in table</td>
<td>Number of users in the authentication table.</td>
<td></td>
</tr>
<tr>
<td>Authentication table</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Authentication identification number.</td>
<td></td>
</tr>
<tr>
<td>Source Ip</td>
<td>IP address of the authentication source.</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>Idle timeout for the user.</td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>Status of authentication (success or failure).</td>
<td></td>
</tr>
<tr>
<td>user</td>
<td>Name of the user.</td>
<td></td>
</tr>
<tr>
<td>Detailed report per ID selected: ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source Zone</td>
<td>Name of the source zone.</td>
<td></td>
</tr>
<tr>
<td>Destination Zone</td>
<td>Name of the destination zone.</td>
<td></td>
</tr>
<tr>
<td>profile</td>
<td>Name of the profile.</td>
<td>Users information.</td>
</tr>
<tr>
<td>Authentication method</td>
<td>Path chosen for authentication.</td>
<td></td>
</tr>
<tr>
<td>Policy Id</td>
<td>Policy Identifier.</td>
<td></td>
</tr>
<tr>
<td>Interface name</td>
<td>Name of the interface.</td>
<td></td>
</tr>
<tr>
<td>Bytes sent by this user</td>
<td>Number of packets in bytes sent by this user.</td>
<td></td>
</tr>
<tr>
<td>Bytes received by this user</td>
<td>Number of packets in bytes received by this user.</td>
<td></td>
</tr>
<tr>
<td>Client-groups</td>
<td>Name of the client group.</td>
<td></td>
</tr>
<tr>
<td>Detailed report per Source Ip selected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td>Values</td>
<td>Additional Information</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>------------------------</td>
</tr>
<tr>
<td>Entries from Source IP</td>
<td>IP address of the authentication source.</td>
<td></td>
</tr>
<tr>
<td>Source Zone</td>
<td>Name of the source zone.</td>
<td></td>
</tr>
<tr>
<td>Destination Zone</td>
<td>Name of the destination zone.</td>
<td></td>
</tr>
<tr>
<td>profile</td>
<td>Name of the profile.</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>Idle timeout for the user.</td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>Status of authentication (success or failure).</td>
<td></td>
</tr>
<tr>
<td>user</td>
<td>Name of the user.</td>
<td></td>
</tr>
<tr>
<td>Authentication method</td>
<td>Path chosen for authentication.</td>
<td></td>
</tr>
<tr>
<td>Policy Id</td>
<td>Policy Identifier.</td>
<td></td>
</tr>
<tr>
<td>Interface name</td>
<td>Name of the interface.</td>
<td></td>
</tr>
<tr>
<td>Bytes sent by this user</td>
<td>Number of packets in bytes sent by this user.</td>
<td></td>
</tr>
<tr>
<td>Bytes received by this user</td>
<td>Number of packets in bytes received by this user.</td>
<td></td>
</tr>
<tr>
<td>Client-groups</td>
<td>Name of the client group.</td>
<td></td>
</tr>
</tbody>
</table>

Monitoring Firewall Authentication History

Supported Platforms
SRX Series, vSRX

Purpose
View information about the authentication history, which is divided into multiple parts.

Action
Select **Monitor>Security>Firewall Authentication>Authentication History** in the J-Web user interface. To view the detailed history of the authentication with this identifier, select the ID on the Firewall Authentication History page. To view a detailed authentication history of this source IP address, select the Source IP on the Firewall Authentication History page.

Alternatively, enter the following CLI `show` commands:

- `show security firewall-authentication history`
- `show security firewall-authentication history address ip-address`
- `show security firewall-authentication history identifier identifier`
Table 96 on page 484 summarizes key output fields in firewall authentication history display.

Table 96: Summary of Key Firewall Authentication History Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>History of Firewall Authentication Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total authentications</td>
<td>Number of authentication.</td>
<td></td>
</tr>
<tr>
<td>History Table</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Identification number.</td>
<td></td>
</tr>
<tr>
<td>Source Ip</td>
<td>IP address of the authentication source.</td>
<td></td>
</tr>
<tr>
<td>Start Date</td>
<td>Authentication date.</td>
<td></td>
</tr>
<tr>
<td>Start Time</td>
<td>Authentication time.</td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>Authentication duration.</td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>Status of authentication (success or failure).</td>
<td></td>
</tr>
<tr>
<td>User</td>
<td>Name of the user.</td>
<td></td>
</tr>
<tr>
<td>Detail history of selected Id: ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authentication method</td>
<td>Path chosen for authentication.</td>
<td></td>
</tr>
<tr>
<td>Policy Id</td>
<td>Security policy identifier.</td>
<td></td>
</tr>
<tr>
<td>Source zone</td>
<td>Name of the source zone.</td>
<td></td>
</tr>
<tr>
<td>Destination Zone</td>
<td>Name of the destination zone.</td>
<td></td>
</tr>
<tr>
<td>Interface name</td>
<td>Name of the interface.</td>
<td></td>
</tr>
<tr>
<td>Bytes sent by this user</td>
<td>Number of packets in bytes sent by this user.</td>
<td></td>
</tr>
<tr>
<td>Bytes received by this user</td>
<td>Number of packets in bytes received by this user.</td>
<td></td>
</tr>
<tr>
<td>Client-groups</td>
<td>Name of the client group.</td>
<td></td>
</tr>
<tr>
<td>Detail history of selected Source Ip: Source Ip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>User</td>
<td>Name of the user.</td>
<td></td>
</tr>
<tr>
<td>Start Date</td>
<td>Authentication date.</td>
<td></td>
</tr>
<tr>
<td>Start Time</td>
<td>Authentication time.</td>
<td></td>
</tr>
</tbody>
</table>

Table 96 on page 484 summarizes key output fields in firewall authentication history display.
Table 96: Summary of Key Firewall Authentication History Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>Authentication duration.</td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>Status of authentication (success or failure).</td>
<td></td>
</tr>
<tr>
<td>Profile</td>
<td>Name of the profile.</td>
<td></td>
</tr>
<tr>
<td>Authentication method</td>
<td>Path chosen for authentication.</td>
<td></td>
</tr>
<tr>
<td>Policy Id</td>
<td>Security policy identifier.</td>
<td></td>
</tr>
<tr>
<td>Source zone</td>
<td>Name of the source zone.</td>
<td></td>
</tr>
<tr>
<td>Destination Zone</td>
<td>Name of the destination zone.</td>
<td></td>
</tr>
<tr>
<td>Interface name</td>
<td>Name of the interface.</td>
<td></td>
</tr>
<tr>
<td>Bytes sent by this user</td>
<td>Number of packets in bytes sent by this user.</td>
<td></td>
</tr>
<tr>
<td>Bytes received by this user</td>
<td>Number of packets in bytes received by this user.</td>
<td></td>
</tr>
<tr>
<td>Client-groups</td>
<td>Name of the client group.</td>
<td></td>
</tr>
</tbody>
</table>

Monitoring 802.1x

Supported Platforms SRX1500, SRX300, SRX320, SRX340, vSRX

Purpose View information about 802.1X properties.

Action Select Monitor>Security>802.1x in the J-Web user interface, or enter the following CLI commands:

- `show dot1x interfaces interface-name`
- `show dot1x authentication-failed-users`

Table 97 on page 485 summarizes the Dot1X output fields.

Table 97: Summary of Dot1X Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Port</td>
<td>List of ports for selection.</td>
<td></td>
</tr>
<tr>
<td>Number of connected</td>
<td>Total number of hosts connected to the port.</td>
<td></td>
</tr>
<tr>
<td>hosts</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 97: Summary of Dot1X Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of authentication bypassed hosts</td>
<td>Total number of authentication-bypassed hosts with respect to the port.</td>
<td>–</td>
</tr>
<tr>
<td>Authenticated Users Summary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAC Address</td>
<td>MAC address of the connected host.</td>
<td>–</td>
</tr>
<tr>
<td>User Name</td>
<td>Name of the user.</td>
<td>–</td>
</tr>
<tr>
<td>Status</td>
<td>Information about the host connection status.</td>
<td>–</td>
</tr>
<tr>
<td>Authentication Due</td>
<td>Information about host authentication.</td>
<td>–</td>
</tr>
<tr>
<td>Authentication Failed Users Summary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAC Address</td>
<td>MAC address of the authentication-failed host.</td>
<td>–</td>
</tr>
<tr>
<td>User Name</td>
<td>Name of the authentication-failed user.</td>
<td>–</td>
</tr>
</tbody>
</table>

Related Documentation:
- Monitoring Overview on page 7
- Monitoring Interfaces on page 436
CHAPTER 27

Monitoring Events, Services and System

- Monitoring DHCP Client Bindings on page 487
- Monitoring Events on page 488
- Monitoring the System on page 490

Monitoring DHCP Client Bindings

Supported Platforms
SRX Series, vSRX

Purpose
View information about DHCP client bindings.

Action
Select Monitor>Services>DHCP>Binding in the J-Web user interface, or enter the `show system services dhcp binding` command.

Table 98 on page 487 summarizes the key output fields in the DHCP client binding displays.

Table 98: Summary of Key DHCP Client Binding Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>List of IP addresses the DHCP server has assigned to clients.</td>
<td></td>
</tr>
<tr>
<td>Hardware Address</td>
<td>Corresponding media access control (MAC) address of the client.</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Type of binding assigned to the client: dynamic or static.</td>
<td></td>
</tr>
<tr>
<td>Lease Expires at</td>
<td>Date and time the lease expires, or never for leases that do not expire.</td>
<td></td>
</tr>
</tbody>
</table>

Related Documentation
- Monitoring PPPoE on page 443
- Understanding DHCP Client Operation
Monitoring Events

Supported Platforms SRX Series, vSRX

Purpose Use the monitoring functionality to view the events page.

Action To monitor events select Monitor>Events and Alarms>View Events in the J-Web user interface.

NOTE: When you use an HTTPS connection in the Microsoft Internet Explorer browser to save a report from this page in the J-Web interface, the error message "Internet Explorer was not able to open the Internet site" is displayed. This problem occurs because the Cache-Control: no cache HTTP header is added on the server side and Internet Explorer does not allow you to download the encrypted file with the Cache-Control: no cache HTTP header set in the response from the server.

As a workaround, refer to Microsoft Knowledge Base article 323308, which is available at this URL: http://support.microsoft.com/kb/323308. Also, you can alternatively use HTTP in the Internet Explorer browser or use HTTPS in the Mozilla Firefox browser to save a file from this page.

Meaning Table 99 on page 488 summarizes key output fields in the events page.

Table 99: Events Monitoring Page

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events Filter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Log File</td>
<td>Specifies the name of the system log file that</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>records errors and events.</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>Specifies the system processes that generate</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>the events to display.</td>
<td></td>
</tr>
<tr>
<td>Include archived files</td>
<td>Specifies to enable the option to include</td>
<td>Select to enable.</td>
</tr>
<tr>
<td></td>
<td>archived files.</td>
<td></td>
</tr>
<tr>
<td>Date From</td>
<td>Specifies the beginning date range to monitor.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Set the date using the calendar pick tool.</td>
<td></td>
</tr>
<tr>
<td>To</td>
<td>Specifies the end of the date range to monitor.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Set the date using the calendar pick tool.</td>
<td></td>
</tr>
</tbody>
</table>

Table 99 on page 488 summarizes key output fields in the events page.
Table 99: Events Monitoring Page (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event ID</td>
<td>Specifies the specific ID of the error or event to monitor.</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Enter a description for the errors or events.</td>
<td></td>
</tr>
<tr>
<td>Search</td>
<td>Fetches the errors and events specified in the search criteria.</td>
<td></td>
</tr>
<tr>
<td>Reset</td>
<td>Clears the cache of errors and events that were previously selected.</td>
<td></td>
</tr>
<tr>
<td>Generate Report</td>
<td>Creates an HTML report based on the specified parameters.</td>
<td></td>
</tr>
<tr>
<td>Events Detail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>Displays the system process that generated the error or event.</td>
<td></td>
</tr>
<tr>
<td>Severity</td>
<td>Displays the severity level that indicates how seriously the triggering event affects routing platform functions. Only messages from the facility that are rated at that level or higher are logged. Possible severities and their corresponding color code are:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Debug/Info/Notice (Green) – Indicates conditions that are not errors but are of interest or might warrant special handling.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Warning (Yellow) – Indicates conditions that warrant monitoring.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Error (Blue) – Indicates standard error conditions that generally have less serious consequences than errors in the emergency, alert, and critical levels.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Critical (Pink) – Indicates critical conditions, such as hard drive errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Alert (Orange) – Indicates conditions that require immediate correction, such as a corrupted system database.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Emergency (Red) – Indicates system panic or other conditions that cause the routing platform to stop functioning.</td>
<td></td>
</tr>
<tr>
<td>Event ID</td>
<td>Displays the unique ID of the error or event. The prefix on each code identifies the generating software process. The rest of the code indicates the specific event or error.</td>
<td></td>
</tr>
<tr>
<td>Event Description</td>
<td>Displays a more detailed explanation of the message.</td>
<td></td>
</tr>
</tbody>
</table>
Table 99: Events Monitoring Page (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Time that the error or event occurred.</td>
<td>-</td>
</tr>
</tbody>
</table>

Related Documentation
- Monitoring Alarms on page 347
- Monitoring Security Events by Policy on page 469

Monitoring the System

Supported Platforms
SRX Series, vSRX

The J-Web user interface lets you monitor a device’s physical characteristics, current processing status and alarms, and ongoing resource utilization to quickly assess the condition of a device at any time.

On SRX Series devices, the Dashboard lets you customize your view by selecting which informational panes to include on the Dashboard.

This section contains the following topics:
- Monitoring System Properties for SRX Series Devices on page 490
- Monitoring Chassis Information on page 493
- System Health Management for SRX Series Devices on page 494

Monitoring System Properties for SRX Series Devices

Supported Platforms
SRX Series, vSRX

Purpose
View system properties and customize the Dashboard.

When you start the J-Web user interface on an SRX Series device, the interface opens to the Dashboard. At the top and bottom of the page, the Dashboard displays an interactive representation of your device and a current log messages pane. By default, the center panes of the Dashboard display System Information, Resource Utilization, Security Resources, and System Alarms. However, you can customize the Dashboard panes to provide the best overview of your system.

Action
To control the content and appearance of the Dashboard:

1. Click the Preferences icon at the top-right corner of the page. The Dashboard Preference dialog box appears.

2. Select the types of information you want to display.
3. (Optional) Specify the Automatically Refresh Data option to specify how often you want the data on the Dashboard to be refreshed.

4. Click OK to save the configuration or Cancel to clear it.

5. On the Dashboard, minimize, maximize, or drag the individual information panes to customize the display as needed.

Chassis View—Displays an image of the device chassis, including line cards, link states, errors, individual PICs, FPCs, fans, and power supplies.

You can use the Chassis View to link to corresponding configuration and monitoring pages for the device. To link to interface configuration pages for a selected port from the Chassis View, right-click the port in the device image and choose one of the following options:

- **Chassis Information**—Links to the Chassis page.
- **Configure Port:** *Port-name*—Links to the interfaces configuration page for the selected port.
- **Monitor Port:** *Port-name*—Links to the monitor interfaces page for the selected port.

System Identification—Displays the device’s serial number, hostname, current software version, the BIOS version, the amount of time since the device was last booted, and the system’s time.

NOTE:

- To view the BIOS version under system identification, delete your browser cookies.

- The hostname that appears in this pane is defined using the set system hostname command.

On SRX Series devices, security logs were always timestamped using the UTC time zone by running set system time-zone utc and set security log utc-timestamp CLI commands. Now, time zone can be defined using the local time zone by running the set system time-zone time-zone command to specify the local time zone that the system should use when timestamping the security logs.

Resource Utilization—Provides a graphic representation of resource use. Each bar represents the percentage of CPU, memory, or storage utilization for the data plane or the control plane.
Security Resources—Provides the maximum, configured, and active sessions; firewall and VPN policies; and IPsec VPNs. Click **Sessions,FW/VPN Policies**, or **IPsec VPNs** for detailed statistics about each category.

System Alarms—Indicates a missing rescue configuration or software license, where valid. System alarms are preset and cannot be modified.

File Usage—Displays the usage statistics for log files, temporary files, crash (core) files, and database files.

Login Sessions—Provides a list of all currently logged in sessions. The display includes user credentials, login time, and idle time for each session.

Chassis Status—Provides a snapshot of the current physical condition of the device, including temperature and fan status.

Storage Usage—Displays the storage usage report in detail.

Threat Activity—Provides information about the most current threats received on the device.

Message Logs—Displays log messages and errors. You can clear old logs from the Message Logs pane by clicking the Clear button.

To control the information that is displayed in the Chassis View, use the following options:

- To view an image of the front of the device, right-click the image and choose **View Front**.
- To view an image of the back of the device, right-click the image and choose **View Rear**.
- To enlarge or shrink the device view, use the **Zoom** bar.
- To return the device image to its original position and size, click **Reset**.

NOTE: To use the Chassis View, a recent version of Adobe Flash that supports ActionScript and AJAX (Version 9) must be installed. Also note that the Chassis View appears by default on the Dashboard page. You can enable or disable it using options in the Dashboard Preference dialog box. Clearing cookies in Internet Explorer also causes the Chassis View appear on the Dashboard page.

To return to the Dashboard at any time, select **Dashboard** in the J-Web user interface.

Alternatively, you can view system properties by entering the following **show** commands in the CLI:

- `show system uptime`
- `show system users`
- `show system storage`
Monitoring Chassis Information

Supported Platforms
SRX Series, vSRX

Purpose
View chassis properties, which include the status of hardware components on the device.

Action
To view these chassis properties, select Monitor > System View > Chassis Information in the J-Web user interface.

CAUTION: Do not install a combination of Physical Interface Modules (PIMs) in a single chassis that exceeds the maximum power and heat capacity of the chassis. If power management is enabled, PIMs that exceed the maximum power and heat limits remain offline when the chassis is powered on. To check PIM power and heat status, use the show chassis fpc and show chassis power-ratings commands.

The Chassis Information page displays the following types of information:

- Routing Engine Details—This section of the page includes the following tabs:
 - Master—Master tab displays information about the routing engine, including the routing engine module, model number, version, part number, serial number, memory utilization, temperature, and start time. Additionally, this tab displays the CPU load averages for the last 1, 5, and 15 minutes.
 - Backup—If a backup routing engine is available, the Backup tab displays the routing engine module, model number, version, part number, serial number, memory utilization, temperature, and start time. Additionally, this tab displays the CPU load averages for the last 1, 5, and 15 minutes.

NOTE: If you need to contact customer support about the device chassis, supply them with the version and serial number displayed in the Routing Engine Details section of the page.

- Power and Fan Tray Details—This Details section of the page includes the following tabs:
 - Power—Power tab displays the names of the device’s power supply units and their statuses.
• Fan—Fan tab displays the names of the device’s fans and their speeds (normal or high). (The fan speeds are adjusted automatically according to the current temperature.)

• Chassis Component Details—This section of the page includes the following tabs:
 • General—General tab displays the version number, part number, serial number, and description of the selected device component.
 • Temperature—Temperature tab displays the temperature of the selected device component (if applicable).
 • Resource—Resource tab displays the state, total CPU DRAM, and start time of the selected device component (if applicable).

NOTE: On some devices, you can have an FPC state as "offline." You might want to put an FPC offline because of an error or if the FPC is not responding. You can put the FPC offline by using the CLI command request chassis fpc slot number offline.

• Sub-Component—Sub-Component tab displays information about the device’s sub-components (if applicable). Details include the sub-component’s version, part number, serial number, and description.

To control which component details appear, select a hardware component from the Select component list.

Alternatively, you can view chassis details by entering the following show commands in the CLI configuration editor:

• show chassis hardware
• show chassis routing-engine
• show chassis environment
• show chassis redundant-power-supply
• show redundant-power-supply status

System Health Management for SRX Series Devices

Supported Platforms

SRX1500, SRX300, SRX320, SRX340, SRX550M, vSRX

Purpose

Tracking the utilization of critical resources in the system ensures that all parameters are within normal limits and the system remains functional.

In the event of a malfunction caused by abnormal resource usage, the system health management feature provides the right diagnostic information to identify the source of the problem.
When the system health management action is configured by the user, the system takes appropriate monitoring, preventive, and recovery actions to ensure that the system is accessible. The system configuration might be updated based on the information collected by system health management feature to ensure that the system stays in the normal operating environment. For example, when a system runs out of memory, then the configuration associated with applications identified to be consuming memory resources can be updated to bring down the memory resource consumption.

Action

The system health management feature periodically monitors critical system resources against configurable thresholds. The resources that can be monitored include CPU usage, memory, storage, open-file-descriptor, process-count, and temperature. The system health management feature collects usage information for each resource at the configured interval and compares it against the three levels of thresholds: moderate, high, and critical. Based on the configurations, appropriate action is taken.

The intervals, thresholds, and action are associated with system health management and can be configured at both the resource level and the global level. Configurable and default levels are as follows:

- **Default configuration level**— Default configuration is applied when system health monitoring is enabled, and neither a global nor a resource-specific configuration is present.
- **Global configuration level**—Configuration that is applied to resources when no resource-specific configuration is available.
- **Resource-specific configuration level**—Configuration that, if available, overrides both the global and the default configurations.

Per-resource configurations take precedence over the global configuration, and a global configuration takes precedence over the defaults.

When resource usage exceeds the configured thresholds, the system collects information that can be used to find the source of the increased usage and saves it in history for analysis and action.

When resource utilization exceeds the high threshold, a minor system alarm is generated, and the alarm LED lights yellow. When resource utilization exceeds the critical threshold, a major alarm is generated, and the alarm LED lights red.

An SNMP trap is also sent to the remote monitoring server (NMS) for all events that exceed the threshold.

To enable the system health monitor, use the command. You can view system properties by using CLI show commands.

- **Related Documentation**
 - Monitoring Overview on page 7
 - Monitoring Interfaces on page 436
CHAPTER 28

Monitoring Unified Threat Management Features

- Monitoring Antivirus Scan Engine Status on page 497
- Monitoring Antivirus Scan Results on page 498
- Monitoring Antivirus Session Status on page 501
- Monitoring Content Filtering Configurations on page 501
- Monitoring Reports on page 502
- Monitoring Web Filtering Configurations on page 508

Monitoring Antivirus Scan Engine Status

Supported Platforms
SRX1500, SRX300, SRX320, SRX340, SRX345, SRX550M, vSRX

Purpose
The Monitoring Antivirus Scan Engine Status is not supported from Junos OS Release 15.1X49-D10 and Junos OS Release 17.3R1 onwards. For previous releases, using the CLI, you can view the following scan engine status items:

- **Antivirus license key status**
 - View license expiration dates.

- **Scan engine status and settings**
 - View last action result.
 - View default file extension list.

- **Antivirus pattern update server settings**
 - View update URL (HTTP or HTTPS-based).
 - View update interval.

- **Antivirus pattern database status**
 - View auto update status.
 - View last result of database loading.
• If the download completes, view database version timestamp virus record number.
• If the download fails, view failure reason.

Action
In the CLI, enter the `user@host> show security utm anti-virus status` command.

Example status result:

AV Key Expire Date: 03/01/2010 00:00:00
Update Server: http://update.juniper-updates.net/AV/device-name
interval: 60 minutes
auto update status: next update in 12 minutes
last result: new database loaded
AV signature version: 12/21/2008 00:35 GMT, virus records: 154018
Scan Engine Info: last action result: No error(0x00000000)

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1X49-D10</td>
<td>The Monitoring Antivirus Scan Engine Status is not supported from Junos OS Release 15.1X49-D10 and Junos OS Release 17.3R1 onwards.</td>
</tr>
</tbody>
</table>

Related Documentation

- **Full Antivirus Configuration Overview**
- Monitoring Antivirus Session Status on page 501
- Monitoring Antivirus Scan Results on page 498

Monitoring Antivirus Scan Results

Supported Platforms
SRX1500, SRX300, SRX320, SRX340, SRX345, SRX550M, vSRX

Purpose
The Monitoring Antivirus Scan Results are not supported from Junos OS Release 15.1X49-D10 and Junos OS Release 17.3R1 onwards. For previous releases, view statistics for antivirus requests, scan results, and fallback counters.

Scan requests provide

- The total number of scan request forwarded to the engine.
- The number of scan request being pre-windowed.
- The number of scan requests using scan-all mode.
- The number of scan requests using scan-by-extension mode.

Scan code counters provide

- Number of clean files.
- Number of infected files.
- Number of password protected files.
- Number of decompress layers.
- Number of corrupt files.
- When the engine is out of resources.
- When there is an internal error.

Fallback applied status provides either a log-and-permit or block result when the following has occurred:

- Scan engine not ready.
- Maximum content size reached.
- Too many requests.
- Password protected file found.
- Decompress layer too large.
- Corrupt file found.
- Timeout occurred.
- Out of resources.
- Other.

Action

To view antivirus scan results using the CLI editor, enter the `user@host> show security utm anti-virus statistics status` command.

To view antivirus scan results using J-Web:

1. Select **Monitor>Security>UTM>Anti-Virus**.

The following information becomes viewable in the right pane.

 Antivirus license key status

 - View license expiration dates.

 Antivirus pattern update server settings

 - View update URL (HTTP or HTTPS-based).
 - View update interval.

 Antivirus pattern database status

 - View auto update status.
 - View last result of database loading.
 - If the download completes, view database version timestamp virus record number.
 - If the download fails, view failure reason.
Antivirus statistics provide

- The number of scan request being pre-windowed.
- The total number of scan request forwarded to the engine.
- The number of scan requests using scan-all mode.
- The number of scan requests using scan-by-extension mode.

Scan code counters provide

- Number of clean files.
- Number of infected files.
- Number of password protected files.
- Number of decompress layers.
- Number of corrupt files.
- When the engine is out of resources.
- When there is an internal error.

Fallback applied status provides either a log-and-permit or block result when the following has occurred

- Scan engine not ready.
- Password protected file found.
- Decompress layer too large.
- Corrupt file found.
- Out of resources.
- Timeout occurred.
- Maximum content size reached.
- Too many requests.
- Other.

2. You can click the **Clear Anti-Virus Statistics** button to clear all current viewable statistics and begin collecting new statistics.

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1X49-D10</td>
<td>The Monitoring Antivirus Scan Results are not supported from Junos OS Release 15.1X49-D10 and Junos OS Release 17.3R1 onwards.</td>
</tr>
</tbody>
</table>

Related Documentation

- Monitoring Antivirus Session Status on page 501
Monitoring Antivirus Session Status

Supported Platforms SRX1500, SRX300, SRX320, SRX340, SRX345, SRX550M, vSRX

Purpose The Monitoring Antivirus Session Status is not supported from Junos OS Release 15.1X49-D10 and Junos OS Release 17.3R1 onwards. For previous releases, using the CLI, you can view the following session status items:

Antivirus session status displays a snapshot of current antivirus sessions. It includes

- Maximum supported antivirus session numbers.
- Total allocated antivirus session numbers.
- Total freed antivirus session numbers.
- Current active antivirus session numbers.

Action In the CLI, enter the `user@host > show security utm session status` command.

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1X49-D10</td>
<td>The Monitoring Antivirus Session Status is not supported from Junos OS Release 15.1X49-D10 and Junos OS Release 17.3R1 onwards.</td>
</tr>
</tbody>
</table>

Related Documentation

- Full Antivirus Configuration Overview
- Monitoring Antivirus Scan Engine Status on page 497
- Monitoring Antivirus Scan Results on page 498

Monitoring Content Filtering Configurations

Supported Platforms SRX Series, vSRX

Purpose View content filtering statistics.

Action To view content filtering statistics in the CLI, enter the `user@host > show security utm content-filtering statistics` command.

The content filtering show statistics command displays the following information:

Base on command list: # Blocked
Base on mime list: # Blocked
Base on extension list: # Blocked
ActiveX plugin: # Blocked
Java applet: # Blocked
EXE files: # Blocked
ZIP files: # Blocked
HTTP cookie: # Blocked

To view content filtering statistics using J-Web:

The following statistics become viewable in the right pane:

- Base on command list: # Passed # Blocked
- Base on mime list: # Passed # Blocked
- Base on extension list: # Passed # Blocked
- ActiveX plugin: # Passed # Blocked
- Java applet: # Passed # Blocked
- EXE files: # Passed # Blocked
- ZIP files: # Passed # Blocked
- HTTP cookie: # Passed # Blocked

2. You can click Clear Content filtering statistics to clear all current viewable statistics and begin collecting new statistics.

Related Documentation

- Content Filtering Overview
- Understanding Content Filtering Protocol Support
- Content Filtering Configuration Overview
- Example: Attaching Content Filtering UTM Policies to Security Policies

Monitoring Reports

Supported Platforms: SRX Series, vSRX

On-box reporting offers a comprehensive reporting facility where your security management team can spot a security event when it occurs, immediately access and review pertinent details about the event, and quickly decide appropriate remedial action. The J-Web reporting feature provides one- or two-page reports that are equivalent to a compilation of numerous log entries.

This section contains the following topics:

- Threats Monitoring Report on page 502
- Traffic Monitoring Report on page 507

Threats Monitoring Report

Supported Platforms: SRX Series, vSRX

Purpose: Use the Threats Report to monitor general statistics and activity reports of current threats to the network. You can analyze logging data for threat type, source and destination details, and threat frequency information. The report calculates, displays, and refreshes the statistics, providing graphic presentations of the current state of the network.
Action To view the Threats Report:

1. Click **Threats Report** in the bottom right of the Dashboard, or select **Monitor > Reports > Threats** in the J-Web user interface. The Threats Report appears.

2. Select one of the following tabs:
 - **Statistics** tab. See Table 100 on page 503 for a description of the page content.
 - **Activities** tab. See Table 101 on page 505 for a description of the page content.

Table 100: Statistics Tab Output in the Threats Report

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Statistics Pane</td>
<td></td>
</tr>
<tr>
<td>Threat Category</td>
<td>One of the following categories of threats:</td>
</tr>
<tr>
<td></td>
<td>• Traffic</td>
</tr>
<tr>
<td></td>
<td>• IDP</td>
</tr>
<tr>
<td></td>
<td>• Content Security</td>
</tr>
<tr>
<td></td>
<td>• Antivirus</td>
</tr>
<tr>
<td></td>
<td>• Antispam</td>
</tr>
<tr>
<td></td>
<td>• Web Filter—Click the Web filter category to display counters for 39 subcategories.</td>
</tr>
<tr>
<td></td>
<td>• Content Filter</td>
</tr>
<tr>
<td></td>
<td>• Firewall Event</td>
</tr>
<tr>
<td>Severity</td>
<td>Severity level of the threat:</td>
</tr>
<tr>
<td></td>
<td>• emerg</td>
</tr>
<tr>
<td></td>
<td>• alert</td>
</tr>
<tr>
<td></td>
<td>• crit</td>
</tr>
<tr>
<td></td>
<td>• err</td>
</tr>
<tr>
<td></td>
<td>• warning</td>
</tr>
<tr>
<td></td>
<td>• notice</td>
</tr>
<tr>
<td></td>
<td>• info</td>
</tr>
<tr>
<td></td>
<td>• debug</td>
</tr>
<tr>
<td>Hits in past 24 hours</td>
<td>Number of threats encountered per category in the past 24 hours.</td>
</tr>
<tr>
<td>Hits in current hour</td>
<td>Number of threats encountered per category in the last hour.</td>
</tr>
</tbody>
</table>

Threat Counts in the Past 24 Hours

- **By Severity** Graph representing the number of threats received each hour for the past 24 hours sorted by severity level.
- **By Category** Graph representing the number of threats received each hour for the past 24 hours sorted by category.
- **X Axis** Twenty-four hour span with the current hour occupying the right-most column of the display. The graph shifts to the left every hour.
Table 100: Statistics Tab Output in the Threats Report (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y Axis</td>
<td>Number of threats encountered. The axis automatically scales based on the number of threats encountered.</td>
</tr>
<tr>
<td>Most Recent Threats</td>
<td></td>
</tr>
<tr>
<td>Threat Name</td>
<td>Names of the most recent threats. Depending on the threat category, you can click the threat name to go to a scan engine site for a threat description.</td>
</tr>
<tr>
<td>Category</td>
<td>Category of each threat:</td>
</tr>
<tr>
<td></td>
<td>• Traffic</td>
</tr>
<tr>
<td></td>
<td>• IDP</td>
</tr>
<tr>
<td></td>
<td>• Content Security</td>
</tr>
<tr>
<td></td>
<td>• Antivirus</td>
</tr>
<tr>
<td></td>
<td>• Antispam</td>
</tr>
<tr>
<td></td>
<td>• Web Filter</td>
</tr>
<tr>
<td></td>
<td>• Content Filter</td>
</tr>
<tr>
<td></td>
<td>• Firewall Event</td>
</tr>
<tr>
<td>Source IP/Port</td>
<td>Source IP address (and port number, if applicable) of the threat.</td>
</tr>
<tr>
<td>Destination IP/Port</td>
<td>Destination IP address (and port number, if applicable) of the threat.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol name of the threat.</td>
</tr>
<tr>
<td>Description</td>
<td>Threat identification based on the category type:</td>
</tr>
<tr>
<td></td>
<td>• Antivirus—URL</td>
</tr>
<tr>
<td></td>
<td>• Web filter—category</td>
</tr>
<tr>
<td></td>
<td>• Content filter—reason</td>
</tr>
<tr>
<td></td>
<td>• Antispam—sender e-mail</td>
</tr>
<tr>
<td>Action</td>
<td>Action taken in response to the threat.</td>
</tr>
<tr>
<td>Hit Time</td>
<td>Time the threat occurred.</td>
</tr>
<tr>
<td>Threat Trend in past 24 hours</td>
<td>Pie chart graphic representing comparative threat counts by category:</td>
</tr>
<tr>
<td></td>
<td>• Traffic</td>
</tr>
<tr>
<td></td>
<td>• IDP</td>
</tr>
<tr>
<td></td>
<td>• Content Security</td>
</tr>
<tr>
<td></td>
<td>• Antivirus</td>
</tr>
<tr>
<td></td>
<td>• Antispam</td>
</tr>
<tr>
<td></td>
<td>• Web Filter</td>
</tr>
<tr>
<td></td>
<td>• Content Filter</td>
</tr>
<tr>
<td></td>
<td>• Firewall Event</td>
</tr>
</tbody>
</table>
Table 100: Statistics Tab Output in the Threats Report (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Filter Counters Summary</td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>Web filter count broken down by up to 39 subcategories. Clicking on the Web filter listing in the General Statistics pane opens the Web Filter Counters Summary pane.</td>
</tr>
<tr>
<td>Hits in past 24 hours</td>
<td>Number of threats per subcategory in the last 24 hours.</td>
</tr>
<tr>
<td>Hits in current hour</td>
<td>Number of threats per subcategory in the last hour.</td>
</tr>
</tbody>
</table>

Table 101: Activities Tab Output in the Threats Report

<table>
<thead>
<tr>
<th>Field</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most Recent Virus Hits</td>
<td></td>
</tr>
<tr>
<td>Threat Name</td>
<td>Name of the virus threat. Viruses can be based on services, like Web, FTP, or e-mail, or based on severity level.</td>
</tr>
<tr>
<td>Severity</td>
<td>Severity level of each threat:</td>
</tr>
<tr>
<td></td>
<td>• emerg</td>
</tr>
<tr>
<td></td>
<td>• alert</td>
</tr>
<tr>
<td></td>
<td>• crit</td>
</tr>
<tr>
<td></td>
<td>• err</td>
</tr>
<tr>
<td></td>
<td>• warning</td>
</tr>
<tr>
<td></td>
<td>• notice</td>
</tr>
<tr>
<td></td>
<td>• info</td>
</tr>
<tr>
<td></td>
<td>• debug</td>
</tr>
<tr>
<td>Source IP/Port</td>
<td>IP address (and port number, if applicable) of the source of the threat.</td>
</tr>
<tr>
<td>Destination IP/Port</td>
<td>IP address (and port number, if applicable) of the destination of the threat.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol name of the threat.</td>
</tr>
<tr>
<td>Description</td>
<td>Threat identification based on the category type:</td>
</tr>
<tr>
<td></td>
<td>• Antivirus—URL</td>
</tr>
<tr>
<td></td>
<td>• Web filter—category</td>
</tr>
<tr>
<td></td>
<td>• Content filter—reason</td>
</tr>
<tr>
<td></td>
<td>• Antispam—sender e-mail</td>
</tr>
<tr>
<td>Action</td>
<td>Action taken in response to the threat.</td>
</tr>
<tr>
<td>Last Hit Time</td>
<td>Last time the threat occurred.</td>
</tr>
<tr>
<td>Most Recent Spam E-Mail Senders</td>
<td>E-mail address that was the source of the spam.</td>
</tr>
</tbody>
</table>
Table 101: Activities Tab Output in the Threats Report (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severity</td>
<td>Severity level of the threat:</td>
</tr>
<tr>
<td></td>
<td>• emerg</td>
</tr>
<tr>
<td></td>
<td>• alert</td>
</tr>
<tr>
<td></td>
<td>• crit</td>
</tr>
<tr>
<td></td>
<td>• err</td>
</tr>
<tr>
<td></td>
<td>• warning</td>
</tr>
<tr>
<td></td>
<td>• notice</td>
</tr>
<tr>
<td></td>
<td>• info</td>
</tr>
<tr>
<td></td>
<td>• debug</td>
</tr>
<tr>
<td>Source IP</td>
<td>IP address of the source of the threat.</td>
</tr>
<tr>
<td>Action</td>
<td>Action taken in response to the threat.</td>
</tr>
<tr>
<td>Last Send Time</td>
<td>Last time that the spam e-mail was sent.</td>
</tr>
<tr>
<td>Recently Blocked URL Requests</td>
<td></td>
</tr>
<tr>
<td>URL</td>
<td>URL request that was blocked.</td>
</tr>
<tr>
<td>Source IP/Port</td>
<td>IP address (and port number, if applicable) of the source.</td>
</tr>
<tr>
<td>Destination IP/Port</td>
<td>IP address (and port number, if applicable) of the destination.</td>
</tr>
<tr>
<td>Hits in current hour</td>
<td>Number of threats encountered in the last hour.</td>
</tr>
<tr>
<td>Most Recent IDP Attacks</td>
<td></td>
</tr>
<tr>
<td>Attack</td>
<td></td>
</tr>
<tr>
<td>Severity</td>
<td>Severity of each threat:</td>
</tr>
<tr>
<td></td>
<td>• emerg</td>
</tr>
<tr>
<td></td>
<td>• alert</td>
</tr>
<tr>
<td></td>
<td>• crit</td>
</tr>
<tr>
<td></td>
<td>• err</td>
</tr>
<tr>
<td></td>
<td>• warning</td>
</tr>
<tr>
<td></td>
<td>• notice</td>
</tr>
<tr>
<td></td>
<td>• info</td>
</tr>
<tr>
<td></td>
<td>• debug</td>
</tr>
<tr>
<td>Source IP/Port</td>
<td>IP address (and port number, if applicable) of the source.</td>
</tr>
<tr>
<td>Destination IP/Port</td>
<td>IP address (and port number, if applicable) of the destination.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol name of the threat.</td>
</tr>
</tbody>
</table>
Table 101: Activities Tab Output in the Threats Report (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
<td>Action taken in response to the threat.</td>
</tr>
<tr>
<td>Last Send Time</td>
<td>Last time the IDP threat was sent.</td>
</tr>
</tbody>
</table>

Traffic Monitoring Report

Supported Platforms
SRX Series, vSRX

Purpose
Monitor network traffic by reviewing reports of flow sessions over the past 24 hours. You can analyze logging data for connection statistics and session usage by a transport protocol.

Action
To view network traffic in the past 24 hours, select Monitor > Reports > Traffic in the J-Web user interface. See Table 102 on page 507 for a description of the report.

Table 102: Traffic Report Output

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sessions in Past 24 Hours per Protocol</td>
<td>Name of the protocol. To see hourly activity by protocol, click the protocol name and review the "Protocol activities chart" in the lower pane.</td>
</tr>
<tr>
<td>Protocol Name</td>
<td>Total number of sessions for the protocol in the past 24 hours.</td>
</tr>
<tr>
<td></td>
<td>TCP</td>
</tr>
<tr>
<td></td>
<td>UDP</td>
</tr>
<tr>
<td></td>
<td>ICMP</td>
</tr>
<tr>
<td>Total Session</td>
<td>Total number of incoming bytes in KB.</td>
</tr>
<tr>
<td>Bytes In (KB)</td>
<td>Total number of outgoing bytes in KB.</td>
</tr>
<tr>
<td>Bytes Out (KB)</td>
<td>Total number of incoming packets.</td>
</tr>
<tr>
<td>Packets In</td>
<td>Total number of outgoing packets.</td>
</tr>
<tr>
<td>Most Recently Closed Sessions</td>
<td>Source IP address (and port number, if applicable) of the closed session.</td>
</tr>
<tr>
<td>Source IP/Port</td>
<td>Destination IP address (and port number, if applicable) of the closed session.</td>
</tr>
</tbody>
</table>
Table 102: Traffic Report Output (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>Protocol of the closed session.</td>
</tr>
<tr>
<td></td>
<td>• TCP</td>
</tr>
<tr>
<td></td>
<td>• UDP</td>
</tr>
<tr>
<td></td>
<td>• ICMP</td>
</tr>
<tr>
<td>Bytes In (KB)</td>
<td>Total number of incoming bytes in KB.</td>
</tr>
<tr>
<td>Bytes Out (KB)</td>
<td>Total number of outgoing bytes in KB.</td>
</tr>
<tr>
<td>Packets In</td>
<td>Total number of incoming packets.</td>
</tr>
<tr>
<td>Packets Out</td>
<td>Total number of outgoing packets.</td>
</tr>
<tr>
<td>Timestamp</td>
<td>The time the session was closed.</td>
</tr>
</tbody>
</table>

Protocol Activities Chart

Bytes In/Out	Graphic representation of traffic as incoming and outgoing bytes per hour. The byte count is for the protocol selected in the Sessions in Past 24 Hours per Protocol pane. Changing the selection causes this chart to refresh immediately.
Packets In/Out	Graphic representation of traffic as incoming and outgoing packets per hour. The packet count is for the protocol selected in the Sessions in Past 24 Hours per Protocol pane. Changing the selection causes this chart to refresh immediately.
Sessions	Graphic representation of traffic as the number of sessions per hour. The session count is for the protocol selected in the Sessions in Past 24 Hours per Protocol pane. Changing the selection causes this chart to refresh immediately.

X Axis
One hour per column for 24 hours.

Y Axis
Byte, packet, or session count.

Protocol Session Chart

| Sessions by Protocol | Graphic representation of the traffic as the current session count per protocol. The protocols displayed are TCP, UDP, and ICMP. |

Related Documentation
- Monitoring Overview on page 7
- Monitoring Interfaces on page 436

Monitoring Web Filtering Configurations

Supported Platforms
SRX Series, vSRX

Purpose
View Web-filtering statistics.
Action

To view Web-filtering statistics using the CLI, enter the following commands:

```
user@host> show security utm web-filtering status
user@host> show security utm web-filtering statistics
```

To view Web-filtering statistics using J-Web:

1. Select **Clear Web Filtering Statistics**.

 The following information is displayed in the right pane.

 Total Requests: #
 White List Hit: #
 Black List Hit: #
 Queries to Server: #
 Server Reply Permit: #
 Server Reply Block: #
 Custom Category Permit: #
 Custom Category Block: #
 Cache Hit Permit: #
 Cache Hit Block: #
 Web Filtering Session Total: #
 Web Filtering Session Inuse: #
 Fall Back: Log-and-Permit Block
 Default #: #
 Timeout #: #
 Server-Connectivity #: #
 Too-Many-Requests #: #

2. You can click the **Clear Web Filtering Statistics** button to clear all current viewable statistics and begin collecting new statistics.

Related Documentation

- Web Filtering Overview
- Example: Configuring Local Web Filtering
CHAPTER 29

Monitoring VPNs

• Monitoring VPNs on page 511

Monitoring VPNs

Supported Platforms SRX Series, vSRX

This section contains the following topics:

• Monitoring IKE Gateway Information on page 511
• Monitoring IPsec VPN—Phase I on page 515
• Monitoring IPsec VPN—Phase II on page 516
• Monitoring IPsec VPN Information on page 517

Monitoring IKE Gateway Information

Supported Platforms SRX Series, vSRX

Purpose View information about IKE security associations (SAs).

Action Select Monitor>IPSec VPN>IKE Gateway in the J-Web user interface. To view detailed information for a particular SA, select the IKE SA index on the IKE gateway page.

Alternatively, enter the following CLI commands:

• show security ike security-associations
• show security ike security-associations index index-id detail

Table 103 on page 511 summarizes key output fields in the IKE gateway display.

Table 103: Summary of Key IKE SA Information Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKE Security Associations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IKE SA Index</td>
<td>Index number of an SA.</td>
<td>This number is an internally generated number you can use to display information about a single SA.</td>
</tr>
</tbody>
</table>
Table 103: Summary of Key IKE SA Information Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Address</td>
<td>IP address of the destination peer with which the local peer communicates.</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>State of the IKE security associations:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DOWN—SA has not been negotiated with the peer.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• UP—SA has been negotiated with the peer.</td>
<td></td>
</tr>
<tr>
<td>Initiator cookie</td>
<td>Random number, called a cookie, which is sent to the remote node when the IKE negotiation is triggered.</td>
<td></td>
</tr>
<tr>
<td>Responder cookie</td>
<td>Random number generated by the remote node and sent back to the initiator as a verification that the packets were received.</td>
<td>A cookie is aimed at protecting the computing resources from attack without spending excessive CPU resources to determine the cookie’s authenticity.</td>
</tr>
<tr>
<td>Mode</td>
<td>Negotiation method agreed on by the two IPsec endpoints, or peers, used to exchange information between themselves. Each exchange type determines the number of messages and the payload types that are contained in each message. The modes, or exchange types, are:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Main—The exchange is done with six messages. This mode, or exchange type, encrypts the payload, protecting the identity of the neighbor. The authentication method used is displayed: preshared keys or certificate.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Aggressive—The exchange is done with three messages. This mode, or exchange type, does not encrypt the payload, leaving the identity of the neighbor unprotected.</td>
<td></td>
</tr>
<tr>
<td>IKE Security Association (SA) Index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IKE Peer</td>
<td>IP address of the destination peer with which the local peer communicates.</td>
<td></td>
</tr>
<tr>
<td>IKE SA Index</td>
<td>Index number of an SA.</td>
<td>This number is an internally generated number you can use to display information about a single SA.</td>
</tr>
<tr>
<td>Role</td>
<td>Part played in the IKE session. The device triggering the IKE negotiation is the initiator, and the device accepting the first IKE exchange packets is the responder.</td>
<td></td>
</tr>
</tbody>
</table>
Table 103: Summary of Key IKE SA Information Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>State of the IKE security associations:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DOWN—SA has not been negotiated with the peer.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• UP—SA has been negotiated with the peer.</td>
<td></td>
</tr>
<tr>
<td>Initiator cookie</td>
<td>Random number, called a cookie, which is sent to the remote node when the IKE negotiation is triggered.</td>
<td></td>
</tr>
<tr>
<td>Responder cookie</td>
<td>Random number generated by the remote node and sent back to the initiator as a verification that the packets were received.</td>
<td>A cookie is aimed at protecting the computing resources from attack without spending excessive CPU resources to determine the cookie’s authenticity.</td>
</tr>
<tr>
<td>Exchange Type</td>
<td>Negotiation method agreed on by the two IPsec endpoints, or peers, used to exchange information between themselves. Each exchange type determines the number of messages and the payload types that are contained in each message. The modes, or exchange types, are:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Main—The exchange is done with six messages. This mode, or exchange type, encrypts the payload, protecting the identity of the neighbor. The authentication method used is displayed: preshared keys or certificate.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Aggressive—The exchange is done with three messages. This mode, or exchange type, does not encrypt the payload, leaving the identity of the neighbor unprotected.</td>
<td></td>
</tr>
<tr>
<td>Authentication Method</td>
<td>Path chosen for authentication.</td>
<td></td>
</tr>
<tr>
<td>Local</td>
<td>Address of the local peer.</td>
<td></td>
</tr>
<tr>
<td>Remote</td>
<td>Address of the remote peer.</td>
<td></td>
</tr>
<tr>
<td>Lifetime</td>
<td>Number of seconds remaining until the IKE SA expires.</td>
<td></td>
</tr>
</tbody>
</table>
Table 103: Summary of Key IKE SA Information Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm</td>
<td>IKE algorithms used to encrypt and secure exchanges between the peers during the IPsec Phase 2 process:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Authentication—Type of authentication algorithm used.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• sha1—Secure Hash Algorithm 1 (SHA-1) authentication.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• md5—MD5 authentication.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Encryption—Type of encryption algorithm used.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• aes-256-cbc—Advanced Encryption Standard (AES) 256-bit encryption.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• aes-192-cbc—Advanced Encryption Standard (AES) 192-bit encryption.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• aes-128-cbc—Advanced Encryption Standard (AES) 128-bit encryption.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 3des-cbc—3 Data Encryption Standard (DES) encryption.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• des-cbc—Data Encryption Standard (DES) encryption.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pseudorandom function—Cryptographically secure pseudorandom function family.</td>
<td></td>
</tr>
<tr>
<td>Traffic Statistics</td>
<td>Traffic statistics include the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input bytes—The number of bytes presented for processing by the device.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output bytes—The number of bytes actually processed by the device.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input packets—The number of packets presented for processing by the device.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output packets—The number of packets actually processed by the device.</td>
<td></td>
</tr>
<tr>
<td>IPsec security</td>
<td>• number created—The number of SAs created.</td>
<td></td>
</tr>
<tr>
<td>associations</td>
<td>• number deleted—The number of SAs deleted.</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>Part played in the IKE session. The device triggering the IKE negotiation is the initiator, and the device accepting the first IKE exchange packets is the responder.</td>
<td></td>
</tr>
<tr>
<td>Message ID</td>
<td>Message identifier.</td>
<td></td>
</tr>
<tr>
<td>Local identity</td>
<td>Specifies the identity of the local peer so that its partner destination gateway can communicate with it. The value is specified as any of the following: IPv4 address, fully qualified domain name, e-mail address, or distinguished name.</td>
<td></td>
</tr>
</tbody>
</table>
Table 103: Summary of Key IKE SA Information Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote identity</td>
<td>IPv4 address of the destination peer gateway.</td>
<td>–</td>
</tr>
</tbody>
</table>

Monitoring IPsec VPN—Phase I

Supported Platforms SRX Series, vSRX

Purpose View IPsec VPN Phase I information.

Action Select Monitor>IPSec VPN>Phase I in the J-Web user interface.

Table 104 on page 515 describes the available options for monitoring IPsec VPN-Phase I.

Table 104: IPsec VPN—Phase I Monitoring Page

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKE SA Tab Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IKE Security Associations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA Index</td>
<td>Index number of an SA.</td>
<td>–</td>
</tr>
<tr>
<td>Remote Address</td>
<td>IP address of the destination peer with which the local peer communicates.</td>
<td>–</td>
</tr>
<tr>
<td>State</td>
<td>State of the IKE security associations:</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>• DOWN—SA has not been negotiated with the peer.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• UP—SA has been negotiated with the peer.</td>
<td></td>
</tr>
<tr>
<td>Initiator Cookie</td>
<td>Random number, called a cookie, which is sent to the remote node when the IKE negotiation is triggered.</td>
<td>–</td>
</tr>
<tr>
<td>Responder Cookie</td>
<td>Random number generated by the remote node and sent back to the initiator as a verification that the packets were received.</td>
<td>A cookie is aimed at protecting the computing resources from attack without spending excessive CPU resources to determine the cookie’s authenticity.</td>
</tr>
</tbody>
</table>
Table 104: IPsec VPN—Phase I Monitoring Page (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>Negotiation method agreed upon by the two IPsec endpoints, or peers, used to exchange information. Each exchange type determines the number of messages and the payload types that are contained in each message. The modes, or exchange types, are:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Main—The exchange is done with six messages. This mode, or exchange type, encrypts the payload, protecting the identity of the neighbor. The authentication method used is displayed: preshared keys or certificate.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Aggressive—The exchange is done with three messages. This mode, or exchange type, does not encrypt the payload, leaving the identity of the neighbor unprotected.</td>
<td></td>
</tr>
</tbody>
</table>

Monitoring IPsec VPN—Phase II

Supported Platforms SRX Series, vSRX

Purpose View IPsec VPN Phase II information.

Action Select Monitor>IPSec VPN>Phase II in the J-Web user interface.

Table 105 on page 516 describes the available options for monitoring IPsec VPN-Phase II.

Table 105: IPsec VPN—Phase II Monitoring Page

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics Tab Details</td>
<td></td>
<td></td>
</tr>
<tr>
<td>By bytes</td>
<td>Provides total number of bytes encrypted and decrypted by the local system across the IPsec tunnel.</td>
<td>–</td>
</tr>
<tr>
<td>By packets</td>
<td>Provides total number of packets encrypted and decrypted by the local system across the IPsec tunnel.</td>
<td>–</td>
</tr>
<tr>
<td>IPsec Statistics</td>
<td>Provides details of the IPsec statistics.</td>
<td>–</td>
</tr>
<tr>
<td>IPsec SA Tab Details</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPsec Security Associations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Index number of the SA.</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 105: IPsec VPN—Phase II Monitoring Page (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gateway/Port</td>
<td>IP address of the remote gateway/port.</td>
<td></td>
</tr>
<tr>
<td>Algorithm</td>
<td>Cryptography scheme used to secure exchanges between peers during the IKE Phase II negotiations:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• An authentication algorithm used to authenticate exchanges between the peers. Options are hmac-md5-95 or hmac-sha1-96.</td>
<td></td>
</tr>
<tr>
<td>SPI</td>
<td>Security parameter index (SPI) identifier. An SA is uniquely identified by an SPI. Each entry includes the name of the VPN, the remote gateway address, the SPIs for each direction, the encryption and authentication algorithms, and keys. The peer gateways each have two SAs, one resulting from each of the two phases of negotiation: Phase I and Phase II.</td>
<td></td>
</tr>
<tr>
<td>Life</td>
<td>The lifetime of the SA, after which it expires, expressed either in seconds or kilobytes.</td>
<td></td>
</tr>
<tr>
<td>Monitoring</td>
<td>Specifies if VPN-Liveliness Monitoring has been enabled/disabled. Enabled - 'U', Disabled- '—'</td>
<td></td>
</tr>
<tr>
<td>Vsys</td>
<td>Specifies the root system.</td>
<td></td>
</tr>
</tbody>
</table>

Monitoring IPsec VPN Information

Supported Platforms SRX Series, vSRX

Purpose View information about IPsec security (SAs).

Action Select Monitor>IPSec VPN>IPsec VPN in the J-Web user interface. To view the IPsec statistics information for a particular SA, select the IPsec SA ID value on the IPsec VPN page.

Alternatively, enter the following CLI commands:

- `show security ipsec security-associations`
- `show security ipsec statistics`

Table 106 on page 518 summarizes key output fields in the IPsec VPN display.
Table 106: Summary of Key IPsec VPN Information Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPsec Security Associations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total configured SA</td>
<td>Total number of IPsec security associations (SAs) configured on the device.</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Index number of the SA.</td>
<td></td>
</tr>
<tr>
<td>Gateway</td>
<td>IP address of the remote gateway.</td>
<td></td>
</tr>
<tr>
<td>Port</td>
<td>If Network Address Translation (NAT-T) is used, this value is 4500. Otherwise, it is the standard IKE port, 500.</td>
<td></td>
</tr>
</tbody>
</table>
| Algorithm | Cryptography used to secure exchanges between peers during the IKE Phase 2 negotiations:
 - An authentication algorithm used to authenticate exchanges between the peers. Options are hmac-md5-95 or hmac-sha1-96.
 - An encryption algorithm used to encrypt data traffic. Options are 3des-cbc, aes-128-cbc, aes-192-cbc, aes-256-cbc, or des-cbc. | |
| SPI | Security parameter index (SPI) identifier. An SA is uniquely identified by an SPI. Each entry includes the name of the VPN, the remote gateway address, the SPIs for each direction, the encryption and authentication algorithms, and keys. The peer gateways each have two SAs, one resulting from each of the two phases of negotiation: Phase 1 and Phase 2. | |
| Life: sec/kb | The lifetime of the SA, after which it expires, expressed either in seconds or kilobytes. | |
| State | State has two options, Installed and Not Installed.
 - **Installed**—The security association is installed in the security association database.
 - **Not Installed**—The security association is not installed in the security association database. | For transport mode, the value of State is always installed. |
| Vsys | The root system. | |

IPsec Statistics Information
Table 106: Summary of Key IPsec VPN Information Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESP Statistics</td>
<td>Encapsulation Security Protocol (ESP) statistics include the following:</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>• Encrypted bytes—Total number of bytes encrypted by the local system across the IPsec tunnel.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Decrypted bytes—Total number of bytes decrypted by the local system across the IPsec tunnel.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Encrypted packets—Total number of packets encrypted by the local system across the IPsec tunnel.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Decrypted packets—Total number of packets decrypted by the local system across the IPsec tunnel.</td>
<td></td>
</tr>
<tr>
<td>AH Statistics</td>
<td>Authentication Header (AH) statistics include the following:</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>• Input bytes—The number of bytes presented for processing by the device.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output bytes—The number of bytes actually processed by the device.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input packets—The number of packets presented for processing by the device.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output packets—The number of packets actually processed by the device.</td>
<td></td>
</tr>
<tr>
<td>Errors</td>
<td>Errors include the following</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>• AH authentication failures—Total number of authentication header (AH) failures. An AH failure occurs when there is a mismatch of the authentication header in a packet transmitted across an IPsec tunnel.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Replay errors—Total number of replay errors. A replay error is generated when a duplicate packet is received within the replay window.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ESP authentication failures—Total number of Encapsulation Security Payload (ESP) failures. An ESP failure occurs when there is an authentication mismatch in ESP packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ESP decryption failures—Total number of ESP decryption errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Bad headers—Total number of invalid headers detected.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Bad trailers—Total number of invalid trailers detected.</td>
<td></td>
</tr>
<tr>
<td>Details for IPsec SA Index: ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virtual System</td>
<td>The root system.</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 106: Summary of Key IPsec VPN Information Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Gateway</td>
<td>Gateway address of the local system.</td>
<td>–</td>
</tr>
<tr>
<td>Remote Gateway</td>
<td>Gateway address of the remote system.</td>
<td>–</td>
</tr>
<tr>
<td>Local identity</td>
<td>Specifies the identity of the local peer so that its partner destination gateway can communicate with it. The value is specified as any of the following: IPv4 address, fully qualified domain name, e-mail address, or distinguished name.</td>
<td>–</td>
</tr>
<tr>
<td>Remote identity</td>
<td>IPv4 address of the destination peer gateway.</td>
<td>–</td>
</tr>
<tr>
<td>Df bit</td>
<td>State of the don’t fragment bit—set or cleared.</td>
<td>–</td>
</tr>
<tr>
<td>Policy name</td>
<td>Name of the applicable policy.</td>
<td>–</td>
</tr>
<tr>
<td>Direction</td>
<td>Direction of the security association—inbound, or outbound.</td>
<td>–</td>
</tr>
<tr>
<td>SPI</td>
<td>Security parameter index (SPI) identifier. An SA is uniquely identified by an SPI. Each entry includes the name of the VPN, the remote gateway address, the SPIs for each direction, the encryption and authentication algorithms, and keys. The peer gateways each have two SAs, one resulting from each of the two phases of negotiation: Phase 1 and Phase 2.</td>
<td>–</td>
</tr>
<tr>
<td>Mode</td>
<td>Mode of the security association. Mode can be transport or tunnel.</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>• transport—Protects host-to-host connections.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• tunnel—Protects connections between security gateways.</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Type of the security association, either manual or dynamic.</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>• manual—Security parameters require no negotiation. They are static and are configured by the user.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• dynamic—Security parameters are negotiated by the IKE protocol. Dynamic security associations are not supported in transport mode.</td>
<td></td>
</tr>
</tbody>
</table>
Table 106: Summary of Key IPsec VPN Information Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>State has two options, Installed, and Not Installed.</td>
<td>For transport mode, the value of State is always installed.</td>
</tr>
<tr>
<td></td>
<td>Installed—The security association is installed in the security association database.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not Installed—The security association is not installed in the security association database.</td>
<td></td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol supported:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transport mode supports Encapsulation Security Protocol (ESP) and Authentication Header (AH).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tunnel mode supports ESP and AH.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Authentication—Type of authentication used.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Encryption—Type of encryption used.</td>
<td></td>
</tr>
<tr>
<td>Authentication/Encryption</td>
<td>Authentication—Type of authentication algorithm used.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sha1—Secure Hash Algorithm 1 (SHA-1) authentication.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>md5—MD5 authentication.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Encryption—Type of encryption algorithm used.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>aes-256-cbc—Advanced Encryption Standard (AES) 256-bit encryption.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>aes-192-cbc—Advanced Encryption Standard (AES) 192-bit encryption.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>aes-128-cbc—Advanced Encryption Standard (AES) 128-bit encryption.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3des-cbc—3 Data Encryption Standard (DES) encryption.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>des-cbc—Data Encryption Standard (DES) encryption.</td>
<td></td>
</tr>
<tr>
<td>Soft Lifetime</td>
<td>The soft lifetime informs the IPsec key management system that the SA is about to expire.</td>
<td>Each lifetime of a security association has two display options, hard and soft, one of which must be present for a dynamic security association. This allows the key management system to negotiate a new SA before the hard lifetime expires.</td>
</tr>
<tr>
<td></td>
<td>Expires in seconds—Number of seconds left until the SA expires.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expires in kilobytes—Number of kilobytes left until the SA expires.</td>
<td></td>
</tr>
<tr>
<td>Hard Lifetime</td>
<td>The hard lifetime specifies the lifetime of the SA.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expires in seconds—Number of seconds left until the SA expires.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expires in kilobytes—Number of kilobytes left until the SA expires.</td>
<td></td>
</tr>
</tbody>
</table>
Table 106: Summary of Key IPsec VPN Information Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Values</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti Replay Service</td>
<td>State of the service that prevents packets from being replayed. It can be Enabled or Disabled.</td>
<td></td>
</tr>
<tr>
<td>Replay Window Size</td>
<td>Configured size of the antireplay service window. It can be 32 or 64 packets. If the replay window size is 0, the antireplay service is disabled.</td>
<td>The antireplay window size protects the receiver against replay attacks by rejecting old or duplicate packets.</td>
</tr>
</tbody>
</table>

Related Documentation
- Monitoring Overview on page 7
- Monitoring Interfaces on page 436
PART 8

Resource Monitoring of Memory Regions and Types Using CLI and SNMP Queries

- Effective Troubleshooting of System Performance With Resource Monitoring Methodology on page 525
CHAPTER 30

Effective Troubleshooting of System Performance With Resource Monitoring Methodology

- Resource Monitoring Usage Computation Overview on page 525
- Diagnosing and Debugging System Performance by Configuring Memory Resource Usage Monitoring on MX Series Routers on page 528
- Troubleshooting the Mismatch of jnxNatObjects Values for MS-DPC and MS-MIC on page 531
- Managed Objects for Ukernel Memory for a Packet Forwarding Engine in an FPC Slot on page 532
- Managed Objects for Packet Forwarding Engine Memory Statistics Data on page 532
- Managed Objects for Next-Hop, Jtree, and Firewall Filter Memory for a Packet Forwarding Engine in an FPC Slot on page 533
- jnxPfeMemoryErrorsTable on page 533
- pfeMemoryErrors on page 534

Resource Monitoring Usage Computation Overview

Supported Platforms MX104, MX2010, MX2020, MX240, MX480, MX80, MX960
You can configure the resource monitoring capability using both the CLI and SNMP MIB queries. You can employ this utility to provision sufficient headroom (memory space limits that are set for the application or virtual router) for monitoring the health and operating efficiency of DPCs and MPCs. You can also analyze and view the usage or consumption of memory for the jtree memory type and for contiguous pages, double words, and free memory pages. The jtree memory on all MX Series router Packet Forwarding Engines has two segments: one segment primarily stores routing tables and related information, and the other segment primarily stores firewall-filter-related information. As the allocation of more memory for routing tables or firewall filters might disrupt the forwarding operations of a Packet Forwarding Engine, the Junos OS CLI displays a warning to restart all affected FPCs when you commit a configuration that includes the memory-enhanced route statement.

The following sections describe the computation equations and the interpretation of the different memory regions for I-chip-based and Trio-based line cards:

Resource Monitoring and Usage Computation For Trio-Based Line Cards

In Trio-based line cards, memory blocks for next-hop and firewall filters are allocated separately. Also, an expansion memory is present, which is used when the allocated memory for next-hop or firewall filter is fully consumed. Both next-hop and firewall filters can allocate memory from the expansion memory. The encapsulation memory region is specific to I-chip-based line cards and it is not applicable to Trio-based line cards. Therefore, for Trio-based line cards, the percentage of free memory space can be interpreted as follows:

\[
\% \text{Free (NH)} = \left(1 - \frac{\text{Used NH memory} + \text{Used Expansion memory}}{\text{Total NH memory} + \text{Total Expansion memory}}\right) \times 100
\]

\[
\% \text{Free (Firewall or Filter)} = \left(1 - \frac{\text{Used FW memory} + \text{Used Expansion memory}}{\text{Total FW memory} + \text{Total Expansion memory}}\right) \times 100
\]

Encapsulation memory is I-chip-specific and is not applicable for Trio-based line cards.

\% Free (Encap memory) = \text{Not applicable}

Resource Monitoring and Usage Computation For I-Chip-Based Line Cards

I-chip-based line cards contain 32 MB of static RAM (SRAM) memory associated with the route lookup block and 16 MB of SRAM memory associated with the output WAN block.

The route-lookup memory is a single pool of 32 MB memory that is divided into two segments of 16 MB each. In a standard configuration, segment 0 is used for NH and prefixes, and segment 1 is used for firewall or filter. This allocation can be modified by using the route-memory-enhanced option at the [edit chassis] hierarchy level. In a general configuration, NH application can be allocated memory from any of the two segments. Therefore, the percentage of free memory for NH is calculated on 32 MB memory. Currently, firewall applications are allotted memory only from segment 1. As a result, the percentage of free memory to be monitored for firewall starts from the available 16 MB memory in segment 1 only.
For l-chip-based line cards, the percentage of free memory space can be interpreted as follows:

\[
\% \text{Free (NH)} = \frac{(32-(\text{Used NH memory}+\text{Used FW memory}+\text{Used Other application}))}{32 \times 100}
\]

\[
\% \text{Free (Firewall or Filter)} = \frac{(16-(\text{Used NH memory}+\text{Used FW memory}+\text{Used Other application}))}{16 \times 100}
\]

The memory size for Output WAN (lwo) SRAM is 16 MB and stores the Layer 2 descriptors that contain the encapsulation information. This entity is a critical resource and needs to be monitored. This memory space is displayed in the output of the show command as “Encap mem”. The percentage of free memory for the encapsulation region is calculated as follows:

\[
\% \text{Free (Encapsulation memory)} = \frac{(16-(\text{iwo memory used (L2 descriptors + other applications))})}{16 \times 100}
\]

The watermark level configured for next-hop memory is also effective for encapsulation memory. Therefore, if the percentage of free memory for encapsulation region falls below the configured watermark, logs are generated.

If the free memory percentage is lower than the free memory watermark of a specific memory type, the following error message is recorded in the syslog:

“Resource Monitor: FPC <slot no> PFE <pfe inst> <“NH memory” or “FW/Filter memory”> is below set watermark <configured watermark>”.

You can configure resource-monitoring tracing operations by using the `traceoptions file <filename> flag flag level level size bytes` statement at the `[edit system services resource-monitor]` hierarchy level. By default, messages are written to `/var/log/rsmonlog`. The error logs associated with socket communication failure (between the Routing Engine and the Packet Forwarding Engine) are useful in diagnosing the problems in the communication between the Routing Engine and the Packet Forwarding Engine.

From the Ukern perspective, MPC5E contains only one Packet Forwarding Engine instance. The show chassis fabric plane command output displays the state of fabric plane connections to the Packet Forwarding Engine. Because two Packet Forwarding Engines exist, you notice PFE-0 and PFE-1 in the output.

```
user@host# run show chassis fabric plane
Fabric management PLANE state
Plane 0
  Plane state: ACTIVE
  FPC 0
    PFE 0 : Links ok
    PFE 1 : Links ok
```
Because only one Packet Forwarding Engine instance for MPC5E exists, the output of the show system resource-monitor fpc command displays only one row corresponding to Packet Forwarding Engine instance 0.

```
user@host# run show system resource-monitor fpc
FPC Resource Usage Summary

Free Heap Mem Watermark : 20 %
Free NH Mem Watermark    : 20 %
Free Filter Mem Watermark : 20 %

* - Watermark reached

<table>
<thead>
<tr>
<th>Heap mem</th>
<th>ENCAP mem</th>
<th>NH mem</th>
<th>Fw mem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot #</td>
<td>% Free</td>
<td>PFE #</td>
<td>% Free</td>
</tr>
<tr>
<td>0</td>
<td>94</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>99</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

The configured watermark is retained across GRES and unified ISSU procedures.

Related Documentation

Diagnosing and Debugging System Performance by Configuring Memory Resource Usage Monitoring on MX Series Routers

Supported Platforms MX104, MX2010, MX2020, MX240, MX480, MX80, MX960

Junos OS supports a resource monitoring capability using both the CLI and SNMP MIB queries. You can employ this utility to provision sufficient headroom (memory space limits that are set for the application or virtual router) for ensuring system stability, especially the health and operating efficiency of I-chip-based line cards and Trio-based FPCs on MX Series routers. When the memory utilization, either the ukernel memory or ASIC memory reaches a certain threshold, the system operations compromise on the health and traffic-handling stability of the line card and such a trade-off on the system performance can be detrimental for supporting live traffic and protocols.

To configure the properties of the memory resource-utilization functionality:

1. Specify that you want to configure the monitoring mechanism for utilization of different memory resource regions.

   ```
   [edit]
   user@host# edit system services resource-monitor
   ```

 This feature is enabled by default and you cannot disable it manually.

2. Specify the high threshold value, exceeding which warnings or error logs are generated, for all the regions of memory, such as heap or ukernel, next-hop and encapsulation, and firewall filter memory.
3. Specify the percentage of free memory space used for next-hops to be monitored with a watermark value.

```
[edit system services resource-monitor]
user@host# set free-nh-memory-watermark percentage
```

4. Specify the percentage of free memory space used for ukernel or heap memory to be monitored with a watermark value.

```
[edit system services resource-monitor]
user@host# set free-heap-memory-watermark percentage
```

5. Specify the percentage of free memory space used for firewall and filter memory to be monitored with a watermark value.

```
[edit system services resource-monitor]
user@host# set free-filter-memory-watermark percentage
```

NOTE:

The default value and the configured value of the watermark value for the percentage of free next-hop memory also applies to encapsulation memory. The default watermark values for the percentage of free ukernel or heap memory, next-hop memory, and firewall filter memory are 20 percent.

6. Disable the generation of error log messages when the utilization of memory resources exceeds the threshold or checkpoint levels. By default, messages are written to `/var/log/rsmonlog`.

```
[edit system services resource-monitor]
user@host# set no-logging
```

7. Define the resource category that you want to monitor and analyze for ensuring system stability, especially the health and operating efficiency of I-chip-based line cards and Trio-based FPCs on MX Series routers. The resource category includes detailed CPU utilization, session rate, and session count statistics. You use the resource category statistics to understand the extent to which new attack objects or applications affect performance.

```
[edit system services resource-monitor]
user@host# edit resource-category jtree
```
NOTE: The jtree memory on all MX Series router Packet Forwarding Engines has two segments: one segment primarily stores routing tables and related information, and the other segment primarily stores firewall-filter-related information. The Junos OS provides the memory-enhanced statement to reallocate the jtree memory for routes, firewall filters, and Layer 3 VPNs.

8. Configure the type of resource as contiguous pages for which you want to enable the monitoring mechanism to provide sufficient headroom for ensuring effective system performance and traffic-handling capacity. Specify the high and low threshold value, exceeding which warnings or error logs are generated, for the specified type or region of memory, which is contiguous page in this case.

 [edit system services resource-monitor resource-category jtree]
 user@host# set resource-type contiguous-pages high-threshold percentage
 user@host# set resource-type contiguous-pages low-threshold percentage

9. Configure the type of resource as free double words (dwords) for which you want to enable the monitoring mechanism to provide sufficient headroom for ensuring effective system performance and traffic-handling capacity. Specify the high and low threshold value, exceeding which warnings or error logs are generated, for the specified type or region of memory, which is free dwords in this case.

 [edit system services resource-monitor resource-category jtree]
 user@host# set resource-type free-dwords high-threshold percentage
 user@host# set resource-type free-dwords low-threshold percentage

10. Configure the type of resource as free memory pages for which you want to enable the monitoring mechanism to provide sufficient headroom for ensuring effective system performance and traffic-handling capacity. Specify the high and low threshold value, exceeding which warnings or error logs are generated, for the specified type or region of memory, which is free memory pages in this case.

 [edit system services resource-monitor resource-category jtree]
 user@host# set resource-type free-pages high-threshold percentage
 user@host# set resource-type free-pages low-threshold percentage

11. View the utilization of memory resources on the Packet Forwarding Engines of an FPC by using the show system resource-monitor fpc command. The filter memory denotes the filter counter memory used for firewall filter counters. The asterisk (*) displayed next to each of the memory regions denotes the ones for which the configured threshold is being currently exceeded.

 user@host# run show system resource-monitor fpc
 FPC Resource Usage Summary
 Free Heap Mem Watermark : 20 %
 Free NH Mem Watermark : 20 %
 Free Filter Mem Watermark: 20 %
Related Documentation

Troubleshooting the Mismatch of jnxNatObjects Values for MS-DPC and MS-MIC

Supported Platforms MX Series

Problem Description: When both MS-DPC and MS-MIC are deployed in a network and the Network Address Translation (NAT) type is configured as napt-44, the output of the `snmp mib walk` command for jnxNatObjects displays different values for MS-DPC and MS-MIC.

Resolution Configure SNMP to Match jnxNatObjects Values for MS-DPC and MS-MIC

To configure SNMP to match jnxNatObjects values for MS-DPC and MS-MIC:

1. Run the `set services service-set service-set-name nat-options snmp-value-match-msmic` configuration mode command. The following configuration example shows how to configure SNMP to match the values for MS-MIC-specific objects in the jnxNatObjects MIB table with the values for MS-DPC objects.

   ```
   [edit]
   user@host# set services service-set Mobile nat-options snmp-value-match-msmic
   ```

2. Issue the `commit` command to confirm the changes.

   ```
   [edit]
   user@host# commit
   commit complete
   ```

3. (Optional) Run the `show snmp mib walk jnxNatObjects` command to verify that the values for MS-MIC-specific objects in the jnxNatObjects MIB table match the values for MS-DPC objects. For example, the following output shows that the values for MS-MIC-specific objects and MS-DPC objects match.

   ```
   [edit]
   user@host# run show snmp mib walk jnxNatObjects
   jnxNatSrcXlatedAddrType.6.77.111.98.105.108.101 = 1
   jnxNatSrcPoolType.6.77.111.98.105.108.101 = 13
   jnxNatSrcNumPortAvail.6.77.111.98.105.108.101 = 64512
   jnxNatSrcNumPortInuse.6.77.111.98.105.108.101 = 0
   jnxNatSrcNumAddressAvail.6.77.111.98.105.108.101 = 1
   jnxNatSrcNumAddressInUse.6.77.111.98.105.108.101 = 0
   jnxNatSrcNumSessions.6.77.111.98.105.108.101 = 0
   ```
NOTE: You can use the delete services service-set service-set-name nat-options snmp-value-match-msmic configuration mode command to disable this feature.

Managed Objects for Ukernel Memory for a Packet Forwarding Engine in an FPC Slot

Supported Platforms: MX104, MX2010, MX2020, MX240, MX480, MX80, MX960

The jnxPfeMemoryUkernTable, whose object identifier is \{jnxPfeMemory1\}, contains the JnxPfeMemoryUkernEntry that retrieves the global ukernel or heap memory statistics for the specified Packet Forwarding Engine slot. Each JnxPfeMemoryUkernEntry, whose object identifier is \{jnxPfeMemoryUkernTable1\}, contains the objects listed in the following table. The jnxPfeMemoryUkernEntry denotes the memory utilization, such as the total available memory and the percentage of memory used.

Table 107: jnxPfeMemoryUkernTable

<table>
<thead>
<tr>
<th>Object</th>
<th>Object ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>jnxPfeMemoryUkernFreePercent</td>
<td>jnxPfeMemoryUkernEntry 3</td>
<td>Denotes the percentage of free Packet Forwarding Engine memory within the ukern heap.</td>
</tr>
</tbody>
</table>

Managed Objects for Packet Forwarding Engine Memory Statistics Data

Supported Platforms: MX104, MX2010, MX2020, MX240, MX480, MX80, MX960

The jnxPfeMemory table, whose object identifier is \{jnxPfeMib2\} contains the objects listed in Table 108 on page 532

Table 108: jnxPfeMemory Table

<table>
<thead>
<tr>
<th>Object</th>
<th>Object ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>jnxPfeMemoryUkernTable</td>
<td>jnxPfeMemory 1</td>
<td>Provides global ukernel memory statistics for the specified Packet Forwarding Engine slot.</td>
</tr>
</tbody>
</table>
Table 108: jnxPfeMemory Table (continued)

<table>
<thead>
<tr>
<th>Object</th>
<th>Object ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>jnxPfeMemoryForwardingTable</td>
<td>jnxPfeMemory 2</td>
<td>Provides global next-hop (for Trio-based line cards) or Jtree (for I-chip-based line cards) memory utilization and firewall filter memory utilization statistics for the specified Packet Forwarding Engine slot.</td>
</tr>
</tbody>
</table>

Managed Objects for Next-Hop, Jtree, and Firewall Filter Memory for a Packet Forwarding Engine in an FPC Slot

Supported Platforms
MX104, MX2010, MX2020, MX240, MX480, MX80, MX960

The jnxPfeMemoryForwardingTable, whose object identifier is {jnxPfeMemory2}, contains JnxPfeMemoryForwardingEntry that retrieves the next-hop memory for Trio- based line cards, Jtree memory for I-chip-based line cards, and firewall or filter memory statistics for the specified Packet Forwarding Engine slot for both I- chip and Trio-based line cards. Each JnxPfeMemoryForwardingEntry, whose object identifier is {jnxPfeMemoryForwardingTable1}, contains the objects listed in the following table.

The JnxPfeMemoryForwardingEntry represents the ASIC instance, ASIC memory used, and ASIC free memory. The Jtree memory on all MX Series router Packet Forwarding Engines has two segments: one segment primarily stores routing tables and related information, and the other segment primarily stores firewall-filter-related information. As the allocation of more memory for routing tables or firewall filters might disrupt the forwarding operations of a Packet Forwarding Engine, the Junos OS CLI displays a warning to restart all affected FPCs when you commit a configuration that includes the memory-enhanced route statement. The configuration does not become effective until you restart the FPC or DPC (on MX Series routers).

Table 109: jnxPfeMemoryForwardingTable

<table>
<thead>
<tr>
<th>Object</th>
<th>Object ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>jnxPfeMemoryForwardingChipSlot</td>
<td>jnxPfeMemoryForwardingEntry 1</td>
<td>Indicates the ASIC instance number in the Packet Forwarding Engine complex.</td>
</tr>
<tr>
<td>JnxPfeMemoryType</td>
<td>jnxPfeMemoryForwardingEntry 2</td>
<td>Indicates the Packet Forwarding Engine memory type, where nh = 1, fw = 2, encaps = 3.</td>
</tr>
<tr>
<td>JnxPfeMemoryForwardingPercentFree</td>
<td>jnxPfeMemoryForwardingEntry 3</td>
<td>Indicates the percentage of memory free for each memory type.</td>
</tr>
</tbody>
</table>

jnxPfeMemoryErrorsTable

Supported Platforms
MX104, MX2010, MX2020, MX240, MX480, MX80, MX960

The Juniper Networks enterprise-specific Packet Forwarding Engine MIB, whose object ID is {jnxPfeMibRoot1}, supports a new MIB table, jnxPfeMemoryErrorsTable, to display Packet Forwarding Engine memory error counters. The jnxPfeMemoryErrorsTable, whose
object identifier is `jnxPfeNotification3`, contains the `JnxPfeMemoryErrorsEntry`. Each `JnxPfeMemoryErrorsEntry`, whose object identifier is `{jnxPfeMemoryErrorsTable1}`, contains the objects listed in the following table.

Table 110: jnxPfeMemoryErrorsTable

<table>
<thead>
<tr>
<th>Object</th>
<th>Object ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>jnxPfeFpcSlot</td>
<td>jnxPfeMemoryErrorsEntry1</td>
<td>Signifies the FPC slot number for this set of PFE notification</td>
</tr>
<tr>
<td>jnxPfeSlot</td>
<td>jnxPfeMemoryErrorsEntry2</td>
<td>Signifies the PFE slot number for this set of errors</td>
</tr>
<tr>
<td>jnxPfeParityErrors</td>
<td>jnxPfeMemoryErrorsEntry3</td>
<td>Signifies the parity error count</td>
</tr>
<tr>
<td>jnxPfeEccErrors</td>
<td>jnxPfeMemoryErrorsEntry4</td>
<td>Signifies the error-checking code (ECC) error count</td>
</tr>
</tbody>
</table>

pfeMemoryErrors

Supported Platforms MX104, MX2010, MX2020, MX240, MX480, MX80, MX960

The `pfeMemoryErrorsNotificationPrefix`, whose object identifier is `{jnxPfeNotification0}`, contains the `pfeMemoryErrors` attribute. The `pfeMemoryErrors` object, whose identifier is `{pfeMemoryErrorsNotificationPrefix1}` contains the `jnxPfeParityErrors` and `jnxPfeEccErrors` objects.

Table 111: pfeMemoryErrors

<table>
<thead>
<tr>
<th>Object</th>
<th>Object ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pfeMemoryErrors</td>
<td>pfeMemoryErrorsNotificationPrefix1</td>
<td>A pfeMemoryErrors notification is sent when the value of jnxPfeParityErrors or jnxPfeEccErrors increases.</td>
</tr>
</tbody>
</table>
PART 9

Troubleshooting

- Configuring Data Path Debugging and Trace Options on page 537
- Using MPLS to Diagnose LSPs, VPNs, and Layer 2 Circuits on page 555
- Using Packet Capture to Analyze Network Traffic on page 573
- Troubleshooting Security Devices on page 599
Understanding Data Path Debugging for SRX Series Devices

Supported Platforms
SRX1500, SRX5400, SRX5600, SRX5800

Data path debugging, or end-to-end debugging, support provides tracing and debugging at multiple processing units along the packet-processing path. The packet filter can be executed with minimal impact to the production system.

On an SRX Series device, a packet goes through series of events involving different components from ingress to egress processing.

With the data path debugging feature, you can trace and debug (capture packets) at different data points along the processing path. The events available in the packet-processing path are: NP ingress, load-balancing thread (LBT), jexec, packet-ordering thread (POT), and NP egress. You can also enable flow module trace if the security flow trace flag for a certain module is set.
At each event, you can specify any of the four actions (count, packet dump, packet summary, and trace). Data path debugging provides filters to define what packets to capture, and only the matched packets are traced. The packet filter can filter out packets based on logical interface, protocol, source IP address prefix, source port, destination IP address prefix, and destination port.

To enable end-to-end debugging, you must perform the following steps:

1. Define the capture file and specify the maximum capture size.
2. Define the packet filter to trace only a certain type of traffic based on the requirement.
3. Define the action profile specifying the location on the processing path from where to capture the packets (for example, LBT or NP ingress).
4. Enable the data path debugging.
5. Capture traffic.
6. Disable data path debugging.
7. View or analyze the report.

NOTE:

The packet-filtering behavior for the port and interface options is as follows:

- The packet filter traces both IPv4 and IPv6 traffic if only port is specified.
- The packet filter traces IPv4, IPv6, and non-IP traffic if only interface is specified.

Related Documentation

- Understanding Security Debugging Using Trace Options on page 544
- Understanding Flow Debugging Using Trace Options on page 551
- Debugging the Data Path (CLI Procedure) on page 538
- Example: Configuring End-to-End Debugging on SRX Series Device on page 539

Debugging the Data Path (CLI Procedure)

Supported Platforms

SRX1500, SRX5400, SRX5600, SRX5800
To configure the device for data path debugging:

1. Specify the following request command to set the data path debugging for the multiple processing units along the packet-processing path:

   ```
   [edit]
   user@host# set security datapath-debug
   ```

2. Specify the trace options for data path-debug using the following command:

   ```
   [edit]
   user@host# set security datapath-debug traceoptions
   ```

3. Using the request security packet-filter command, you can set the packet filter to specify the related packets to perform data path-debug action. A maximum of four filters are supported at the same time. For example, the following command sets the first packet-filter:

   ```
   [edit]
   user@host# set security datapath-debug packet-filter name
   ```

4. Using the request security action-profile command, you can set the action for the packet match for a specified filter. Only the default action profile is supported, which is the trace option for network processor ezchip ingress, ezchip egress, spu.lbt, and spu.pot:

   ```
   [edit]
   user@host# set security datapath-debug packet-filter name action-profile
   ```

Related Documentation

- Understanding Data Path Debugging for SRX Series Devices on page 537
- Understanding Security Debugging Using Trace Options on page 544
- Understanding Flow Debugging Using Trace Options on page 551
- Setting Flow Debugging Trace Options (CLI Procedure) on page 551

Example: Configuring End-to-End Debugging on SRX Series Device

Supported Platforms
SRX5400, SRX5600, SRX5800

This example shows how to configure and enable end-to-end debugging on an SRX Series device with an SRX5K-MPC.

- Requirements on page 540
- Overview on page 540
- Configuration on page 540
- Enabling Data Path Debugging on page 543
- Verification on page 543
Requirements

This example uses the following hardware and software components:

- SRX5600 device with an SRX5K-MPC installed with 100-Gigabit Ethernet CFP transceiver
- Junos OS Release 12.1X47-D15 or later for SRX Series devices

Before you begin:

- See Understanding Data Path Debugging for SRX Series Devices.

No special configuration beyond device initialization is required before configuring this feature.

Overview

Data path debugging enhances troubleshooting capabilities by providing tracing and debugging at multiple processing units along the packet-processing path. With the data path debugging feature, you can trace and debug (capture packets) at different data points along the processing path. At each event, you can specify an action (count, packet dump, packet summary, and trace) and you can set filters to define what packets to capture.

In this example, you define a traffic filter, and then you apply an action profile. The action profile specifies a variety of actions on the processing unit. The ingress and egress are specified as locations on the processing path to capture the data for incoming and outgoing traffic.

Next, you enable data path debugging in operational mode, and finally you view the data capture report.

Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set security datapath-debug traceoptions file e2e.tracesize 10m
set security datapath-debug capture-file datapcap format pcap
set security datapath-debug maximum-capture-size 1500
set security datapath-debug action-profile profile-1 preserve-trace-order
set security datapath-debug action-profile profile-1 record-pic-history
set security datapath-debug action-profile profile-1 event np-ingress trace
set security datapath-debug action-profile profile-1 event np-ingress count
set security datapath-debug action-profile profile-1 event np-ingress packet-summary
set security datapath-debug action-profile profile-1 event np-ingress packet-count
set security datapath-debug action-profile profile-1 event np-egress trace
set security datapath-debug action-profile profile-1 event np-egress count
set security datapath-debug action-profile profile-1 event np-egress packet-summary
set security datapath-debug action-profile profile-1 event np-egress packet-count
```
set security datapath-debug packet-filter filter-1
set security datapath-debug packet-filter filter-1 action-profile profile-1
set security datapath-debug packet-filter filter-1 protocol tcp
set security datapath-debug packet-filter filter-1 source-prefix 203.0.113.1/24
set security datapath-debug packet-filter filter-1 destination-prefix 203.0.113.4/24
set security datapath-debug packet-filter filter-1 source-port 1000
set security datapath-debug packet-filter filter-1 destination-port 80
set security datapath-debug packet-filter filter-1 interface xe-2/2/0.0

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode* in the CLI User Guide.

To configure data path debugging:

1. Edit the security datapath debugging option for the multiple processing units along the packet-processing path:

 [edit]
 user@host# edit security datapath-debug

2. Enable the capture file, file format, file size, and the number of files.

 [edit security datapath-debug]
 user@host# set traceoptions file e2e.trace size 10m
 user@host# set capture-file datapcap format pcap;
 user@host# set maximum-capture-size 1500

3. Configure action profile, event type, and actions for the action profile.

 [edit security datapath-debug]
 user@host# set action-profile profile-1 preserve-trace-order
 user@host# set action-profile profile-1 record-pic-history
 user@host# set action-profile profile-1 event np-ingress trace
 user@host# set action-profile profile-1 event np-ingress count
 user@host# set action-profile profile-1 event np-ingress packet-summary
 user@host# set action-profile profile-1 event np-ingress packet-count
 user@host# set action-profile profile-1 event np-egress trace
 user@host# set action-profile profile-1 event np-egress count
 user@host# set action-profile profile-1 event np-egress packet-summary
 user@host# set action-profile profile-1 event np-egress packet-count

 [edit security datapath-debug]
 user@host# set packet-filter filter-1
 user@host# set packet-filter filter-1 action-profile profile-1
 user@host# set packet-filter filter-1 protocol tcp
 user@host# set packet-filter filter-1 source-prefix 203.0.113.1/24
 user@host# set packet-filter filter-1 destination-prefix 203.0.113.4/24
 user@host# set packet-filter filter-1 source-port 1000
 user@host# set packet-filter filter-1 destination-port 80
 user@host# set packet-filter filter-1 interface xe-2/2/0.0
NOTE: You must configure multiple packet-filter statements to capture the traffic, because one packet-filter captures only the traffic that is specified in it, and the same packet filter does not capture the traffic in the reverse direction. You must specify the source and destination address for each packet filter, else the SRX Series device might log the entire traffic and cause adverse impact to traffic.

Results From configuration mode, confirm your configuration by entering the `show security datapath-debug` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
traceoptions {
    file e2e.trace size 10m;
}
capture-file datapcap format pcap;
maximum-capture-size 1500;
action-profile {
    profile-1 {
        preserve-trace-order;
        record-pic-history;
        event np-ingress {
            trace;
            count;
            packet-summary;
            packet-dump;
        }
        event np-egress {
            trace;
            count;
            packet-summary;
            packet-dump;
        }
    }
}
packet-filter filter-1 {
    action-profile profile-1;
    protocol tcp;
    source-prefix 203.0.113.1/24;
    destination-prefix 203.0.113.4/24;
    source-port 1000;
    destination-port 80;
    interface xe-2/2/0.0;
}
```

If you are done configuring the device, enter `commit` from configuration mode.
Enabling Data Path Debugging

Step-by-Step Procedure
After configuring data path debugging, you must start the process on the device from operational mode.

1. Enable data path debugging.

   ```
   user@host> request security datapath-debug capture start
   datapath-debug capture started on file datapcap
   ```

2. Before you verify the configuration and view the reports, you must disable data path debugging.

   ```
   user@host> request security datapath-debug capture stop
   datapath-debug capture successfull stopped, use show security datapath-debug capture to view
   ```

 NOTE: You must stop the debug process after you have finished capturing the data. If you attempt to open the captured files without stopping the debug process, the files obtained cannot be opened through any third-party software (for example, tcpdump and wireshark).

Verification

Confirm that the configuration is working properly.

Verifying Data Path Debug Packet Capture Details

Purpose
Verify the data captured by enabling the data path debugging configuration.

Action
From operational mode, enter the `show security datapath-debug capture` command.

```
Packet 8, len 152: (C2/F2/P0/SEQ:57935:np-ingress)
00 10 db ff 10 02 00 30 48 83 8d 4f 08 00 45 00
00 54 00 00 40 00 40 01 9f c7 c8 07 05 69 c8 08
05 69 08 00 91 1f 8f 03 2a a2 ae 66 85 53 8c 7d
02 00 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15
16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25
26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35
36 37
```

```
Packet 9, len 152: (C2/F2/P0/SEQ:57935:np-egress)
00 30 48 8d 1a bf 00 10 db ff 10 03 08 00 45 00
00 54 00 00 40 00 3f 01 a0 c7 c8 07 05 69 c8 08
05 69 08 00 91 1f 8f 03 2a a2 ae 66 85 53 8c 7d
02 00 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15
16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25
26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35
36 37....
```
For brevity, the show command output is truncated to display only a few samples. Additional samples have been replaced with ellipses (...).

To view the results, from CLI operational mode, access the local UNIX shell and navigate to the directory `/var/log/<file-name>`. The result can be read by using the `tcpdump` utility.

```
user@host> start shell
%tcpdump -nr/var/log/e2e.pcap
```

```
21:50:04.288767 C0/F3 event:1(np-ingress) SEQ:1 IP 192.168.14.2 > 192.168.13.2: ICMP echo request, id 57627, seq 0, length 64
21:50:04.292590 C0/F3 event:2(np-egress) SEQ:1 IP 192.168.14.2 > 192.168.13.2: ICMP echo request, id 57627, seq 0, length 64
21:50:04.295164 C0/F3 event:1(np-ingress) SEQ:2 IP 192.168.13.2 > 192.168.14.2: ICMP echo reply, id 57627, seq 0, length 64
21:50:04.295284 C0/F3 event:2(np-egress) SEQ:2 IP 192.168.13.2 > 192.168.14.2: ICMP echo reply, id 57627, seq 0, length 64
```

NOTE: If you are finished with troubleshooting the data path debugging, remove all traceoptions (not limited to flow traceoptions) and the complete data path debug configuration, including the data path debug configuration for packet capturing (packet-dump), which needs to be started/stopped manually. If any part of the debugging configuration remains active, it will continue to use the resources of the device (CPU/memory).

Understanding Security Debugging Using Trace Options

Supported Platforms
- SRX Series, vSRX

The Junos OS trace function allows applications to write security debugging information to a file. The information that appears in this file is based on criteria you set. You can use this information to analyze security application issues.

The trace function operates in a distributed manner, with each thread writing to its own trace buffer. These trace buffers are then collected at one point, sorted, and written to trace files. Trace messages are delivered using the InterProcess Communications (IPC) protocol. A trace message has a lower priority than that of control protocol packets such as BGP, OSPF, and IKE, and therefore delivery is not considered to be as reliable.

Related Documentation
- Understanding Data Path Debugging for SRX Series Devices on page 537
- Understanding Flow Debugging Using Trace Options on page 551
- Setting Security Trace Options (CLI Procedure) on page 545
- Debugging the Data Path (CLI Procedure) on page 538
Displaying Output for Security Trace Options on page 546

Setting Security Trace Options (CLI Procedure)

Supported Platforms
SRX Series, vSRX

Use the following configuration statements to configure security trace options in the CLI configuration editor.

- To disable remote tracing, enter the following statement:

  ```
  [edit]
  user@host# set security traceoptions no-remote-trace
  ```

- To write trace messages to a local file, enter the following statement. The system saves the trace file in the `/var/log/` directory.

  ```
  [edit]
  user@host# set security traceoptions use-local-files
  ```

- To specify a name for the trace file, enter the following statement. Valid values range from 1 and 1024 characters. The name cannot include spaces, /, or % characters. The default filename is security.

  ```
  [edit]
  user@host# set security traceoptions file filename
  ```

- To specify the maximum number of trace files that can accumulate, enter the following statement. Valid values range from 2 to 1000. The default value is 3.

  ```
  [edit]
  user@host# set security traceoptions file files 3
  ```

- To specify the match criteria that you want the system to use when logging information to the file, enter the following statement. Enter a regular expression. Wildcard (*) characters are accepted.

  ```
  [edit]
  user@host# set security traceoptions file match *thread
  ```

- To allow any user to read the trace file, enter the `world-readable` statement. Otherwise, enter the `no-world-readable` statement.

  ```
  [edit]
  user@host# set security traceoptions file world-readable
  ```
  ```
  user@host# set security traceoptions file no-world-readable
  ```

- To specify the maximum size to which the trace file can grow, enter the following statement. Once the file reaches the specified size, it is compressed and renamed `filename0.gz`, the next file is named `filename1.gz`, and so on. Valid values range from 10240 to 1073741824.

  ```
  [edit]
  user@host# set security traceoptions file size 10240
  ```

- To turn on trace options and to perform more than one tracing operation, set the following flags.

  ```
  [edit]
  ```
user@host# set security traceoptions flag all
user@host# set security traceoptions flag compilation
user@host# set security traceoptions flag configuration
user@host# set security traceoptions flag routing-socket

- To specify the groups that these trace option settings do or do not apply to, enter the following statements:

 [edit]
 user@host# set security traceoptions apply-groups value
 user@host# set security traceoptions apply-groups-except value

Related Documentation
- Understanding Security Debugging Using Trace Options on page 544
- Displaying Output for Security Trace Options on page 546

Displaying Log and Trace Files

Supported Platforms SRX Series, vSRX

Enter the `monitor start` command to display real-time additions to system logs and trace files:

```
user@host> monitor start filename
```

When the device adds a record to the file specified by `filename`, the record displays on the screen. For example, if you have configured a system log file named `system-log` (by including the `syslog` statement at the `[edit system]` hierarchy level), you can enter the `monitor start system-log` command to display the records added to the system log.

To display a list of files that are being monitored, enter the `monitor list` command. To stop the display of records for a specified file, enter the `monitor stop filename` command.

Related Documentation
- Displaying a List of Devices on page 552
- Displaying Real-Time Monitoring Information on page 397

Displaying Output for Security Trace Options

Supported Platforms SRX Series, vSRX

Purpose Display output for security trace options.

Action Use the `show security traceoptions` command to display the output of your trace files. For example:

```
[edit]
user@host# show security traceoptions file usp_trace
user@host# show security traceoptions flag all
user@host# show security traceoptions rate-limit 888
```
The output for this example is as follows:

```
Apr 11 16:05:42 21:13:15.750395:CID-906489336:FPC-01:PIC-01:THREAD_ID-01:PFE:now update 0x3607edf8df8in 0x3607e8d0
```

Related Documentation
- Understanding Security Debugging Using Trace Options on page 544
- Setting Security Trace Options (CLI Procedure) on page 545

Displaying Multicast Trace Operations

Supported Platforms
- SRX Series, vSRX

To monitor and display multicast trace operations, enter the `mtrace monitor` command:

```
user@host> mtrace monitor
```

Mtrace query at Apr 21 16:00:54 by 192.1.30.2, resp to 224.0.1.32, qid 2a83aa packet from 192.1.30.2 to 224.0.0.2 from 192.1.30.2 to 192.1.4.1 via group 224.1.1.1 (mxhop=60) Mtrace query at Apr 21 16:00:57 by 192.1.30.2, resp to 224.0.1.32, qid 25dc17 packet from 192.1.30.2 to 224.0.0.2 from 192.1.30.2 to 192.1.4.1 via group 224.1.1.1 (mxhop=60) Mtrace query at Apr 21 16:01:00 by 192.1.30.2, resp to same, qid 20e046 packet from 192.1.30.2 to 224.0.0.2 from 192.1.30.2 to 192.1.4.1 via group 224.1.1.1 (mxhop=60) Mtrace query at Apr 21 16:01:10 by 192.1.30.2, resp to same, qid 1d25ad packet from 192.1.30.2 to 224.0.0.2 from 192.1.30.2 to 192.1.4.1 via group 224.1.1.1 (mxhop=60)

This example displays only `mtrace` queries. However, when the device captures an `mtrace` response, the display is similar, but the complete `mtrace` response also appears (exactly as it is appears in the `mtrace from-source` command output).

Table 112 on page 547 summarizes the output fields of the display.

Table 112: CLI mtrace monitor Command Output Summary

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mtrace operation-type at time-of-day</td>
<td>• operation-type—Type of multicast trace operation: query or response.</td>
</tr>
<tr>
<td></td>
<td>• time-of-day—Date and time the multicast trace query or response was captured.</td>
</tr>
</tbody>
</table>
Table 112: CLI mtrace monitor Command Output Summary (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>by</td>
<td>IP address of the host issuing the query.</td>
</tr>
<tr>
<td>respto address</td>
<td>address—Response destination address.</td>
</tr>
<tr>
<td>qid qid</td>
<td>qid—Query ID number.</td>
</tr>
</tbody>
</table>
| packet from source to destination | • source—IP address of the source of the query or response.
• destination—IP address of the destination of the query or response. |
| from source to destination | • source—IP address of the multicast source.
• destination—IP address of the multicast destination. |
| via group address | address—Group address being traced. |
| mxhop=number | number—Maximum hop setting. |

Related Documentation
- Using the J-Web Traceroute Tool on page 548
- J-Web Traceroute Results and Output Summary on page 550

Using the J-Web Traceroute Tool

You can use the traceroute diagnostic tool to display a list of devices between the device and a specified destination host. The output is useful for diagnosing a point of failure in the path from the device to the destination host, and addressing network traffic latency and throughput problems.

The device generates the list of devices by sending a series of ICMP traceroute packets in which the time-to-live (TTL) value in the messages sent to each successive device is incremented by 1. (The TTL value of the first traceroute packet is set to 1.) In this manner, each device along the path to the destination host replies with a Time Exceeded packet from which the source IP address can be obtained.

To use the traceroute tool:
1. Select Troubleshoot>Traceroute.
2. Next to Advanced options, click the expand icon.
3. Enter information into the Traceroute page (see Table 113 on page 549).
Table 113: Traceroute Field Summary

<table>
<thead>
<tr>
<th>Field</th>
<th>Function</th>
<th>Your Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Host</td>
<td>Identifies the destination host of the traceroute.</td>
<td>Type the hostname or IP address of the destination host.</td>
</tr>
<tr>
<td></td>
<td>The Remote Host field is the only required field.</td>
<td></td>
</tr>
<tr>
<td>Advanced Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Don't Resolve</td>
<td>Determines whether hostnames of the hops along the path are displayed,</td>
<td>• Suppress the display of the hop hostnames by selecting the check box.</td>
</tr>
<tr>
<td>Addresses</td>
<td>in addition to IP addresses.</td>
<td>• Display the hop hostnames by clearing the check box.</td>
</tr>
<tr>
<td>Gateway</td>
<td>Specifies the IP address of the gateway to route through.</td>
<td>Type the gateway IP address.</td>
</tr>
<tr>
<td>Source Address</td>
<td>Specifies the source address of the outgoing traceroute packets.</td>
<td>Type the source IP address.</td>
</tr>
<tr>
<td>Bypass Routing</td>
<td>Determines whether traceroute packets are routed by means of the routing</td>
<td>• Bypass the routing table and send the traceroute packets to hosts on the</td>
</tr>
<tr>
<td></td>
<td>table.</td>
<td>specified interface only by selecting the check box.</td>
</tr>
<tr>
<td></td>
<td>If the routing table is not used, traceroute packets are sent only to</td>
<td>• Route the traceroute packets by means of the routing table by clearing the</td>
</tr>
<tr>
<td></td>
<td>hosts on the interface specified in the Interface box. If the host is not</td>
<td>check box.</td>
</tr>
<tr>
<td></td>
<td>on that interface, traceroute responses are not sent.</td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td>Specifies the interface on which the traceroute packets are sent.</td>
<td>Select the interface on which traceroute packets are sent from the list. If</td>
</tr>
<tr>
<td></td>
<td></td>
<td>you select any, the traceroute requests are sent on all interfaces.</td>
</tr>
<tr>
<td>Time-to-Live</td>
<td>Specifies the maximum time-to-live (TTL) hop count for the traceroute</td>
<td>Select the TTL from the list.</td>
</tr>
<tr>
<td></td>
<td>request packet.</td>
<td></td>
</tr>
<tr>
<td>Type-of-Service</td>
<td>Specifies the type-of-service (TOS) value to include in the IP header of</td>
<td>Select the decimal value of the TOS field from the list.</td>
</tr>
<tr>
<td></td>
<td>the traceroute request packet.</td>
<td></td>
</tr>
<tr>
<td>Resolve AS Numbers</td>
<td>Determines whether the autonomous system (AS) number of each intermediate</td>
<td>• Display the AS numbers by selecting the check box.</td>
</tr>
<tr>
<td></td>
<td>hop between the device and the destination host is displayed.</td>
<td>• Suppress the display of the AS numbers by clearing the check box.</td>
</tr>
</tbody>
</table>

4. **Click Start.**

The results of the traceroute operation are displayed in the main pane. If no options are specified, each line of the traceroute display is in the following format:

```
hop-number host (ip-address) [as-number]time1 time2 time3
```

The device sends a total of three traceroute packets to each router along the path and the round-trip time for each traceroute operation appears. If the device times out
before receiving a **Time Exceeded** message, an asterisk (*) appears for that round-trip time.

5. You can stop the traceroute operation before it is complete by clicking **OK** while the results of the traceroute operation appear.

Related Documentation
- Diagnostic Tools Overview on page 8
- J-Web Traceroute Results and Output Summary on page 550
- Using the J-Web Ping MPLS Tool on page 563
- Using the J-Web Ping Host Tool on page 560
- Using the J-Web Packet Capture Tool on page 594

J-Web Traceroute Results and Output Summary

Supported Platforms
SRX Series, vSRX

Table 114 on page 550 summarizes the output in the traceroute display.

Table 114: J-Web Traceroute Results and Output Summary

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hop-number</td>
<td>Number of the hop (device) along the path.</td>
</tr>
<tr>
<td>host</td>
<td>Hostname, if available, or IP address of the device. If the Don't Resolve Addresses check box is selected, the hostname does not appear.</td>
</tr>
<tr>
<td>ip-address</td>
<td>IP address of the device.</td>
</tr>
<tr>
<td>as-number</td>
<td>AS number of the device.</td>
</tr>
<tr>
<td>time1</td>
<td>Round-trip time between the sending of the first traceroute packet and the receiving of the corresponding Time Exceeded packet from that particular device.</td>
</tr>
<tr>
<td>time2</td>
<td>Round-trip time between the sending of the second traceroute packet and the receiving of the corresponding Time Exceeded packet from that particular device.</td>
</tr>
<tr>
<td>time3</td>
<td>Round-trip time between the sending of the third traceroute packet and the receiving of the corresponding Time Exceeded packet from that particular device.</td>
</tr>
</tbody>
</table>

If the device does not display the complete path to the destination host, one of the following explanations might apply:

- The host is not operational.
- There are network connectivity problems between the device and the host.
- The host, or a router along the path, might be configured to ignore ICMP traceroute messages.
• The host, or a device along the path, might be configured with a firewall filter that blocks ICMP traceroute requests or ICMP time exceeded responses.

• The value you selected in the Time Exceeded box was less than the number of hops in the path to the host. In this case, the host might reply with an ICMP error message.

Related Documentation

- Diagnostic Tools Overview on page 8
- Using the J-Web Traceroute Tool on page 548

Understanding Flow Debugging Using Trace Options

Supported Platforms: SRX Series, vSRX

For flow trace options, you can define a packet filter using combinations of `destination-port`, `destination-prefix`, `interface`, `protocol`, `source-port`, and `source-prefix`. If the security flow trace flag for a certain module is set, the packet matching the specific packet filter triggers flow tracing and writes debugging information to the trace file.

Related Documentation

- Understanding Data Path Debugging for SRX Series Devices on page 537
- Understanding Security Debugging Using Trace Options on page 544
- Setting Flow Debugging Trace Options (CLI Procedure) on page 551
- Debugging the Data Path (CLI Procedure) on page 538

Setting Flow Debugging Trace Options (CLI Procedure)

Supported Platforms: SRX Series

The following examples display the options you can set by using `security flow traceoptions`.

• To match the imap destination port for the filter1 packet filter, use the following statement:

  ```
  [edit]
  user@host# set security flow traceoptions packet-filter filter1 destination-port imap
  ```

• To set the 1.2.3.4 destination IPv4 prefix address for the filter1 packet filter, use the following statement:

  ```
  [edit]
  user@host# set security flow traceoptions packet-filter filter1 destination-prefix 1.2.3.4
  ```

• To set the fxp0 logical interface for the filter1 packet filter, use the following statement:

  ```
  [edit]
  user@host# set security flow traceoptions packet-filter filter1 interface fxp0
  ```

• To match the TCP IP protocol for the filter1 packet filter, use the following statement:

  ```
  [edit]
  user@host# set security flow traceoptions packet-filter filter1 protocol tcp
  ```
To match the HTTP source port for the filter1 packet filter, use the following statement:

```
[edit]
user@host# set security flow traceoptions packet-filter filter1 source-port http
```

To set the 5.6.7.8 IPv4 prefix address for the filter1 packet filter, use the following statement:

```
[edit]
user@host# set security flow traceoptions packet-filter filter1 source-prefix 5.6.7.8
```

Related Documentation
- Understanding Flow Debugging Using Trace Options on page 551

Displaying a List of Devices

Supported Platforms SRX Series, vSRX

To display a list of devices between the device and a specified destination host, enter the `traceroute` command with the following syntax:

```
user@host> traceroute host <interface interface-name> <as-number-lookup> <bypass-routing> <gateway address> <inet | inet6> <no-resolve> <routing-instance routing-instance-name> <source source-address> <tos number> <ttl number> <wait seconds>
```

Table 115 on page 552 describes the `traceroute` command options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>host</code></td>
<td>Sends traceroute packets to the hostname or IP address you specify.</td>
</tr>
<tr>
<td><code>interface interface-name</code></td>
<td>(Optional) Sends the traceroute packets on the interface you specify. If you do not include this option, traceroute packets are sent on all interfaces.</td>
</tr>
<tr>
<td><code>as-number-lookup</code></td>
<td>(Optional) Displays the autonomous system (AS) number of each intermediate hop between the device and the destination host.</td>
</tr>
<tr>
<td><code>bypass-routing</code></td>
<td>(Optional) Bypasses the routing tables and sends the traceroute packets only to hosts on directly attached interfaces. If the host is not on a directly attached interface, an error message is returned. Use this option to display a route to a local system through an interface that has no route through it.</td>
</tr>
<tr>
<td><code>gateway address</code></td>
<td>(Optional) Uses the gateway you specify to route through.</td>
</tr>
<tr>
<td><code>inet</code></td>
<td>(Optional) Forces the traceroute packets to an IPv4 destination.</td>
</tr>
<tr>
<td><code>inet6</code></td>
<td>(Optional) Forces the traceroute packets to an IPv6 destination.</td>
</tr>
<tr>
<td><code>no-resolve</code></td>
<td>(Optional) Suppresses the display of the hostnames of the hops along the path.</td>
</tr>
</tbody>
</table>
Table 115: CLI traceroute Command Options (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>routing-instance</td>
<td>(Optional) Uses the routing instance you specify for the traceroute.</td>
</tr>
<tr>
<td>routing-instance-name</td>
<td></td>
</tr>
<tr>
<td>source address</td>
<td>(Optional) Uses the source address that you specify, in the traceroute packet.</td>
</tr>
<tr>
<td>tos number</td>
<td>(Optional) Sets the type-of-service (TOS) value in the IP header of the traceroute packet. Specify a value from 0 through 255.</td>
</tr>
<tr>
<td>ttl number</td>
<td>(Optional) Sets the time-to-live (TTL) value for the traceroute packet. Specify a hop count from 0 through 128.</td>
</tr>
<tr>
<td>wait seconds</td>
<td>(Optional) Sets the maximum time to wait for a response.</td>
</tr>
</tbody>
</table>

To quit the traceroute command, press Ctrl-C.

The following is sample output from a traceroute command:

```
user@host> traceroute host2

traceroute to 173.24.232.66 (172.24.230.41), 30 hops max, 40 byte packets 1
173.18.42.253 (173.18.42.253) 0.482 ms 0.346 ms 0.318 ms 2 host4.site1.net
(173.18.253.5) 0.401 ms 0.435 ms 0.359 ms 3 host5.site1.net (173.18.253.5)
0.401 ms 0.360 ms 0.357 ms 4 173.24.232.65 (173.24.232.65) 0.420 ms 0.456 ms
0.378 ms 5 173.24.232.66 (173.24.232.66) 0.830 ms 0.779 ms 0.834 ms
```

The fields in the display are the same as those displayed by the J-Web traceroute diagnostic tool.

Related Documentation

• Displaying Log and Trace Files on page 546
CHAPTER 32

Using MPLS to Diagnose LSPs, VPNs, and Layer 2 Circuits

- MPLS Connection Checking Overview on page 555
- Understanding Ping MPLS on page 557
- Using the ping Command on page 558
- Using the J-Web Ping Host Tool on page 560
- J-Web Ping Host Results and Output Summary on page 562
- Using the J-Web Ping MPLS Tool on page 563
- J-Web Ping MPLS Results and Output Summary on page 566
- Pinging Layer 2 Circuits on page 567
- Pinging Layer 2 VPNs on page 568
- Pinging Layer 3 VPNs on page 570
- Pinging RSVP-Signaled LSPs and LDP-Signaled LSPs on page 571

MPLS Connection Checking Overview

Supported Platforms
SRX1500, SRX300, SRX320, SRX340, vSRX

Use either the J-Web ping MPLS diagnostic tool or the CLI commands `ping mpls`, `ping mpls l2circuit`, `ping mpls l2vpn`, and `ping mpls l3vpn` to diagnose the state of label-switched paths (LSPs), Layer 2 and Layer 3 virtual private networks (VPNs), and Layer 2 circuits.

Based on how the LSP or VPN outbound (egress) node at the remote endpoint of the connection replies to the probes, you can determine the connectivity of the LSP or VPN.

Each probe is an echo request sent to the LSP or VPN exit point as an MPLS packet with a UDP payload. If the outbound node receives the echo request, it checks the contents of the probe and returns a value in the UDP payload of the response packet. If the device receives the response packet, it reports a successful ping response.

Responses that take longer than 2 seconds are identified as failed probes.

Table 116 on page 556 summarizes the options for using either the J-Web ping MPLS diagnostic tool or the CLI `ping mpls` command to display information about MPLS connections in VPNs and LSPs.
Table 116: Options for Checking MPLS Connections

<table>
<thead>
<tr>
<th>J-Web Ping MPLS Tool</th>
<th>ping mpls Command</th>
<th>Purpose</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ping RSVP-signaled LSP</td>
<td>ping mpls rsvp</td>
<td>Checks the operability of an LSP that has been set up by the Resource Reservation Protocol (RSVP). The device pings a particular LSP using the configured LSP name.</td>
<td>When an RSVP-signaled LSP has several paths, the device sends the ping requests on the path that is currently active.</td>
</tr>
<tr>
<td>Ping LDP-signaled LSP</td>
<td>ping mpls ldp</td>
<td>Checks the operability of an LSP that has been set up by the Label Distribution Protocol (LDP). The device pings a particular LSP using the forwarding equivalence class (FEC) prefix and length.</td>
<td>When an LDP-signaled LSP has several gateways, the device sends the ping requests through the first gateway. Ping requests sent to LDP-signaled LSPs use only the master routing instance.</td>
</tr>
<tr>
<td>Ping LSP to Layer 3 VPN prefix</td>
<td>ping mpls l3vpn</td>
<td>Checks the operability of the connections related to a Layer 3 VPN. The device tests whether a prefix is present in a provider edge (PE) device's VPN routing and forwarding (VRF) table, by means of a Layer 3 VPN destination prefix.</td>
<td>The device does not test the connection between a PE device and a customer edge (CE) router.</td>
</tr>
<tr>
<td>Locate LSP using interface name</td>
<td>ping mpls l2vpn interface</td>
<td>Checks the operability of the connections related to a Layer 2 VPN. The device directs outgoing request probes out the specified interface.</td>
<td>--</td>
</tr>
<tr>
<td>Instance to which this connection belongs</td>
<td>ping mpls l2vpn instance</td>
<td>Checks the operability of the connections related to a Layer 2 VPN. The device pings on a combination of the Layer 2 VPN routing instance name, the local site identifier, and the remote site identifier, to test the integrity of the Layer 2 VPN circuit (specified by the identifiers) between the inbound and outbound PE routers.</td>
<td>--</td>
</tr>
<tr>
<td>Locate LSP from interface name</td>
<td>ping mpls l2circuit interface</td>
<td>Checks the operability of the Layer 2 circuit connections. The device directs outgoing request probes out the specified interface.</td>
<td>--</td>
</tr>
<tr>
<td>Locate LSP from virtual circuit information</td>
<td>ping mpls l2circuit virtual-circuit</td>
<td>Checks the operability of the Layer 2 circuit connections. The device pings on a combination of the IPv4 prefix and the virtual circuit identifier on the outbound PE router, testing the integrity of the Layer 2 circuit between the inbound and outbound PE routers.</td>
<td>--</td>
</tr>
</tbody>
</table>
Table 116: Options for Checking MPLS Connections (continued)

<table>
<thead>
<tr>
<th>J-Web Ping MPLS Tool</th>
<th>ping mpls Command</th>
<th>Purpose</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ping endpoint of LSP</td>
<td>ping mpls lsp-end-point</td>
<td>Checks the operability of an LSP endpoint. The device pings an LSP endpoint using either an LDP FEC prefix or an RSVP LSP endpoint address.</td>
<td>--</td>
</tr>
</tbody>
</table>

Related Documentation
- Diagnostic Tools Overview on page 8
- Understanding Ping MPLS on page 557
- Using the J-Web Ping Host Tool on page 560
- Using the ping Command on page 558

Understanding Ping MPLS

Supported Platforms
SRX100, SRX110, SRX210, SRX220, SRX240, SRX650

Before using the ping MPLS feature, make sure that the receiving interface on the VPN or LSP remote endpoint has MPLS enabled, and that the loopback interface on the outbound node is configured as 127.0.0.1. The source address for MPLS probes must be a valid address on the J Series device.

This section includes the following topics:
- MPLS Enabled on page 557
- Loopback Address on page 557
- Source Address for Probes on page 558

MPLS Enabled

To process ping MPLS requests, the remote endpoint of the VPN or LSP must be configured appropriately. You must enable MPLS on the receiving interface of the outbound node for the VPN or LSP. If MPLS is not enabled, the remote endpoint drops the incoming request packets and returns an “ICMP host unreachable” message to the J Series device.

Loopback Address

The loopback address (lo0) on the outbound node must be configured as 127.0.0.1. If this interface address is not configured correctly, the outbound node does not have this forwarding entry. It drops the incoming request packets and returns a “host unreachable” message to the J Series device.
Source Address for Probes

The source IP address you specify for a set of probes must be an address configured on one of the J Series device interfaces. If it is not a valid J Series device address, the ping request fails with the error message "Can't assign requested address."

Related Documentation
- Diagnostic Tools Overview on page 8
- MPLS Connection Checking Overview on page 555
- Using the J-Web Ping Host Tool on page 560
- Using the J-Web Ping MPLS Tool on page 563
- Using the ping Command on page 558
- Junos OS Interfaces Configuration Guide for Security Devices
- Junos OS Feature Support Reference for SRX Series and J Series Devices

Using the ping Command

Supported Platforms SRX Series, vSRX

You can perform certain tasks only through the CLI. Use the CLI ping command to verify that a host can be reached over the network. This command is useful for diagnosing host and network connectivity problems. The device sends a series of ICMP echo (ping) requests to a specified host and receives ICMP echo responses.

Enter the ping command with the following syntax:

```
user@host> ping host <interface source-interface> <bypass-routing> <count number> <do-not-fragment> <inet | inet6> <interval seconds> <loose-source [hosts]> <no-resolve> <pattern string> <rapid> <record-route> <routing-instance-routing-instance-name> <size bytes> <source source-address> <strict> <strict-source [hosts]> <tos number> <ttl number> <wait seconds> <detail> <verbose>
```

Table 117 on page 558 describes the ping command options.

To quit the ping command, press Ctrl-C.

Table 117: CLI ping Command Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>host</td>
<td>Pings the hostname or IP address you specify.</td>
</tr>
<tr>
<td>interface source-interface</td>
<td>(Optional) Sends the ping requests on the interface you specify. If you do not include this option, ping requests are sent on all interfaces.</td>
</tr>
<tr>
<td>bypass-routing</td>
<td>(Optional) Bypasses the routing tables and sends the ping requests only to hosts on directly attached interfaces. If the host is not on a directly attached interface, an error message is returned. Use this option to ping a local system through an interface that has no route through it.</td>
</tr>
</tbody>
</table>
Table 117: CLI ping Command Options *(continued)*

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>count number</td>
<td>(Optional) Limits the number of ping requests to send. Specify a count from 1 through 2,000,000,000. If you do not specify a count, ping requests are continuously sent until you press Ctrl-C.</td>
</tr>
<tr>
<td>do-not-fragment</td>
<td>(Optional) Sets the Don't Fragment (DF) bit in the IP header of the ping request packet.</td>
</tr>
<tr>
<td>inet</td>
<td>(Optional) Forces the ping requests to an IPv4 destination.</td>
</tr>
<tr>
<td>inet6</td>
<td>(Optional) Forces the ping requests to an IPv6 destination.</td>
</tr>
<tr>
<td>interval seconds</td>
<td>(Optional) Sets the interval between ping requests, in seconds. Specify an interval from 0.1 through 10,000. The default value is 1 second.</td>
</tr>
<tr>
<td>loose-source [hosts]</td>
<td>(Optional) For IPv4, sets the loose source routing option in the IP header of the ping request packet.</td>
</tr>
<tr>
<td>no-resolve</td>
<td>(Optional) Suppresses the display of the hostnames of the hops along the path.</td>
</tr>
<tr>
<td>pattern string</td>
<td>(Optional) Includes the hexadecimal string you specify, in the ping request packet.</td>
</tr>
<tr>
<td>rapid</td>
<td>(Optional) Sends ping requests rapidly. The results are reported in a single message, not in individual messages for each ping request. By default, five ping requests are sent before the results are reported. To change the number of requests, include the count option.</td>
</tr>
<tr>
<td>record-route</td>
<td>(Optional) For IPv4, sets the record route option in the IP header of the ping request packet. The path of the ping request packet is recorded within the packet and displayed on the screen.</td>
</tr>
<tr>
<td>routing-instance</td>
<td>(Optional) Uses the routing instance you specify for the ping request.</td>
</tr>
<tr>
<td>routing-instance-name</td>
<td>(Optional) Sets the size of the ping request packet. Specify a size from 0 through 65,468. The default value is 56 bytes, which is effectively 64 bytes because 8 bytes of ICMP header data are added to the packet.</td>
</tr>
<tr>
<td>source source-address</td>
<td>(Optional) Uses the source address that you specify, in the ping request packet.</td>
</tr>
<tr>
<td>strict</td>
<td>(Optional) For IPv4, sets the strict source routing option in the IP header of the ping request packet.</td>
</tr>
<tr>
<td>strict-source [hosts]</td>
<td>(Optional) For IPv4, sets the strict source routing option in the IP header of the ping request packet, and uses the list of hosts you specify for routing the packet.</td>
</tr>
<tr>
<td>tos number</td>
<td>(Optional) Sets the type-of-service (TOS) value in the IP header of the ping request packet. Specify a value from 0 through 255.</td>
</tr>
<tr>
<td>ttl number</td>
<td>(Optional) Sets the time-to-live (TTL) value for the ping request packet. Specify a value from 0 through 255.</td>
</tr>
</tbody>
</table>
Table 117: CLI ping Command Options (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wait seconds</td>
<td>(Optional) Sets the maximum time to wait after sending the last ping request packet. If you do not specify this option, the default delay is 10 seconds. If you use this option without the count option, the device uses a default count of 5 packets.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays the interface on which the ping response was received.</td>
</tr>
<tr>
<td>verbose</td>
<td>(Optional) Displays detailed output.</td>
</tr>
</tbody>
</table>

The following is sample output from a ping command:

```
user@host> ping host3 count 4
PING host3.site.net (176.26.232.111): 56 data bytes 64 bytes from 176.26.232.111: icmp_seq=0 ttl=122 time=0.661 ms 64 bytes from 176.26.232.111: icmp_seq=1 ttl=122 time=0.619 ms 64 bytes from 176.26.232.111: icmp_seq=2 ttl=122 time=0.621 ms 64 bytes from 176.26.232.111: icmp_seq=3 ttl=122 time=0.634 ms --- host3.site.net ping statistics --- 4 packets transmitted, 4 packets received, 0% packet loss round-trip min/avg/max/stddev = 0.619/0.634/0.661/0.017 ms
```

The fields in the display are the same as those displayed by the J-Web ping host diagnostic tool.

Related Documentation
- Diagnostic Tools Overview on page 8
- Understanding Ping MPLS on page 557
- Pinging Layer 2 Circuits on page 567
- Pinging Layer 2 VPNs on page 568
- Pinging Layer 3 VPNs on page 570
- Pinging RSVP-Signaled LSPs and LDP-Signaled LSPs on page 571
- Interfaces Feature Guide for Security Devices

Using the J-Web Ping Host Tool

Supported Platforms
SRX Series, vSRX

You can ping a host to verify that the host can be reached over the network. The output is useful for diagnosing host and network connectivity problems. The device sends a series of ICMP echo (ping) requests to a specified host and receives ICMP echo responses.

Alternatively, you can use the CLI ping command. (See “Using the ping Command” on page 558.)

To use the ping host tool:
1. Select **Troubleshoot > Ping Host** from the task bar.

2. Next to **Advanced options**, click the expand icon.

3. Enter information into the **Ping Host page** (see Table 118 on page 561).

Table 118: J-Web Ping Host Field Summary

<table>
<thead>
<tr>
<th>Field</th>
<th>Function</th>
<th>Your Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Host</td>
<td>Identifies the host to ping. This is the only required field.</td>
<td>Type the hostname or IP address of the host to ping.</td>
</tr>
<tr>
<td>Advanced Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Don't Resolve Addresses</td>
<td>Determines whether to display hostnames of the hops along the path.</td>
<td>• Suppress the display of the hop hostnames by selecting the check box.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Display the hop hostnames by clearing the check box.</td>
</tr>
<tr>
<td>Interface</td>
<td>Specifies the interface on which the ping requests are sent.</td>
<td>Select the interface on which ping requests are sent from the list. If you select any, the ping requests are sent on all interfaces.</td>
</tr>
<tr>
<td>Count</td>
<td>Specifies the number of ping requests to send.</td>
<td>Select the number of ping requests to send from the list.</td>
</tr>
<tr>
<td>Don't Fragment</td>
<td>Specifies the Don't Fragment (DF) bit in the IP header of the ping request packet.</td>
<td>• Set the DF bit by selecting the check box.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Clear the DF bit by clearing the check box.</td>
</tr>
<tr>
<td>Record Route</td>
<td>Sets the record route option in the IP header of the ping request packet. The path of the ping request packet is recorded within the packet and displayed in the main pane.</td>
<td>• Record and display the path of the packet by selecting the check box.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Suppress the recording and display of the path of the packet by clearing the check box.</td>
</tr>
<tr>
<td>Type-of-Service</td>
<td>Specifies the type-of-service (TOS) value in the IP header of the ping request packet.</td>
<td>Select the decimal value of the TOS field from the list.</td>
</tr>
<tr>
<td>Routing Instance</td>
<td>Names the routing instance for the ping attempt.</td>
<td>Select the routing instance name from the list.</td>
</tr>
<tr>
<td>Interval</td>
<td>Specifies the interval, in seconds, between the transmission of each ping request.</td>
<td>Select the interval from the list.</td>
</tr>
<tr>
<td>Packet Size</td>
<td>Specifies the size of the ping request packet.</td>
<td>Type the size, in bytes, of the packet. The size can be from 0 through 65,568. The device adds 8 bytes of ICMP header to the size.</td>
</tr>
<tr>
<td>Source Address</td>
<td>Specifies the source address of the ping request packet.</td>
<td>Type the source IP address.</td>
</tr>
<tr>
<td>Time-to-Live</td>
<td>Specifies the time-to-live (TTL) hop count for the ping request packet.</td>
<td>Select the TTL from the list.</td>
</tr>
</tbody>
</table>
Table 118: J-Web Ping Host Field Summary (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Function</th>
<th>Your Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bypass Routing</td>
<td>Determines whether ping requests are routed by means of the routing table.</td>
<td>• Bypass the routing table and send the ping requests to hosts on the specified interface only by selecting the check box.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Route the ping requests using the routing table by clearing the check box.</td>
</tr>
<tr>
<td></td>
<td>If the routing table is not used, ping requests are sent only to hosts on the interface specified in the Interface box. If the host is not on that interface, ping responses are not sent.</td>
<td></td>
</tr>
</tbody>
</table>

4. Click Start.

The results of the ping operation appear in the main pane. If no options are specified, each ping response is in the following format:

`bytes bytes from ip-address: icmp_seq=number ttl=number time=time`

5. You can stop the ping operation before it is complete by clicking OK.

Related Documentation

• Diagnostic Tools Overview on page 8
• Understanding Ping MPLS on page 557
• J-Web Ping Host Results and Output Summary on page 562
• Using the J-Web Traceroute Tool on page 548
• Using the J-Web Ping MPLS Tool on page 563
• Using the J-Web Packet Capture Tool on page 594

J-Web Ping Host Results and Output Summary

Supported Platforms SRX Series, vSRX

Table 119 on page 562 summarizes the output in the ping host display.

Table 119: Ping Host Results and Output

<table>
<thead>
<tr>
<th>Ping Host Result</th>
<th>Description</th>
</tr>
</thead>
</table>
| bytes bytes from ip-address | • `bytes` — Size of ping response packet, which is equal to the value you entered in the Packet Size box, plus 8.
• `ip-address` — IP address of destination host that sent the ping response packet. |
| icmp_seq=0 | `number` — Sequence Number field of the ping response packet. You can use this value to match the ping response to the corresponding ping request. |
| icmp_seq=number | |
| ttl=number | `number` — Time-to-live hop-count value of the ping response packet. |
| number packets transmitted | `number` — Number of ping requests (probes) sent to host. |
Table 119: Ping Host Results and Output (continued)

<table>
<thead>
<tr>
<th>Ping Host Result</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>percentage packet loss</td>
<td>percentage—Number of ping responses divided by the number of ping requests, specified as a percentage.</td>
</tr>
</tbody>
</table>

round-trip min/avg/max/ stddev = min-time/avg-time/max-time/std-dev ms

- *min-time*—Minimum round-trip time (see *time* field in this table).
- *avg-time*—Average round-trip time.
- *max-time*—Maximum round-trip time.
- *std-dev*—Standard deviation of the round-trip times.

If the device does not receive ping responses from the destination host (the output shows a packet loss of 100 percent), one of the following explanations might apply:

- The host is not operational.
- There are network connectivity problems between the device and the host.
- The host might be configured to ignore ICMP echo requests.
- The host might be configured with a firewall filter that blocks ICMP echo requests or ICMP echo responses.
- The size of the ICMP echo request packet exceeds the MTU of a host along the path.
- The value you selected in the Time-to-Live box was less than the number of hops in the path to the host, in which case the host might reply with an ICMP error message.

Related Documentation

- Diagnostic Tools Overview on page 8
- Understanding Ping MPLS on page 557
- Using the J-Web Ping Host Tool on page 560
- Interfaces Feature Guide for Security Devices

Using the J-Web Ping MPLS Tool

Supported Platforms
SRX1500, SRX300, SRX320, SRX340, vSRX

Before using the ping MPLS feature, make sure that the receiving interface on the VPN or LSP remote endpoint has MPLS enabled, and that the loopback interface on the outbound node is configured as 127.0.0.1. The source address for MPLS probes must be a valid address on the device.

To use the ping MPLS tool:

1. Select **Troubleshoot > Ping MPLS** from the task bar.
2. Next to the ping MPLS option you want to use, click the expand icon.
3. Enter information into the Ping MPLS page (see Table 120 on page 564).
Table 120: J-Web Ping MPLS Field Summary

<table>
<thead>
<tr>
<th>Field</th>
<th>Function</th>
<th>Your Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ping RSVP-signaled LSP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSP Name</td>
<td>Identifies the LSP to ping.</td>
<td>Type the name of the LSP to ping.</td>
</tr>
<tr>
<td>Source Address</td>
<td>Specifies the source address of the ping request packet.</td>
<td>Type the source IP address—a valid address configured on a device interface.</td>
</tr>
<tr>
<td>Count</td>
<td>Specifies the number of ping requests to send.</td>
<td>Select the number of ping requests to send from the list. The default is 5 requests.</td>
</tr>
<tr>
<td>Detailed Output</td>
<td>Requests the display of extensive rather than brief ping output.</td>
<td>Select the check box to display detailed output.</td>
</tr>
<tr>
<td>Ping LDP-signaled LSP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEC Prefix</td>
<td>Identifies the LSP to ping.</td>
<td>Type the forwarding equivalence class (FEC) prefix and length of the LSP to ping.</td>
</tr>
<tr>
<td>Source Address</td>
<td>Specifies the source address of the ping request packet.</td>
<td>Type the source IP address—a valid address configured on a device interface.</td>
</tr>
<tr>
<td>Count</td>
<td>Specifies the number of ping requests to send.</td>
<td>Select the number of ping requests to send from the list. The default is 5 requests.</td>
</tr>
<tr>
<td>Detailed Output</td>
<td>Requests the display of extensive rather than brief ping output.</td>
<td>Select the check box to display detailed output.</td>
</tr>
<tr>
<td>Ping LSP to Layer 3 VPN prefix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer 3 VPN Name</td>
<td>Identifies the Layer 3 VPN to ping.</td>
<td>Type the name of the VPN to ping.</td>
</tr>
<tr>
<td>Count</td>
<td>Specifies the number of ping requests to send.</td>
<td>Select the number of ping requests to send from the list. The default is 5 requests.</td>
</tr>
<tr>
<td>Detailed Output</td>
<td>Requests the display of extensive rather than brief ping output.</td>
<td>Select the check box to display detailed output.</td>
</tr>
<tr>
<td>VPN Prefix</td>
<td>Identifies the IP address prefix and length of the Layer 3 VPN to ping.</td>
<td>Type the IP address prefix and length of the VPN to ping.</td>
</tr>
<tr>
<td>Source Address</td>
<td>Specifies the source address of the ping request packet.</td>
<td>Type the source IP address—a valid address configured on a device interface.</td>
</tr>
<tr>
<td>Locate LSP using Interface name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td>Specifies the interface on which the ping requests are sent.</td>
<td>Select the device interface on which ping requests are sent from the list. If you select any, the ping requests are sent on all interfaces.</td>
</tr>
<tr>
<td>Source Address</td>
<td>Specifies the source address of the ping request packet.</td>
<td>Type the source IP address—a valid address configured on a device interface.</td>
</tr>
</tbody>
</table>
Table 120: J-Web Ping MPLS Field Summary (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Function</th>
<th>Your Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>Specifies the number of ping requests to send.</td>
<td>Select the number of ping requests to send from the list. The default is 5 requests.</td>
</tr>
<tr>
<td>Detailed Output</td>
<td>Requests the display of extensive rather than brief ping output.</td>
<td>Select the check box to display detailed output.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instance to which this connection belongs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 2VPN Name</td>
</tr>
<tr>
<td>Remote Site Identifier</td>
</tr>
<tr>
<td>Source Address</td>
</tr>
<tr>
<td>Local Site Identifier</td>
</tr>
<tr>
<td>Count</td>
</tr>
<tr>
<td>Detailed Output</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Locate LSP from interface name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
</tr>
<tr>
<td>Source Address</td>
</tr>
<tr>
<td>Count</td>
</tr>
<tr>
<td>Detailed Output</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Locate LSP from virtual circuit information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Neighbor</td>
</tr>
<tr>
<td>Circuit Identifier</td>
</tr>
<tr>
<td>Source Address</td>
</tr>
</tbody>
</table>

Copyright © 2017, Juniper Networks, Inc.
Table 120: J-Web Ping MPLS Field Summary (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Function</th>
<th>Your Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>Specifies the number of ping requests to send.</td>
<td>Select the number of ping requests to send from the list.</td>
</tr>
<tr>
<td>Detailed Output</td>
<td>Requests the display of extensive rather than brief ping output.</td>
<td>Select the check box to display detailed output.</td>
</tr>
</tbody>
</table>

Ping end point of LSP

<table>
<thead>
<tr>
<th>Field</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPN Prefix</td>
<td>Identifies the LSP endpoint to ping.</td>
<td>Type either the LDP FEC prefix and length or the RSVP LSP endpoint address for the LSP to ping.</td>
</tr>
<tr>
<td>Source Address</td>
<td>Specifies the source address of the ping request packet.</td>
<td>Type the source IP address—a valid address configured on a device interface.</td>
</tr>
<tr>
<td>Count</td>
<td>Specifies the number of ping requests to send.</td>
<td>Select the number of ping requests to send from the list.</td>
</tr>
<tr>
<td>Detailed Output</td>
<td>Requests the display of extensive rather than brief ping output.</td>
<td>Select the check box to display detailed output.</td>
</tr>
</tbody>
</table>

4. **Click Start**.

5. You can stop the ping operation before it is complete by clicking **OK**.

Related Documentation
- Diagnostic Tools Overview on page 8
- Understanding Ping MPLS on page 557
- J-Web Ping MPLS Results and Output Summary on page 566
- Using the J-Web Traceroute Tool on page 548
- Using the J-Web Ping Host Tool on page 560
- Using the J-Web Packet Capture Tool on page 594

J-Web Ping MPLS Results and Output Summary

Supported Platforms

SRX1500, SRX300, SRX320, SRX340, vSRX

Table 121 on page 566 summarizes the output in the ping MPLS display.

Table 121: J-Web Ping MPLS Results and Output Summary

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exclamation point (!)</td>
<td>Echo reply was received.</td>
</tr>
</tbody>
</table>
Table 121: J-Web Ping MPLS Results and Output Summary (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period (.)</td>
<td>Echo reply was not received within the timeout period.</td>
</tr>
<tr>
<td>x</td>
<td>Echo reply was received with an error code. Errored packets are not counted in the received packets count and are accounted for separately.</td>
</tr>
<tr>
<td>number packets transmitted</td>
<td>number—Number of ping requests (probes) sent to a host.</td>
</tr>
<tr>
<td>number packets received</td>
<td>number—Number of ping responses received from a host.</td>
</tr>
<tr>
<td>percentage packet loss</td>
<td>percentage—Number of ping responses divided by the number of ping requests, specified as a percentage.</td>
</tr>
<tr>
<td>time</td>
<td>For Layer 2 circuits only, the number of milliseconds required for the ping packet to reach the destination. This value is approximate, because the packet has to reach the Routing Engine.</td>
</tr>
</tbody>
</table>

If the device does not receive ping responses from the destination host (the output shows a packet loss of 100 percent), one of the following explanations might apply:

- The host is not operational.
- There are network connectivity problems between the device and the host.
- The host might be configured to ignore echo requests.
- The host might be configured with a firewall filter that blocks echo requests or echo responses.
- The size of the echo request packet exceeds the MTU of a host along the path.
- The outbound node at the remote endpoint is not configured to handle MPLS packets.
- The remote endpoint’s loopback address is not configured to 127.0.0.1.

Related Documentation
- Diagnostic Tools Overview on page 8
- Understanding Ping MPLS on page 557
- Using the J-Web Ping MPLS Tool on page 563
- Interfaces Feature Guide for Security Devices

Pinging Layer 2 Circuits

Supported Platforms

SRX1500, SRX300, SRX320, SRX340, vSRX

Enter the `ping mpls l2circuit` command with the following syntax:

```
user@host > ping mpls l2circuit (interface interface-name | virtual-circuit neighbor prefix-name virtual-circuit-id) <exp forwarding-class> <count number> <source source-address> <detail>
```
Table 122 on page 568 describes the `ping mpls l2circuit` command options.

Table 122: CLI ping mpls l2circuit Command Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>l2circuit interface</td>
<td>Sends ping requests out the specified interface configured for the Layer 2 circuit on the outbound PE device.</td>
</tr>
<tr>
<td>interface-name</td>
<td></td>
</tr>
<tr>
<td>l2circuit virtual-circuit</td>
<td>Pings on a combination of the IPv4 prefix and the virtual circuit identifier on the outbound PE device, testing the integrity of the Layer 2 circuit between the inbound and outbound PE devices.</td>
</tr>
<tr>
<td>neighbor prefix-name</td>
<td></td>
</tr>
<tr>
<td>virtual-circuit-id</td>
<td></td>
</tr>
<tr>
<td>exp forwarding-class</td>
<td>(Optional) Specifies the value of the forwarding class to be used in the MPLS ping packets.</td>
</tr>
<tr>
<td>count number</td>
<td>(Optional) Limits the number of ping requests to send. Specify a count from 0 through 1,000,000. The default value is 5. If you do not specify a count, ping requests are continuously sent until you press Ctrl-C.</td>
</tr>
<tr>
<td>source source-address</td>
<td>(Optional) Uses the source address that you specify, in the ping request packet.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays detailed output about the echo requests sent and received. Detailed output includes the MPLS labels used for each request and the return codes for each request.</td>
</tr>
</tbody>
</table>

To quit the `ping mpls l2circuit` command, press Ctrl-C.

The following is sample output from a `ping mpls l2circuit` command:

```
user@host> ping mpls l2circuit interface fe-1/0/0.0
Request for seq 1, to interface 69, labels <100000, 100208>
Reply for seq 1, return code: Egress-ok, time: 0.439 ms
```

The fields in the display are the same as those displayed by the J-Web ping MPLS diagnostic tool.

Related Documentation

- Using the ping Command on page 558
- Understanding Ping MPLS on page 557
- Pinging Layer 2 VPNs on page 568
- Pinging Layer 3 VPNs on page 570
- Pinging RSVP-Signaled LSPs and LDP-Signaled LSPs on page 571
- Using the J-Web Ping Host Tool on page 560

Pinging Layer 2 VPNs

Supported Platforms

SRX1500, SRX300, SRX320, SRX340, vSRX

Enter the `ping mpls l2vpn` command with the following syntax:
user@host> ping mpls l2vpn interface interface-name | instance l2vpn-instance-name local-site-id local-site-id-number remote-site-id remote-site-id-number <bottom-label-ttl> <exp forwarding-class> <count number> <source source-address> <detail>

Table 123 on page 569 describes the ping mpls l2vpn command options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>l2vpn interface interface-name</td>
<td>Sends ping requests out the specified interface configured for the Layer 2 VPN on the outbound (egress) PE device.</td>
</tr>
<tr>
<td>l2vpn instance</td>
<td>Pings on a combination of the Layer 2 VPN routing instance name, the local site identifier, and the remote site identifier, testing the integrity of the Layer 2 VPN circuit (specified by the identifiers) between the inbound (ingress) and outbound PE devices.</td>
</tr>
<tr>
<td>bottom-label-ttl</td>
<td>(Optional) Displays the time-to-live (TTL) value for the bottom label in the MPLS label stack.</td>
</tr>
<tr>
<td>exp forwarding-class</td>
<td>(Optional) Specifies the value of the forwarding class to be used in the MPLS ping packets.</td>
</tr>
<tr>
<td>count number</td>
<td>(Optional) Limits the number of ping requests to send. Specify a count from 0 through 1,000,000. The default value is 5. If you do not specify a count, ping requests are continuously sent until you press Ctrl-C.</td>
</tr>
<tr>
<td>source source-address</td>
<td>(Optional) Uses the source address that you specify, in the ping request packet.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays detailed output about the echo requests sent and received. Detailed output includes the MPLS labels used for each request and the return codes for each request.</td>
</tr>
</tbody>
</table>

To quit the ping mpls l2vpn command, press Ctrl-C.

The following is sample output from a ping mpls l2vpn command:

```
user@host> ping mpls l2vpn instance vpn1 remote-site-id 1 local-site-id 2 detail

Request for seq 1, to interface 68, labels <800001, 100176>
Reply for seq 1, return code: Egress-ok
Request for seq 2, to interface 68, labels <800001, 100176>
Reply for seq 2, return code: Egress-ok
Request for seq 3, to interface 68, labels <800001, 100176>
Reply for seq 3, return code: Egress-ok
Request for seq 4, to interface 68, labels <800001, 100176>
Reply for seq 4, return code: Egress-ok
Request for seq 5, to interface 68, labels <800001, 100176>
Reply for seq 5, return code: Egress-ok

--- lsping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
```
The fields in the display are the same as those displayed by the J-Web ping MPLS diagnostic tool.

Related Documentation
- Using the ping Command on page 558
- Understanding Ping MPLS on page 557
- Pinging Layer 2 Circuits on page 567
- Pinging Layer 3 VPNs on page 570
- Pinging RSVP-Signaled LSPs and LDP-Signaled LSPs on page 571
- Using the J-Web Ping Host Tool on page 560

Pinging Layer 3 VPNs

Supported Platforms
SRX1500, SRX300, SRX320, SRX340, vSRX

Enter the `ping mpls l3vpn` command with the following syntax:

```
user@host> ping mpls l3vpn prefix prefix-name <l3vpn-name> <bottom-label-ttl> <exp forwarding-class> <count number> <source source-address> <detail>
```

Table 124 on page 570 describes the `ping mpls l3vpn` command options.

Table 124: CLI ping mpls l3vpn Command Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>l3vpn prefix prefix-name</td>
<td>Pings the remote host specified by the prefix to verify that the prefix is present in the PE device’s VPN routing and forwarding (VRF) table. This option does not test the connectivity between a PE device and a CE device.</td>
</tr>
<tr>
<td>l3vpn-name</td>
<td>(Optional) Layer 3 VPN name.</td>
</tr>
<tr>
<td>bottom-label-ttl</td>
<td>(Optional) Displays the time-to-live (TTL) value for the bottom label in the MPLS label stack.</td>
</tr>
<tr>
<td>exp forwarding-class</td>
<td>(Optional) Specifies the value of the forwarding class to be used in the MPLS ping packets.</td>
</tr>
<tr>
<td>count number</td>
<td>(Optional) Limits the number of ping requests to send. Specify a count from 0 through 1,000,000. The default value is 5. If you do not specify a count, ping requests are continuously sent until you press Ctrl-C.</td>
</tr>
<tr>
<td>source source-address</td>
<td>(Optional) Uses the source address that you specify, in the ping request packet.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays detailed output about the echo requests sent and received. Detailed output includes the MPLS labels used for each request and the return codes for each request.</td>
</tr>
</tbody>
</table>

To quit the `ping mpls l3vpn` command, press Ctrl-C.

The following is sample output from a `ping mpls l3vpn` command:

```
```
user@host> ping mpls l3vpn vpn1 prefix 10.255.245.122/32

!!!!!
--- lsping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss

The fields in the display are the same as those displayed by the J-Web ping MPLS diagnostic tool.

Related Documentation
- Using the ping Command on page 558
- Understanding Ping MPLS on page 557
- Pinging Layer 2 Circuits on page 567
- Pinging Layer 2 VPNs on page 568
- Pinging RSVP-Signaled LSPs and LDP-Signaled LSPs on page 571
- Using the J-Web Ping Host Tool on page 560

Pinging RSVP-Signaled LSPs and LDP-Signaled LSPs

Supported Platforms SRX1500, SRX300, SRX320, SRX340, vSRX

Enter the `ping mpls` command with the following syntax:

```
user@host> ping mpls (ldp fec | lsp-end-point prefix-name | rsvp lsp-name) <exp forwarding-class> <count number> <source source-address> <detail>
```

Table 125 on page 571 describes the `ping mpls` command options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ldp fec</td>
<td>Pings an LDP-signaled LSP identified by the forwarding equivalence class (FEC) prefix and length.</td>
</tr>
<tr>
<td>lsp-end-point prefix-name</td>
<td>Pings an LSP endpoint using either an LDP FEC or a RSVP LSP endpoint address.</td>
</tr>
<tr>
<td>rsvp lsp-name</td>
<td>Pings an RSVP-signaled LSP identified by the specified LSP name.</td>
</tr>
<tr>
<td>exp forwarding-class</td>
<td>(Optional) Specifies the value of the forwarding class to be used in the MPLS ping packets.</td>
</tr>
<tr>
<td>count number</td>
<td>(Optional) Limits the number of ping requests to send. Specify a count from 0 through 1,000,000. The default value is 5. If you do not specify a count, ping requests are continuously sent until you press Ctrl-C.</td>
</tr>
<tr>
<td>source source-address</td>
<td>(Optional) Uses the source address that you specify, in the ping request packet.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays detailed output about the echo requests sent and received. Detailed output includes the MPLS labels used for each request and the return codes for each request.</td>
</tr>
</tbody>
</table>

To quit the `ping mpls` command, press Ctrl-C.
The following is sample output from a **ping mpls** command:

```
user@host> ping mpls rsvp count 5
!!xxx
--- lsping statistics ---
5 packets transmitted, 2 packets received, 60% packet loss
3 packets received with error status, not counted as received.
```

The fields in the display are the same as those displayed by the J-Web ping MPLS diagnostic tool.

Related Documentation
- Using the ping Command on page 558
- Understanding Ping MPLS on page 557
- Pinging Layer 2 Circuits on page 567
- Pinging Layer 2 VPNs on page 568
- Pinging Layer 3 VPNs on page 570
- Using the J-Web Ping Host Tool on page 560
Using Packet Capture to Analyze Network Traffic

- **Packet Capture Overview** on page 573
- **Example: Enabling Packet Capture on a Device** on page 576
- **Example: Configuring Packet Capture on an Interface** on page 580
- **Example: Configuring a Firewall Filter for Packet Capture** on page 581
- **Example: Configuring Packet Capture for Datapath Debugging** on page 583
- **Disabling Packet Capture** on page 587
- **Deleting Packet Capture Files** on page 587
- **Changing Encapsulation on Interfaces with Packet Capture Configured** on page 588
- **Displaying Packet Headers** on page 589
- **Using the J-Web Packet Capture Tool** on page 594
- **J-Web Packet Capture Results and Output Summary** on page 597

Packet Capture Overview

Supported Platforms

SRX Series, vSRX

Packet capture is a tool that helps you to analyze network traffic and troubleshoot network problems. The packet capture tool captures real-time data packets traveling over the network for monitoring and logging.

NOTE: Packet capture is supported on physical interfaces, reth interfaces, and tunnel interfaces, such as gr, ip, st0, and lsq-/ls.

Packets are captured as binary data, without modification. You can read the packet information offline with a packet analyzer such as Ethereal or tcpdump. If you need to quickly capture packets destined for, or originating from, the Routing Engine and analyze them online, you can use the J-Web packet capture diagnostic tool.
NOTE: The packet capture tool does not support IPv6 packet capture.

You can use either the J-Web configuration editor or CLI configuration editor to configure packet capture.

Network administrators and security engineers use packet capture to perform the following tasks:

- Monitor network traffic and analyze traffic patterns.
- Identify and troubleshoot network problems.
- Detect security breaches in the network, such as unauthorized intrusions, spyware activity, or ping scans.

Packet capture operates like traffic sampling on the device, except that it captures entire packets including the Layer 2 header and saves the contents to a file in libpcap format. Packet capture also captures IP fragments. You cannot enable packet capture and traffic sampling on the device at the same time. Unlike traffic sampling, there are no tracing operations for packet capture.

NOTE: You can enable packet capture and port mirroring simultaneously on a device.

This section contains the following topics:

- Packet Capture on Device Interfaces on page 574
- Firewall Filters for Packet Capture on page 575
- Packet Capture Files on page 575
- Analysis of Packet Capture Files on page 575

Packet Capture on Device Interfaces

Packet capture is supported on the T1, T3, E1, E3, serial, Fast Ethernet, ADSL, G.SHDSL, PPPoE, and ISDN interfaces.

To capture packets on an ISDN interface, configure packet capture on the dialer interface. To capture packets on a PPPoE interface, configure packet capture on the PPPoE logical interface.

Packet capture supports PPP, Cisco HDLC, Frame Relay, and other ATM encapsulations. Packet capture also supports Multilink PPP (MLPPP), Multilink Frame Relay end-to-end (MLFR), and Multilink Frame Relay UNI/NNI (MFR) encapsulations.

You can capture all IPv4 packets flowing on an interface in the inbound or outbound direction. However, on traffic that bypasses the flow software module (protocol packets such as ARP, OSPF, and PIM), packets generated by the Routing Engine are not captured unless you have configured and applied a firewall filter on the interface in the outbound direction.
Tunnel interfaces can support packet capture in the outbound direction only.

Use the J-Web configuration editor or CLI configuration editor to specify the maximum packet size, the filename to be used for storing the captured packets, the maximum file size, the maximum number of packet capture files, and the file permissions.

NOTE: For packets captured on T1, T3, E1, E3, serial, and ISDN interfaces in the outbound (egress) direction, the size of the packet captured might be 1 byte less than the maximum packet size configured because of the packet loss priority (PLP) bit.

To modify encapsulation on an interface that has packet capture configured, you must first disable packet capture.

Firewall Filters for Packet Capture

When you enable packet capture on a device, all packets flowing in the direction specified in packet capture configuration (inbound, outbound, or both) are captured and stored. Configuring an interface to capture all packets might degrade the performance of the device. You can control the number of packets captured on an interface with firewall filters and specify various criteria to capture packets for specific traffic flows.

You must also configure and apply appropriate firewall filters on the interface if you need to capture packets generated by the host device, because interface sampling does not capture packets originating from the host device.

Packet Capture Files

When packet capture is enabled on an interface, the entire packet including the Layer 2 header is captured and stored in a file. You can specify the maximum size of the packet to be captured, up to 1500 bytes. Packet capture creates one file for each physical interface. You can specify the target filename, the maximum size of the file, and the maximum number of files.

File creation and storage take place in the following way. Suppose you name the packet capture file `pcap-file`. Packet capture creates multiple files (one per physical interface), suffixing each file with the name of the physical interface; for example, `pcap-file.fe-0.0.1` for the Fast Ethernet interface `fe-0.0.1`. When the file named `pcap-file.fe-0.0.1` reaches the maximum size, the file is renamed `pcap-file.fe-0.0.1.0`. When the file named `pcap-file.fe-0.0.1.0` reaches the maximum size again, the file named `pcap-file.fe-0.0.1.0` is renamed `pcap-file.fe-0.0.1.1` and `pcap-file.fe-0.0.1` is renamed `pcap-file.fe-0.0.1.0`. This process continues until the maximum number of files is exceeded and the oldest file is overwritten. The `pcap-file.fe-0.0.1` file is always the latest file.

Packet capture files are not removed even after you disable packet capture on an interface.

Analysis of Packet Capture Files

Packet capture files are stored in libpcap format in the `/var/tmp` directory. You can specify user or administrator privileges for the files.
Packet capture files can be opened and analyzed offline with `tcpdump` or any packet analyzer that recognizes the libpcap format. You can also use FTP or the Session Control Protocol (SCP) to transfer the packet capture files to an external device.

NOTE: Disable packet capture before opening the file for analysis or transferring the file to an external device with FTP or SCP. Disabling packet capture ensures that the internal file buffer is flushed and all the captured packets are written to the file.

Example: Enabling Packet Capture on a Device

Supported Platforms
SRX Series, vSRX

This example shows how to enable packet capture on a device, allowing you to analyze network traffic and troubleshoot network problems:

- **Requirements on page 576**
- **Overview on page 576**
- **Configuration on page 577**
- **Verification on page 578**

Requirements

Before you begin:

- Establish basic connectivity.

Overview

In this example, you set the maximum packet capture size in each file as 500 bytes. The range is from 68 through 1500, and the default is 68 bytes. You specify the target filename for the packet capture file as `pcap-file`. You then specify the maximum number of files to capture as 100. The range is from 2 through 10,000, and the default is 10 files. You set the maximum size of each file to 1024 bytes. The range is from 1,024 through 104,857,600, and the default is 512,000 bytes. Finally, you specify that all users have permission to read the packet capture files.
Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

set forwarding-options packet-capture maximum-capture-size 500
set forwarding-options packet-capture file filename pcap-file files 100 size 1024 world-readable

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode.

To enable packet capture on a device:

1. Set the maximum packet capture size.

 [edit]
 user@host# edit forwarding-options
 user@host# set packet-capture maximum-capture-size 500

2. Specify the target filename.

 [edit forwarding-options]
 user@host# set packet-capture file filename pcap-file

3. Specify the maximum number of files to capture.

 [edit forwarding-options]
 user@host# set packet-capture files 100

4. Specify the maximum size of each file.

 [edit forwarding-options]
 user@host# set packet-capture size 1024

5. Specify that all users have permission to read the file.

 [edit forwarding-options]
 user@host# set packet-capture file world-readable

Results

From configuration mode, confirm your configuration by entering the show forwarding-options command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

[edit]
user@host# show forwarding-options
packet-capture {
 file filename pcap-file files 100 size 1k world-readable;
If you are done configuring the device, enter commit from configuration mode.

Verification

Confirm that the configuration is working properly.

- Verifying the Packet Capture Configuration on page 578
- Verifying Captured Packets on page 578

Verifying the Packet Capture Configuration

Purpose
Verify that the packet capture is configured on the device.

Action
From configuration mode, enter the `show forwarding-options` command. Verify that the output shows the intended file configuration for capturing packets.

Verifying Captured Packets

Purpose
Verify that the packet capture file is stored under the `/var/tmp` directory and the packets can be analyzed offline.

Action
1. Disable packet capture.

 Using FTP, transfer a packet capture file (for example, `126b.fe-0.0.1`), to a server where you have installed packet analyzer tools (for example, `tools-server`).

 a. From configuration mode, connect to `tools-server` using FTP.

      ```plaintext
      [edit]
      user@host# run ftp tools-server
      Connected to tools-server.mydomain.net
      220 tools-server.mydomain.net FTP server (Version 6.00LS) ready
      Name (tools-server:root):remoteuser
      331 Password required for remoteuser.
      Password:
      230 User remoteuser logged in.
      Remote system type is UNIX.
      Using binary mode to transfer files.
      ftp>
      ```

 b. Navigate to the directory where packet capture files are stored on the device.

      ```plaintext
      ftp> lcd /var/tmp
      Local directory now /cf/var/tmp
      ```

 c. Copy the packet capture file that you want to analyze to the server, for example `126b.fe-0.0.1`.

   ```plaintext
   ```
ftp> put 126b.fe-0.0.1
local: 126b.fe-0.0.1 remote: 126b.fe-0.0.1
200 PORT command successful.
150 Opening BINARY mode data connection for '126b.fe-0.0.1'.
100% 1476 00:00 ETA
226 Transfer complete.
1476 bytes sent in 0.01 seconds (142.42 KB/s)

d. Return to configuration mode.

 ftp> bye
 221 Goodbye.
 [edit]
 user@host#

2. Open the packet capture file on the server with tcpdump or any packet analyzer that supports libpcap format and review the output.

root@server% tcpdump -r 126b.fe-0.0.1-xevvvv

01:12:36.279769 Out 0:5:85:c4:e3:d1 > 0:5:85:c8:f6:d1, ethertype IPv4 (0x0800),
length 98: (tos 0x0, ttl 64, id 33133, offset 0, flags [none], proto: ICMP (1),
length: 84) 14.1.1.1 > 15.1.1.1: ICMP echo request seq 0, length 64
 0005 85c8 f6d1 0005 85c4 e3d1 0800 4500
 0054 816d 0000 4001 da38 0e01 0101 0f01
 0101 0800 3c5a 981e 0000 8b5d 4543 51e6
 0100 aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa aaaa 0000 0000 0000 0000 0000 0000
 0000 0000 0000 0000 0000 0000 0000 0000
 0000

01:12:36.279793 Out 0:5:85:c8:f6:d1 > 0:5:85:c4:e3:d1, ethertype IPv4 (0x0800),
length 98: (tos 0x0, ttl 63, id 41227, offset 0, flags [none], proto: ICMP (1),
length: 84) 15.1.1.1 > 14.1.1.1: ICMP echo reply seq 0, length 64
 0005 85c4 e3d1 0005 85c8 f6d1 0800 4500
 0054 a10b 0000 3f01 bb9a 0f01 0101 0e01
 0101 0000 445a 981e 0000 8b5d 4543 51e6
 0100 aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa aaaa 0000 0000 0000 0000 0000 0000
 0000 0000 0000 0000 0000 0000 0000 0000
 0000

root@server%

Related Documentation

- Packet Capture Overview on page 573
- Example: Configuring Packet Capture on an Interface on page 580
- Example: Configuring a Firewall Filter for Packet Capture on page 581
- Disabling Packet Capture on page 587
- Deleting Packet Capture Files on page 587
- Disabling Packet Capture on page 587
Example: Configuring Packet Capture on an Interface

Supported Platforms

SRX Series, vSRX

This example shows how to configure packet capture on an interface to analyze traffic.

- Requirements on page 580
- Overview on page 580
- Configuration on page 580
- Verification on page 581

Requirements

Before you begin:

- Establish basic connectivity.

Overview

In this example, you create an interface called fe-0/0/1. You then configure the direction of the traffic for which you are enabling packet capture on the logical interface as inbound and outbound.

NOTE: On traffic that bypasses the flow software module (protocol packets such as ARP, OSPF, and PIM), packets generated by the Routing Engine are not captured unless you have configured and applied a firewall filter on the interface in the output direction.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
edit interfaces fe-0/0/1
set unit 0 family inet sampling input output
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode.

To configure packet capture on an interface:

1. Create an interface.

 [edit]
2. Configure the direction of the traffic.

   ```
   [edit interfaces fe-0/0/1]
   user@host# set unit 0 family inet sampling input output
   ```

3. If you are done configuring the device, commit the configuration.

   ```
   [edit]
   user@host# commit
   ```

Verification

Verifying the Packet Capture Configuration

Purpose
Confirm that the configuration is working properly.
Verify that packet capture is configured on the interface.

Action
From configuration mode, enter the `show interfaces fe-0/0/1` command.

Related Documentation
- Packet Capture Overview on page 573
- Changing Encapsulation on Interfaces with Packet Capture Configured on page 588
- Example: Configuring a Firewall Filter for Packet Capture on page 581
- Example: Enabling Packet Capture on a Device on page 576
- Deleting Packet Capture Files on page 587
- Disabling Packet Capture on page 587

Example: Configuring a Firewall Filter for Packet Capture

Supported Platforms
SRX Series, vSRX

This example shows how to configure a firewall filter for packet capture and apply it to a logical interface.

- Requirements on page 581
- Overview on page 582
- Configuration on page 582
- Verification on page 583

Requirements

Before you begin:
• Establish basic connectivity.

Overview

In this example, you set a firewall filter called dest-all and a term name called dest-term to capture packets from a specific destination address, which is 192.168.1.1/32. You define the match condition to accept the sampled packets. Finally, you apply the dest-all filter to all of the outgoing packets on interface fe-0/0/1.

NOTE: If you apply a firewall filter on the loopback interface, it affects all traffic to and from the Routing Engine. If the firewall filter has a sample action, packets to and from the Routing Engine are sampled. If packet capture is enabled, then packets to and from the Routing Engine are captured in the files created for the input and output interfaces.

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.

```
set firewall filter dest-all term dest-term from destination-address 192.168.1.1/32
set firewall filter dest-all term dest-term then sample accept
edit interfaces
set interfaces fe-0/0/1 unit 0 family inet filter output dest-all
```

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure a firewall filter for packet capture and apply it to a logical interface:

1. Specify the firewall filter and its destination address.

 `[edit]
 user@host# edit firewall
 user@host# set filter dest-all term dest-term from destination-address 192.168.1.1/32

2. Define the match condition and its action.

 `[edit firewall]
 user@host# set filter dest-all term dest-term then sample accept

3. Apply the filter to all the outgoing packets.

 `[edit interfaces]
 user@host# set interfaces fe-0/0/1 unit 0 family inet filter output dest-all
Results From configuration mode, confirm your configuration by entering the `show firewall filter dest-all` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show firewall filter dest-all
term dest-term {
    from {
        destination-address 192.168.1.1/32;
    }
    then {
        sample;
        accept;
    }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

Verification

Verifying the Firewall Filter for Packet Capture Configuration

Purpose Confirm that the configuration is working properly.
Verify that the firewall filter for packet capture is configured.

Action From configuration mode, enter the `show firewall filter dest-all` command. Verify that the output shows the intended configuration of the firewall filter for capturing packets sent to the destination address.

Related Documentation
- Packet Capture Overview on page 573
- Example: Configuring Packet Capture on an Interface on page 580
- Example: Enabling Packet Capture on a Device on page 576
- Deleting Packet Capture Files on page 587
- Disabling Packet Capture on page 587

Example: Configuring Packet Capture for Datapath Debugging

Supported Platforms SRX1500, SRX5400, SRX5600, SRX5800

This example shows how to configure packet capture to monitor traffic that passes through the device. Packet capture then dumps the packets into a PCAP file format that can be later examined by the tcpdump utility.
- Requirements on page 584
- Overview on page 584
Requirements

Before you begin, see “Debugging the Data Path (CLI Procedure)” on page 538.

Overview

A filter is defined to filter traffic; then an action profile is applied to the filtered traffic. The action profile specifies a variety of actions on the processing unit. One of the supported actions is packet dump, which sends the packet to the Routing Engine and stores it in proprietary form to be read using the `show security datapath-debug capture` command.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.

```
set security datapath-debug capture-file my-capture
set security datapath-debug capture-file format pcap
set security datapath-debug capture-file size 1m
set security datapath-debug capture-file files 5
set security datapath-debug maximum-capture-size 400
set security datapath-debug action-profile do-capture event np-ingress packet-dump
set security datapath-debug packet-filter my-filter action-profile do-capture
set security datapath-debug packet-filter my-filter source-prefix 1.2.3.4/32
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure packet capture:

1. Edit the security datapath-debug option for the multiple processing units along the packet-processing path:

   ```
   [edit]
   user@host# edit security datapath-debug
   ```

2. Enable the capture file, the file format, the file size, and the number of files. Size number limits the size of the capture file. After the limit size is reached, if the file number is specified, then the capture file will be rotated to filename x, where x is auto-incremented until it reaches the specified index and then returns to zero. If no files index is specified, the packets will be discarded after the size limit is reached. The default size is 512 kilobytes.

   ```
   [edit security datapath-debug]
   user@host# set capture-file my-capture format pcap size 1m files 5
   ```
user@host# set maximum-capture-size 400

3. Enable action profile and set the event. Set the action profile as do-capture and the event type as np-ingress:

 [edit security datapath-debug]
 user@host# edit action-profile do-capture
 [edit security datapath-debug action-profile do-capture]
 user@host# edit event np-ingress

4. Enable packet dump for the action profile:

 [edit security datapath-debug action-profile do-capture event np-ingress]
 user@host# set packet-dump

5. Enable packet filter, action, and filter options. The packet filter is set to my-filter, the action profile is set to do-capture, and filter option is set to source-prefix 1.2.3.4/32.

 [edit security datapath-debug]
 user@host# set security datapath-debug packet-filter my-filter action-profile do-capture
 [edit security datapath-debug]
 user@host# set security datapath-debug packet-filter my-filter source-prefix 1.2.3.4/32

Results From configuration mode, confirm your configuration by entering the show security datapath-debug command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it. The following is show security datapath-debug output from the show security datapath-debug command:

```
security {
  datapath-debug {
    capture-file {
      my-capture
      format pcap
      size 1m
      files 5;
    }
  }
  maximum-capture-size 100;
  action-profile do-capture {
    event np-ingress {
      packet-dump
    }
  }
  packet-filter my-filter {
    source-prefix 1.2.3.4/32
    action-profile do-capture
  }
}
```
If you are done configuring the device, enter `commit` from configuration mode.

Verification

Confirm that the configuration is working properly.

- Verifying Packet Capture on page 586
- Verifying Data Path Debugging Capture on page 586
- Verifying Data Path Debugging Counter on page 586

Verifying Packet Capture

Purpose

Verify if the packet capture is working.

Action

From operational mode, enter the `request security datapath-debug capture start` command to start packet capture and enter the `request security datapath-debug capture stop` command to stop packet capture.

To view the results, from CLI operational mode, access the local UNIX shell and navigate to the directory `/var/log/my-capture`. The result can be read by using the tcpdump utility.

Verifying Data Path Debugging Capture

Purpose

Verify the details of data path debugging capture file.

Action

From operational mode, enter the `show security datapath-debug capture` command.

```plaintext
user@host> show security datapath-debug capture
```

WARNING: When you are done troubleshooting, make sure to remove or deactivate all the traceoptions configurations (not limited to flow traceoptions) and the complete security datapath-debug configuration stanza. If any debugging configurations remain active, they will continue to use the device’s CPU and memory resources.

Verifying Data Path Debugging Counter

Purpose

Verify the details of the data path debugging counter.

Action

From operational mode, enter the `show security datapath-debug counter` command.

Related Documentation

- Packet Capture Overview on page 573
Disabling Packet Capture

Supported Platforms
SRX Series, vSRX

You must disable packet capture before opening the packet capture file for analysis or transferring the file to an external device. Disabling packet capture ensures that the internal file buffer is flushed and all the captured packets are written to the file.

To disable packet capture, enter from configuration mode:

```
[edit forwarding-options]
user@host# set packet-capture disable
```

If you are done configuring the device, enter `commit` from configuration mode.

Related Documentation

- Packet Capture Overview on page 573
- Example: Configuring Packet Capture on an Interface on page 580
- Example: Configuring a Firewall Filter for Packet Capture on page 581
- Example: Enabling Packet Capture on a Device on page 576
- Deleting Packet Capture Files on page 587

Deleting Packet Capture Files

Supported Platforms
SRX Series, vSRX

Deleting packet capture files from the `/var/tmp` directory only temporarily removes the packet capture files. Packet capture files for the interface are automatically created again the next time a packet capture configuration change is committed or as part of a packet capture file rotation.

To delete a packet capture file:

1. Disable packet capture (see "Disabling Packet Capture" on page 587).

2. Delete the packet capture file for the interface.
 a. From operational mode, access the local UNIX shell.
      ```
      user@host> start shell
      %
      ```
 b. Navigate to the directory where packet capture files are stored.
      ```
      % cd /var/tmp
      %
      ```

4. If you are done configuring the device, enter commit from configuration mode.

Related Documentation
- Packet Capture Overview on page 573
- Example: Configuring Packet Capture on an Interface on page 580
- Example: Configuring a Firewall Filter for Packet Capture on page 581
- Example: Enabling Packet Capture on a Device on page 576
- Changing Encapsulation on Interfaces with Packet Capture Configured on page 588
- Disabling Packet Capture on page 587

Changing Encapsulation on Interfaces with Packet Capture Configured

Supported Platforms
SRX Series, vSRX

Before modifying the encapsulation on a device interface that is configured for packet capture, you must disable packet capture and rename the latest packet capture file. Otherwise, packet capture saves the packets with different encapsulations in the same packet capture file. Packet files containing packets with different encapsulations are not useful, because packet analyzer tools like tcpdump cannot analyze such files.

After modifying the encapsulation, you can safely reenable packet capture on the device.

To change the encapsulation on interfaces with packet capture configured:

1. Disable packet capture (see “Disabling Packet Capture” on page 587).

2. Enter commit from configuration mode.

3. Rename the latest packet capture file on which you are changing the encapsulation with the .chdsi extension.
 a. From operational mode, access the local UNIX shell.

      ```
      user@host> start shell
      ```
b. Navigate to the directory where packet capture files are stored.

 % cd /var/tmp

 %

c. Rename the latest packet capture file for the interface on which you are changing the encapsulation; for example fe.0.0.0.

 % mv pcap-file.fe.0.0.0 pcap-file.fe.0.0.0.chdsl

 %

d. Return to operational mode.

 % exit

 user@host>

4. Change the encapsulation on the interface using the J-Web user interface or CLI configuration editor.

5. If you are done configuring the device, enter commit from configuration mode.

7. If you are done configuring the device, enter commit from configuration mode.

Related Documentation

- Packet Capture Overview on page 573
- Example: Configuring Packet Capture on an Interface on page 580
- Example: Configuring a Firewall Filter for Packet Capture on page 581
- Example: Enabling Packet Capture on a Device on page 576

Displaying Packet Headers

Supported Platforms: SRX Series, vSRX

Enter the monitor traffic command to display packet headers transmitted through network interfaces with the following syntax:

% user@host> monitor traffic <absolute-sequence> <count number> <interface interface-name> <layer2-headers> <matching "expression"> <no-domain-names> <no-promiscuous> <no-resolve> <no-timestamp> <print-ascii> <print-hex> <size bytes> <brief | detail | extensive>

NOTE: Using the monitor traffic command can degrade system performance. We recommend that you use filtering options—such as count and matching—to minimize the impact to packet throughput on the system.
Table 126 on page 590 describes the `monitor traffic` command options.

Table 126: CLI monitor traffic Command Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>absolute-sequence</td>
<td>(Optional) Displays the absolute TCP sequence numbers.</td>
</tr>
<tr>
<td>count number</td>
<td>(Optional) Displays the specified number of packet headers. Specify a value from 0 through 100,000. The command quits and exits to the command prompt after this number is reached.</td>
</tr>
<tr>
<td>interface interface-name</td>
<td>(Optional) Displays packet headers for traffic on the specified interface. If an interface is not specified, the lowest numbered interface is monitored.</td>
</tr>
<tr>
<td>layer2-headers</td>
<td>(Optional) Displays the link-layer packet header on each line.</td>
</tr>
<tr>
<td>matching "expression"</td>
<td>(Optional) Displays packet headers that match an expression enclosed in quotation marks (" "). Table 127 on page 591 through Table 129 on page 593 list match conditions, logical operators, and arithmetic, binary, and relational operators you can use in the expression.</td>
</tr>
<tr>
<td>no-domain-names</td>
<td>(Optional) Suppresses the display of the domain name portion of the hostname.</td>
</tr>
<tr>
<td>no-promiscuous</td>
<td>(Optional) Specifies not to place the monitored interface in promiscuous mode. In promiscuous mode, the interface reads every packet that reaches it. In nonpromiscuous mode, the interface reads only the packets addressed to it.</td>
</tr>
<tr>
<td>no-resolve</td>
<td>(Optional) Suppresses the display of hostnames.</td>
</tr>
<tr>
<td>no-timestamp</td>
<td>(Optional) Suppresses the display of packet header timestamps.</td>
</tr>
<tr>
<td>print-ascii</td>
<td>(Optional) Displays each packet header in ASCII format.</td>
</tr>
<tr>
<td>print-hex</td>
<td>(Optional) Displays each packet header, except link-layer headers, in hexadecimal format.</td>
</tr>
<tr>
<td>size bytes</td>
<td>(Optional) Displays the number of bytes for each packet that you specify. If a packet header exceeds this size, the displayed packet header is truncated. The default value is 96.</td>
</tr>
<tr>
<td>brief</td>
<td>(Optional) Displays minimum packet header information. This is the default.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays packet header information in moderate detail. For some protocols, you must also use the <code>size</code> option to see detailed information.</td>
</tr>
</tbody>
</table>
Table 126: CLI monitor traffic Command Options (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>extensive (Optional) Displaysthemostextensiveliveofpacketheaderinformation. Forsomeprotocols, youmustalsousethesizeoption toseeextensiveinformation.</td>
<td></td>
</tr>
</tbody>
</table>

To quit the monitor traffic command and return to the command prompt, press Ctrl-C.

To limit the packet header information displayed by the monitor traffic command, include the matching "expression" option. An expression consists of one or more match conditions listed in Table 127 on page 591, enclosed in quotation marks (' '). You can combine match conditions by using the logical operators listed in Table 128 on page 593 (shown in order of highest to lowest precedence).

For example, to display TCP or UDP packet headers, enter:

```
user@host> monitor traffic matching "tcp || udp"
```

To compare the following types of expressions, use the relational operators listed in Table 129 on page 593 (listed from highest to lowest precedence):

- Arithmetic—Expressions that use the arithmetic operators listed in Table 129 on page 593.
- Binary—Expressions that use the binary operators listed in Table 129 on page 593.
- Packet data accessor—Expressions that use the following syntax:

  ```
  protocol [byte-offset <size>]
  ```

Replace protocol with any protocol in Table 127 on page 591. Replace byte-offset with the byte offset, from the beginning of the packet header, to use for the comparison. The optional size parameter represents the number of bytes examined in the packet header—1, 2, or 4 bytes.

For example, the following command displays all multicast traffic:

```
user@host> monitor traffic matching "ether[0] &1!=0"
```

Table 127: CLI monitor traffic Match Conditions

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host</td>
<td>Matches packet headers that contain the specified address or hostname. You can preprend any of the following protocol match conditions, followed by a space, to host: arp, ip, rarp, or any of the Directional match conditions.</td>
</tr>
<tr>
<td>Network address</td>
<td>Matches packet headers with source or destination addresses containing the specified network address.</td>
</tr>
<tr>
<td>Network address mask mask</td>
<td>Matches packet headers containing the specified network address and subnet mask.</td>
</tr>
<tr>
<td>Port</td>
<td>Matches packet headers containing the specified source or destination TCP or UDP port number or port name.</td>
</tr>
</tbody>
</table>
Table 127: CLI monitor traffic Match Conditions (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directional</td>
<td></td>
</tr>
<tr>
<td>destination</td>
<td>Matches packet headers containing the specified destination. Directional match conditions can be prepended to any Entity Type match conditions, followed by a space.</td>
</tr>
<tr>
<td>source</td>
<td>Matches packet headers containing the specified source.</td>
</tr>
<tr>
<td>source and destination</td>
<td>Matches packet headers containing the specified source and destination.</td>
</tr>
<tr>
<td>source or destination</td>
<td>Matches packet headers containing the specified source or destination.</td>
</tr>
<tr>
<td>Packet Length</td>
<td></td>
</tr>
<tr>
<td>less bytes</td>
<td>Matches packets with lengths less than or equal to the specified value, in bytes.</td>
</tr>
<tr>
<td>greater bytes</td>
<td>Matches packets with lengths greater than or equal to the specified value, in bytes.</td>
</tr>
<tr>
<td>Protocol</td>
<td></td>
</tr>
<tr>
<td>arp</td>
<td>Matches all ARP packets.</td>
</tr>
<tr>
<td>ether</td>
<td>Matches all Ethernet frames.</td>
</tr>
<tr>
<td>ether [broadcast</td>
<td>multicast]</td>
</tr>
<tr>
<td>ether protocol [address</td>
<td>(\arp</td>
</tr>
<tr>
<td>icmp</td>
<td>Matches all ICMP packets.</td>
</tr>
<tr>
<td>ip</td>
<td>Matches all IP packets.</td>
</tr>
<tr>
<td>ip [broadcast</td>
<td>multicast]</td>
</tr>
<tr>
<td>ip protocol [address</td>
<td>(\icmp</td>
</tr>
<tr>
<td>isis</td>
<td>Matches all IS-IS routing messages.</td>
</tr>
<tr>
<td>rarp</td>
<td>Matches all RARP packets.</td>
</tr>
<tr>
<td>tcp</td>
<td>Matches all TCP packets.</td>
</tr>
<tr>
<td>udp</td>
<td>Matches all UDP packets.</td>
</tr>
</tbody>
</table>
Table 128: CLI monitor traffic Logical Operators

<table>
<thead>
<tr>
<th>Logical Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Logical NOT. If the first condition does not match, the next condition is evaluated.</td>
</tr>
<tr>
<td>&&</td>
<td>Logical AND. If the first condition matches, the next condition is evaluated. If the first condition does not match, the next condition is skipped.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>()</td>
<td>Group operators to override default precedence order. Parentheses are special characters, each of which must be preceded by a backslash ().</td>
</tr>
</tbody>
</table>

Table 129: CLI monitor traffic Arithmetic, Binary, and Relational Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic Operator</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>Addition operator.</td>
</tr>
<tr>
<td>–</td>
<td>Subtraction operator.</td>
</tr>
<tr>
<td>/</td>
<td>Division operator.</td>
</tr>
<tr>
<td>Binary Operator</td>
<td></td>
</tr>
<tr>
<td>&</td>
<td>Bitwise AND.</td>
</tr>
<tr>
<td>*</td>
<td>Bitwise exclusive OR.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Relational Operator</td>
<td></td>
</tr>
<tr>
<td><=</td>
<td>A match occurs if the first expression is less than or equal to the second.</td>
</tr>
<tr>
<td>>=</td>
<td>A match occurs if the first expression is greater than or equal to the second.</td>
</tr>
<tr>
<td><</td>
<td>A match occurs if the first expression is less than the second.</td>
</tr>
<tr>
<td>></td>
<td>A match occurs if the first expression is greater than the second.</td>
</tr>
<tr>
<td>=</td>
<td>A match occurs if the first expression is equal to the second.</td>
</tr>
<tr>
<td>!=</td>
<td>A match occurs if the first expression is not equal to the second.</td>
</tr>
</tbody>
</table>

The following is sample output from the `monitor traffic` command:
user@host> monitor traffic count 4 matching "arp" detail

Listening on fe-0/0/0, capture size 96 bytes 15:04:16.276780 In arp who-has 193.1.1.1 tell host1.site2.net 15:04:16.376848 In arp who-has host2.site2.net tell host1.site2.net 15:04:16.376887 In arp who-has 193.1.1.2 tell host1.site2.net 15:04:16.601923 In arp who-has 193.1.1.3 tell host1.site2.net

Related Documentation
- Packet Capture Overview on page 573
- Using the J-Web Packet Capture Tool on page 594
- Changing Encapsulation on Interfaces with Packet Capture Configured on page 588
- Example: Configuring Packet Capture on an Interface on page 580

Using the J-Web Packet Capture Tool

Supported Platforms SRX Series, vSRX

You can use the J-Web packet capture diagnostic tool when you need to quickly capture and analyze router control traffic on a device. Packet capture on the J-Web user interface allows you to capture traffic destined for, or originating from, the Routing Engine. You can use the J-Web packet capture tool to compose expressions with various matching criteria to specify the packets that you want to capture. You can either choose to decode and view the captured packets in the J-Web user interface as they are captured, or save the captured packets to a file and analyze them offline using packet analyzers such as Ethereal. The J-Web packet capture tool does not capture transient traffic.

To capture transient traffic and entire IPv4 data packets for offline analysis, you must configure packet capture with the J-Web user interface or CLI configuration editor.

To use J-Web packet capture:

1. Select Troubleshoot > Packet Capture.

2. Enter information into the Packet Capture page (see Table 130 on page 595). The sample configuration captures the next 10 TCP packets originating from the IP address 10.1.40.48 on port 23 and passing through the Gigabit Ethernet interface ge-0/0/0.

3. Save the captured packets to a file, or specify other advanced options by clicking the expand icon next to Advanced options.

4. Click Start.

The captured packet headers are decoded and appear in the Packet Capture display.

5. Do one of the following:
 - To stop capturing the packets and stay on the same page while the decoded packet headers are being displayed, click Stop Capturing.
To stop capturing packets and return to the Packet Capture page, click **OK**.

Table 130: Packet Capture Field Summary

<table>
<thead>
<tr>
<th>Field</th>
<th>Function</th>
<th>Your Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Specifies the interface on which the packets are captured.</td>
<td>Select an interface from the list—for example, ge-0/0/0.</td>
</tr>
<tr>
<td></td>
<td>If you select default, packets on the Ethernet management port 0 are captured.</td>
<td></td>
</tr>
<tr>
<td>Detail level</td>
<td>Specifies the extent of details to be displayed for the packet headers.</td>
<td>Select Detail from the list.</td>
</tr>
<tr>
<td></td>
<td>• Brief—Displays the minimum packet header information. This is the default.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Detail—Displays packet header information in moderate detail.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Extensive—Displays the maximum packet header information.</td>
<td></td>
</tr>
<tr>
<td>Packets</td>
<td>Specifies the number of packets to be captured. Values range from 1 to 1000. Default is 10. Packet capture stops capturing packets after this number is reached.</td>
<td>Select the number of packets to be captured from the list—for example, 10.</td>
</tr>
<tr>
<td>Addresses</td>
<td>Specifies the addresses to be matched for capturing the packets using a combination of the following parameters:</td>
<td>Select address-matching criteria. For example:</td>
</tr>
<tr>
<td></td>
<td>• Direction—Matches the packet headers for IP address, hostname, or network address of the source, destination or both.</td>
<td>1. From the Direction list, select source.</td>
</tr>
<tr>
<td></td>
<td>• Type—Specifies if packet headers are matched for host address or network address.</td>
<td>2. From the Type list, select host.</td>
</tr>
<tr>
<td></td>
<td>You can add multiple entries to refine the match criteria for addresses.</td>
<td>3. In the Address box, type 10.1.40.48.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Click Add.</td>
</tr>
<tr>
<td>Protocols</td>
<td>Matches the protocol for which packets are captured. You can choose to capture TCP, UDP, or ICMP packets or a combination of TCP, UDP, and ICMP packets.</td>
<td>Select a protocol from the list—for example, tcp.</td>
</tr>
<tr>
<td>Ports</td>
<td>Matches packet headers containing the specified source or destination TCP or UDP port number or port name.</td>
<td>Select a direction and a port. For example:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. From the Type list, select src.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. In the Port box, type 23.</td>
</tr>
</tbody>
</table>
Table 130: Packet Capture Field Summary (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Function</th>
<th>Your Action</th>
</tr>
</thead>
</table>
| Absolute TCP Sequence | Specifies that absolute TCP sequence numbers are to be displayed for the packet headers. | • Display absolute TCP sequence numbers in the packet headers by selecting this check box.
| | | • Stop displaying absolute TCP sequence numbers in the packet headers by clearing this check box. |
| Layer 2 Headers | Specifies that link-layer packet headers to display. | • Include link-layer packet headers while capturing packets, by selecting this check box.
| | | • Exclude link-layer packet headers while capturing packets by clearing this check box. |
| Non-Promiscuous | Specifies not to place the interface in promiscuous mode, so that the interface reads only packets addressed to it. | • Read all packets that reach the interface by selecting this check box.
| | In promiscuous mode, the interface reads every packet that reaches it. | • Read only packets addressed to the interface by clearing this check box. |
| Display Hex | Specifies that packet headers, except link-layer headers, are to be displayed in hexadecimal format. | • Display the packet headers in hexadecimal format by selecting this check box.
| | | • Stop displaying the packet headers in hexadecimal format by clearing this check box. |
| Display ASCII and Hex | Specifies that packet headers are to be displayed in hexadecimal and ASCII format. | • Display the packet headers in ASCII and hexadecimal formats by selecting this check box.
| | | • Stop displaying the packet headers in ASCII and hexadecimal formats by clearing this check box. |
| Header Expression | Specifies the match condition for the packets to capture. | Enter match conditions in expression format or modify the expression composed from the match conditions you specified for Addresses, Protocols, and Ports. If you change the match conditions specified for Addresses, Protocols, and Ports again, packet capture overwrites your changes with the new match conditions. |
| | The match conditions you specify for Addresses, Protocols, and Ports appear in expression format in this field. | |
| Packet Size | Specifies the number of bytes to be displayed for each packet. If a packet header exceeds this size, the display is truncated for the packet header. The default value is 96 bytes. | Type the number of bytes you want to capture for each packet header—for example, 256. |
| Don't Resolve Addresses| Specifies that IP addresses are not to be resolved into hostnames in the packet headers displayed. | • Prevent packet capture from resolving IP addresses to hostnames by selecting this check box.
| | | • Resolve IP addresses into hostnames by clearing this check box. |
| No Timestamp | Suppresses the display of packet header timestamps. | • Stop displaying timestamps in the captured packet headers by selecting this check box.
| | | • Display the timestamp in the captured packet headers by clearing this check box. |
Table 130: Packet Capture Field Summary (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Function</th>
<th>Your Action</th>
</tr>
</thead>
</table>
| Write Packet Capture File | Writes the captured packets to a file in PCAP format in /var/tmp. The files are named with the prefix jweb-pcap and the extension .pcap. | • Save the captured packet headers to a file by selecting this check box.
• Decode and display the packet headers on the J-Web page by clearing this check box. |

Related Documentation

• Packet Capture Overview on page 573
• Diagnostic Tools Overview on page 8
• J-Web Packet Capture Results and Output Summary on page 597
• Using the J-Web Ping MPLS Tool on page 563
• Using the J-Web Ping Host Tool on page 560
• Using the J-Web Traceroute Tool on page 548

J-Web Packet Capture Results and Output Summary

Supported Platforms SRX Series, vSRX

Table 131 on page 597 summarizes the output in the packet capture display.

Table 131: J-Web Packet Capture Results and Output Summary

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timestamp</td>
<td>Time when the packet was captured. The timestamp 00:45:40.823971 means 00 hours (12.00 a.m.), 45 minutes, and 40.823971 seconds.</td>
</tr>
<tr>
<td></td>
<td>NOTE: The time displayed is local time.</td>
</tr>
<tr>
<td>direction</td>
<td>Direction of the packet. Specifies whether the packet originated from the Routing Engine (Out), or was destined for the Routing Engine (In).</td>
</tr>
<tr>
<td>protocol</td>
<td>Protocol for the packet.</td>
</tr>
<tr>
<td>source address</td>
<td>Hostname, if available, or IP address and the port number of the packet’s origin. If the Don’t Resolve Addresses check box is selected, only the IP address of the source displays.</td>
</tr>
<tr>
<td></td>
<td>NOTE: When a string is defined for the port, the packet capture output displays the string instead of the port number.</td>
</tr>
<tr>
<td>destination address</td>
<td>Hostname, if available, or IP address of the packet’s destination with the port number. If the Don’t Resolve Addresses check box is selected, only the IP address of the destination and the port appear.</td>
</tr>
<tr>
<td></td>
<td>NOTE: When a string is defined for the port, the packet capture output displays the string instead of the port number.</td>
</tr>
</tbody>
</table>
Table 131: J-Web Packet Capture Results and Output Summary (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>protocol</td>
<td>Protocol for the packet.</td>
</tr>
<tr>
<td></td>
<td>In the sample output, TCP indicates the Layer 4 protocol.</td>
</tr>
<tr>
<td>data size</td>
<td>Size of the packet (in bytes).</td>
</tr>
</tbody>
</table>

Related Documentation
- Packet Capture Overview on page 573
- Diagnostic Tools Overview on page 8
- Using the J-Web Packet Capture Tool on page 594
 CHAPTER 34

Troubleshooting Security Devices

- Recovering the Root Password for SRX Series Devices on page 599
- Troubleshooting DNS Name Resolution in Logical System Security Policies (Master Administrators Only) on page 601
- Troubleshooting the Link Services Interface on page 601
- Troubleshooting Security Policies on page 612
- Understanding Log Error Messages for Troubleshooting ISSU-Related Problems on page 614

Recovering the Root Password for SRX Series Devices

Supported Platforms

SRX Series, vSRX

If you forget the root password for an SRX Series device, you can use the password recovery procedure to reset the root password. This procedure also involves disabling the watchdog functionality to allow the system to properly boot into single-user mode (KB article 17565).

NOTE: You need console access to recover the root password

To recover the root password for an SRX Series device:

1. Power on the device by pressing the power button on the front panel. Verify that the **POWER** LED on the front panel turns green.
 The device’s boot sequence on your management device appears on the terminal emulation screen.

2. When the autoboot completes, press the Spacebar a few times to access the bootstrap loader prompt.

3. In operational mode, disable the watchdog functionality and enter `boot -s` to start up the system in single-user mode.

 `loader>boot -s`
NOTE: For SRX1500 Series device, the following prompt appears instead of loader prompt.

OK boot -s.

The SRX Series device will start up in single-user mode.

4. Enter `recovery` to start the root password recovery procedure.

 System watchdog timer disabled.
 Enter full pathname of shell or 'recovery' for root password recovery or RETURN for
 /bin/sh: recovery

5. Enter configuration mode in the CLI.

6. Set the root password.

 [edit]
 user@host# set system root-authentication plain-text-password

7. Enter the new root password.

 New password: juniper1
 Retype new password:

8. At the second prompt, reenter the new root password.

9. If you are finished configuring the network, commit the configuration.

 root@host# commit
 commit complete

10. Exit from configuration mode.

11. Exit from operational mode.

12. Enter `y` to reboot the device.

 Reboot the system? [y/n] y
 The start up messages display on the screen.

13. Once again, press the Spacebar a few times to access the bootstrap loader prompt.

14. In operational mode, enable the watchdog functionality and enter `boot` to start up
 the system.

 loader>watchdog enable
 loader>boot
15. The SRX Series device starts up again and prompts you to enter a user name and password. Enter the newly configured password:

 Wed Jul 12 14:20:21 UTC 2011
 Deviceabc (ttyu0)
 login: root
 Password: juniper1

Troubleshooting DNS Name Resolution in Logical System Security Policies (Master Administrators Only)

Supported Platforms

- SRX5400, SRX5600, SRX5800, vSRX

Problem Description:

The address of a hostname in an address book entry that is used in a security policy might fail to resolve correctly.

Cause

Normally, address book entries that contain dynamic hostnames refresh automatically for SRX Series devices. The TTL field associated with a DNS entry indicates the time after which the entry should be refreshed in the policy cache. Once the TTL value expires, the SRX Series device automatically refreshes the DNS entry for an address book entry.

However, if the SRX Series device is unable to obtain a response from the DNS server (for example, the DNS request or response packet is lost in the network or the DNS server cannot send a response), the address of a hostname in an address book entry might fail to resolve correctly. This can cause traffic to drop as no security policy or session match is found.

Solution

The master administrator can use the `show security dns-cache` command to display DNS cache information on the SRX Series device. If the DNS cache information needs to be refreshed, the master administrator can use the `clear security dns-cache` command.

Related Documentation

- System Log Messages
- Troubleshooting the Link Services Interface
- Understanding Logical System Security Policies

NOTE:

These commands are only available to the master administrator on devices that are configured for logical systems. This command is not available in user logical systems or on devices that are not configured for logical systems.

NOTE: Starting with Junos OS Release 15.1X49-D10 and Junos OS Release 17.3R1, link services interfaces are no longer supported on SRX300, SRX320, SRX340, and SRX1500 devices.

To solve configuration problems on a link services interface:

- Determine Which CoS Components Are Applied to the Constituent Links on page 602
- Determine What Causes Jitter and Latency on the Multilink Bundle on page 603
- Determine If LFI and Load Balancing Are Working Correctly on page 604
- Determine Why Packets Are Dropped on a PVC Between a Juniper Networks Device and a Third-Party Device on page 611

Determine Which CoS Components Are Applied to the Constituent Links

Supported Platforms: SRX1500, SRX300, SRX320, SRX340, vSRX

Problem Description: You are configuring a multilink bundle, but you also have traffic without MLPPP encapsulation passing through constituent links of the multilink bundle. Do you apply all CoS components to the constituent links, or is applying them to the multilink bundle enough?

Solution: You can apply a scheduler map to the multilink bundle and its constituent links. Although you can apply several CoS components with the scheduler map, configure only the ones that are required. We recommend that you keep the configuration on the constituent links simple to avoid unnecessary delay in transmission.

Table 132 on page 602 shows the CoS components to be applied on a multilink bundle and its constituent links.

Table 132: CoS Components Applied on Multilink Bundles and Constituent Links

<table>
<thead>
<tr>
<th>Cos Component</th>
<th>Multilink Bundle</th>
<th>Constituent Links</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classifier</td>
<td>Yes</td>
<td>No</td>
<td>CoS classification takes place on the incoming side of the interface, not on the transmitting side, so no classifiers are needed on constituent links.</td>
</tr>
<tr>
<td>Forwarding class</td>
<td>Yes</td>
<td>No</td>
<td>Forwarding class is associated with a queue, and the queue is applied to the interface by a scheduler map. The queue assignment is predetermined on the constituent links. All packets from Q2 of the multilink bundle are assigned to Q2 of the constituent link, and packets from all the other queues are queued to Q0 of the constituent link.</td>
</tr>
</tbody>
</table>
Table 132: CoS Components Applied on Multilink Bundles and Constituent Links (continued)

<table>
<thead>
<tr>
<th>Cos Component</th>
<th>Multilink Bundle</th>
<th>Constituent Links</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduler map</td>
<td>Yes</td>
<td>Yes</td>
<td>Apply scheduler maps on the multilink bundle and the constituent link as follows:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Transmit rate—Make sure that the relative order of the transmit rate configured on Q0 and Q2 is the same on the constituent links as on the multilink bundle.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Scheduler priority—Make sure that the relative order of the scheduler priority configured on Q0 and Q2 is the same on the constituent links as on the multilink bundle.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Buffer size—Because all non-LFI packets from the multilink bundle transit on Q0 of the constituent links, make sure that the buffer size on Q0 of the constituent links is large enough.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• RED drop profile—Configure a RED drop profile on the multilink bundle only. Configuring the RED drop profile on the constituent links applies a back pressure mechanism that changes the buffer size and introduces variation. Because this behavior might cause fragment drops on the constituent links, make sure to leave the RED drop profile at the default settings on the constituent links.</td>
</tr>
<tr>
<td>Shaping rate for a per-unit scheduler or an interface-level scheduler</td>
<td>No</td>
<td>Yes</td>
<td>Because per-unit scheduling is applied only at the end point, apply this shaping rate to the constituent links only. Any configuration applied earlier is overwritten by the constituent link configuration.</td>
</tr>
<tr>
<td>Transmit-rate exact or queue-level shaping</td>
<td>Yes</td>
<td>No</td>
<td>The interface-level shaping applied on the constituent links overrides any shaping on the queue. Thus apply transmit-rate exact shaping on the multilink bundle only.</td>
</tr>
<tr>
<td>Rewrite rules</td>
<td>Yes</td>
<td>No</td>
<td>Rewrite bits are copied from the packet into the fragments automatically during fragmentation. Thus what you configure on the multilink bundle is carried on the fragments to the constituent links.</td>
</tr>
<tr>
<td>Virtual channel group</td>
<td>Yes</td>
<td>No</td>
<td>Virtual channel groups are identified through firewall filter rules that are applied on packets only before the multilink bundle. Thus you do not need to apply the virtual channel group configuration to the constituent links.</td>
</tr>
</tbody>
</table>

Determine What Causes Jitter and Latency on the Multilink Bundle

Supported Platforms
SRX1500, SRX300, SRX320, SRX340, vSRX

Problem
Description: To test jitter and latency, you send three streams of IP packets. All packets have the same IP precedence settings. After configuring LFI and CRTP, the latency increased even over a noncongested link. How can you reduce jitter and latency?
Solution To reduce jitter and latency, do the following:

1. Make sure that you have configured a shaping rate on each constituent link.

2. Make sure that you have not configured a shaping rate on the link services interface.

3. Make sure that the configured shaping rate value is equal to the physical interface bandwidth.

4. If shaping rates are configured correctly, and jitter still persists, contact the Juniper Networks Technical Assistance Center (JTAC).

Determine If LFI and Load Balancing Are Working Correctly

Supported Platforms SRX1500, SRX300, SRX320, SRX340, vSRX

Problem Description: In this case, you have a single network that supports multiple services. The network transmits data and delay-sensitive voice traffic. After configuring MLPPP and LFI, make sure that voice packets are transmitted across the network with very little delay and jitter. How can you find out if voice packets are being treated as LFI packets and load balancing is performed correctly?

Solution When LFI is enabled, data (non-LFI) packets are encapsulated with an MLPPP header and fragmented to packets of a specified size. The delay-sensitive, voice (LFI) packets are PPP-encapsulated and interleaved between data packet fragments. Queuing and load balancing are performed differently for LFI and non-LFI packets.

To verify that LFI is performed correctly, determine that packets are fragmented and encapsulated as configured. After you know whether a packet is treated as an LFI packet or a non-LFI packet, you can confirm whether the load balancing is performed correctly.

Solution Scenario—Suppose two Juniper Networks devices, R0 and R1, are connected by a multilink bundle lsq-0/0/0.0 that aggregates two serial links, se-1/0/0 and se-1/0/1. On R0 and R1, MLPPP and LFI are enabled on the link services interface and the fragmentation threshold is set to 128 bytes.

In this example, we used a packet generator to generate voice and data streams. You can use the packet capture feature to capture and analyze the packets on the incoming interface.

The following two data streams were sent on the multilink bundle:

- 100 data packets of 200 bytes (larger than the fragmentation threshold)
- 500 data packets of 60 bytes (smaller than the fragmentation threshold)

The following two voice streams were sent on the multilink bundle:

- 100 voice packets of 200 bytes from source port 100
• 300 voice packets of 200 bytes from source port 200
To confirm that LFI and load balancing are performed correctly:

NOTE: Only the significant portions of command output are displayed and described in this example.

1. Verify packet fragmentation. From operational mode, enter the `show interfaces lsq-0/0/0` command to check that large packets are fragmented correctly.

```
user@R0#> show interfaces lsq-0/0/0
Physical interface: lsq-0/0/0, Enabled, Physical link is Up
Interface index: 136, SNMP ifIndex: 29
Link-level type: LinkService, MTU: 1504
Device flags   : Present Running
Interface flags: Point-To-Point SNMP-Traps
Last flapped   : 2006-08-01 10:45:13 PDT (2w0d 06:06 ago)
Input rate     : 0 bps (0 pps)
Output rate    : 0 bps (0 pps)

Logical interface lsq-0/0/0.0 (Index 69) (SNMP ifIndex 42)
Flags: Point-To-Point SNMP-Traps 0x4000 Encapsulation: Multilink-PPP
Bandwidth: 16mbps
Statistics         Frames      fps       Bytes        bps
Bundle:             
Fragments:          
Input :            0 0 0 0 0
Output:            1100 0 118800 0
Packets:            
Input :             0 0 0 0
Output:            1000 0 112000 0

Protocol inet, MTU: 1500
Flags: None
Addresses, Flags: Is-Preferred Is-Primary
Destination: 9.9.9/24, Local: 9.9.9.10
```

Meaning—The output shows a summary of packets transiting the device on the multilink bundle. Verify the following information on the multilink bundle:

- The total number of transiting packets = 1000
- The total number of transiting fragments = 1100
- The number of data packets that were fragmented = 100

The total number of packets sent (600 + 400) on the multilink bundle match the number of transiting packets (1000), indicating that no packets were dropped.

The number of transiting fragments exceeds the number of transiting packets by 100, indicating that 100 large data packets were correctly fragmented.

Corrective Action—If the packets are not fragmented correctly, check your fragmentation threshold configuration. Packets smaller than the specified fragmentation threshold are not fragmented.

2. Verify packet encapsulation. To find out whether a packet is treated as an LFI or
non-LFI packet, determine its encapsulation type. LFI packets are PPP encapsulated, and non-LFI packets are encapsulated with both PPP and MLPPP. PPP and MLPPP encapsulations have different overheads resulting in different-sized packets. You can compare packet sizes to determine the encapsulation type.

A small unfragmented data packet contains a PPP header and a single MLPPP header. In a large fragmented data packet, the first fragment contains a PPP header and an MLPPP header, but the consecutive fragments contain only an MLPPP header.

PPP and MLPPP encapsulations add the following number of bytes to a packet:
- PPP encapsulation adds 7 bytes:
 - 4 bytes of header + 2 bytes of frame check sequence (FCS) + 1 byte that is idle or contains a flag
- MLPPP encapsulation adds between 6 and 8 bytes:
 - 4 bytes of PPP header + 2 to 4 bytes of multiline header

Figure 12 on page 607 shows the overhead added to PPP and MLPPP headers.

Figure 12: PPP and MLPPP Headers

For CRTP packets, the encapsulation overhead and packet size are even smaller than for an LFI packet. For more information, see Example: Configuring the Compressed Real-Time Transport Protocol.

Table 133 on page 607 shows the encapsulation overhead for a data packet and a voice packet of 70 bytes each. After encapsulation, the size of the data packet is larger than the size of the voice packet.

Table 133: PPP and MLPPP Encapsulation Overhead

<table>
<thead>
<tr>
<th>Packet Type</th>
<th>Encapsulation</th>
<th>Initial Packet Size</th>
<th>Encapsulation Overhead</th>
<th>Packet Size after Encapsulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voice packet (LFI)</td>
<td>PPP</td>
<td>70 bytes</td>
<td>4 + 2 + 1 = 7 bytes</td>
<td>77 bytes</td>
</tr>
<tr>
<td>Data fragment (non-LFI)</td>
<td>MLPPP</td>
<td>70 bytes</td>
<td>4 + 2 + 1 + 4 + 2 = 13 bytes</td>
<td>83 bytes</td>
</tr>
</tbody>
</table>

with short sequence
Table 133: PPP and MLPPP Encapsulation Overhead (continued)

<table>
<thead>
<tr>
<th>Packet Type</th>
<th>Encapsulation</th>
<th>Initial Packet Size</th>
<th>Encapsulation Overhead</th>
<th>Packet Size after Encapsulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data fragment (non-LFI) with long sequence</td>
<td>MLPPP</td>
<td>70 bytes</td>
<td>4 + 2 + 1 + 4 + 4 = 15 bytes</td>
<td>85 bytes</td>
</tr>
</tbody>
</table>

From operational mode, enter the `show interfaces queue` command to display the size of transmitted packet on each queue. Divide the number of bytes transmitted by the number of packets to obtain the size of the packets and determine the encapsulation type.

3. Verify load balancing. From operational mode, enter the `show interfaces queue` command on the multilink bundle and its constituent links to confirm whether load balancing is performed accordingly on the packets.

```bash
user@R0> show interfaces queue lsq-0/0/0
Physical interface: lsq-0/0/0, Enabled, Physical link is Up
   Interface index: 136, SNMP ifIndex: 29
   Forwarding classes: 8 supported, 8 in use
   Egress queues: 8 supported, 8 in use
   Queue: 0, Forwarding classes: DATA
      Queued:
        Packets : 600 0 pps
        Bytes : 44800 0 bps
      Transmitted:
        Packets : 600 0 pps
        Bytes : 44800 0 bps
        Tail-dropped packets : 0 0 pps
        RED-dropped packets : 0 0 pps

      ... Queue: 1, Forwarding classes: expedited-forwarding
      Queued:
        Packets : 0 0 pps
        Bytes : 0 0 bps
      ... Queue: 2, Forwarding classes: VOICE
      Queued:
        Packets : 400 0 pps
        Bytes : 61344 0 bps
      Transmitted:
        Packets : 400 0 pps
        Bytes : 61344 0 bps
      ... Queue: 3, Forwarding classes: NC
      Queued:
        Packets : 0 0 pps
        Bytes : 0 0 bps

user@R0> show interfaces queue se-1/0/0
Physical interface: se-1/0/0, Enabled, Physical link is Up
   Interface index: 141, SNMP ifIndex: 35
   Forwarding classes: 8 supported, 8 in use
   Egress queues: 8 supported, 8 in use
```
Queue: 0, Forwarding classes: DATA
Queued:
 Packets : 350 0 pps
 Bytes : 24350 0 bps
Transmitted:
 Packets : 350 0 pps
 Bytes : 24350 0 bps
...

Queue: 1, Forwarding classes: expedited-forwarding
Queued:
 Packets : 0 0 pps
 Bytes : 0 0 bps
...

Queue: 2, Forwarding classes: VOICE
Queued:
 Packets : 100 0 pps
 Bytes : 15272 0 bps
Transmitted:
 Packets : 100 0 pps
 Bytes : 15272 0 bps
...

Queue: 3, Forwarding classes: NC
Queued:
 Packets : 19 0 pps
 Bytes : 247 0 bps
Transmitted:
 Packets : 19 0 pps
 Bytes : 247 0 bps
...

user@R0> show interfaces queue se-1/0/1
Physical interface: se-1/0/1, Enabled, Physical link is Up
Interface index: 142, SNMP ifIndex: 38
Forwarding classes: 8 supported, 8 in use
Egress queues: 8 supported, 8 in use
Queue: 0, Forwarding classes: DATA
Queued:
 Packets : 350 0 pps
 Bytes : 24350 0 bps
Transmitted:
 Packets : 350 0 pps
 Bytes : 24350 0 bps
...

Queue: 1, Forwarding classes: expedited-forwarding
Queued:
 Packets : 0 0 pps
 Bytes : 0 0 bps
...

Queue: 2, Forwarding classes: VOICE
Queued:
 Packets : 300 0 pps
 Bytes : 45672 0 bps
Transmitted:
 Packets : 300 0 pps
 Bytes : 45672 0 bps
...

Queue: 3, Forwarding classes: NC
Queued:
 Packets : 18 0 pps
 Bytes : 234 0 bps
Transmitted:

Copyright © 2017, Juniper Networks, Inc.
Meaning—The output from these commands shows the packets transmitted and queued on each queue of the link services interface and its constituent links. **Table 134 on page 610** shows a summary of these values. (Because the number of transmitted packets equaled the number of queued packets on all the links, this table shows only the queued packets.)

Table 134: Number of Packets Transmitted on a Queue

<table>
<thead>
<tr>
<th>Packets Queued</th>
<th>Bundle lsq-0/0/0.0</th>
<th>Constituent Link se-1/0/0</th>
<th>Constituent Link se-1/0/1</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets on Q0</td>
<td>600</td>
<td>350</td>
<td>350</td>
<td>The total number of packets transiting the constituent links (350+350 = 700) exceeded the number of packets queued (600) on the multilink bundle.</td>
</tr>
<tr>
<td>Packets on Q2</td>
<td>400</td>
<td>100</td>
<td>300</td>
<td>The total number of packets transiting the constituent links equaled the number of packets on the bundle.</td>
</tr>
<tr>
<td>Packets on Q3</td>
<td>0</td>
<td>19</td>
<td>18</td>
<td>The packets transiting Q3 of the constituent links are for keepalive messages exchanged between constituent links. Thus no packets were counted on Q3 of the bundle.</td>
</tr>
</tbody>
</table>

On the multilink bundle, verify the following:

- The number of packets queued matches the number transmitted. If the numbers match, no packets were dropped. If more packets were queued than were transmitted, packets were dropped because the buffer was too small. The buffer size on the constituent links controls congestion at the output stage. To correct this problem, increase the buffer size on the constituent links.

- The number of packets transiting Q0 (600) matches the number of large and small data packets received (100+500) on the multilink bundle. If the numbers match, all data packets correctly transited Q0.

- The number of packets transiting Q2 on the multilink bundle (400) matches the number of voice packets received on the multilink bundle. If the numbers match, all voice LFI packets correctly transited Q2.

On the constituent links, verify the following:

- The total number of packets transiting Q0 (350+350) matches the number of data packets and data fragments (500+200). If the numbers match, all the data packets after fragmentation correctly transited Q0 of the constituent links.

Packets transited both constituent links, indicating that load balancing was correctly performed on non-LFI packets.
The total number of packets transiting Q2 (300+100) on constituent links matches the number of voice packets received (400) on the multilink bundle. If the numbers match, all voice LFI packets correctly transited Q2.

LFI packets from source port 100 transited se-1/0/0, and LFI packets from source port 200 transited se-1/0/1. Thus all LFI (Q2) packets were hashed based on the source port and correctly transited both constituent links.

Corrective Action—If the packets transited only one link, take the following steps to resolve the problem:

a. Determine whether the physical link is **up** (operational) or **down** (unavailable). An unavailable link indicates a problem with the PIM, interface port, or physical connection (link-layer errors). If the link is operational, move to the next step.

b. Verify that the classifiers are correctly defined for non-LFI packets. Make sure that non-LFI packets are not configured to be queued to Q2. All packets queued to Q2 are treated as LFI packets.

c. Verify that at least one of the following values is different in the LFI packets: source address, destination address, IP protocol, source port, or destination port. If the same values are configured for all LFI packets, the packets are all hashed to the same flow and transit the same link.

4. Use the results to verify load balancing.

Determine Why Packets Are Dropped on a PVC Between a Juniper Networks Device and a Third-Party Device

Problem **Description:** You are configuring a permanent virtual circuit (PVC) between T1, E1, T3, or E3 interfaces on a Juniper Networks device and a third-party device, and packets are being dropped and ping fails.

Solution If the third-party device does not have the same FRF.12 support as the Juniper Networks device or supports FRF.12 in a different way, the Juniper Networks device interface on the PVC might discard a fragmented packet containing FRF.12 headers and count it as a "Policing Discard."

As a workaround, configure multilink bundles on both peers, and configure fragmentation thresholds on the multilink bundles.
Starting with Junos OS Release 15.1X49-D10 and Junos OS Release 17.3R1, link services interfaces are no longer supported on SRX300, SRX320, SRX340, and SRX1500 devices.

Troubleshooting Security Policies

Supported Platforms SRX Series, vSRX

- Synchronizing Policies Between Routing Engine and Packet Forwarding Engine on page 612
- Checking a Security Policy Commit Failure on page 612
- Verifying a Security Policy Commit on page 613
- Debugging Policy Lookup on page 613

Synchronizing Policies Between Routing Engine and Packet Forwarding Engine

Problem Description: Security policies are stored in both the Routing Engine and the Packet Forwarding Engine. After you modify a policy, you commit the configuration on the Routing Engine, and it is synchronized to the Packet Forwarding Engine.

Environment: The policies in the Routing Engine and Packet Forwarding Engine must be in sync for the configuration to be committed. However, under certain circumstances, policies in the Routing Engine and the Packet Forwarding Engine might be out of sync, which causes the commit to fail.

Symptoms: The following error message appears if you attempt to commit a configuration when the policies in the Routing Engine and Packet Forwarding Engine are out of sync: Policy is out of sync between RE and PFE <SPU-name(s)> Please resync before commit.

Solution Synchronize the policies as follows:
- Reboot the device (standalone)
- Reboot the devices (chassis cluster)

Checking a Security Policy Commit Failure

Supported Platforms SRX Series, vSRX

Problem Description: Most policy configuration failures occur during a commit or runtime. Commit failures are reported directly on the CLI when you execute the CLI command commit-check in configuration mode. These errors are configuration errors, and you cannot commit the configuration without fixing these errors.
Solution To fix these errors, do the following:

1. Review your configuration data.
2. Open the file /var/log/nsd.chk_only. This file is overwritten each time you perform a commit check and contains detailed failure information.

Verifying a Security Policy Commit

Supported Platforms SRX Series, vSRX

Problem Description: Upon performing a policy configuration commit, if you notice that the system behavior is incorrect, use the following steps to troubleshoot this problem:

Solution 1. Operational show Commands—Execute the operational commands for security policies and verify that the information shown in the output is consistent with what you expected. If not, the configuration needs to be changed appropriately.

2. Traceoptions—Set the traceoptions command in your policy configuration. The flags under this hierarchy can be selected as per user analysis of the show command output. If you cannot determine what flag to use, the flag option all can be used to capture all trace logs.

   ```
   user@host# set security policies traceoptions <flag all>
   ```

You can also configure an optional filename to capture the logs.

   ```
   user@host# set security policies traceoptions <filename>
   ```

If you specified a filename in the trace options, you can look in the /var/log/<filename> for the log file to ascertain if any errors were reported in the file. (If you did not specify a filename, the default filename is eventd.) The error messages indicate the place of failure and the appropriate reason.

After configuring the trace options, you must recommit the configuration change that caused the incorrect system behavior.

Debugging Policy Lookup

Supported Platforms SRX Series

Problem Description: When you have the correct configuration, but some traffic was incorrectly dropped or permitted, you can enable the lookup flag in the security policies traceoptions. The lookup flag logs the lookup related traces in the trace file.

Solution user@host# set security policies traceoptions <flag lookup>

Related Documentation • Synchronizing Policies Between Routing Engine and Packet Forwarding Engine on page 612
Understanding Log Error Messages for Troubleshooting ISSU-Related Problems

Supported Platforms

- SRX1500, SRX4100, SRX4200, SRX5400, SRX5600, SRX5800, vSRX

The following problems might occur during an ISSU upgrade. You can identify the errors by using the details in the logs. You can also see the details of the error messages in the System Log Explorer.

- Chassisd Process Errors on page 614
- Kernel State Synchronization on page 614
- Installation-Related Errors on page 615
- ISSU Support-Related Errors on page 615
- Redundancy Group Failover Errors on page 615
- Initial Validation Checks Fail on page 615
- Understanding Common Error Handling for ISSU on page 617

Chassisd Process Errors

Problem
Description: Errors related to chassisd.

Solution
Use the error messages to understand the issues related to chassisd.

When ISSU starts, a request is sent to chassisd to check whether there are any problems related to the ISSU from a chassis perspective. If there is a problem, a log message is created.

Kernel State Synchronization

Problem
Description: Errors related to ksysncd.

Solution
Use the following error messages to understand the issues related to ksysncd:

Failed to get kernel-replication error information from Standby Routing Engine.

mgd_slave_peer_has_errors() returns error at line 4414 in mgd_package_issu.

ISSU checks whether there are any ksysncd errors on the secondary node (node 1) and displays the error message if there are any problems and aborts the upgrade.
Installation-Related Errors

Problem Description: The install image file does not exist or the remote site is inaccessible.

Solution Use the following error messages to understand the installation-related problems:

```plaintext
error: File does not exist: /var/tmp/junos-srx5000-11.4X3.2-domest
error: Couldn't retrieve package /var/tmp/junos-srx5000-11.4X3.2-domest

ISSU downloads the install image as specified in the ISSU command as an argument. The image file can be a local file or located at a remote site. If the file does not exist or the remote site is inaccessible, an error is reported.
```

ISSU Support-Related Errors

Problem Description: Installation failure occurs because of unsupported software and unsupported feature configuration.

Solution Use the following error messages to understand the compatibility-related problems:

```plaintext
WARNING: Current configuration not compatible with /var/tmp/junos-srx5000-11.4X3.2-domestic.tgz
Exiting in-service-upgrade window
Exiting in-service-upgrade window

Redundancy Group Failover Errors

Problem  Description: Problem with automatic redundancy group (RG) failure.

Solution  Use the following error messages to understand the problem:

```plaintext
failover all RG 1+ groups to node 0
error: Command failed. None of the redundancy-groups has been failed over.
Some redundancy-groups on node1 are already in manual failover mode.
Please execute 'failover reset all' first..
```

Initial Validation Checks Fail

Problem  Description: The initial validation checks fail.
Solution

The validation checks fail if the image is not present or if the image file is corrupt. The following error messages are displayed when initial validation checks fail when the image is not present and the ISSU is aborted:

**When Image Is Not Present**

```
user@host> ...0120914_srx_12q1_major2.2-539764-domestic.tgz reboot
Chassis ISSU Started
Chassis ISSU Started
ISSU: Validating Image
Initiating in-service-upgrade
Fetching package...
error: File does not exist:
/var/tmp/junos-srx1k3k-12.1I20120914_srx_12q1_major2.2-539764-domestic.tgz
error: Couldn't retrieve package
/var/tmp/junos-srx1k3k-12.1I20120914_srx_12q1_major2.2-539764-domestic.tgz
Exiting in-service-upgrade window
Exiting in-service-upgrade window
Chassis ISSU Aborted
Chassis ISSU Aborted
Chassis ISSU Aborted
ISSU: IDLE
ISSU aborted; exiting ISSU window.
```

**When Image File Is Corrupted**

If the image file is corrupted, the following output displays:

```
user@host> ...junos-srx1k3k-11.4X9-domestic.tgz_1 reboot
Chassis ISSU Started
node1:---
Chassis ISSU Started
ISSU: Validating Image
Initiating in-service-upgrade
node1:---
Initiating in-service-upgrade
ERROR: Cannot use /var/tmp/junos-srx1k3k-11.4X9-domestic.tgz_1:
gzip: stdin: invalid compressed data--format violated
tar: Child returned status 1
tar: Error exit delayed from previous errors
ERROR: It may have been corrupted during download.
ERROR: Please try again, making sure to use a binary transfer.
Exiting in-service-upgrade window
node1:---
Exiting in-service-upgrade window
Chassis ISSU Aborted
Chassis ISSU Aborted
node1:---
Chassis ISSU Aborted
ISSU: IDLE
ISSU aborted; exiting ISSU window.
```
Chapter 34: Troubleshooting Security Devices

{primary:node0}

The primary node validates the device configuration to ensure that it can be committed
using the new software version. If anything goes wrong, the ISSU aborts and error
messages are displayed.

Understanding Common Error Handling for ISSU
Problem

Description: You might encounter some problems in the course of an ISSU. This section
provides details on how to handle them.

Solution

Any errors encountered during an ISSU result in the creation of log messages, and ISSU
continues to function without impact to traffic. If reverting to previous versions is required,
the event is either logged or the ISSU is halted, so as not to create any mismatched
versions on both nodes of the chassis cluster. Table 135 on page 617 provides some of the
common error conditions and the workarounds for them. The sample messages used in
the Table 135 on page 617 are from the SRX1500 device and are also applicable to all
supported SRX Series devices.

Table 135: ISSU-Related Errors and Solutions
Error Conditions

Solutions

Attempt to initiate
an ISSU when
previous instance
of an ISSU is
already in progress

The following message is displayed:

Copyright © 2017, Juniper Networks, Inc.

warning: ISSU in progress

You can abort the current ISSU process, and initiate the ISSU again using
the request chassis cluster in-service-upgrade abort command.

617


Table 135: ISSU-Related Errors and Solutions (continued)

<table>
<thead>
<tr>
<th>Error Conditions</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>No service downtime occurs, because the primary node continues to provide required services. Detailed console messages are displayed requesting that you manually clear existing ISSU states and restore the chassis cluster.</td>
<td>Reboot failure on the secondary node</td>
</tr>
<tr>
<td>error: [Oct 6 12:30:16]: Reboot secondary node failed (error-code: 4.1)</td>
<td></td>
</tr>
<tr>
<td>error: [Oct 6 12:30:16]: ISSU Aborted! Backup node maybe in inconsistent state, Please restore backup node</td>
<td></td>
</tr>
<tr>
<td>[Oct 6 12:30:16]: ISSU aborted. But, both nodes are in ISSU window. Please do the following:</td>
<td></td>
</tr>
<tr>
<td>1. Rollback the node with the newer image using rollback command</td>
<td></td>
</tr>
<tr>
<td>Note: use the 'node' option in the rollback command otherwise, images on both nodes will be rolled back</td>
<td></td>
</tr>
<tr>
<td>2. Make sure that both nodes (will) have the same image</td>
<td></td>
</tr>
<tr>
<td>3. Ensure the node with older image is primary for all RGs</td>
<td></td>
</tr>
<tr>
<td>4. Abort ISSU on both nodes</td>
<td></td>
</tr>
<tr>
<td>5. Reboot the rolled back node</td>
<td></td>
</tr>
<tr>
<td>The primary node times out if the secondary node fails to complete the cold synchronization. Detailed console messages are displayed that you manually clear existing ISSU states and restore the chassis cluster. No service downtime occurs in this scenario.</td>
<td>Secondary node failed to complete the cold synchronization</td>
</tr>
<tr>
<td>[Oct 3 14:00:46]: timeout waiting for secondary node node1 to sync(error-code: 6.1) Chassis control process started, pid 36707</td>
<td></td>
</tr>
<tr>
<td>error: [Oct 3 14:00:46]: ISSU Aborted! Backup node has been upgraded, Please restore backup node</td>
<td></td>
</tr>
<tr>
<td>[Oct 3 14:00:46]: ISSU aborted. But, both nodes are in ISSU window. Please do the following:</td>
<td></td>
</tr>
<tr>
<td>1. Rollback the node with the newer image using rollback command</td>
<td></td>
</tr>
<tr>
<td>Note: use the 'node' option in the rollback command otherwise, images on both nodes will be rolled back</td>
<td></td>
</tr>
<tr>
<td>2. Make sure that both nodes (will) have the same image</td>
<td></td>
</tr>
<tr>
<td>3. Ensure the node with older image is primary for all RGs</td>
<td></td>
</tr>
<tr>
<td>4. Abort ISSU on both nodes</td>
<td></td>
</tr>
<tr>
<td>5. Reboot the rolled back node</td>
<td></td>
</tr>
</tbody>
</table>

---
Noservicedowntimeoccurs,becausetheprimarynodecontinuestoprovide
requiredservices.Detailedconsolemessagesaredisplayedrequestingthat
you manually clear existing ISSU states and restore the chassis cluster.

[Aug 27 15:28:17]: Failing over all redundancy-groups to node0
ISSU: Preparing for Switchover
error: remote rgl priority zero, abort failover.
[Aug 27 15:28:17]: failover all RGs to node node0 failed
(error-code: 7.1)
error: [Aug 27 15:28:17]: ISSU Aborted!
[Aug 27 15:28:17]: ISSU aborted. But, both nodes are in ISSU
window.
Please do the following:
1. Rollback the node with the newer image using rollback
command
   Note: use the 'node' option in the rollback command
   otherwise, images on both nodes will be rolled back
2. Make sure that both nodes (will) have the same image
3. Ensure the node with older image is primary for all RGs
4. Abort ISSU on both nodes
5. Reboot the rolled back node
   {primary:node1}

Upgrade failure on primary
No service downtime occurs, because the secondary node fails over as
primary and continues to provide required services.

Reboot failure on primary node
Before the reboot of the primary node, devices being out of the ISSU setup,
no ISSU-related error messages are displayed. The following reboot error
message is displayed if any other failure is detected:

Reboot failure on     Before the reboot of primary node, devices will be out of ISSU setup and no primary node error
primary node         messages will be displayed.
Primary node

Table 135: ISSU-Related Errors and Solutions (continued)

<table>
<thead>
<tr>
<th>Error Conditions</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failover of newly upgraded secondary failed</td>
<td>No service downtime occurs, because the primary node continues to provide required services. Detailed console messages are displayed requesting that you manually clear existing ISSU states and restore the chassis cluster.</td>
</tr>
<tr>
<td>Upgrade failure on primary</td>
<td>No service downtime occurs, because the secondary node fails over as primary and continues to provide required services.</td>
</tr>
<tr>
<td>Reboot failure on primary node</td>
<td>Before the reboot of the primary node, devices being out of the ISSU setup, no ISSU-related error messages are displayed. The following reboot error message is displayed if any other failure is detected:</td>
</tr>
</tbody>
</table>

Related Documentation

- Troubleshooting Chassis Cluster ISSU-Related Problems
- Upgrading Both Devices in a Chassis Cluster Using an ISSU
- ISSU System Requirements
- Understanding the ISSU Process on Devices in a Chassis Cluster
PART 10

Configuration Statements and Operational Commands

- Configuration Statements: Accounting Options, Source Class Usage and Destination Class Usage Options on page 623
- Configuration Statements: Chassis Cluster on page 671
- Configuration Statements: Datapath Debug on page 679
- Configuration Statements: Health Monitoring on page 691
- Configuration Statements: Remote Monitoring (RMON) on page 699
- Configuration Statements: Resource Monitoring for Memory Regions on page 717
- Configuration Statements: Security Alarms on page 731
- Configuration Statements: SNMP on page 733
- Configuration Statements: SNMPv3 on page 773
- Configuration Statements: TWAMP on page 827
- Operational Commands on page 833
CHAPTER 35

Configuration Statements: Accounting Options, Source Class Usage and Destination Class Usage Options

- accounting-options on page 625
- allow-clear (Accounting Options) on page 627
- archive-sites on page 628
- backup-on-failure (Accounting Options) on page 629
- class-usage-profile on page 630
- cleanup-interval (Accounting Options) on page 631
- compress (Accounting Options) on page 632
- counters on page 632
- destination-classes on page 633
- egress-stats (Flat-File Accounting Options) on page 634
- fields (Flat-File Accounting Options) on page 636
- fields (for Interface Profiles) on page 638
- fields (for Routing Engine Profiles) on page 639
- file (Associating with a Profile) on page 640
- file (Configuring a Log File) on page 641
- file (Flat-File Accounting Options) on page 642
- files on page 643
- filter-profile on page 644
- flat-file-profile (Accounting Options) on page 645
- format (Flat-File Accounting Options) on page 647
- general-param (Flat-File Accounting Options) on page 648
- ingress-stats (Flat-File Accounting Options) on page 650
- interface-profile on page 651
- interval on page 652
- interval (Flat-File Accounting Options) on page 653
- l2-stats (Flat-File Accounting Options) on page 654
- mib-profile on page 655
- mpls (Security Forwarding Options) on page 656
- nonpersistent on page 657
- object-names on page 658
- operation on page 659
- overall-packet (Flat-File Accounting Options) on page 660
- push-backup-to-master (Accounting Options) on page 661
- routing-engine-profile on page 662
- schema-version (Flat-File Accounting Options) on page 663
- size on page 664
- source-classes on page 665
- start-time on page 666
- traceoptions (System Accounting) on page 667
- transfer-interval on page 669
accounting-options

Supported Platforms  M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

Syntax  
```
accounting-options {
 class-usage-profile profile-name {
 file filename;
 interval minutes;
 destination-classes {
 destination-class-name;
 }
 source-classes {
 source-class-name;
 }
 }
 cleanup-interval days;
 file filename {
 archive-sites {
 site-name;
 }
 backup-on-failure (master-and-slave | master-only);
 compress;
 files number;
 nonpersistent;
 push-backup-to-master;
 size bytes;
 start-time time;
 transfer-interval minutes;
 }
 filter-profile profile-name {
 counters {
 counter-name;
 }
 file filename;
 interval minutes;
 }
 flat-file-profile profile-name {
 fields {
 all-fields;
 egress-stats {
 all-fields;
 input-bytes;
 input-packets;
 output-bytes;
 output-packets;
 queue-id;
 red-drop-bytes;
 red-drop-packets;
 tail-drop-packets;
 }
 general-param {
 all-fields;
 accounting-type;
 descr;
 }
 }
```
line-id;
logical-interface;
nas-port-id;
physical-interface;
routing-instance;
timestamp;
user-name;
vlan-id;
}

ingress-stats { 
  all-fields;
drop-packets;
input-bytes;
input-packets;
output-bytes;
output-packets;
queue-id;
}

l2-stats { 
  all-fields;
input-mcast-bytes;
input-mcast-packets;
}

overall-packet { 
  all-fields;
input-bytes;
input-discards;
input-errors;
input-packets;
inputv6-bytes;
inputv6-packets;
output-bytes;
output-errors;
output-packets;
outputv6-bytes;
outputv6-packets;
}

service-accounting;
}

file filename;
format (csv | lpd)
interval minutes;
schema-version schema-name;
}

interface-profile profile-name { 
  allow-clear;
  fields [ 
    field-name;
  ]
  file filename;
  interval minutes;
}

mib-profile profile-name { 
  file filename;
  interval seconds;
  object-names [ 

allow-clear (Accounting Options)

Supported Platforms  MX Series

Syntax  allow-clear;

Hierarchy Level  [edit accounting-options interface-profile profile-name]

Release Information  Statement introduced in Junos OS Release 17.3R1 on MX Series routers.

Description  Reports accounting statistics values cleared by the `clear interfaces statistics` command on a logical interface configured with accounting options to the accounting options flat file associated with the interface. By default, this statement is disabled and the cleared statistics are not reported to the flat file, although the counters do show as cleared in the CLI.

Required Privilege Level  interface—To view this statement in the configuration. interface-control—To add this statement to the configuration.

Related Documentation  • Configuring the Interface Profile on page 317  • Accounting Options Configuration on page 304
archive-sites

Supported Platforms  
EX Series, M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

Syntax  
archive-sites {  
site-name;  
}

Hierarchy Level  
[edit accounting-options file filename]

Release Information  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description  
Configure an archive site. If more than one site name is configured, an ordered list of  
archive sites for the accounting-data log files is created. When a file is archived, the router  
or switch attempts to transfer the file to the first URL in the list, moving to the next site  
only if the transfer does not succeed. The log file is stored at the archive site with a  
filename of the format router-name_log-filename_timestamp.

Options  
site-name—Any valid FTP/SCP URL to a destination.

Required Privilege Level  
snmp—To view this statement in the configuration.  
snmp-control—To add this statement to the configuration.

Related Documentation  
• Configuring Archive Sites for the Files on page 314
backup-on-failure (Accounting Options)

Supported Platforms  MX Series

Syntax  backup-on-failure (master-and-slave | master-only);

Hierarchy Level  [edit accounting-options file filename]


Description  Configure the router to save a copy of the accounting file locally, to the /var/log/pfedBackup directory of the relevant Routing Engine, in the event that file transfer to the remote archive sites cannot be completed.

Options  master-and-slave—Back up accounting files from both the master Routing Engine and the backup Routing Engine.

master-only—Back up accounting files from only the master Routing Engine.

Required Privilege  Level  system—To view this statement in the configuration.  system-control—To add this statement to the configuration.

Related Documentation  • Configuring Accounting-Data Log Files on page 312
                     • Configuring Flat-File Accounting for Layer 2 Wholesale
                     • Configuring Flat-File Accounting for Extensible Subscriber Services Management
                     • Flat-File Accounting Overview
class-usage-profile

Supported Platforms
EX Series, M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

Syntax
```clish
class-usage-profile profile-name {
 file filename;
 interval minutes;
 source-classes {
 source-class-name;
 }
 destination-classes {
 destination-class-name;
 }
}
```

Hierarchy Level
[edit accounting-options]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description
Create a class usage profile, which is used to log class usage statistics to a file in the 
/var/log directory. The class usage profile logs class usage statistics for the configured
source classes on every interface that has destination-class-usage configured.

For information about configuring source classes, see the Junos Routing Protocols
Configuration Guide. For information about configuring source class usage, see the Junos
Network Management Configuration Guide.

Options
- **profile-name**—Name of the destination class profile.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege
- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.

Related Documentation
- Configuring Class Usage Profiles on page 328
cleanup-interval (Accounting Options)

Supported Platforms  MX Series

Syntax  cleanup-interval days;

Hierarchy Level  [edit accounting-options]


Description  Configure the interval to delete files from the local backup directory.

Options  days—Number of days after which accounting-options files are to be deleted from the backup directory.
  Range: 1 through 31 days
  Default: 1 day

Required Privilege Level  system—To view this statement in the configuration.
                           system-control—To add this statement to the configuration.

Related Documentation  •  Configuring Accounting-Data Log Files on page 312
  •  Configuring Flat-File Accounting for Layer 2 Wholesale
  •  Configuring Flat-File Accounting for Extensible Subscriber Services Management
  •  Flat-File Accounting Overview
compress (Accounting Options)

Supported Platforms  MX Series

Syntax  compress;

Hierarchy Level  [edit accounting-options file filename]


Description  Compress the accounting file during file transfer to the backup site.

Required Privilege Level  system—To view this statement in the configuration.
                        system-control—To add this statement to the configuration.

Related Documentation  • Configuring Accounting-Data Log Files on page 312
                        • Configuring Flat-File Accounting for Layer 2 Wholesale
                        • Configuring Flat-File Accounting for Extensible Subscriber Services Management
                        • Flat-File Accounting Overview

counters

Supported Platforms  EX Series, M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

Syntax  counters {
            counter-name;
        }

Hierarchy Level  [edit accounting-options filter-profile profile-name]

Release Information  Statement introduced before Junos OS Release 7.4.
                        Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description  Names of counters for which filter profile statistics are collected. The packet and byte counts for the counters are logged to a file in the /var/log directory.

Options  counter-name—Name of the counter.

Required Privilege Level  interface—To view this statement in the configuration.
                        interface-control—To add this statement to the configuration.

Related Documentation  • Configuring the Counters on page 321
destination-classes

Supported Platforms  EX Series, M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

Syntax
destination-classes {
  destination-class-name;
}

Hierarchy Level  [edit accounting-options class-usage-profile profile-name]

Release Information  Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 15.1F6 for PTX Series routers with third-generation FPCs installed.

Description  Specify the destination classes for which statistics are collected.

Options  destination-class-name—Name of the destination class to include in the source class usage profile.

Required Privilege Level  interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation  • Configuring a Class Usage Profile on page 328
egress-stats (Flat-File Accounting Options)

Supported Platforms  MX Series

Syntax  

egress-stats {
  all-fields;
  input-bytes;
  input-packets;
  output-bytes;
  output-packets;
  queue-id;
  red-drop-bytes;
  red-drop-packets;
  tail-drop-packets;
}

Hierarchy Level  [edit accounting-options flat-file-profile profile-name fields]


Description  Specify egress queue statistics to be collected for the interface.

Options  

  all-fields—Collect all egress queue statistics available for the interface context, logical or physical.

  input-bytes—Collect the number of octets queued including traffic dropped because of congestion.

  input-packets—Collect the number of packets queued including traffic dropped because of congestion.

  output-bytes—Collect the number of octets transmitted by the egress queue.

  output-packets—Collect the number of packets transmitted by the egress queue.

  queue-id—Collect the logical identifier for the egress queue; identifies the traffic class.

  red-drop-bytes—Collect the number of octets dropped on the egress queue because of random early detection.

  red-drop-packets—Collect the number of packets dropped on the egress queue because of random early detection.

  tail-drop-packets—Collect the number of packets dropped in the egress queue because of tail drop.

Required Privilege  

  system—To view this statement in the configuration.
  system-control—To add this statement to the configuration.
Related Documentation

- Configuring Flat-File Accounting for Layer 2 Wholesale
- Configuring Flat-File Accounting for Extensible Subscriber Services Management
- Flat-File Accounting Overview
fields (Flat-File Accounting Options)

Supported Platforms    MX Series

Syntax

fields {
  all-fields;
  egress-stats {
    all-fields;
    input-bytes;
    input-packets;
    output-bytes;
    output-packets;
    queue-id;
    red-drop-bytes;
    red-drop-packets;
    tail-drop-packets;
  }
  general-param {
    all-fields;
    accounting-type;
    descr;
    line-id;
    logical-interface;
    nas-port-id;
    physical-interface;
    routing-instance;
    timestamp;
    user-name;
    vlan-id;
  }
  ingress-stats {
    all-fields;
    drop-packets;
    input-bytes;
    input-packets;
    output-bytes;
    output-packets;
    queue-id;
  }
  l2-stats {
    all-fields;
    input-mcast-bytes;
    input-mcast-packets;
  }
  overall-packet {
    all-fields;
    input-bytes;
    input-discards;
    input-errors;
    input-packets;
    inputv6-bytes;
    inputv6-packets;
    output-bytes;
    output-errors;
  }
}
Hierarchy Level

Halt-accounting-options flat-file-profile profile-name

Release Information


Description

Specify the accounting statistics and the nonstatistical information to be collected for an interface and recorded in the accounting flat file created by the profile.

Options all-fields—Include all available statistical fields in the accounting file. Many fields are available for both logical interfaces and physical interfaces, but some fields are available only for one or the other interface type.

service-accounting—Include the filter counts in bytes for the inet input filter, inet output filter, inet6 input filter, and inet6 output filter in the service accounting flat file. Statistics reported are the running total values.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege

Level system—To view this statement in the configuration.

system-control—To add this statement to the configuration.

Related Documentation

- Configuring Flat-File Accounting for Layer 2 Wholesale
- Configuring Flat-File Accounting for Extensible Subscriber Services Management
- Configuring Service Accounting in Local Flat Files
- Flat-File Accounting Overview
### fields (for Interface Profiles)

<table>
<thead>
<tr>
<th><strong>Supported Platforms</strong></th>
<th>EX Series, M Series, MX Series, PTX Series, SRX Series, T Series, vSRX</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Syntax</strong></td>
<td><code>fields {</code> \n</td>
</tr>
<tr>
<td><strong>Hierarchy Level</strong></td>
<td><code>[edit accounting-options interface-profile profile-name]</code></td>
</tr>
<tr>
<td><strong>Release Information</strong></td>
<td>Statement introduced before Junos OS Release 7.4. \n</td>
</tr>
<tr>
<td><strong>Description</strong></td>
<td>Statistics to collect in an accounting-data log file for an interface.</td>
</tr>
<tr>
<td><strong>Options</strong></td>
<td><code>field-name</code>—Name of the field:</td>
</tr>
<tr>
<td></td>
<td>- <code>input-bytes</code>—Input bytes</td>
</tr>
<tr>
<td></td>
<td>- <code>input-errors</code>—Generic input error packets</td>
</tr>
<tr>
<td></td>
<td>- <code>input-multicast</code>—Input packets arriving by multicast</td>
</tr>
<tr>
<td></td>
<td>- <code>input-packets</code>—Input packets</td>
</tr>
<tr>
<td></td>
<td>- <code>input-unicast</code>—Input unicast packets</td>
</tr>
<tr>
<td></td>
<td>- <code>output-bytes</code>—Output bytes</td>
</tr>
<tr>
<td></td>
<td>- <code>output-errors</code>—Generic output error packets</td>
</tr>
<tr>
<td></td>
<td>- <code>output-multicast</code>—Output packets sent by multicast</td>
</tr>
<tr>
<td></td>
<td>- <code>output-packets</code>—Output packets</td>
</tr>
<tr>
<td></td>
<td>- <code>output-unicast</code>—Output unicast packets</td>
</tr>
<tr>
<td><strong>Required Privilege</strong></td>
<td>interface—To view this statement in the configuration.</td>
</tr>
<tr>
<td><strong>Level</strong></td>
<td>interface-control—To add this statement to the configuration.</td>
</tr>
<tr>
<td><strong>Related Documentation</strong></td>
<td>- <a href="#">Configuring the Interface Profile on page 317</a></td>
</tr>
</tbody>
</table>
**fields (for Routing Engine Profiles)**

<table>
<thead>
<tr>
<th>Supported Platforms</th>
<th>M Series, MX Series, PTX Series, SRX Series, T Series, vSRX</th>
</tr>
</thead>
</table>
| Syntax                  | fields {
|                         |   *field-name*;
|                         |}                                                          |
| Hierarchy Level         | [edit accounting-options routing-engine-profile *profile-name*] |
| Release Information     | Statement introduced before Junos OS Release 7.4.          |
| Description             | Statistics to collect in an accounting-data log file for a Routing Engine. |
| Options                 | *field-name*—Name of the field:                           |
|                         |   • cpu-load-1—Average system load over the last 1 minute  |
|                         |   • cpu-load-5—Average system load over the last 5 minutes |
|                         |   • cpu-load-15—Average system load over the last 15 minutes |
|                         |   • date—Date, in YYYYMMDD format                         |
|                         |   • host-name—Hostname for the router                      |
|                         |   • time-of-day—Time of day, in HHMMSS format              |
|                         |   • uptime—Time since last reboot, in seconds              |
| Required Privilege Level| interface—To view this statement in the configuration.     |
|                         | interface-control—To add this statement to the configuration. |
| Related Documentation   | • Configuring the Routing Engine Profile on page 333       |
file (Associating with a Profile)

Supported Platforms

EX Series, M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

Syntax

file filename;

Hierarchy Level

[edit accounting-options class-usage-profile profile-name],
[edit accounting-options filter-profile profile-name],
[edit accounting-options interface-profile profile-name],
[edit accounting-options mib-profile profile-name],
[edit accounting-options routing-engine-profile profile-name]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series Switches.

Description

Specify the accounting log file associated with the profile.

Options

filename—Name of the log file. You must specify a filename already configured in the file statement at the [edit accounting-options] hierarchy level.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation

• Configuring the Interface Profile on page 317
• Configuring the Filter Profile on page 320
• Configuring the MIB Profile on page 330
• Configuring the Routing Engine Profile on page 333
file (Configuring a Log File)

**Supported Platforms**
EX Series, M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

**Syntax**
```
file *filename* {
archive-sites {
 site-name;
}
backup-on-failure (master-and-slave | master-only);
compress;
files *number*;
nonpersistent;
push-backup-to-master;
size *bytes*;
start-time *time*;
transfer-interval *minutes*;
}
```

**Hierarchy Level**
[edit accounting-options]

**Release Information**
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**
Specify a log file to be used for accounting data.

**Options**
*filename*—Name of the file in which to write accounting data.

The remaining statements are explained separately. See CLI Explorer.

**Required Privilege**
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

**Related Documentation**
- Configuring Accounting-Data Log Files on page 312
- Configuring Flat-File Accounting for Layer 2 Wholesale
- Configuring Flat-File Accounting for Extensible Subscriber Services Management
- Flat-File Accounting Overview
file (Flat-File Accounting Options)

Supported Platforms
MX Series

Syntax
file filename;

Hierarchy Level
[edit accounting-options flat-file-profile profile-name]

Release Information

Description
Specify the name of the accounting file created by a flat-file profile. By default, the filename becomes the name of the local directory where the accounting file is backed up: /var/log/pfedBackup/FILENAME.

Options
filename—Name of the accounting file. The complete output filename is in the format filename.hostname.file-number_timestamp.gz.

Required Privilege
Level
system—To view this statement in the configuration.

system-control—To add this statement to the configuration.

Related Documentation
• Configuring Flat-File Accounting for Layer 2 Wholesale
• Configuring Flat-File Accounting for Extensible Subscriber Services Management
• Flat-File Accounting Overview
files

<table>
<thead>
<tr>
<th>Supported Platforms</th>
<th>EX Series, M Series, MX Series, PTX Series, SRX Series, T Series, vSRX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>files number;</td>
</tr>
<tr>
<td>Hierarchy Level</td>
<td>[edit accounting-options file filename]</td>
</tr>
<tr>
<td>Release Information</td>
<td>Statement introduced before Junos OS Release 7.4.</td>
</tr>
<tr>
<td></td>
<td>Statement introduced in Junos OS Release 9.0 for EX Series switches.</td>
</tr>
<tr>
<td>Description</td>
<td>Specify the maximum number of log files to be used for accounting data.</td>
</tr>
<tr>
<td>Options</td>
<td>number—The maximum number of files. When a log file (for example, profilelog) reaches its maximum size, it is renamed profilelog.0, then profilelog.1, and so on, until the maximum number of log files is reached. Then the oldest log file is overwritten. The minimum value for number is 3 and the default value is 10.</td>
</tr>
<tr>
<td>Required Privilege</td>
<td>interface—to view this statement in the configuration.</td>
</tr>
<tr>
<td>Level</td>
<td>interface-control—to add this statement to the configuration.</td>
</tr>
<tr>
<td>Related Documentation</td>
<td>• Configuring Accounting-Data Log Files on page 312</td>
</tr>
</tbody>
</table>
filter-profile

**Supported Platforms**

EX Series, M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

**Syntax**

```
filter-profile profile-name {
 counters {
 counter-name;
 }
 file filename;
 interval minutes;
}
```

**Hierarchy Level**

[edit accounting-options]

**Release Information**


**Description**

Create a profile to filter and collect packet and byte count statistics and write them to a file in the /var/log directory. To apply the profile to a firewall filter, you include the *accounting-profile* statement at the *[edit firewall filter filter-name]* hierarchy level. For more information about firewall filters, see *Firewall Filters Overview*.

**Options**

- **profile-name**—Name of the filter profile.

  The remaining statements are explained separately. See *CLI Explorer*.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- *Firewall Filters Overview*
- Configuring the Filter Profile on page 320
flat-file-profile (Accounting Options)

Supported Platforms  MX Series

Syntax  
```
flat-file-profile profile-name {
fields {
 all-fields;
 egress-stats {
 all-fields;
 input-bytes;
 input-packets;
 output-bytes;
 output-packets;
 queue-id;
 red-drop-bytes;
 red-drop-packets;
 tail-drop-packets;
 }
 general-param {
 all-fields;
 accounting-type;
 descr;
 line-id;
 logical-interface;
 nas-port-id;
 physical-interface;
 routing-instance;
 timestamp;
 user-name;
 vlan-id;
 }
 ingress-stats {
 all-fields;
 drop-packets;
 input-bytes;
 input-packets;
 output-bytes;
 output-packets;
 queue-id;
 }
 l2-stats {
 all-fields;
 input-mcast-bytes;
 input-mcast-packets;
 }
 overall-packet {
 all-fields;
 input-bytes;
 input-discards;
 input-errors;
 input-packets;
 inputv6-bytes;
 inputv6-packets;
 output-bytes;
 }
}
```
output-errors;
output-packets;
outputv6-bytes;
outputv6-packets;
}
service-accounting;
}

file filename;
format (csv | ipdr)
interval minutes;
schema-version schema-name;
}

Hierarchy Level  [edit accounting-options]

service-accounting option added in Junos OS Release 17.1.

Description  Configure a flat-file accounting profile that defines the contents of a flat file that records accounting statistics collected from the Packet Forwarding Engine for an interface at regular intervals. To be used, the profile is associated with a subscriber interface. The accounting flat file is archived by the accounting-options archiving mechanism.

Options  profile-name—Name of the flat-file profile.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege  
Level  system—To view this statement in the configuration.

system-control—To add this statement to the configuration.

Related Documentation  • Configuring Accounting-Data Log Files on page 312  
• Configuring Flat-File Accounting for Layer 2 Wholesale  
• Configuring Flat-File Accounting for Extensible Subscriber Services Management  
• Configuring Service Accounting in Local Flat Files  
• Flat-File Accounting Overview  
• show extensible-subscriber-services accounting
**format (Flat-File Accounting Options)**

**Supported Platforms**
MX Series

**Syntax**
format (csv | ipdr);

**Hierarchy Level**
[edit accounting-options flat-file-profile profile-name]

**Release Information**

**Description**
Specify the format for logging the flat-file accounting statistics.

**Options**
csv—Comma-separated values (CSV) format.
ipdr—IP Detail Record (IPDR) format.
Default: ipdr

**Required Privilege Level**
system—To view this statement in the configuration.
system-control—To add this statement to the configuration.

**Related Documentation**
- Configuring Flat-File Accounting for Layer 2 Wholesale
- Configuring Flat-File Accounting for Extensible Subscriber Services Management
- Flat-File Accounting Overview
**general-param (Flat-File Accounting Options)**

**Supported Platforms**
MX Series

**Syntax**
```
general-param {
 all-fields;
 accounting-type;
 descr;
 line-id;
 logical-interface;
 nas-port-id;
 physical-interface;
 routing-instance;
 timestamp;
 user-name;
 vlan-id;
}
```

**Hierarchy Level**
```
[edit accounting-options flat-file-profile profile-name fields]
```

**Release Information**

`user-name` option added in Junos OS Release 17.1.

**Description**
Specify general, nonstatistical interface parameters that are displayed as part of the header for the accounting file.

**Options**
- **all-fields**—Display all available nonstatistical fields. Many fields are available for both logical interfaces and physical interfaces, but some fields are available for only one interface type.
- **accounting-type**—(Logical interfaces only) Display the accounting status type.
- **descr**—Display the description of the interface as configured.
- **line-id**—(Logical interfaces only) Display the access line identifier.
- **logical-interface**—(Logical interfaces only) Display the name of the logical interface.
- **nas-port-id**—(Logical interfaces only) Display the NAS port ID.
- **physical-interface**—(Physical interfaces only) Display the name of the physical interface.
- **routing-instance**—Display the name of the routing instance to which the interface belongs.
- **timestamp**—Display the timestamp of the accounting record.
- **user-name**—Display the name of the subscriber.
- **vlan-id**—(Logical interfaces only) Display the VLAN identifier.
Required Privilege
Level

- system—To view this statement in the configuration.
- system-control—To add this statement to the configuration.

Related Documentation

- Configuring Flat-File Accounting for Layer 2 Wholesale
- Configuring Flat-File Accounting for Extensible Subscriber Services Management
- Configuring Service Accounting in Local Flat Files
- Flat-File Accounting Overview
ingress-stats (Flat-File Accounting Options)

Supported Platforms  MX Series

Syntax  ingress-stats {
          all-fields;
          drop-packets;
          input-bytes;
          input-packets;
          output-bytes;
          output-packets;
          queue-id;
      }

Hierarchy Level  [edit accounting-options flat-file-profile profile-name fields]


Description  Specify ingress queue statistics to be collected for the interface.

Options  all-fields—Collect all ingress queue statistics available for the interface context, logical or physical.

drop-packets—Collect the number of received packets dropped on the Ingress queue.

input-bytes—Collect the number of octets received on the queue for the traffic class indicated by the queue identifier.

input-packets—Collect the number of packets received on the queue for the traffic class indicated by the queue identifier.

output-bytes—Collect the number of octets forwarded for the traffic class indicated by the queue identifier. Same value as input-bytes unless oversubscription is present at the ingress.

output-packets—Collect the number of packets forwarded for the traffic class indicated by the queue identifier. Same value as input-packets unless oversubscription is present at the ingress.

queue-id—Collect the logical identifier for the ingress queue; identifies the traffic class.

Required Privilege  Level  system—To view this statement in the configuration.

system-control—To add this statement to the configuration.

Related Documentation  • Configuring Flat-File Accounting for Layer 2 Wholesale

• Configuring Flat-File Accounting for Extensible Subscriber Services Management

• Flat-File Accounting Overview
## interface-profile

**Supported Platforms**
EX Series, M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

**Syntax**
```
interface-profile profile-name {
 allow-clear;
 fields {
 field-name;
 }
 file filename;
 interval minutes;
}
```

**Hierarchy Level**
[edit accounting-options]

**Release Information**
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 on EX Series switches.

**Description**
Create a profile to filter and collect error and packet statistics and write them to a file in the `/var/log` directory. You can specify an interface profile for either a physical or a logical interface.

**Options**
- `profile-name`—Name of the interface profile.

The remaining statements are explained separately. See [CLI Explorer](#).

**Required Privilege Level**
- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**
- Configuring the Interface Profile on page 317
- Accounting Options Configuration on page 304
interval

Supported Platforms
EX Series, M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

Syntax
interval minutes;

Hierarchy Level
[edit accounting-options class-usage-profile profile-name],
[edit accounting-options filter-profile profile-name],
[edit accounting-options interface-profile profile-name],
[edit accounting-options mib-profile profile-name],
[edit accounting-options routing-engine-profile profile-name]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description
Specify how often statistics are collected for the accounting profile.

Options
minutes—Length of time between each collection of statistics.
Range: 1 through 2880 minutes
Default: 30 minutes

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Configuring the Interface Profile on page 317
• Configuring the Filter Profile on page 320
• Configuring the MIB Profile on page 330
• Configuring the Routing Engine Profile on page 333
## interval (Flat-File Accounting Options)

**Supported Platforms**  
MX Series

**Syntax**  
interval minutes;

**Hierarchy Level**  
[edit accounting-options flat-file-profile profile-name]

**Release Information**  

**Description**  
Specify the interval in minutes at which the Packet Forwarding Engine associated with the interface is polled to collect the statistics specified in the flat-file accounting profile. These interim accounting results are recorded in the flat file.

### NOTE:
The value configured with this statement is superseded by the value configured with the `update-interval` statement at the [edit access profile profile-name service accounting] hierarchy level. That access profile interval value is in turn superseded by an update interval value configured in the RADIUS attribute, Service-Interim-Acct-Interval (VSA 26–140).

**Options**  
- **minutes**—Polling interval.  
  - **Range:** 1 through 2880 minutes  
  - **Default:** 15 minutes

**Required Privilege Level**  
- system—To view this statement in the configuration.  
- system-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring Flat-File Accounting for Layer 2 Wholesale  
- Configuring Flat-File Accounting for Extensible Subscriber Services Management  
- Configuring Service Accounting in Local Flat Files  
- Flat-File Accounting Overview
# l2-stats (Flat-File Accounting Options)

**Supported Platforms**

MX Series

**Syntax**

```plaintext
l2-stats {
 all-fields;
 input-mcast-bytes;
 input-mcast-packets;
}
```

**Hierarchy Level**

[edit accounting-options flat-file-profile profile-name fields]

**Release Information**


**Description**

Specify the statistics to collect for the named flat-file-profile field.

**Options**

- **all-fields**—Collect all Layer 2 statistics for the named flat-file profile.
- **input-mcast-bytes**—Collect multicast bytes from the input side for the named flat-file profile.
- **input-mcast-packets**—Collect multicast packets from the input side for the named flat-file profile.

**Required Privilege Level**

- system—To view this statement in the configuration.
- system-control—To add this statement to the configuration.

**Related Documentation**

- Configuring Flat-File Accounting for Layer 2 Wholesale
- Configuring Flat-File Accounting for Extensible Subscriber Services Management
- Flat-File Accounting Overview
### mib-profile

**Supported Platforms**
EX Series, M Series, MX Series, SRX Series, T Series, vSRX

**Syntax**
```
mib-profile profile-name {
 file filename;
 interval minutes;
 object-names {
 mib-object-name;
 }
 operation operation-name;
}
```

**Hierarchy Level**
[edit accounting-options]

**Release Information**
Statement introduced in Junos OS Release 8.2.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**
Create a MIB profile to collect selected MIB statistics and write them to a file in the /var/log directory.

**NOTE:** Do not configure MIB objects related to interface octets or packets for a MIB profile, because it can cause the SNMP walk or a CLI show command to time out.

---

**Options**
- **profile-name**—Name of the MIB statistics profile.

The remaining statements are explained separately. See CLI Explorer.

---

**Required Privilege Level**
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**
- Configuring the MIB Profile on page 330
### mpls (Security Forwarding Options)

<table>
<thead>
<tr>
<th>Supported Platforms</th>
<th>SRX300, SRX320, SRX340, SRX345, SRX550M, vSRX</th>
</tr>
</thead>
</table>
| Syntax              | mpls {
|                     |   mode packet-based;
|                     |   }
| Hierarchy Level     | [edit security forwarding-options family] |
| Release Information | Statement introduced in Junos OS Release 9.0. |
| Description         | Enable the forwarding of MPLS traffic. By default, the device drops MPLS traffic. |

**CAUTION:** Because MPLS operates in packet mode, security services are not available.

**NOTE:** Packet-based processing is not supported on the following SRX Series devices: SRX1500, SRX5600, and SRX5800.

<table>
<thead>
<tr>
<th>Required Privilege Level</th>
<th>security—To view this statement in the configuration. security-control—To add this statement to the configuration.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related Documentation</td>
<td>• MPLS Overview</td>
</tr>
</tbody>
</table>
nonpersistent

Supported Platforms  M Series, MX Series, PTX Series, SRX Series, T Series

Syntax  nonpersistent;

Hierarchy Level  [edit accounting-options file filename]

Release Information  Statement introduced in Junos OS Release 8.3.

Description  Store log files used for accounting data in the mfs/var/log directory (located on DRAM) instead of the cf/var/log directory (located on the compact flash drive). This feature is useful for minimizing read/write traffic on the router’s compact flash drive.

NOTE: If log files for accounting data are stored on DRAM, these files are lost when you reboot the router. Therefore, you should back up these files periodically.

Required Privilege Level  interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation  • Configuring the Storage Location of the File on page 315
object-names

Supported Platforms  EX Series, M Series, MX Series, SRX Series, T Series, vSRX

Syntax  object-names {
         mib-object-name;
       }

Hierarchy Level  [edit accounting-options mib-profile profile-name]

Release Information  Statement introduced in Junos OS Release 8.2.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description  Specify the name of each MIB object for which MIB statistics are collected for an
accounting-data log file.

Options  mib-object-name—Name of a MIB object. You can specify more than one MIB object
name.

Required Privilege  interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation  • Configuring the MIB Profile on page 330
operation

Supported Platforms EX Series, M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

Syntax operation operation-name;

Hierarchy Level [edit accounting-options mib-profile profile-name]

Release Information Statement introduced in Junos OS Release 8.2.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description Specify the name of the operation used to collect MIB statistics for an accounting-data log file.

Options operation-name—Name of the operation to use. You can specify a get, get-next, or walk operation.
Default: walk

Required Privilege Level interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation • Configuring the MIB Profile on page 330
overall-packet (Flat-File Accounting Options)

**Supported Platforms**  MX Series

**Syntax**
```
overall-packet {
 all-fields;
 input-bytes;
 input-discards;
 input-errors;
 input-packets;
 inputv6-bytes;
 inputv6-packets;
 output-bytes;
 output-errors;
 output-packets;
 outputv6-bytes;
 outputv6-packets;
}
```

**Hierarchy Level**  [edit accounting-options flat-file-profile profile-name fields]

**Release Information**  Statement introduced in Junos OS Release 16.1R4.

**Description**  Specify overall packet statistics to be collected for the interface.

**Options**
- **all-fields**—Collect all overall packet statistics available for the interface context, logical or physical.
- **input-bytes**—Collect the number of octets received on the interface.
- **input-discards**—(Physical interfaces only) Collect the number of received packets that were discarded on the interface.
- **input-errors**—(Physical interfaces only) Collect the number of frames with errors received on the interface.
- **input-packets**—Collect the number of packets received on the interface.
- **input-v6-bytes**—Collect the number of IPv6 octets received on the interface.
- **input-v6-packets**—Collect the number of IPv6 packets received on the interface.
- **output-bytes**—Collect the number of octets transmitted on the interface.
- **output-errors**—(Physical interfaces only) Collect the number of frames that could not be transmitted on the interface because of errors.
- **output-packets**—Collect the number of packets transmitted on the interface.
- **output-v6-bytes**—Collect the number of IPv6 octets transmitted on the interface.
- **output-v6-packets**—Collect the number of IPv6 packets transmitted on the interface.
push-backup-to-master (Accounting Options)

Supported Platforms  MX Series

Syntax  push-backup-to-master;

Hierarchy Level  [edit accounting-options file filename]


Description  Configure the router to save the accounting files from the new backup Routing Engine to the new master Routing Engine when a change in mastership occurs. The files are saved to the /var/log/pfedBackup directory on the router. The master Routing Engine includes these accounting files with its own current accounting files when it transfers the files from the backup directory to the archive site at the next transfer interval. Use this statement when the new backup Routing Engine is not able to connect to the archive site; for example, when site is not connected by means of an out-of-band interface or the path to the site is routed through a line card.

NOTE: The backup Routing Engine’s files on the master Routing Engine are sent at each interval even though the files remain the same. If this is more activity than you want, consider using the backup-on-failure master-and-slave statement instead.
**routing-engine-profile**

**Supported Platforms**  
EX Series, M Series, MX Series, SRX Series, T Series, vSRX

**Syntax**  
```
routing-engine-profile profile-name {
 fields {
 field-name;
 }
 file filename;
 interval minutes;
}
```

**Hierarchy Level**  
[edit accounting-options]

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**  
Create a Routing Engine profile to collect selected Routing Engine statistics and write them to a file in the `/var/log` directory.

**Options**  
`profile-name`—Name of the Routing Engine statistics profile.

The remaining statements are explained separately. See [CLI Explorer](#).

**Required Privilege Level**  
interface—To view this statement in the configuration.  
interface-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring the Routing Engine Profile on page 333
schema-version (Flat-File Accounting Options)

**Supported Platforms**  
MX Series

**Syntax**  
schema-version `schema-name`;

**Hierarchy Level**  
[edit accounting-options flat-file-profile `profile-name`]

**Release Information**  

**Description**  
Specify the name of the XML schema that defines the contents and format of the accounting file, and appears in the accounting record header.

**Options**  
`schema-name`—Name of the schema.

**Required Privilege Level**  
system—To view this statement in the configuration.  
system-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring Flat-File Accounting for Layer 2 Wholesale  
- Configuring Flat-File Accounting for Extensible Subscriber Services Management  
- Flat-File Accounting Overview
### size

**Supported Platforms**  
EX Series, M Series, MX Series, SRX Series, T Series, vSRX

**Syntax**  
size bytes;

**Hierarchy Level**  
[edit accounting-options file filename]

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**  

**Options**  
bytes—Maximum size of each log file, in bytes, kilobytes (KB), megabytes (MB), or gigabytes (GB). When a log file (for example, profilelog) reaches its maximum size, it is renamed profilelog.0, then profilelog.1, and so on, until the maximum number of log files is reached. Then the oldest log file is overwritten. If you do not specify a size, the file is closed, archived, and renamed when the time specified for the transfer interval is exceeded.

**Syntax:**  
- x to specify bytes, xk to specify KB, xm to specify MB, xg to specify GB

**Range:**  
256 KB through 1 GB

**Required Privilege Level**  
interface—To view this statement in the configuration.  
interface-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring the Maximum Size of the File on page 313
## source-classes

**Supported Platforms**  
EX Series, M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

**Syntax**  
```  
source-classes {
 source-class-name;
}
```

**Hierarchy Level**  
[edit accounting-options class-usage-profile profile-name]

**Release Information**  
- Statement introduced before Junos OS Release 7.4.
- Statement introduced in Junos OS Release 9.0 for EX Series switches.
- Statement introduced in Junos OS Release 15.1F6 for PTX Series routers with third-generation FPCs installed.

**Description**  
Specify the source classes for which statistics are collected.

**Options**  
- `source-class-name`—Name of the source class to include in the class usage profile.

**Required Privilege**  
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring a Class Usage Profile on page 328
### start-time

<table>
<thead>
<tr>
<th>Supported Platforms</th>
<th>EX Series, M Series, MX Series, SRX Series, T Series, vSRX</th>
</tr>
</thead>
</table>

**Syntax**

```
start-time time;
```

**Hierarchy Level**

```
[edit accounting-options file filename]
```

**Release Information**

Statement introduced in Junos OS Release 8.2.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**

Specify the start time for transfer of an accounting-data log file.

**Options**

- **time**—Start time for file transfer.
  
  **Syntax:** `YYYY-MM-DD hh:mm`

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- Configuring the Start Time for File Transfer on page 316
**traceoptions (System Accounting)**

**Supported Platforms**  EX Series, MX Series

**Syntax**

```plaintext
traceoptions {
 file filename <files number> <size size> <world-readable | no-world-readable>;
 flag (all | config | events | radius | tacplus);
 no-remote-trace
}
```

**Hierarchy Level**  [edit system accounting]]

**Release Information**  Statement introduced in Junos OS Release 14.2.  tacplus option introduced in Junos OS Release 15.1.

**Description**  Define tracing operations for System Accounting.

**Default**  Trace options are not enabled by default.

**Options**

- **file filename**—Name of the file in which Junos OS stores the accounting logs. By default, this is created under the /var/log directory.

- **files number**—(Optional) Maximum number of trace files. When a trace file reaches the size specified by the size option, the filename is appended with 0 and compressed. For example, when trace file named trace-file-log reaches size <size>, it is renamed and compressed to trace-file-log.0.gz. When trace-file-log reaches size <size> or the second time, the trace-file-log.0.gz is renamed to trace-file-log.1.gz and trace-file-log is renamed and compressed to trace-file-log.0.gz. This renaming scheme ensures that the older logs to have a greater index number. When number of trace files reach <number> then the oldest file is deleted.

If you specify a maximum number of files, you also must specify a maximum file size with the size option and a filename.

**Range:** 2 through 1000 files

**Default:** 10

- **flag flag**—Tracing operation to perform. You can include one or more of the following flags:
  - **all**—Trace all operations.
  - **config**—Trace configuration processing.
  - **events**—Trace accounting events and their processing.
  - **radius**—Trace RADIUS processing.
  - **tacplus**—Trace TACPLUS processing.
**no-remote-trace**—(Optional) Disable tracing and logging operations that track normal operations, error conditions, and packets that are generated by or passed through the Juniper Networks device.

**no-world-readable**—Restrict access to the trace files to the owner.

**Default:** no-world-readable

**size size**—(Optional) Maximum size of each trace file in bytes, kilobytes (KB), megabytes (MB), or gigabytes (GB). If you do not specify a unit, the default is bytes. If you specify a maximum file size, you also must specify a maximum number of trace files by using the files option and a filename by using the file option.

If you specify a maximum file size, you also must specify a maximum number of trace files with the `files` option.

**Syntax:** `size` to specify bytes, `sizek` to specify KB, `sizem` to specify MB, or `sizeg` to specify GB.

**Range:** 10 KB through 1 MB

**Default:** 128 KB

**world-readable**—Enable any user to access the trace files.

**Required Privilege**

**Level**

admin—To view this statement in the configuration.

admin-control—To add this statement to the configuration.
**transfer-interval**

**Supported Platforms**: EX Series, M Series, MX Series, SRX Series, T Series, vSRX

**Syntax**: transfer-interval minutes;

**Hierarchy Level**: [edit accounting-options file filename]


**Description**: Specify the length of time the file remains open and receives new statistics before it is closed and transferred to an archive site.

**Options**: minutes—Time the file remains open and receives new statistics before it is closed and transferred to an archive site.

**Range**: 5 through 2880 minutes

**Default**: 30 minutes

**Required Privilege Level**: interface—To view this statement in the configuration. interface-control—To add this statement to the configuration.

**Related Documentation**: Configuring the Transfer Interval of the File on page 316
CHAPTER 36

Configuration Statements: Chassis Cluster

- cluster (Chassis) on page 672
- global-threshold on page 673
- global-weight on page 674
- ip-monitoring on page 675
- ip-monitoring (Services) on page 677
- next-hop on page 678
cluster (Chassis)

Supported Platforms  SRX Series, vSRX

Syntax
```
class {
configuration-synchronize {
 no-secondary-bootup-auto;
}
control-link-recovery;
heartbeat-interval milliseconds;
heartbeat-threshold number;
network-management {
 cluster-master;
}
redundancy-group group-number {
gratuitous-arp-count number;
hold-down-interval number;
interface-monitor interface-name {
 weight number;
}
ip-monitoring {
 family {
 inet {
 ipv4-address {
 interface {
 logical-interface-name;
 secondary-ip-address ip-address;
 }
 weight number;
 }
 }
 }
 global-threshold number;
 global-weight number;
 retry-count number;
 retry-interval seconds;
}
node (0 | 1) {
 priority number;
}
preempt;
}
reth-count number;
traceoptions {
 file {
 filename;
 files number;
 match regular-expression;
 (world-readable | no-world-readable);
 size maximum-file-size;
 }
 flag flag;
 level {
 (alert | all | critical | debug | emergency | error | info | notice | warning);
```
Hierarchy Level [edit chassis]

Release Information Statement introduced in Junos OS Release 9.0.

Description Configure a chassis cluster.

Options The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level interface—to view this statement in the configuration.
interface-control—to add this statement to the configuration.

Related Documentation • ip-monitoring on page 675

global-threshold

Supported Platforms SRX Series, vSRX

Syntax global-threshold number;

Hierarchy Level [edit chassis cluster redundancy-group group-number ip-monitoring ]


Description Specify the failover value for all IP addresses monitored by the redundancy group. When IP addresses with a configured total weight in excess of the threshold have become unreachable, the weight of IP monitoring is deducted from the redundancy group threshold.

Options number—Value at which the IP monitoring weight is applied against the redundancy group failover threshold.

Range: 0 through 255
Default: 0

Required Privilege Level interface—to view this statement in the configuration.
interface-control—to add this statement to the configuration.

Related Documentation • ip-monitoring on page 675
global-weight

Supported Platforms  SRX Series, vSRX

Syntax  global-weight number;

Hierarchy Level  [edit chassis cluster redundancy-group group-number ip-monitoring]


Description  Specify the relative importance of all IP address monitored objects to the operation of the redundancy group. Every monitored IP address is assigned a weight. If the monitored address becomes unreachable, the weight of the object is deducted from the global-threshold of IP monitoring objects in its redundancy group. When the global-threshold reaches 0, the global-weight is deducted from the redundancy group. Every redundancy group has a default threshold of 255. If the threshold reaches 0, a failover is triggered. Failover is triggered even if the redundancy group is in manual failover mode and preemption is not enabled.

Options  number—Combined weight assigned to all monitored IP addresses. A higher weight value indicates a greater importance.

Range: 0 through 255  
Default: 255

Required Privilege Level  interface—To view this statement in the configuration.  
interface-control—To add this statement to the configuration.

Related Documentation  • ip-monitoring on page 675
**ip-monitoring**

**Supported Platforms**  
SRX Series, vSRX

**Syntax**  
```
ip-monitoring {
 family {
 inet {
 ipv4-address {
 interface {
 logical-interface-name;
 secondary-ip-address ip-address;
 }
 weight number;
 }
 }
 }
 global-threshold number;
 global-weight number;
 retry-count number;
 retry-interval seconds;
}
```

**Hierarchy Level**  
```
[edit chassis cluster redundancy-group group-number]
```

**Release Information**  
Statement updated in Junos OS Release 10.1.

**Description**  
Specify a global IP address monitoring threshold and weight, and the interval between pings (retry-interval) and the number of consecutive ping failures (retry-count) permitted before an IP address is considered unreachable for all IP addresses monitored by the redundancy group. Also specify IP addresses, a monitoring weight, a redundant Ethernet interface number, and a secondary IP monitoring ping source for each IP address, for the redundancy group to monitor.

**Options**  
**IPv4 address**—The address to be continually monitored for reachability.

---

**NOTE:** All monitored object failures, including IP monitoring, are deducted from the redundancy group threshold priority. Other monitored objects include interface monitor, SPU monitor, cold-sync monitor, and NPC monitor (on supported platforms).

The remaining statements are explained separately. See CLI Explorer.

**Required Privilege**  
**Level**  
interface—to view this statement in the configuration.  
interface-control—to add this statement to the configuration.
Related Documentation

- interface (Chassis Cluster)
- global-threshold on page 673
- global-weight on page 674
- weight
- Example: Configuring Chassis Cluster Redundancy Group IP Address Monitoring on page 390
ip-monitoring (Services)

Supported Platforms SRX Series, vSRX

Syntax

```
ip-monitoring {
 policy policy-name {
 match {
 rpm-probe [probe-name];
 }
 no-preempt ;
 then {
 interface interface-name (disable | enable);
 preferred-route {
 route destination-address {
 discard
 next hop next-hop;
 preferred-metric metric;
 }
 routing-instances name;
 }
 }
 }
}
traceoptions {
 file {
 filename;
 files number;
 match regular-expression;
 size maximum-file-size;
 (world-readable | no-world-readable);
 }
 flag flag;
 no-remote-trace;
}
```

Hierarchy Level [edit services]

Release Information Statement introduced in Junos OS Release 10.4. Support added for the discard option starting from Junos OS Release 15.1X49-D60.

Description Configure IP monitoring.

Options The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level services—To view this statement in the configuration. services-control—To add this statement to the configuration.

Related Documentation • icmp on page 687
**next-hop**

**Supported Platforms**  
vSRX

**Syntax**  
next-hop next-hop;

**Hierarchy Level**  
[edit services rpm probe owner test test-name]

**Release Information**  
Statement introduced in Junos OS Release 11.4.

**Description**  
Specify the next-hop address to which the probe should be sent.

**Required Privilege**  
Level  
services—To view this statement in the configuration.  
services-control—To add this statement to the configuration.

**Related Documentation**  
• probe
CHAPTER 37

Configuration Statements: Datapath Debug

- action-profile on page 680
- capture-file (Security) on page 682
- datapath-debug on page 683
- flow (Security Flow) on page 685
- icmp on page 687
- maximum-capture-size (Datapath Debug) on page 687
- traceoptions (Security Datapath Debug) on page 688
**action-profile**

**Supported Platforms**  SRX5400, SRX5600, SRX5800, vSRX

**Syntax**
```
action-profile profile-name {
 event (jexec | lbt | lt-enter | lt-leave | mac-egress | mac-ingress | np-egress | np-ingress | pot) {
 count;
 packet-dump;
 packet-summary;
 trace;
 }
 module {
 flow {
 flag {
 all;
 }
 }
 }
 preserve-trace-order;
 record-pic-history;
}
```

**Hierarchy Level**  [edit security datapath-debug]

**Release Information**  Command introduced in Junos OS Release 10.0.

**Description**  Configure the action profile options for data path debugging.

**Options**
- **action-profile name** — Name of the action profile.
- **event** — Enable the events to trace the packet when the packet hit the events (jexec, lbt, lt-enter, lt-leave, mac-egress, mac-ingress, np-egress, np-ingress, pot)
  - **count** — Number of times a packet hits the specified event.
  - **packet-dump** — Capture the packet that hits the specified event.
  - **packet-summary** — Print the source/destination IP address details with protocol number and IP length details along with trace message for the specified event.
  - **trace** — Print the standard trace message when the packet hits the specified event.
- **module** — Turn on the flow session related trace messages.
  - **flow** — Trace flow session related messages.
  - **flag** — Specify which flow message needs to be traced.
  - **all** — Trace all possible flow trace messages.
  - **trace** — Print the standard trace message when the packet hits the specified event.
- **preserve-trace-order** — Preserve trace order.
- **record-pic-history**—Record the PICs in which the packet has been processed.

**Required Privilege**
- security—To view this statement in the configuration.
- security-control—To add this statement to the configuration.

**Related Documentation**
- Example: Configuring Packet Capture for Datapath Debugging on page 583
# capture-file (Security)

**Supported Platforms**  
SRX1500, SRX5400, SRX5600, SRX5800, vSRX

**Syntax**
```
capture-file {
 filename;
 files number;
 format pcap-format;
 size maximum-file-size;
 (world-readable | no-world-readable);
}
```

**Hierarchy Level**  
[edit security datapath-debug]

**Release Information**  
Statement introduced in Junos OS Release 10.4.

**Description**  
Sets packet capture for performing the datapath-debug action.

**Options**
- **filename**—Name of the file to receive the output of the packet capturing operation.
- **files**—Maximum number of capture files.
  - If you specify a maximum number of files, you also must specify a maximum file size with the **size** option and a filename.
  - Range: 1 through 10 files
- **format**—Describes the format of the capture file. The default format file is pcap. You can also set it as private (binary) format.
- **size**—Describes the size limit of the capture file.
  - If you specify a maximum file size, you also must specify a maximum number of trace files with the **files** option and a filename.
  - Range: 10 KB through 100 MB
- **world-readable | no-world-readable**—By default, log files can be accessed only by the user who configures the tracing operation. The **world-readable** option enables any user to read the file. To explicitly set the default behavior, use the **no-world-readable** option.

**Required Privilege Level**  
security—To view this statement in the configuration.  
security-control—To add this statement to the configuration.

**Related Documentation**
- System Log Messages

---

*Network Management Administration Guide*
**datapath-debug**

**Supported Platforms**  SRX5400, SRX5600, SRX5800

**Syntax**

datapath-debug {
    action-profile profile-name {
        event (jexec | lbt | lt-enter | lt-leave | mac-egress | mac-ingress | np-egress | np-ingress | pot) {
            count;
            packet-dump;
            packet-summary;
            trace;
        }
        module {
            flow {
                flag {
                    all;
                }
            }
            preserve-trace-order;
            record-pic-history;
        }
        capture-file {
            filename;
            files number;
            format pcap-format;
            size maximum-file-size;
            (world-readable | no-world-readable);
        }
        maximum-capture-size value;
        packet-filter packet-filter-name {
            action-profile (profile-name | default);
            destination-port (port-range | protocol-name);
            destination-prefix destination-prefix;
            interface logical-interface-name;
            protocol (protocol-number | protocol-name);
            source-port (port-range | protocol-name);
            source-prefix source-prefix;
        }
        traceoptions {
            file {
                filename;
                files number;
                match regular-expression;
                size maximum-file-size;
                (world-readable | no-world-readable);
            }
            no-remote-trace;
        }
    }
}

**Hierarchy Level**  [edit security]
<table>
<thead>
<tr>
<th><strong>Release Information</strong></th>
<th>Command introduced in Junos OS Release 10.0.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Description</strong></td>
<td>Configure the data path debugging options.</td>
</tr>
<tr>
<td><strong>Options</strong></td>
<td>The remaining statements are explained separately. See CLI Explorer.</td>
</tr>
<tr>
<td><strong>Required Privilege</strong></td>
<td>security—To view this statement in the configuration. security-control—To add this statement to the configuration.</td>
</tr>
<tr>
<td><strong>Related Documentation</strong></td>
<td>• <em>Understanding Data Path Debugging for Logical Systems</em></td>
</tr>
</tbody>
</table>
flow (Security Flow)

Supported Platforms
SRX Series, vSRX

Syntax

flow {
  aging {
    early-ageout seconds;
    high-watermark percent;
    low-watermark percent;
  }
  allow-dns-reply;
  ethernet-switching {
    block-non-ip-all;
    bpdu-vlan-flooding;
    bypass-non-ip-unicast;
    no-packet-flooding {
      no-trace-route;
    }
  }
  force-ip-reassembly;
  ipsec-performance-acceleration;
  load distribution {
    session-affinity ipsec;
  }
  packet-log {
    enable;
    throttle-interval;
    packet-filter <filter-name>;
  }
  pending-sess-queue-length (high | moderate | normal);
  route-change-timeout seconds;
  syn-flood-protection-mode (syn-cookie | syn-proxy);
  tcp-mss {
    all-tcp mss value;
    gre-in {
      mss value;
    }
    gre-out {
      mss value;
    }
    ipsec-vpn {
      mss value;
    }
  }
  tcp-session {
    fin-invalidate-session;
    no-sequence-check;
    no-syn-check;
    no-syn-check-in-tunnel;
    rst-invalidate-session;
    rst-sequence-check;
    strict-syn-check;
    tcp-initial-timeout seconds;
    time-wait-state [
(session-ageout | session-timeout seconds);
}
}
traceoptions {
  file {
    filename;
    files number;
    match regular-expression;
    size maximum-file-size;
    (world-readable | no-world-readable);
  }
  flag flag;
  no-remote-trace;
  packet-filter filter-name {
    destination-port port-identifier;
    destination-prefix address;
    interface interface-name;
    protocol protocol-identifier;
    source-port port-identifier;
    source-prefix address;
  }
  rate-limit messages-per-second;
}

Hierarchy Level [edit security]

Release Information Statement modified in Junos OS Release 9.5.

Description Determine how the device manages packet flow. The device can regulate packet flow in the following ways:

Options The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
security—To view this statement in the configuration.
security-control—To add this statement to the configuration.

Related Documentation
• Juniper Networks Devices Processing Overview
• Understanding Session Characteristics for SRX Series Services Gateways
• Understanding Flow in Logical Systems for SRX Series Devices
icmph

Supported Platforms  SRX Series, vSRX
Syntax  icmp{
        destination-interface interface-name;
    }
Hierarchy Level  [edit services rpm probe-server]
Release Information  Statement introduced before Junos OS Release 7.4.
Description  Specify the port information for the ICMP server.
The remaining statements are explained separately. See CLI Explorer.
Required Privilege Level  interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
Related Documentation  • Understanding ICMP Fragment Protection

maximum-capture-size (Datapath Debug)

Supported Platforms  SRX1500, SRX5400, SRX5600, SRX5800
Syntax  maximum-capture-size maximum-capture-size;
Hierarchy Level  [edit security datapath-debug]
Release Information  Statement introduced in Junos OS Release 10.0.
Description  Specifies maximum packet capture length.
Options  • maximum-capture-size maximum-capture-size—Specify the maximum packet capture length.
          Range: 68 through 10,000 bytes
Required Privilege Level  security—To view this statement in the configuration.
security-control—To add this statement to the configuration.
Related Documentation  • System Log Messages
traceoptions (Security Datapath Debug)

Supported Platforms  SRX1500, SRX5400, SRX5600, SRX5800

Syntax  
```
traceoptions {
 file {
 filename;
 files number;
 match regular-expression;
 size maximum-file-size;
 (world-readable | no-world-readable);
 }
 no-remote-trace;
}
```

Hierarchy Level  [edit security datapath-debug]


Description  Sets the trace options for datapath-debug.

Options
  - file—Configure the trace file options.
    - filename—Name of the file to receive the output of the tracing operation. Enclose the name within quotation marks. All files are placed in the directory `/var/log`. By default, the name of the file is the name of the process being traced.
    - files number—Maximum number of trace files. When a trace file named trace-file reaches its maximum size, it is renamed to trace-file.0, then trace-file.1, and so on, until the maximum number of trace files is reached. The oldest archived file is overwritten.

      If you specify a maximum number of files, you also must specify a maximum file size with the size option and a filename.

      Range: 2 through 1000 files

      Default: 10 files

    - match regular-expression—Refine the output to include lines that contain the regular expression.

    - size maximum-file-size—Maximum size of each trace file, in kilobytes (KB), megabytes (MB), or gigabytes (GB). When a trace file named trace-file reaches this size, it is renamed trace-file.0. When the trace-file again reaches its maximum size, trace-file.0 is renamed trace-file.1 and trace-file is renamed trace-file.0. This renaming scheme continues until the maximum number of trace files is reached. Then the oldest trace file is overwritten.

      If you specify a maximum file size, you also must specify a maximum number of trace files with the files option and a filename.

      Syntax: x K to specify KB, x m to specify MB, or x g to specify GB
Range: 10 KB through 1 GB
Default: 128 KB

- **world-readable | no-world-readable**—By default, log files can be accessed only by the user who configures the tracing operation. The *world-readable* option enables any user to read the file. To explicitly set the default behavior, use the *no-world-readable* option

- **no-remote-trace**—Set remote tracing as disabled.

**Required Privilege**

<table>
<thead>
<tr>
<th>Level</th>
<th>Required Privilege</th>
</tr>
</thead>
<tbody>
<tr>
<td>trace</td>
<td>To view this statement in the configuration.</td>
</tr>
<tr>
<td>trace-control</td>
<td>To add this statement to the configuration.</td>
</tr>
</tbody>
</table>
CHAPTER 38

Configuration Statements: Health Monitoring

- falling-threshold on page 692
- health-monitor on page 693
- idp (SNMP) on page 694
- routing-engine (SNMP Resource Level) on page 695
- interval on page 696
- rising-threshold on page 697
falling-threshold

Supported Platforms  EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

Syntax  falling-threshold percentage;

Hierarchy Level  [edit snmp health-monitor],  [edit snmp health-monitor idp]

Release Information  Statement introduced in Junos OS Release 8.0.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 9.3 for the [edit snmp health-monitor idp] hierarchy level.

Description  Set the lower threshold for the monitored object when you configure a health monitor alarm. By setting a rising and a falling threshold for a monitored variable, you can be alerted whenever the value of the variable falls outside the allowable operational range.

Options  percentage—The lower threshold for the alarm entry.
  Range: 1 through 100
  Default: 70 percent of the maximum possible value

Required Privilege Level  snmp—To view this statement in the configuration.
  snmp-control—To add this statement to the configuration.

Related Documentation  • Configuring the Falling Threshold or Rising Threshold on page 295
  • rising-threshold on page 697
health-monitor

Supported Platforms  EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

Syntax  

```plaintext
health-monitor {
 falling-threshold percentage;
 interval seconds;
 rising-threshold percentage;
 idp {
 falling-threshold percentage;
 interval seconds;
 rising-threshold percentage;
 }
}
```

Hierarchy Level  [edit snmp]

Release Information  Statement introduced in Junos OS Release 8.0.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Option idp introduced in Junos OS Release 9.3 for all supported platforms.

Description  Configure health monitoring.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege

- snmp—To view this statement in the configuration.
- snmp-control—To add this statement to the configuration.

Related Documentation

- Configuring Health Monitoring on Devices Running Junos OS on page 293
idp (SNMP)

**Supported Platforms**  
EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**  
```idl
idp {
 falling-threshold percentage;
 interval seconds;
 rising-threshold percentage;
}
```

**Hierarchy Level**  
[edit snmp health-monitor]

**Release Information**  
Statement introduced in Junos OS Release 9.3.

**Description**  
Configure health monitoring for Intrusion Detection and Prevention (IDP).

**Required Privilege Level**  
- **snmp**—To view this statement in the configuration.  
- **snmp-control**—To add this statement to the configuration.

**Related Documentation**  
- Configuring Health Monitoring on Devices Running Junos OS on page 293
### routing-engine (SNMP Resource Level)

**Supported Platforms**  
SRX300, SRX320, SRX340, SRX345, SRX550

**Syntax**  
```
routing-engine {
 resource <cpu | memory | open-files-count | process-count | storage | temperature | traceoptions > ;
 [
 interval <interval in secs>;
 moderate-threshold <percentage level>;
 high-threshold <percentage level>;
 critical-threshold <percentage level>;
 action <monitor | prevent | recover>;
]
}
```

**Hierarchy Level**  
[edit snmp health-monitor routing-engine]

**Release Information**  

**Description**  
Override the global configuration for a resource.

**Options**

- **interval**—Monitoring interval in seconds.  
  Range: 1 through 604800 seconds  
  Default: 300 seconds

- **moderate-threshold**—Percentage of moderate threshold level resource utilization.  
  Range: 30 through 99 percent  
  Default: 70 percent

- **high-threshold**—Percentage of high-threshold level resource utilization.  
  Range: 30 through 99 percent  
  Default: 80 percent

- **critical-threshold**—Percentage of critical threshold level resource utilization.  
  Range: 30 through 99 percent  
  Default: 90 percent

- **action**—Enable action for all resources.  
  Default: If action is not enabled, the default action is prevent.

**WARNING:** If the system health management action for an affected resource is configured to recover, then certain intrusive operations necessary for preventing system breakdown are taken. Intrusive operations
can include restarting or terminating processes, deleting files, and so on. Such action information is logged in the system health management history and system log.

**Required Privilege**

**Level**
- security—To view this statement in the configuration.
- security-control—To add this statement to the configuration.

**interval**

**Supported Platforms**

EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**

`interval seconds;`

**Hierarchy Level**

[edit snmp health-monitor], [edit snmp health-monitor idp]

**Release Information**


**Description**

Interval between samples.

**Options**

- `seconds`—Time between samples, in seconds.
  - **Range:** 1 through 2147483647 seconds
  - **Default:** 300 seconds

**Required Privilege**

**Level**
- snmp—To view this statement in the configuration.
- snmp-control—To add this statement to the configuration.

**Related Documentation**

- Configuring the Interval on page 296
**rising-threshold**

**Supported Platforms**  
EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**  
rising-threshold percentage;

**Hierarchy Level**  
[edit snmp health-monitor],  
[edit snmp health-monitor idp]

**Release Information**  
Statement introduced in Junos OS Release 8.0.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.  
Statement introduced in Junos OS Release 9.3 for the [edit snmp health-monitor idp] hierarchy level.

**Description**  
Set the upper threshold for the monitored object when you configure a health monitor alarm. By setting a rising and a falling threshold for a monitored object, you can be alerted whenever the value of the variable falls outside the allowable operational range.

**Options**  
percentage—The lower threshold for the alarm entry.  
Range: 1 through 100  
Default: 80 percent of the maximum possible value

**Required Privilege**  
Level  
- snmp—to view this statement in the configuration.  
- snmp-control—to add this statement to the configuration.

**Related Documentation**  
- falling-threshold on page 692  
- Configuring the Falling Threshold or Rising Threshold on page 295
CHAPTER 39

Configuration Statements: Remote Monitoring (RMON)

- alarm (SNMP RMON) on page 700
- community on page 701
- description on page 702
- event on page 703
- falling-event-index on page 704
- falling-threshold on page 705
- falling-threshold-interval on page 706
- interval on page 707
- request-type on page 708
- rising-event-index on page 709
- rising-threshold on page 710
- rmon on page 710
- sample-type on page 711
- startup-alarm on page 712
- syslog-subtag on page 713
- type on page 714
- variable on page 715
alarm (SNMP RMON)

Supported Platforms
ACX Series, EX Series, M Series, MX Series, OCX1100, PTX Series, QFX Series, SRX320, T Series

Syntax
alarm index {
  description description;
  falling-event-index index;
  falling-threshold integer;
  falling-threshold-interval seconds;
  interval seconds;
  request-type (get-next-request | get-request | walk-request);
  rising-event-index index;
  rising-threshold integer;
  sample-type (absolute-value | delta-value);
  startup-alarm (falling-alarm | rising-alarm | rising-or-falling alarm);
  syslog-subtag syslog-subtag;
  variable oid-variable;
}

Hierarchy Level
[edit snmp rmon]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Configure RMON alarm entries.

Options
index—Identifies this alarm entry as an integer.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
snmp—To view this statement in the configuration.
        snmp-control—To add this statement to the configuration.

Related Documentation
- Configuring an RMON Alarm Entry and Its Attributes on page 250
- event on page 703
- RMON MIB Event, Alarm, Log, and History Control Tables
- Monitoring RMON MIB Tables
- Understanding RMON
community

**Supported Platforms**  
EX Series, M Series, MX Series, SRX Series, T Series

**Syntax**  
community community-name;

**Hierarchy Level**  
[edit snmp rmon event index]

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**  
The trap group that is used when generating a trap (if eventType is configured to send traps). If that trap group has the **rmon-alarm** trap category configured, a trap is sent to all the targets configured for that trap group. The community string in the trap matches the name of the trap group (and hence, the value of **eventCommunity**). If nothing is configured, traps are sent to each group with the **rmon-alarm** category set.

**Options**  
community-name—Identifies the trap group that is used when generating a trap if the event is configured to send traps.

**Required Privilege**  
Level snmp—To view this statement in the configuration.

snmp-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring an RMON Event Entry and Its Attributes on page 254
description

**Supported Platforms**  EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**  
```
description description;
```

**Hierarchy Level**  
[edit snmp rmon alarm index],  
[edit snmp rmon event index]

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**  
Text description of alarm or event.

**Options**  
*description*—Text description of an alarm or event entry. If the description includes spaces, enclose it in quotation marks (“ “).

**Required Privilege**  
- **Level**  
  - snmp—To view this statement in the configuration.  
  - snmp-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring the Description on page 251  
- Configuring an RMON Event Entry and Its Attributes on page 254
**event**

**Supported Platforms**  
EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**  
```
event index {
 community community-name;
 description description;
 type type;
}
```

**Hierarchy Level**  
[edit snmp rmon]

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**  
Configure RMON event entries.

**Options**  
*index*—Identifier for a specific event entry.

The remaining statements are explained separately. See CLI Explorer.

**Required Privilege**  

- **Level**
  - snmp—To view this statement in the configuration.
  - snmp-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring an RMON Event Entry and Its Attributes on page 254
- alarm (SNMP RMON) on page 700
falling-event-index

Supported Platforms  EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

Syntax  falling-event-index index;

Hierarchy Level  [edit snmp rmon alarm index]

Release Information  Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description  The index of the event entry that is used when a falling threshold is crossed. If this value is zero, no event is triggered.

Options  index—Index of the event entry that is used when a falling threshold is crossed.
Range: 0 through 65,535
Default: 0

Required Privilege Level  snmp—To view this statement in the configuration.
snmp-control—To add this statement to the configuration.

Related Documentation  • Configuring the Falling Event Index or Rising Event Index on page 251
• rising-event-index on page 709
falling-threshold

**Supported Platforms**  
EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**  
falling-threshold *integer*;

**Hierarchy Level**  
[edit snmp rmon alarm *index*]

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**  
Set the lower threshold for the sampled variable (monitored object) when you configure an SNMP RMON alarm. By setting a rising and a falling threshold for a variable, you can be alerted whenever the value of the variable falls outside the allowable operational range.

**Options**  
*integer*—The lower threshold for the alarm entry.  
*Range*: -2,147,483,648 through 2,147,483,647  
*Default*: 20 percent less than **rising-threshold**

**Required Privilege**  
snmp—To view this statement in the configuration.  
snmp-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring the Falling Threshold or Rising Threshold on page 252  
- **rising-threshold** on page 710
**falling-threshold-interval**

**Supported Platforms**  
EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**  
falling-threshold-interval *seconds*;

**Hierarchy Level**  
[edit snmp rmon alarm index]

**Release Information**  
Statement introduced in Junos OS Release 8.3.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**  
Set the interval between samples after the rising threshold is exceeded and the value of the sample starts to drop. If the value of the sample drops and exceeds the falling threshold, the regular sampling interval is used.

**Options**  
*seconds*—Time between samples, in seconds.  
**Range:** 1 through 2,147,483,647 seconds  
**Default:** 60 seconds

**Required Privilege Level**  
snmp—To view this statement in the configuration.  
snmp-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring the Falling Threshold Interval on page 252
- interval on page 707
**interval**

**Supported Platforms**: EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**: interval *seconds*;

**Hierarchy Level**: [edit snmp rmon alarm index]


**Description**: Interval between samples.

**Options**
- **seconds**—Time between samples, in seconds.
- **Range**: 1 through 2,147,483,647 seconds
- **Default**: 60 seconds

**Required Privilege Level**
- snmp—To view this statement in the configuration.
- snmp-control—To add this statement to the configuration.

**Related Documentation**
- Configuring the Interval on page 252
**request-type**

**Supported Platforms**  
EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**  
`request-type (get-next-request | get-request | walk-request);`

**Hierarchy Level**  
`[edit snmp rmon alarm index]`

**Release Information**  
Statement introduced in Junos OS Release 8.3.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**  
Extend monitoring to a specific SNMP object instance (`get-request`), or extend monitoring to all object instances belonging to a MIB branch (`walk-request`), or extend monitoring to the next object instance after the instance specified in the configuration (`get-next-request`).

**Options**  
- `get-next-request`—Performs an SNMP get next request.
- `get-request`—Performs an SNMP get request.
- `walk-request`—Performs an SNMP walk request.

**Required Privilege Level**  
- `snmp`—To view this statement in the configuration.
- `snmp-control`—To add this statement to the configuration.

**Related Documentation**  
- Configuring the Request Type on page 253
- variable on page 715
rising-event-index

**Supported Platforms**  EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**  rising-event-index index;

**Hierarchy Level**  [edit snmp rmon alarm index]

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**  Index of the event entry that is used when a rising threshold is crossed. If this value is zero, no event is triggered.

**Options**  

- **index**—Index of the event entry that is used when a rising threshold is crossed.  
  **Range:** 0 through 65,535  
  **Default:** 0

**Required Privilege**  
- snmp—To view this statement in the configuration.  
- snmp-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring the Falling Event Index or Rising Event Index on page 251  
- falling-event-index on page 704
**rising-threshold**

**Supported Platforms**  
EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**  
rising-threshold integer;

**Hierarchy Level**  
[edit snmp rmon alarm index]

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**  
Set the upper threshold for the sampled variable (monitored object) when you configure an SNMP RMON alarm. By setting a rising and a falling threshold for a variable, you can be alerted whenever the value of the variable falls outside the allowable operational range.

**Options**  
integer—The lower threshold for the alarm entry.  
**Range:** –2,147,483,648 through 2,147,483,647

**Required Privilege Level**  
snmp—To view this statement in the configuration.  
snmp-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring the Falling Threshold or Rising Threshold on page 252
- falling-threshold on page 705

**rmon**

**Supported Platforms**  
EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**  
rmon { ... }

**Hierarchy Level**  
[edit snmp]

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**  
Configure Remote Monitoring.

**Required Privilege Level**  
snmp—To view this statement in the configuration.  
snmp-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring an RMON Alarm Entry and Its Attributes on page 250
sample-type

Supported Platforms EX Series, M Series, MX Series, SRX Series, T Series

Syntax sample-type (absolute-value | delta-value);

Hierarchy Level [edit snmp rmon alarm index]

Release Information Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description Method of sampling the selected variable.

Options absolute-value—Actual value of the selected variable is used when comparing against the thresholds.

delta-value—Difference between samples of the selected variable is used when comparing against the thresholds.

Required Privilege

Level snmp—To view this statement in the configuration.
snmp-control—To add this statement to the configuration.

Related Documentation • Configuring the Sample Type on page 253
startup-alarm

Supported Platforms  EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

Syntax  startup-alarm (falling-alarm | rising-alarm | rising-or-falling-alarm);

Hierarchy Level  [edit snmp rmon alarm index]

Release Information  Statement introduced before Junos OS Release 7.4.
                        Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description  The alarm that can be sent upon entry startup.

Options  falling-alarm—Generated if the first sample after the alarm entry becomes active is less than or equal to the falling threshold.

          rising-alarm—Generated if the first sample after the alarm entry becomes active is greater than or equal to the rising threshold.

          rising-or-falling-alarm—Generated if the first sample after the alarm entry becomes active satisfies either of the corresponding thresholds.

Default: rising-or-falling-alarm

Required Privilege
Level  snmp—To view this statement in the configuration.
       snmp-control—To add this statement to the configuration.

Related Documentation  • Configuring the Startup Alarm on page 253
**syslog-subtag**

**Supported Platforms**  EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**  syslog-subtag syslog-subtag;

**Hierarchy Level**  [edit snmp rmon alarm index]

**Release Information**  Statement introduced in Junos OS Release 8.5, Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**  Add a tag to the system log message.

**Options**  syslog-subtag syslog-subtag—Tag of not more than 80 uppercase characters to be added to syslog messages.

**Default:**  None

**Required Privilege**  snmp—To view this statement in the configuration.

**Level**  snmp-control—To add this statement to the configuration.

**Related Documentation**  • Configuring the System Log Tag on page 254
**type**

**Supported Platforms**  EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**  type type;

**Hierarchy Level**  [edit snmp rmon event index]

**Release Information**  Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**  Type of notification generated when a threshold is crossed.

**Options**  type—Type of notification:
- log—Add an entry to logTable.
- log-and-trap—Send an SNMP trap and make a log entry.
- none—No notifications are sent.
- snmptrap—Send an SNMP trap.

Default: log-and-trap

**Required Privilege Level**
- snmp—To view this statement in the configuration.
- snmp-control—To add this statement to the configuration.

**Related Documentation**  Configuring an RMON Event Entry and Its Attributes on page 254
### variable

<table>
<thead>
<tr>
<th>Supported Platforms</th>
<th>EX Series, M Series, MX Series, PTX Series, SRX Series, T Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>variable oid-variable;</code></td>
</tr>
<tr>
<td>Hierarchy Level</td>
<td><code>[edit snmp rmon alarm index]</code></td>
</tr>
<tr>
<td>Release Information</td>
<td>Statement introduced before Junos OS Release 7.4.</td>
</tr>
<tr>
<td></td>
<td>Statement introduced in Junos OS Release 9.0 for EX Series switches.</td>
</tr>
<tr>
<td>Description</td>
<td>Object identifier (OID) of MIB variable to be monitored.</td>
</tr>
<tr>
<td>Options</td>
<td><code>oid-variable</code>—OID of the MIB variable that is being monitored. The OID can be a dotted decimal (for example, 1.3.6.1.2.1.2.2.1.10.1). Alternatively, use the MIB object name (for example, <code>ifInOctets.1</code>).</td>
</tr>
<tr>
<td>Required Privilege</td>
<td>snmp—To view this statement in the configuration.</td>
</tr>
<tr>
<td>Level</td>
<td>snmp-control—To add this statement to the configuration.</td>
</tr>
<tr>
<td>Related Documentation</td>
<td>• Configuring the Variable on page 254</td>
</tr>
</tbody>
</table>
CHAPTER 40

Configuration Statements: Resource Monitoring for Memory Regions

- free-fw-memory-watermark (Resource Monitor) on page 718
- free-heap-memory-watermark (Resource Monitor) on page 719
- free-nh-memory-watermark (Resource Monitor) on page 720
- high-threshold (Resource Monitor) on page 721
- no-load-throttle (Resource Monitor) on page 721
- no-logging (Resource Monitor) on page 722
- no-throttle (Resource Monitor) on page 723
- resource-category jtree (Resource Monitor) on page 724
- resource-monitor on page 725
- subscribers-limit (Resource Monitor) on page 727
- traceoptions (Resource Monitor) on page 728
# free-fw-memory-watermark (Resource Monitor)

**Supported Platforms**  
MX104, MX2010, MX2020, MX240, MX480, MX80, MX960

**Syntax**  
free-fw-memory-watermark number;

**Hierarchy Level**  
[edit system services resource-monitor]

**Release Information**  
Statement introduced in Junos OS Release 15.1 for MX80, MX104, MX240, MX480, MX960, MX2010, and MX2020 routers.

**Description**  
Configure the percentage of free memory space used for firewall or filters to be monitored with a watermark value. You can configure the resource-monitoring capability on MX80, MX104, MX240, MX480, MX960, MX2010, and MX2020 routers with I-chip-based DPCs and Trio-based FPCs.

**Options**  
`number`—Percentage of free memory space used for firewall and filters to be monitored with a watermark value. When the configured watermark is exceeded, error logs are triggered. The default watermark values for the percentage of free ukernel or heap memory, next-hop memory, and firewall filter memory are 20.

**Range:** 1 through 100

**Required Privilege**  
`system`—To view this statement in the configuration.

**Level**  
`system-control`—To add this statement to the configuration.
### free-heap-memory-watermark (Resource Monitor)

<table>
<thead>
<tr>
<th><strong>Supported Platforms</strong></th>
<th>MX104, MX2010, MX2020, MX240, MX480, MX80, MX960</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Syntax</strong></td>
<td>free-heap-memory-watermark <em>number</em>;</td>
</tr>
<tr>
<td><strong>Hierarchy Level</strong></td>
<td>[edit system services resource-monitor]</td>
</tr>
<tr>
<td><strong>Release Information</strong></td>
<td>Statement introduced in Junos OS Release 15.1 for MX80, MX104, MX240, MX480, MX960, MX2010, and MX2020 routers.</td>
</tr>
<tr>
<td><strong>Description</strong></td>
<td>Configure the percentage of free memory space used for ukernel or heap (ASIC) memory to be monitored with a watermark value. You can configure the resource-monitoring capability on MX80, MX104, MX240, MX480, MX960, MX2010, and MX2020 routers with I-chip-based DPCs and Trio-based FPCs.</td>
</tr>
<tr>
<td><strong>Options</strong></td>
<td><em>number</em>—Percentage of free memory space used for ukernel or heap to be monitored with a watermark value. When the configured watermark is exceeded, error logs are triggered. The default watermark values for the percentage of free ukernel or heap memory, next-hop memory, and firewall filter memory are 20.</td>
</tr>
<tr>
<td><strong>Range</strong></td>
<td>1 through 100</td>
</tr>
<tr>
<td><strong>Required Privilege</strong></td>
<td>system—To view this statement in the configuration.</td>
</tr>
<tr>
<td><strong>Level</strong></td>
<td>system-control—To add this statement to the configuration.</td>
</tr>
</tbody>
</table>
free-nh-memory-watermark (Resource Monitor)

Supported Platforms  MX104, MX2010, MX2020, MX240, MX480, MX80, MX960

Syntax  free-nh-memory-watermark number;

Hierarchy Level  [edit system services resource-monitor]


Description  Configure the percentage of free memory space used for next-hops to be monitored with a watermark value. The default value and the configured value of the watermark value for the percentage of free next-hop memory also applies to encapsulation memory. You can configure the resource-monitoring capability on MX80, MX104, MX240, MX480, MX960, MX2010, and MX2020 routers with I-chip-based DPCs and Trio-based FPCs.

Options  number—Percentage of free memory space used for next-hops to be monitored with a watermark value. The NH memory watermark is applicable only for encapsulation memory (output WAN static RAM memory). When the configured watermark is exceeded, error logs are triggered. The default watermark values for the percentage of free ukernel or heap memory, next-hop memory, and firewall filter memory are 20.

Range: 1 through 100

Required Privilege Level  system—To view this statement in the configuration.

system-control—To add this statement to the configuration.
high-threshold (Resource Monitor)

Supported Platforms  MX104, MX2010, MX2020, MX240, MX480, MX80, MX960

Syntax  high-threshold number;

Hierarchy Level  [edit system services resource-monitor]


Description  Configure the high threshold value, exceeding which warnings or error logs are generated, for all the regions of memory, such as heap or ukernel, next-hop and encapsulation, and firewall filter memory. You can configure the resource-monitoring capability on MX80, MX104, MX240, MX480, MX960, MX2010, and MX2020 routers with I-chip-based DPCs and Trio-based FPCs.

Options  number—High threshold percentage for memory resource utilization
  Range: 1 through 100

Required Privilege  Level  system—To view this statement in the configuration. system-control—To add this statement to the configuration.

no-load-throttle (Resource Monitor)

Supported Platforms  MX Series

Syntax  no-load-throttle;

Hierarchy Level  [edit system services resource-monitor]

Release Information  Statement introduced in Junos OS Release 17.3R1 for MX series routers.

Description  The no-load-throttle statement disables line card load-based throttling. Load-based throttling is also disabled when you configure the no-throttle statement.

Required Privilege  Level  system—To view this statement in the configuration. system-control—To add this statement to the configuration.
# no-logging (Resource Monitor)

<table>
<thead>
<tr>
<th>Supported Platforms</th>
<th>MX104, MX2010, MX2020, MX240, MX480, MX80, MX960</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>no-logging;</td>
</tr>
<tr>
<td>Hierarchy Level</td>
<td>[edit system services resource-monitor]</td>
</tr>
<tr>
<td>Description</td>
<td>Disable the generation of error log messages when the utilization of memory resources exceeds the threshold or checkpoint levels. By default, messages are written to /var/log/rsmonlog.</td>
</tr>
<tr>
<td>Options</td>
<td>no-logging—Disable the generation of error log messages when the utilization of memory resources exceeds the configured level. By default, error logs are recorded when the resource level utilization is exceeded.</td>
</tr>
<tr>
<td>Required Privilege</td>
<td>system—To view this statement in the configuration.</td>
</tr>
<tr>
<td>Level</td>
<td>system-control—To add this statement to the configuration.</td>
</tr>
</tbody>
</table>
no-throttle (Resource Monitor)

**Supported Platforms**  
MX2010, MX2020, MX240, MX480, MX960

**Syntax**  
no-throttle;

**Hierarchy Level**  
[edit system services resource-monitor]

**Release Information**  
Statement introduced in Junos OS Release 15.1 for MX240, MX480, MX960, MX2010, and MX2020 routers.

**Description**  
Disable the throttling of subscriber services and sessions when the utilization of memory resources exceeds the threshold levels. For the subscriber service management, sessions are throttled based on line card resources, such as heap, counter memory, expansion memory, and firewall counter memory. If the resource has been used above a certain threshold, the subscribers and services are throttled to prevent the system from being overloaded and resulting in a breakdown. This feature gathers input from each of the line cards and transfers this statistical detail to the Routing Engine process using a well-known internal port. This information is scanned by the daemon on the Routine Engine and using the shared memory space built into the the session database, the existing active subscribers and sessions are throttled. You can configure the resource-monitoring capability on MX240, MX480, MX960, MX2010, and MX2020 routers with I-chip-based DPCs and Trio-based FPCs.

**Options**  
- **no-throttle**—Disable the throttling of subscriber services and sessions when the utilization of memory resources exceeds the threshold levels. The throttling capability is enabled by default.

**Required Privilege**  
- **Level**  
  - system—to view this statement in the configuration.
  - system-control—to add this statement to the configuration.
resource-category jtree (Resource Monitor)

Supported Platforms
MX2010, MX2020, MX240, MX480, MX960

Syntax
resource-category jtree {
resource-type (contiguous-pages | free-dwords | free-pages) {
  low-watermark number;
  high-watermark number;
}
}

Hierarchy Level
[edit system services resource-monitor]

Release Information
Statement introduced in Junos OS Release 15.1 for MX240, MX480, MX960, MX2010, and MX2020 routers.

Description
Define the resource category that you want to monitor and analyze for ensuring system stability, especially the health and operating efficiency of I-chip-based line cards and Trio-based FPCs on MX Series routers. The resource category includes detailed CPU utilization, session rate, and session count statistics. You use the resource category statistics to understand the extent to which new attack objects or applications affect performance. The jtree memory on all MX Series router Packet Forwarding Engines has two segments: one segment primarily stores routing tables and related information, and the other segment primarily stores firewall-filter-related information. The Junos OS provides the memory-enhanced statement to reallocate the jtree memory for routes, firewall filters, and Layer 3 VPNs.

Options
jtree—Specify the Jtree resource category for which you want to monitor the health (working condition), operating efficiency, traffic-handling capacity, and performance status.

The remaining statements are explained separately. See CLIXplorer.

Required Privilege
system—To view this statement in the configuration.

system-control—To add this statement to the configuration.
resource-monitor

Supported Platforms  MX2010, MX2020, MX240, MX480, MX960

Syntax  resource-monitor {
    free-fw-memory-watermark number;
    free-heap-memory-watermark number;
    free-nh-memory-watermark number;
    high-threshold number;
    no-logging;
    no-throttle;
    resource-category jtree {
        resource-type { contiguous-pages | free-dwords | free-pages } {
            low-watermark number;
            high-watermark number;
        }
    }
    subscribers-limit {
        client-type { any | dhcp | l2tp | pppoe } {
            chassis {
                limit limit;
            }
            fpc slot-number {
                limit limit;
                pic number {
                    limit limit;
                    port number {
                        limit limit;
                    }
                }
            }
        }
    }
    traceoptions {
        file filename <files number> <match regular-expression> <size maximum-file-size>
        <world-readable | no-world-readable>:
        flag flag;
        no-remote-trace;
    }
}

Hierarchy Level  [edit system services]


Description  Enable the resource monitoring capability to provision sufficient headroom (memory space limits that are set for the application or virtual router) for monitoring the health and operating efficiency of DPCs and MPCs. This feature also enables the memory resource monitoring mechanism to avoid the system operations from compromising on the health and traffic-handling stability of the line cards by generating error logs when a specified watermark value for memory regions and threshold value for the jtree memory usage is exceeded.
region are exceeded. A trade-off on the system performance can be detrimental for
supporting live traffic and protocols.

You can configure the resource-monitoring capability on MX240, MX480, MX960, MX2010,
and MX2020 routers with I-chip-based DPCs and Trio-based FPCs. The remaining statements are explained separately. See CLI Explorer.

**Required Privilege**

- **Level**
  - system—To view this statement in the configuration.
  - system-control—To add this statement to the configuration.

**Related Documentation**

- Diagnosing and Debugging System Performance by Configuring Memory Resource Usage Monitoring on MX Series Routers on page 528
- Resource Monitoring Mechanism on MX Series Routers Overview
- Resource Monitoring Usage Computation Overview on page 525
- Limiting Subscribers by Client Type and Hardware Element with Resource Monitor
**subscribers-limit (Resource Monitor)**

**Supported Platforms**  
MX Series

**Syntax**
```
subscribers-limit {
 client-type (any | dhcp | l2tp | pppoe) {
 chassis {
 limit limit;
 }
 fpc slot-number {
 limit limit;
 pic number {
 limit limit;
 port number {
 limit limit;
 }
 }
 }
 }
}
```

**Hierarchy Level**  
[edit system services resource-monitor]

**Release Information**  
Statement introduced in Junos OS Release 17.3R1.

**Description**  
Configure the maximum number of subscribers of a specified client type allowed to be logged in on the chassis, per MPC, per MIC, and per port. When that number is reached, subsequent logins are denied until the current number of subscribers drops below the maximum allowed.

Limit the number of subscribers allowed to log in per chassis, MPC, MIC, or port.

The remaining statements are explained separately. See [CLI Explorer](#).

**Required Privilege Level**  
- system—To view this statement in the configuration.
- system-control—To add this statement to the configuration.

**Related Documentation**  
- [Limiting Subscribers by Client Type and Hardware Element with Resource Monitor](#)
- [Resource Monitoring Mechanism on MX Series Routers Overview](#)
traceoptions (Resource Monitor)

Supported Platforms: MX104, MX2010, MX2020, MX240, MX480, MX80, MX960

Syntax:
```
traceoptions {
 file filename <files number> <match regular-expression > <size maximum-file-size>
 <world-readable | no-world-readable>
 flag flag;
}
```

Hierarchy Level: [edit system services resource-monitor]


Description: Define tracing operations for the memory resource utilization processes.

Options:
- **file filename**—Name of the file to receive the output of the tracing operation. All files are placed in the directory `/var/log`.
  - Default: `rmopd`
- **files number**—(Optional) Maximum number of trace files to create before overwriting the oldest one. If you specify a maximum number of files, you also must specify a maximum file size with the `size` option.
  - Range: 2 through 1000
  - Default: 3 files
- **match regular-expression**—(Optional) Refine the output to include lines that contain the regular expression.
- **size maximum-file-size**—(Optional) Maximum size of each trace file. By default, the number entered is treated as bytes. Alternatively, you can include a suffix to the number to indicate kilobytes (KB), megabytes (MB), or gigabytes (GB). If you specify a maximum file size, you also must specify a maximum number of trace files with the `files` option.
  - Range: 10 KB through 1 GB
  - Default: 128 KB
- **world-readable**—(Optional) Enable unrestricted file access.
- **no-world-readable**—(Default) Disable unrestricted file access. This means the log file can be accessed only by the user who configured the tracing operation.
- **flag flag**—Tracing operation to perform. To specify more than one tracing operation, include multiple `flag` statements. You can include the following flags:
  - **all**—Trace all operations.
**Required Privilege**  trace—To view this statement in the configuration.

**Level** trace-control—To add this statement to the configuration.
CHAPTER 41

Configuration Statements: Security Alarms

- decryption-failures on page 731
- idp (Security Alarms) on page 732

decryption-failures

Supported Platforms SRX Series, vSRX

Syntax

```plaintext
decryption-failures {
 threshold value;
}
```

Hierarchy Level [edit security alarms potential-violation]

Release Information Statement introduced in Junos OS Release 11.2.

Description Raise a security alarm after exceeding a specified number of decryption failures. This statement is supported on SRX300, SRX320, SRX340, SRX345, SRX550HM, and SRX1500 devices and vSRX instances.

Default Multiple decryption failures do not cause an alarm to be raised.

Options failures—Number of decryption failures up to which an alarm is not raised. When the configured number is exceeded, an alarm is raised.

Range: 0 through 1 through 1,000,000,000.

Default: 1000

Required Privilege Level

security—To view this statement in the configuration.

security-control—To add this statement to the configuration.

Related Documentation • IPSec VPN Overview
### idp (Security Alarms)

**Supported Platforms**  
SRX Series, vSRX

**Syntax**  
idp;

**Hierarchy Level**  
[edit security alarms potential-violation]

**Release Information**  
Statement introduced in Junos OS Release 11.2.

**Description**  
Configure alarms for IDP attack.

**Required Privilege Level**  
security—To view this statement in the configuration.  
security-control—To add this statement to the configuration.
CHAPTER 42

Configuration Statements: SNMP

- access-list on page 734
- agent-address on page 735
- alarm-id on page 736
- alarm-list-name on page 737
- alarm-management on page 738
- alarm-state on page 739
- authorization on page 740
- categories on page 741
- client-list on page 742
- client-list-name on page 743
- clients on page 744
- commit-delay on page 745
- community (SNMP) on page 746
- contact (SNMP) on page 747
- description on page 748
- destination-port on page 749
- enterprise-oid on page 749
- filter-duplicates on page 750
- filter-interfaces on page 751
- interface (SNMP) on page 752
- location (SNMP) on page 753
- logical-system on page 754
- logical-system-trap-filter on page 755
- name on page 755
- nonvolatile on page 756
- oid on page 757
- proxy (snmp) on page 758
- routing-instance on page 760
access-list

Supported Platforms  
ACX Series, M Series, MX Series, PTX Series, SRX Series, T Series

Syntax  
```
[edit snmp]
routing-instance-access {
 access-list {
 routing-instance;
 routing-instance restrict;
 }
}
```

Hierarchy Level  
[edit snmp routing-instance-access]

Release Information  
Statement introduced in Junos OS Release 8.4.

Description  
Create access lists to control SNMP agents in routing instances from accessing SNMP information. To enable the SNMP agent on a routing instance to access SNMP information, specify the routing instance name. To disable the SNMP agent on a routing instance from accessing SNMP information, include the routing-instance name followed by the `restrict` keyword.

Required Privilege Level  
- snmp—to view this statement in the configuration.
- snmp-control—to add this statement to the configuration.

Related Documentation  
- routing-instance-access on page 761
### agent-address

<table>
<thead>
<tr>
<th><strong>Supported Platforms</strong></th>
<th>ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, T Series</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Syntax</strong></td>
<td>agent-address outgoing-interface;</td>
</tr>
<tr>
<td><strong>Hierarchy Level</strong></td>
<td>[edit snmp trap-options]</td>
</tr>
<tr>
<td><strong>Release Information</strong></td>
<td>Statement introduced before Junos OS Release 7.4.</td>
</tr>
<tr>
<td></td>
<td>Statement introduced in Junos OS Release 9.0 for EX Series switches.</td>
</tr>
<tr>
<td><strong>Description</strong></td>
<td>Set the agent address of all SNMPv1 traps generated by this router or switch. Currently, the only option is <strong>outgoing-interface</strong>, which sets the agent address of each SNMPv1 trap to the address of the outgoing interface of that trap.</td>
</tr>
<tr>
<td><strong>Options</strong></td>
<td><strong>outgoing-interface</strong>—Value of the agent address of all SNMPv1 traps generated by this router or switch. The <strong>outgoing-interface</strong> option sets the agent address of each SNMPv1 trap to the address of the outgoing interface of that trap.</td>
</tr>
<tr>
<td><strong>Default</strong></td>
<td>disabled (the agent address is not specified in SNMPv1 traps).</td>
</tr>
<tr>
<td><strong>Required Privilege</strong></td>
<td>snmp—To view this statement in the configuration.</td>
</tr>
<tr>
<td><strong>Level</strong></td>
<td>snmp-control—To add this statement to the configuration.</td>
</tr>
<tr>
<td><strong>Related Documentation</strong></td>
<td>• Configuring the Agent Address for SNMP Traps on page 115</td>
</tr>
</tbody>
</table>
alarm-id

Supported Platforms MX Series

Syntax

```
alarm-id id {
 alarm-state state {
 description alarm-description;
 notification-id notification-id-of-alarm;
 resource-prefix alarm-resource-prefix;
 varbind-index varbind-index-in-alarm-varbind-list;
 varbind-subtree alarm-varbind-subtree;
 varbind-value alarm-varbind-value;
 }
}
```

Hierarchy Level [edit snmp alarm-management alarm-list-name]


Description Specify the identifier of the alarm that you need to configure.

The remaining statement is explained separately. See CLI Explorer.

Required Privilege

- snmp—To view this statement in the configuration.
- snmp-control—To add this statement to the configuration.

Related Documentation

- alarm-list-name on page 737
- alarm-management on page 738
- alarm-state on page 739
alarm-list-name

Supported Platforms
MX Series

Syntax
alarm-list-name list-name {
  alarm-id id {
    alarm-state state {
      description alarm-description;
      notification-id notification-id-of-alarm;
      resource-prefix alarm-resource-prefix;
      varbind-index varbind-index-in-alarm-varbind-list;
      varbind-subtree alarm-varbind-subtree;
      varbind-value alarm-varbind-value;
    }
  }
}

Hierarchy Level
[edit snmp alarm-management]

Release Information

Description
Specify the name of the alarm list that you need to configure.
The remaining statements are explained separately. See CLI Explorer.

Required Privilege
Level
snmp—To view this statement in the configuration.
  snmp-control—To add this statement to the configuration.

Related Documentation
  • alarm-id on page 736
  • alarm-management on page 738
  • alarm-state on page 739
alarm-management

Supported Platforms MX Series

Syntax

```
alarm-management {
 alarm-list-name list-name {
 alarm-id id {
 alarm-state state {
 description alarm-description;
 notification-id notification-id-of-alarm;
 resource-prefix alarm-resource-prefix;
 varbind-index varbind-index-in-alarm-varbind-list;
 varbind-subtree alarm-varbind-subtree;
 varbind-value alarm-varbind-value;
 }
 }
 }
}
```

Hierarchy Level [edit snmp]


Description

Configure the alarm management system to monitor and report active alarms as well as the history of alarms through the SNMP MIB tables supported by the Alarm MIB.

NOTE: You cannot configure alarms without notifications. It is mandatory to include the notification identifier in the configuration.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege

- snmp—To view this statement in the configuration.
- snmp-control—To add this statement to the configuration.

Related Documentation

- alarm-id on page 736
- alarm-list-name on page 737
- alarm-state on page 739
### alarm-state

**Supported Platforms**  
MX Series

**Syntax**

```plaintext
alarm-state state {
description alarm-description;
notification-id notification-id-of-alarm;
resource-prefix alarm-resource-prefix;
varbind-index varbind-index-in-alarm-varbind-list;
varbind-subtree alarm-varbind-subtree;
varbind-value alarm-varbind-value;
}
```

**Hierarchy Level**  
[edit snmp alarm-management alarm-list-name]

**Release Information**  

**Description**  
Specify the state of the alarm and the other parameters that you need to monitor.

**Options**

- **description alarm-description**—Include a brief description of the alarm.
- **notification-id notification-id-of-alarm**—Specify the identifier of the notification associated with the alarm.
- **resource-prefix alarm-resource-prefix**—Specify the resource prefix of the alarm.
- **varbind-index varbind-index-in-alarm-varbind-list**—Specify the varbind index in the alarm varbind list.
  - **Range**: 0 through 4294967295
- **varbind-subtree alarm-varbind-subtree**—Specify the subtree of the varbind.
- **varbind-value alarm-varbind-value**—Specify the varbind value of the alarm.
  - **Range**: 0 through 2147483647

**Required Privilege Level**

- **snmp**—To view this statement in the configuration.
- **snmp-control**—To add this statement to the configuration.

**Related Documentation**

- [alarm-id on page 736](#)
- [alarm-list-name on page 737](#)
- [alarm-management on page 738](#)
authorization

Supported Platforms  ACX Series, EX Series, M Series, MX Series, PTX Series, QFabric System, QFX Series, SRX Series, T Series

Syntax  authorization authorization;

Hierarchy Level  [edit snmp community community-name]

Release Information  Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.1 for the QFX Series.

Description  Set the access authorization for SNMP Get, GetBulk, GetNext, and Set requests.

Options  authorization—Access authorization level:

  - read-only—Enable Get, GetNext, and GetBulk requests.
  - read-write—Enable all requests, including Set requests. You must configure a view to enable Set requests.

Default: read-only

Required Privilege Level  snmp—To view this statement in the configuration.
                        snmp-control—To add this statement to the configuration.

Related Documentation  • Configuring SNMP Communities on page 103
**categories**

<table>
<thead>
<tr>
<th>Supported Platforms</th>
<th>ACX Series, EX Series, M Series, MX Series, PTX Series, QFabric System, QFX Series, SRX Series, T Series</th>
</tr>
</thead>
</table>
| Syntax              | categories {  
|                     |   category;  
|                     | } |
| Hierarchy Level     | [edit snmp trap-group group-name] |
| Release Information | Statement introduced before Junos OS Release 7.4.  
|                     | Statement introduced in Junos OS Release 9.0 for EX Series switches. |
| Description         | Define the types of traps that are sent to the targets of the named trap group. |
| Default             | If you omit the categories statement, all trap types are included in trap notifications. |
| Options             | *category*—Name of a trap type: authentication, chassis, configuration, link,  
|                     | remote-operations, rmon-alarm, routing, services, sonet-alarms, startup, or vrrp-events. |
| Required Privilege   | snmp—to view this statement in the configuration.  
| Level               | snmp-control—to add this statement to the configuration. |
| Related Documentation| • Configuring SNMP Trap Groups on page 116 |
**client-list**

**Supported Platforms**  
ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**  
client-list client-list-name [  
    ip-addresses;  
]  

**Hierarchy Level**  
[edit snmp]

**Release Information**  
Statement introduced in Junos OS Release 8.5.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.  
Statement introduced in Junos OS Release 11.1 for QFX Series switches.

**Description**  
Define a list of SNMP clients.

**Options**  
*client-list-name*—Name of the client list.  
*ip-addresses*—IP addresses of the SNMP clients to be added to the client list.

**Required Privilege Level**  
snmp—To view this statement in the configuration.  
snmp-control—To add this statement to the configuration.

**Related Documentation**  
- Adding a Group of Clients to an SNMP Community on page 107
**client-list-name**

**Supported Platforms**  
ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**  
client-list-name *client-list-name*;

**Hierarchy Level**  
[edit snmp community *community-name*]

**Release Information**  
Statement introduced in Junos OS Release 8.5.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**  
Add a client list or prefix list to an SNMP community.

**Options**  
*client-list-name*—Name of the client list or prefix list.

**Required Privilege Level**  
- snmp—To view this statement in the configuration.  
- snmp-control—To add this statement to the configuration.

**Related Documentation**  
- Adding a Group of Clients to an SNMP Community on page 107
## clients

**Supported Platforms**  
ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**  
clients {  
    address <restrict>;
}  

**Hierarchy Level**  
[edit snmp community community-name]

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**  
Specify the IPv4 or IPv6 addresses of the SNMP client hosts that are authorized to use this community.

**Default**  
If you omit the `clients` statement, all SNMP clients using this community string are authorized to access the router.

**Options**  
- **address**—Address of an SNMP client that is authorized to access this router. You must specify an address, not a hostname. To specify more than one client, include multiple `address` options.
- **restrict**—(Optional) Do not allow the specified SNMP client to access the router.

**Required Privilege Level**  
- **snmp**—To view this statement in the configuration.
- **snmp-control**—To add this statement to the configuration.

**Related Documentation**  
- [Configuring SNMP Communities on page 103](#)
commit-delay

**Supported Platforms**  ACX Series, EX Series, M Series, MX Series, PTX Series, QFabric System, QFX Series, SRX Series, T Series

**Syntax**  `commit-delay seconds;`

**Hierarchy Level**  [edit snmp nonvolatile]

**Release Information**  Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**  Configure the timer for the SNMP Set reply and start of the commit.

**Options**  `seconds`—Delay between an affirmative SNMP Set reply and start of the commit.
**Default**  5 seconds

**Required Privilege Level**  snmp—To view this statement in the configuration.
snmp-control—To add this statement to the configuration.

**Related Documentation**  • Configuring the Commit Delay Timer on page 102
community (SNMP)

Supported Platforms  ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

Syntax  
```
community community-name {
 authorization authorization;
 client-list-name client-list-name;
 clients {
 address restrict;
 }
 view view-name;
}
```

Hierarchy Level  [edit snmp]


Description  Define an SNMP community. An SNMP community authorizes SNMP clients based on the source IP address of incoming SNMP request packets. A community also defines which MIB objects are available and the operations (read-only or read-write) allowed on those objects.

The SNMP client application specifies an SNMP community name in Get, GetBulk, GetNext, and Set SNMP requests.

Default  If you omit the community statement, all SNMP requests are denied.

Options  
`community-name`—Community string. If the name includes spaces, enclose it in quotation marks (" ").

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level  
- snmp—To view this statement in the configuration.
- snmp-control—To add this statement to the configuration.

Related Documentation  
- Configuring SNMP Communities on page 103
# contact (SNMP)

**Supported Platforms**  
ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**  
contact *contact*;

**Hierarchy Level**  
[edit snmp]

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**  
Define the value of the MIB II *sysContact* object, which is the contact person for the managed system.

**Options**  
*contact*—Name of the contact person. If the name includes spaces, enclose it in quotation marks (" ").

**Required Privilege**  
- snmp—To view this statement in the configuration.  
- snmp-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring the System Contact on a Device Running Junos OS on page 98
**description**

**Supported Platforms**  
EX Series, M Series, MX Series, QFX Series, SRX Series, T Series, vSRX

**Syntax**  
description description;

**Hierarchy Level**  
[edit snmp]

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.  
Statement introduced in Junos OS Release 11.1 for the QFX Series.

**Description**  
Define the value of the MIB II sysDescription object, which is the description of the system being managed.

**Options**  
description—System description. If the name includes spaces, enclose it in quotation marks (" ").

**Required Privilege**  

- **Level**  
snmp—To view this statement in the configuration.  
snmp-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring the System Description on a Device Running Junos OS on page 99
destination-port

Supported Platforms
ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

Syntax
destination-port port-number;

Hierarchy Level
[edit snmp trap-group]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description
Assign a trap port number other than the default.

Default
If you omit this statement, the default port is 162.

Options
port-number—SNMP trap port number.

Required Privilege
Level
snmp—To view this statement in the configuration.
snmp-control—To add this statement to the configuration.

Related Documentation
• Configuring SNMP Trap Groups on page 116

enterprise-oid

Supported Platforms
ACX Series, M Series, MX Series, PTX Series, SRX Series, T Series

Syntax
enterprise-oid;

Hierarchy Level
[edit snmp trap-options]

Release Information
Statement introduced in Junos OS Release 10.0

Description
Add the snmpTrapEnterprise object, which shows the association between an enterprise-specific trap and the organization that defined the trap, to standard SNMP traps. By default, the snmpTrapEnterprise object is added only to the enterprise-specific traps. When the enterprise-oid statement is included in the configuration, snmpTrapEnterprise is added to all the traps generated from the device.

Required Privilege
Level
snmp—To view this statement in the configuration.
snmp-control—To add this statement to the configuration.

Related Documentation
• Configuring SNMP Trap Options on page 113
**filter-duplicates**

<table>
<thead>
<tr>
<th>Supported Platforms</th>
<th>ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, T Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>filter-duplicates;</td>
</tr>
<tr>
<td>Hierarchy Level</td>
<td>[edit snmp]</td>
</tr>
<tr>
<td>Release Information</td>
<td>Statement introduced before Junos OS Release 7.4.&lt;br&gt;Statement introduced in Junos OS Release 9.0 for EX Series switches.</td>
</tr>
<tr>
<td>Description</td>
<td>Filter duplicate Get, GetNext, or GetBulk SNMP requests.</td>
</tr>
<tr>
<td>Required Privilege</td>
<td>snmp—To view this statement in the configuration.</td>
</tr>
<tr>
<td>Level</td>
<td>snmp-control—To add this statement to the configuration.</td>
</tr>
<tr>
<td>Related Documentation</td>
<td>Filtering Duplicate SNMP Requests on page 103</td>
</tr>
</tbody>
</table>
filter-interfaces

Supported Platforms  EX Series, M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

Syntax  filter-interfaces {
    interfaces {
        all-internal-interfaces;
        interface 1;
        interface 2;
    }
}

Hierarchy Level  [edit snmp]

Release Information  Statement introduced in Junos OS Release 9.4 for EX Series Switches.

Description  Filter out information related to specific interfaces from the output of SNMP Get and GetNext requests performed on interface-related MIBs.

Options  all-internal-interfaces—Filters out information from SNMP Get and GetNext requests for the specified interfaces.

        interfaces—Specifies the interfaces to filter out from the output of SNMP Get and GetNext requests.

Required Privilege Level

        snmp—to view this statement in the configuration.
        snmp-control—to add this statement to the configuration.

Related Documentation  • Filtering Interface Information Out of SNMP Get and GetNext Output on page 120
interface (SNMP)

Supported Platforms
- ACX Series
- EX Series
- M120
- MX240
- OCX1100
- PTX Series
- QFabric System
- QFX Series
- SRX Series
- T1600
- T640

Syntax
interface [ interface-names ];

Hierarchy Level
[edit snmp]

Release Information
- Statement introduced before Junos OS Release 7.4.
- Statement introduced in Junos OS Release 9.0 for EX Series switches.
- Statement introduced in Junos OS Release 11.1 for the QFX Series.
- Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Configure the interfaces on which SNMP requests can be accepted.

Default
If you omit this statement, SNMP requests entering the router or switch through any interface are accepted.

Options
interface-names—Names of one or more logical interfaces.

Required Privilege
- snmp—To view this statement in the configuration.
- snmp-control—To add this statement to the configuration.

Related Documentation
• Configuring the Interfaces on Which SNMP Requests Can Be Accepted on page 119
### location (SNMP)

**Supported Platforms**  
ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**  
`location location;`

**Hierarchy Level**  
`[edit snmp]`

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**  
Define the value of the MIB II `sysLocation` object, which is the physical location of the managed system.

**Options**  
`location`—Location of the local system. You must enclose the name within quotation marks (" ").

**Required Privilege**  
- `snmp`—To view this statement in the configuration.  
- `snmp-control`—To add this statement to the configuration.

**Related Documentation**  
- Configuring the System Location for a Device Running Junos OS on page 99
logical-system

Supported Platforms
EX Series, MI20, MX240, PTX Series, SRX Series, SRX320, T1600

Syntax
logical-system logical-system-name {
  routing-instance routing-instance-name;
  source-address address;
}

Hierarchy Level
[edit snmp community community-name],
[edit snmp trap-group],
[edit snmp trap-options]
[edit snmp v3target-address target-address-name]

Release Information
Statement introduced in Junos OS Release 9.3
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.1 for the QFX Series.

NOTE: The logical-system statement replaces the logical-router statement,
and is backward-compatible with Junos OS Release 8.3 and later.

Description
Specify a logical system name for SNMP v1 and v2c clients.

Include at the [edit snmp trap-options] hierarchy level to specify a logical-system address
as the source address of an SNMP trap.

Include at the [edit snmp v3 target-address] hierarchy level to specify a logical-system
name as the destination address for an SNMPv3 trap or inform.

Options
logical-system-name—Name of the logical system.

routing-instance routing-instance-name—Statement to specify a routing instance associated
with the logical system.

Required Privilege
level
snmp—to view this statement in the configuration.

snmp-control—to add this statement to the configuration.

Related Documentation
• Specifying a Routing Instance in an SNMPv1 or SNMPv2c Community on page 179
• Configuring the Trap Target Address on page 146
logical-system-trap-filter

**Supported Platforms**  
M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**  
`logical-system-trap-filter;`

**Hierarchy Level**  
[edit snmp]

**Release Information**  
Statement introduced in Junos OS Release 8.4.

**Description**  
Restrict the routing instances from receiving traps that are not related to the logical system networks to which they belong.

**Required Privilege Level**  
- `snmp`—To view this statement in the configuration.
- `snmp-control`—To add this statement to the configuration.

**Related Documentation**  
- SNMP Traps Supported for Routing Instances on page 177

---

name

**Supported Platforms**  
ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**  
`name name;`

**Hierarchy Level**  
[edit snmp]

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**  
Set the system name from the command-line interface.

**Options**  
- `name`—System name override.

**Required Privilege Level**  
- `snmp`—To view this statement in the configuration.
- `snmp-control`—To add this statement to the configuration.

**Related Documentation**  
- Configuring a Different System Name on page 101
### nonvolatile

**Supported Platforms**
ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**
```
nonvolatile {
 commit-delay seconds;
}
```

**Hierarchy Level**
[edit snmp]

**Release Information**
Statement introduced before Junos OS Release 7.4.
The commit-delay statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**
Configure options for SNMP Set requests.
The remaining statement is explained separately. See CLI Explorer.

**Required Privilege Level**
snmp—To view this statement in the configuration.
snmp-control—To add this statement to the configuration.

**Related Documentation**
- Configuring the Commit Delay Timer on page 102
- commit-delay on page 745
oid

**Supported Platforms**  EX Series, M Series, MX Series, SRX Series, T Series, vSRX

**Syntax**  oid object-identifier (exclude | include);

**Hierarchy Level**  [edit snmp view view-name]

**Release Information**  Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**  Specify an object identifier (OID) used to represent a subtree of MIB objects.

**Options**  
- **exclude**—Exclude the subtree of MIB objects represented by the specified OID.
- **include**—Include the subtree of MIB objects represented by the specified OID.
- **object-identifier**—OID used to represent a subtree of MIB objects. All MIB objects represented by this statement have the specified OID as a prefix. You can specify the OID using either a sequence of dotted integers or a subtree name.

**Required Privilege**  
- snmp—To view this statement in the configuration.
- snmp-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring MIB Views on page 121
proxy (snmp)

Supported Platforms  M Series, MX Series, T Series

Syntax  
proxy proxy-name{
  device-name device-name;
  logical-system logical-system {
    routing-instance routing-instance;
  }
  routing-instance routing-instance;
  (version-v1 | version-v2c) {
    snmp-community community-name;
    no-default-comm-to-v3-config;
  }
  version-v3 {
    security-name security-name;
    context context-name;
  }
}

Hierarchy Level  [edit snmp]

Release Information  Statement introduced in Junos OS Release 12.3.

Description  Configure a device to act as a proxy SNMP agent, and specify a name for the proxy.

Options  context context-name—Specify the SNMPv3 context name as configured on the device specified at [edit snmp proxy proxy-name device-name device-name].

For more information about this statement, see context.

device-name device-name—Specify the name of the device to be managed through the proxy SNMP agent.

no-default-comm-to-v3-config—(Optional) Specify whether you have to manually configure the statements at the [edit snmp v3 snmp-community community-name] and [edit snmp v3 vacm] hierarchy levels.

If this statement is not included in the configuration, the [edit snmp v3 snmp-community community-name] and [edit snmp v3 vacm] hierarchy level configurations are automatically initialized.

proxy-name—Specify the name of the proxy.

security-name security-name—Specify the SNMPv3 security name as configured on the device specified at [edit snmp proxy proxy-name device-name device-name].

For more information about this statement, see security-name.
**snmp-community community-name**—Specify the name of the SNMP community. The community name you configure should match the `snmp-community` configuration on the device specified at `edit snmp proxy proxy-name device-name device-name`. For more information about this statement, see `snmp-community`.

**(version-v1 | version-v2c)**—Specify the SNMP version, and add the relevant configuration.

**version-v3**—Add the SNMPv3 configuration.

The remaining statements are explained separately. See [CLI Explorer](#).

**Required Privilege**

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmp</td>
<td>To view this statement in the configuration.</td>
</tr>
<tr>
<td>snmp-control</td>
<td>To add this statement to the configuration.</td>
</tr>
</tbody>
</table>

**Related Documentation**

- [Configuring a Proxy SNMP Agent on page 108](#)
**routing-instance**

**Supported Platforms**  
ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, T Series, vSRX

**Syntax**  
```
routing-instance routing-instance-name;
```

**Hierarchy Level**  
```
[edit snmp community community-name],
[edit snmp community community-name logical-system logical-system-name],
[edit snmp trap-group group]
```

**Release Information**  
Statement introduced in Junos OS Release 8.3.  
Added to the [edit snmp community community-name] hierarchy level in Junos OS Release 8.4.  
Added to the [edit snmp community community-name logical-system logical-system-name] hierarchy level in Junos OS Release 9.1.  
Statement introduced in Junos OS Release 9.1 for EX Series switches.

**Description**  
Specify a routing instance for SNMPv1 and SNMPv2 trap targets. All targets configured in the trap group use this routing instance.

If the routing instance is defined within a logical system, include the logical-system logical-system-name statement at the [edit snmp community community-name] hierarchy level and specify the routing-instance statement under the [edit snmp community community-name logical-system logical-system-name] hierarchy level.

**Options**  
- **routing-instance-name**—Name of the routing instance.

**Required Privilege**  
- snmp—To view this statement in the configuration.  
- snmp-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring SNMP Trap Groups on page 116  
- Configuring the Source Address for SNMP Traps on page 113  
- Specifying a Routing Instance in an SNMPv1 or SNMPv2c Community on page 179
**routing-instance-access**

**Supported Platforms**  
M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**  
```
[edit snmp]
 routing-instance-access {
 access-list {
 routing-instance;
 routing-instance restrict;
 }
}
```

**Hierarchy Level**  
[edit snmp]

**Release Information**  
Statement introduced in Junos OS Release 8.4.

**Description**  
Enable SNMP managers in routing instances other than the default routing instance to access SNMP information. For information about the `access-list` option, see `access-list`.

**Required Privilege Level**  
- snmp—To view this statement in the configuration.
- snmp-control—To add this statement to the configuration.

**Related Documentation**  
- Enabling SNMP Access over Routing Instances on page 179

**snmp**

**Supported Platforms**  
ACX Series, EX Series, M Series, MX Series, PTX Series, T Series

**Syntax**  
```
snmp { ... }
```

**Hierarchy Level**  
[edit]

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**  
Configure SNMP.

SNMP modules cannot have the slash (/) character or the @ character in the name.

**Required Privilege Level**  
- snmp—To view this statement in the configuration.
- snmp-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring SNMP on a Device Running Junos OS
### snmp-value-match-msmic (Services NAT Options)

**Supported Platforms**  
MX Series

**Syntax**  
`snmp-value-match-msmic;`

**Hierarchy Level**  
`[edit services service-set service-set-name nat-options]`

**Release Information**  
Statement introduced with Junos OS Release 13.3R7

**Description**  
Match the values for MS-MIC-specific objects in the jnxNatObjects MiB table with the values for MS-DPC objects. Use the `deactivate services service-set service-set-name nat-options snmp-value-match-msmic` configuration mode command to disable this feature. By default, this feature is disabled.

**Required Privilege Level**  
control—To add this statement to the configuration.

**Related Documentation**
- Configuring Service Rules
- Troubleshooting the Mismatch of jnxNatObjects Values for MS-DPC and MS-MIC on page 531
### source-address

<table>
<thead>
<tr>
<th><strong>Supported Platforms</strong></th>
<th>ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, T Series, vSRX</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Syntax</strong></td>
<td><code>source-address address;</code></td>
</tr>
<tr>
<td><strong>Hierarchy Level</strong></td>
<td><code>[edit snmp trap-options]</code></td>
</tr>
<tr>
<td><strong>Description</strong></td>
<td>Set the source address of every SNMP trap packet sent by this router to a single address regardless of the outgoing interface. If the source address is not specified, the default is to use the address of the outgoing interface as the source address.</td>
</tr>
<tr>
<td><strong>Options</strong></td>
<td><strong>address</strong>—Source address of SNMP traps. You can configure the source address of trap packets two ways: <code>lo0</code> or a valid IPv4 address configured on one of the router interfaces. The value <code>lo0</code> indicates that the source address of all SNMP trap packets is set to the lowest loopback address configured at interface <code>lo0</code>.</td>
</tr>
<tr>
<td><strong>Default</strong></td>
<td>Disabled. (The source address is the address of the outgoing interface.)</td>
</tr>
</tbody>
</table>

**Required Privilege**
- `snmp`—To view this statement in the configuration.
- `snmp-control`—To add this statement to the configuration.

**Related Documentation**
- Configuring the Source Address for SNMP Traps on page 113
targets

Supported Platforms

EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

Syntax

targets {
    address;
}

Hierarchy Level
[edit snmp trap-group group-name]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description
Configure one or more systems to receive SNMP traps.

Options
address—IPv4 or IPv6 address of the system to receive traps. You must specify an address, not a hostname.

Required Privilege
snmp—To view this statement in the configuration.
snmp-control—To add this statement to the configuration.

Related Documentation
• Configuring SNMP Trap Groups on page 116
traceoptions (SNMP)

Supported Platforms
ACX Series, EX Series, M Series, MX Series, PTX Series, SRX320, T Series, vSRX

Syntax
traceoptions {
    file filename <files number> <match regular-expression> <size size> <world-readable | no-world-readable>
    flag flag;
    no-remote-trace;
}

Hierarchy Level
[edit snmp]

Release Information
Statement introduced before Junos OS Release 7.4.
file filename option added in Junos OS Release 8.1.
world-readable | no-world-readable option added in Junos OS Release 8.1.
match regular-expression option added in Junos OS Release 8.1.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description
The output of the tracing operations is placed into log files in the /var/log directory. Each log file is named after the SNMP agent that generates it. Currently, the following logs are created in the /var/log directory when the traceoptions statement is used:

- chassisd
- craftd
- ilmid
- mib2d
- rmopd
- serviced
- snmpd

Options
file filename—By default, the name of the log file that records trace output is the name of the process being traced (for example, mib2d or snmpd). Use this option to specify another name.

files number—(Optional) Maximum number of trace files per SNMP subagent. When a trace file (for example, snmpd) reaches its maximum size, it is archived by being renamed to snmpd.0. The previous snmpd.1 is renamed to snmpd.2, and so on. The oldest archived file is deleted.

Range: 2 through 1000 files
Default: 10 files

flag flag—Tracing operation to perform. To specify more than one tracing operation, include multiple flag statements:
- **all**—Log all SNMP events.
- **general**—Log general events.
- **interface-stats**—Log physical and logical interface statistics.
- **nonvolatile-sets**—Log nonvolatile SNMP set request handling.
- **pdu**—Log SNMP request and response packets.
- **protocol-timeouts**—Log SNMP response timeouts.
- **routing-socket**—Log routing socket calls.
- **subagent**—Log subagent restarts.
- **timer**—Log internally generated events.
- **varbind-error**—Log variable binding errors.

**match regular-expression**—(Optional) Refine the output to include lines that contain the regular expression.

**size size**—(Optional) Maximum size, in kilobytes (KB), of each trace file before it is closed and archived.

**Range:** 10 KB through 1 GB

**Default:** 1000 KB

**world-readable | no-world-readable**—(Optional) By default, log files can be accessed only by the user who configures the tracing operation. The **world-readable** option enables any user to read the file. To explicitly set the default behavior, use the **no-world-readable** option.

**Required Privilege**
- **Level**
- **snmp**—To view this statement in the configuration.
- **snmp-control**—To add this statement to the configuration.

**Related Documentation**
- Tracing SNMP Activity on a Device Running Junos OS on page 209
**trap-group**

**Supported Platforms**

ACX Series, EX Series, M Series, MX Series, OCX1100, PTX Series, QFabric System, QFX Series, SRX Series, T Series, vSRX

**Syntax**

```
trap-group group-name {
 categories {
 category;
 }
 destination-port port-number;
 routing-instance instance;
 targets {
 address;
 }
 version (all | v1 | v2);
}
```

**Hierarchy Level**

[edit snmp]

**Release Information**

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**

Create a named group of hosts to receive the specified trap notifications. The name of the trap group is embedded in SNMP trap notification packets as one variable binding (varbind) known as the community name. At least one trap group must be configured for SNMP traps to be sent.

**Options**

- `group-name`—Name of the trap group. If the name includes spaces, enclose it in quotation marks (" ").

  The remaining statements are explained separately. See CLI Explorer.

**Required Privilege**

- **Level**
  - snmp—to view this statement in the configuration.
  - snmp-control—to add this statement to the configuration.

**Related Documentation**

- Configuring SNMP Trap Groups on page 116
**trap-options**

**Supported Platforms**  
ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**  
```
trap-options {
 agent-address outgoing-interface;
 source-address address;
}
```

**Hierarchy Level**  
[edit snmp]

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**  
Using SNMP trap options, you can set the source address of every SNMP trap packet sent by the router or switch to a single address, regardless of the outgoing interface. In addition, you can set the agent address of each SNMPv1 trap. For more information about the contents of SNMPv1 traps, see RFC 1157.

The remaining statements are explained separately. See CLI Explorer.

**Default**  
Disabled

**Required Privilege**  
- snmp—To view this statement in the configuration.  
- snmp-control—To add this statement to the configuration.

**Related Documentation**
- Configuring SNMP Trap Options on page 113
version (SNMP)

**Supported Platforms**  
ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**  
version (all | v1 | v2);

**Hierarchy Level**  
[edit snmp trap-group group-name]

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**  
Specify the version number of SNMP traps.

**Default**  
all—Send an SNMPv1 and SNMPv2 trap for every trap condition.

**Options**  
all—Send an SNMPv1 and SNMPv2 trap for every trap condition.  
v1—Send SNMPv1 traps only.  
v2—Send SNMPv2 traps only.

**Required Privilege Level**  
- snmp—to view this statement in the configuration.  
- snmp-control—to add this statement to the configuration.

**Related Documentation**  
- Configuring SNMP Trap Groups on page 116
### view (Associating a MIB View with a Community)

**Supported Platforms**  
ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**  
```
view view-name;
```

**Hierarchy Level**  
```
[edit snmp community community-name]
```

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**  
Associate a view with a community. A view represents a group of MIB objects.

**Options**  
`view-name`—Name of the view. You must use a view name already configured in the `view` statement at the [edit snmp] hierarchy level.

**Required Privilege**  
- `snmp`—To view this statement in the configuration.
- `snmp-control`—To add this statement to the configuration.

**Related Documentation**  
- Configuring SNMP Communities on page 103
**view (Configuring a MIB View)**

**Supported Platforms**
ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**
```plaintext
view view-name {
 object-identifier (include | exclude);
}
```

**Hierarchy Level**
[edit snmp]

**Release Information**
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**
Define a MIB view. A MIB view identifies a group of MIB objects. Each MIB object in a view has a common OID prefix. Each object identifier represents a subtree of the MIB object hierarchy. The `view` statement uses a view to specify a group of MIB objects on which to define access. To enable a view, you must associate the view with a community by including the `view` statement at the `[edit snmp community community-name]` hierarchy level.

---

**NOTE:** To remove an OID completely, use the `delete view all oid oid-number` command but omit the include parameter.

---

**Options**
- `view-name`—Name of the view.

The remaining statement is explained separately. See CLI Explorer.

**Required Privilege Level**
- `snmp`—To view this statement in the configuration.
- `snmp-control`—To add this statement to the configuration.

**Related Documentation**
- Configuring MIB Views on page 121
- Associating MIB Views with an SNMP User Group on page 138
- community on page 746
CHAPTER 43

Configuration Statements: SNMPv3

- address on page 775
- address-mask on page 775
- authentication-md5 on page 776
- authentication-none on page 777
- authentication-password on page 778
- authentication-sha on page 779
- community-name on page 780
- context (SNMPv3) on page 781
- engine-id on page 782
- group (Configuring Group Name) on page 783
- group (Defining Access Privileges for an SNMPv3 Group) on page 784
- retry-count on page 785
- timeout on page 786
- local-engine on page 787
- message-processing-model on page 788
- notify on page 789
- notify-filter (Applying to the Management Target) on page 790
- notify-filter (Configuring the Profile Name) on page 791
- notify-view on page 792
- oid on page 793
- parameters on page 794
- port on page 795
- privacy-3des on page 796
- privacy-aes128 on page 797
- privacy-des on page 798
- privacy-none on page 799
- privacy-password on page 800
- read-view on page 801
- remote-engine on page 802
- routing-instance on page 803
- security-level (Defining Access Privileges) on page 804
- security-level (Generating SNMP Notifications) on page 805
- security-model (Access Privileges) on page 806
- security-model (Group) on page 807
- security-model (SNMP Notifications) on page 808
- security-name (Community String) on page 809
- security-name (Security Group) on page 810
- security-name (SNMP Notifications) on page 811
- security-to-group on page 812
- snmp-community on page 813
- tag on page 814
- tag-list on page 815
- target-address on page 816
- target-parameters on page 817
- type on page 818
- user on page 819
- usm on page 820
- v3 on page 822
- vacm on page 825
- write-view on page 826
address

Supported Platforms  EX Series, M Series, MX Series, PTX Series, SRX Series, T Series
Syntax  address address;
Hierarchy Level  [edit snmp v3 target-address target-address-name]
Release Information  Statement introduced before Junos OS Release 7.4.
                      Statement introduced in Junos OS Release 9.0 for EX Series switches.
Description  Specify the SNMP target address.
Options  address—IPv4 address of the system to receive traps or informs. You must specify an address, not a hostname.
Required Privilege Level
snmp—To view this statement in the configuration.
snmp-control—To add this statement to the configuration.
Related Documentation
• Configuring the Address on page 147

address-mask

Supported Platforms  ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, T Series
Syntax  address-mask address-mask;
Hierarchy Level  [edit snmp v3 target-address target-address-name]
Release Information  Statement introduced before Junos OS Release 7.4.
                      Statement introduced in Junos OS Release 9.0 for EX Series switches.
                      Statement introduced in Junos OS Release 11.1 on the QFX Series.
                      Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.
Description  Verify the source addresses for a group of target addresses.
Options  address-mask combined with the address defines a range of addresses.
Required Privilege Level
snmp—To view this statement in the configuration.
snmp-control—To add this statement to the configuration.
Related Documentation
• Configuring the Address Mask on page 147
**authentication-md5**

**Supported Platforms**  
M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series

**Syntax**  
```plaintext
authentication-md5 {
 authentication-password authentication-password;
}
```

**Hierarchy Level**  
```plaintext
[edit snmp v3 usm local-engine user username],
[edit snmp v3 usm remote-engine engine-id user username]
```

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.  
Statement introduced in Junos OS Release 11.1 for the QFX Series.

**Description**  
Configure MD5 as the authentication type for the SNMPv3 user.

---

**NOTE:** You can only configure one authentication type for each SNMPv3 user.

The remaining statement is explained separately. See CLI Explorer.

**Required Privilege Level**  
- snmp—To view this statement in the configuration.  
- snmp-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring MD5 Authentication on page 133
## authentication-none

<table>
<thead>
<tr>
<th>Supported Platforms</th>
<th>ACX Series, EX4600, M Series, MX Series, OCX1100, PTX Series, QFX Series, SRX Series, T Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>authentication-none;</code></td>
</tr>
<tr>
<td>Hierarchy Level</td>
<td><code>[edit snmp v3 usm local-engine user username]</code>,</td>
</tr>
<tr>
<td></td>
<td><code>[edit snmp v3 usm remote-engine engine-id user username]</code></td>
</tr>
<tr>
<td>Release Information</td>
<td>Statement introduced before Junos OS Release 7.4,</td>
</tr>
<tr>
<td></td>
<td>Statement introduced in Junos OS Release 9.0 for EX Series switches.</td>
</tr>
<tr>
<td></td>
<td>Statement introduced in Junos OS Release 11.1 for the QFX Series.</td>
</tr>
<tr>
<td></td>
<td>Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.</td>
</tr>
<tr>
<td>Description</td>
<td>Configure that there should be no authentication for the SNMPv3 user.</td>
</tr>
</tbody>
</table>

**NOTE:** You can configure only one authentication type for each SNMPv3 user.

**Required Privilege Level**: `snmp`—To view this statement in the configuration.  
`snmp-control`—To add this statement to the configuration.

**Related Documentation**:  
- [Configuring No Authentication on page 133](#)
authentication-password

Supported Platforms M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series

Syntax authentication-password authentication-password;

Hierarchy Level [edit snmp v3 usm local-engine user username authentication-md5],
[edit snmp v3 usm local-engine user username authentication-sha],
[edit snmp v3 usm remote-engine engine-id user username authentication-md5],
[edit snmp v3 usm remote-engine engine-id user username authentication-sha]

Release Information Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.1 for the QFX Series.

Description Configure the password for user authentication.

Options authentication-password—Password that a user enters. The password is then converted
into a key that is used for authentication.

SNMPv3 has special requirements when you create plain-text passwords on a router or
switch:

• The password must be at least eight characters long.
• The password can include alphabetic, numeric, and special characters, but it cannot
  include control characters.

Required Privilege Level snmp—To view this statement in the configuration.
snmp-control—To add this statement to the configuration.

Related Documentation • Configuring MD5 Authentication on page 133
• Configuring SHA Authentication on page 133
**authentication-sha**

**Supported Platforms**  
M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series

**Syntax**  
```plaintext
authentication-sha {
 authentication-password authentication-password;
}
```

**Hierarchy Level**  
[edit snmp v3 usm local-engine user *username*],  
[edit snmp v3 usm remote-engine engine-id user *username*]

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.  
Statement introduced in Junos OS Release 11.1 for the QFX Series.

**Description**  
Configure the secure hash algorithm (SHA) as the authentication type for the SNMPv3 user.

---

**NOTE:** You can configure only one authentication type for each SNMPv3 user.

---

The remaining statement is explained separately. See CLI Explorer.

**Required Privilege Level**  
- snmp—To view this statement in the configuration.  
- snmp-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring SHA Authentication on page 133
### community-name

**Supported Platforms**  EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**  
```
community-name community-name;
```

**Hierarchy Level**  
```
[edit snmp v3 snmp-community community-index]
```

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**  
The community name defines an SNMP community. The SNMP community authorizes SNMPv1 or SNMPv2 clients. The access privileges associated with the configured security name define which MIB objects are available and the operations (notify, read, or write) allowed on those objects.

**Options**  
- `community-name`—Community string for an SNMPv1 or SNMPv2c community. If unconfigured, it is the same as the community index. If the name includes spaces, enclose it in quotation marks (" ").

---

**NOTE:** Community names must be unique. You cannot configure the same community name at the `[edit snmp community]` and `[edit snmp v3 snmp-community community-index]` hierarchy levels.

The community name at the `[edit snmp v3 snmp-community community-index]` hierarchy level is encrypted and not displayed in the command-line interface (CLI).

**Required Privilege Level**  
- `snmp`—To view this statement in the configuration.  
- `snmp-control`—To add this statement to the configuration.

**Related Documentation**  
- Configuring the SNMPv3 Community on page 160
## context (SNMPv3)

**Supported Platforms**  M Series, MX Series, T Series  

**Syntax**  context context-name;  

**Hierarchy Level**  
[edit snmp v3 snmp-community community-index]  

**Release Information**  Statement introduced before Junos OS Release 7.4.  

**Description**  Specify the SNMPv3 context for access control. A context identifies a collection of information accessible for an SNMP entity.  

**Required Privilege Level**  
- snmp—To view this statement in the configuration.  
- snmp-control—To add this statement to the configuration.  

**Related Documentation**  
- Configuring the SNMPv3 Community on page 160
**engine-id**

**Supported Platforms**  
EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**

```plaintext
engine-id {
 (local engine-id-suffix | use-default-ip-address | use-mac-address);
}
```

**Hierarchy Level**  
[edit snmp]

**Release Information**

Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.1 for EX Series switches.

**Description**

The local engine ID is defined as the administratively unique identifier of an SNMPv3 engine, and is used for identification, not for addressing. There are two parts of an engine ID: prefix and suffix. The prefix is formatted according to the specifications defined in RFC 3411, *An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks*. You can configure the suffix here.

---

**NOTE:** SNMPv3 authentication and encryption keys are generated based on the associated passwords and the engine ID. If you configure or change the engine ID, you must commit the new engine ID before you configure SNMPv3 users. Otherwise the keys generated from the configured passwords are based on the previous engine ID.

For the engine ID, we recommend using the MAC address of the management port.

---

**Options**

- `local engine-id-suffix`—Explicit setting for the engine ID suffix.
- `use-default-ip-address`—The engine ID suffix is generated from the default IP address.
- `use-mac-address`—The SNMP engine identifier is generated from the MAC address of the management interface on the router.

**Default:** `use-default-ip-address`

**Required Privilege Level**

- `snmp`—To view this statement in the configuration.
- `snmp-control`—To add this statement to the configuration.

**Related Documentation**

- Configuring the Local Engine ID on page 130
group (Configuring Group Name)

Supported Platforms ACX Series, EX Series, M Series, MX Series, OCX1100, PTX Series, QFabric System, QFX Series, SRX Series, T Series

Syntax

```
group group-name {
 (default-context-prefix | context-prefix context-prefix) {
 security-model (any | usm | v1 | v2c) {
 security-level (authentication | none | privacy) {
 notify-view view-name;
 read-view view-name;
 write-view view-name;
 }
 }
 }
}
```

Hierarchy Level [edit snmp v3 vacm access]


Description Assign the security name to a group, and specify the SNMPv3 context applicable to the group. The `default-context-prefix` statement, when included, adds all the contexts configured on the device to the group, whereas the `context-prefix context-prefix` statement enables you to specify a context and to add that particular context to the group.

(Not applicable to the QFX Series and OCX Series.) When the context prefix is specified as default (for example, `context-prefix default`), the context associated with the master routing instance is added to the group. To specify a routing instance that is part of a logical system, specify it as logical system/routing instance. For example, to specify routing instance ri1 in logical system ls1, include `context-prefix ls1/ri1`.

The remaining statements under this hierarchy are explained separately.

Options `group-name`—SNMPv3 group name created for the SNMPv3 group.

Required Privilege Level

- snmp—To view this statement in the configuration.
- snmp-control—To add this statement to the configuration.

Related Documentation

- Configuring the Group on page 137
**group (Defining Access Privileges for an SNMPv3 Group)**

**Supported Platforms**
ACX Series, EX Series, M Series, MX Series, OCX1100, PTX Series, QFabric System, QFX Series, SRX Series, T Series

**Syntax**
group **group-name**;

**Hierarchy Level**
[edit snmp v3 vacm security-to-group security-model (usm | v1 | v2c)
security-name **security-name**]

**Release Information**
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

**Description**
Define access privileges granted to a group.

**Options**
**group-name**—Identifies a collection of SNMP security names that belong to the same access policy SNMP.

**Required Privilege Level**
snmp—To view this statement in the configuration.
snmp-control—To add this statement to the configuration.

**Related Documentation**
• Configuring the Group on page 142
retry-count

Supported Platforms  SRX Series

Syntax  retry-count number;

Hierarchy Level  [edit snmp v3 target-address target-address-name]

Release Information  Statement introduced in Junos OS Release 7.4.

Description  Configure the retry count for SNMP informs.

Options  number—Maximum number of times the inform is transmitted if no acknowledgment is received. If no acknowledgment is received after the inform is transmitted the maximum number of times, the inform message is discarded.

Default:  3 times

Required Privilege  
  Level  snmp—To view this statement in the configuration.
  snmp-control—To add this statement to the configuration.

Related Documentation  • Configuring SNMP Informs on page 153
  • timeout on page 786
timeout

Supported Platforms  SRX Series

Syntax  timeout seconds;

Hierarchy Level  [edit snmp v3 target-address target-address-name]

Release Information  Statement introduced in Junos OS Release 7.4.

Description  Configure the timeout period (in seconds) for SNMP informs.

Options  seconds—Number of seconds to wait for an inform acknowledgment. If no acknowledgment is received within the timeout period, the inform is retransmitted.

Default: 15

Required Privilege  snmp—To view this statement in the configuration.

Level  snmp-control—To add this statement to the configuration.

Related Documentation  • Configuring SNMP Informs on page 153

• retry-count on page 785
**local-engine**

**Supported Platforms**  
M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series

**Syntax**  
```
local-engine {
 user username {
 authentication-md5 {
 (authentication-key authentication-key | authentication-password authentication-password);
 }
 authentication-none;
 authentication-sha {
 (authentication-key authentication-key | authentication-password authentication-password);
 }
 privacy-aes128 {
 (privacy-key privacy-key | privacy-password privacy-password);
 }
 privacy-des {
 (privacy-key privacy-key | privacy-password privacy-password);
 }
 privacy-3des {
 (privacy-key privacy-key | privacy-password privacy-password);
 }
 privacy-none {
 }
 }
}
```

**Hierarchy Level**  
[edit snmp v3 usm]

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.  
Statement introduced in Junos OS Release 11.1 for the QFX Series.

**Description**  
Configure local engine information for the user-based security model (USM).  
The remaining statements are explained separately. See CLI Explorer.

**Required Privilege Level**  
- snmp—To view this statement in the configuration.  
- snmp-control—To add this statement to the configuration.

**Related Documentation**  
- Creating SNMPv3 Users on page 131
**message-processing-model**

**Supported Platforms**  
EX Series, M Series, MX Series, QFX Series, SRX Series, T Series

**Syntax**  
message-processing-model (v1 | v2c | v3);

**Hierarchy Level**  
[edit snmp v3 target-parameters target-parameter-name parameters]

**Release Information**  
- Statement introduced before Junos OS Release 7.4.
- Statement introduced in Junos OS Release 9.0 for EX Series switches.
- Statement introduced in Junos OS Release 11.1 for the QFX Series.

**Description**  
Configure the message processing model to be used when generating SNMP notifications.

**Options**  
- **v1**—SNMPv1 message process model.
- **v2c**—SNMPv2c message process model.
- **v3**—SNMPv3 message process model.

**Required Privilege**  
- **snmp**—To view this statement in the configuration.
- **snmp-control**—To add this statement to the configuration.

**Related Documentation**  
- Configuring the Message Processing Model on page 151
**notify**

**Supported Platforms**  
ACX Series, EX Series, M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series

**Syntax**  
```
notify name {
 tag tag-name;
 type (trap | inform);
}
```

**Hierarchy Level**  
[edit snmp v3]

**Release Information**  
- Statement introduced before Junos OS Release 7.4.
- **type inform** option added in Junos OS Release 7.4.
- Statement introduced in Junos OS Release 9.0 for EX Series switches.
- Statement introduced in Junos OS Release 11.1 for the QFX Series.
- Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

**Description**  
Select management targets for SNMPv3 notifications as well as the type of notifications. Notifications can be either traps or informs.

**Options**  
- **name**—Name assigned to the notification.
- **tag-name**—Notifications are sent to all targets configured with this tag.
- **type**—Notification type is trap or inform. Traps are unconfirmed notifications. Informs are confirmed notifications.

**Required Privilege**  
- **Level**
  - snmp—To view this statement in the configuration.
  - snmp-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring the Inform Notification Type and Target Address on page 158
- Configuring the SNMPv3 Trap Notification on page 144
**notify-filter (Applying to the Management Target)**

**Supported Platforms**  
ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**  
notify-filter *profile-name*;

**Hierarchy Level**  
[edit snmp v3 target-parameters *target-parameters-name*]

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.  
Statement introduced in Junos OS Release 11.1 for the QFX Series.  
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

**Description**  
Specify the notify filter to be used by a specific set of target parameters.

**Options**  
*profile-name*—Name of the notify filter to apply to notifications.

**Required Privilege**  
- **Level**  
  - snmp—To view this statement in the configuration.  
  - snmp-control—To add this statement to the configuration.

**Related Documentation**  
- Applying the Trap Notification Filter on page 151
### notify-filter (Configuring the Profile Name)

<table>
<thead>
<tr>
<th>Supported Platforms</th>
<th>EX Series, M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`notify-filter profile-name { oid oid (include</td>
</tr>
<tr>
<td>Hierarchy Level</td>
<td><code>[edit snmp v3]</code></td>
</tr>
</tbody>
</table>
| Release Information | Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.  
Statement introduced in Junos OS Release 11.1 for the QFX Series.  
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series. |
| Description         | Specify a group of MIB objects for which you define access. The notify filter limits the type of traps or informs sent to the network management system. |
| Options             | **profile-name**—Name assigned to the notify filter.  
The remaining statement is explained separately. See CLI Explorer. |
| Required Privilege   | snmp—To view this statement in the configuration.  
snmp-control—To add this statement to the configuration. |
| Related Documentation| • Configuring the Trap Notification Filter on page 145  
• oid on page 793 |
# notify-view

## Supported Platforms

ACX Series, EX Series, M Series, MX Series, OCX1100, PTX Series, QFabric System, QFX Series, SRX Series, T Series

## Syntax

```
notify-view view-name;
```

## Hierarchy Level

```
[edit snmp v3 vacm access group group-name (default-context-prefix | context-prefix context-prefix) security-model (any | usm | v1 | v2c) security-level (authentication | none | privacy)]
```

## Release Information

- Statement introduced before Junos OS Release 7.4.
- Statement introduced in Junos OS Release 9.0 for EX Series switches.
- Statement introduced in Junos OS Release 11.1 for the QFX Series.
- Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

## Description

Associate the notify view with a community (for SNMPv1 or SNMPv2c clients) or a group name (for SNMPv3 clients).

## Options

- `view-name`—Name of the view to which the SNMP user group has access.

## Required Privilege

- `snmp`—To view this statement in the configuration.
- `snmp-control`—To add this statement to the configuration.

## Related Documentation

- Configuring MIB Views on page 121
- Configuring the Notify View on page 139
oid

Supported Platforms  EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

Syntax  oid oid (include | exclude);

Hierarchy Level  [edit snmp v3 notify-filter profile-name]

Release Information  Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description  Specify an object identifier (OID) used to represent a subtree of MIB objects. This OID is a prefix that the represented MIB objects have in common.

Options  exclude—Exclude the subtree of MIB objects represented by the specified OID.
include—Include the subtree of MIB objects represented by the specified OID.
oid—Object identifier used to represent a subtree of MIB objects. All MIB objects represented by this statement have the specified OID as a prefix. You can specify the OID using either a sequence of dotted integers or a subtree name.

Required Privilege  Level  snmp—to view this statement in the configuration.
               snmp-control—to add this statement to the configuration.

Related Documentation  • Configuring the Trap Notification Filter on page 145
parameters

Supported Platforms  EX Series, M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series

Syntax
parameters {
  message-processing-model (v1 | v2c | v3);
  security-level (none | authentication | privacy);
  security-model (usm | v1 | v2c);
  security-name security-name;
}

Hierarchy Level  [edit snmp v3 target-parameters target-parameters-name]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.1 for the QFX Series.

Description
Configure a set of target parameters for message processing and security.
The remaining statements are explained separately. See CLI Explorer.

Required Privilege
Level
snmp—To view this statement in the configuration.
snmp-control—To add this statement to the configuration.

Related Documentation
•  Defining and Configuring the Trap Target Parameters on page 150
**port**

**Supported Platforms**
EX Series, M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series

**Syntax**
```
port port-number;
```

**Hierarchy Level**
```
[edit snmp v3 target-address target-address-name]
```

**Release Information**
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.1 for the QFX Series.

**Description**
Configure a UDP port number for an SNMP target.

**Default**
If you omit this statement, the default port is 162.

**Options**
`port-number`—Port number for the SNMP target.

**Required Privilege**
```
snmp—To view this statement in the configuration.
snmp-control—To add this statement to the configuration.
```

**Related Documentation**
- Configuring the Port on page 148
### privacy-3des

<table>
<thead>
<tr>
<th>Supported Platforms</th>
<th>M Series, MX Series, QFX Series, SRX Series, T Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>privacy-3des { privacy-password privacy-password; }</td>
</tr>
<tr>
<td>Hierarchy Level</td>
<td>[edit snmp v3 usm local-engine user username], [edit snmp v3 usm remote-engine engine-id user username]</td>
</tr>
</tbody>
</table>
| Release Information | Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.  
Statement introduced in Junos OS Release 11.1 for the QFX Series. |
| Description         | Configure the triple Data Encryption Standard (3DES) as the privacy type for the SNMPv3 user. |
| Options             | privacy-password privacy-password—Password that a user enters. The password is then converted into a key that is used for encryption.  
SNMPv3 has special requirements when you create plain-text passwords on a router or switch:  
- The password must be at least eight characters long.  
- The password can include alphabetic, numeric, and special characters, but it cannot include control characters. |
| Required Privilege Level | snmp—To view this statement in the configuration.  
snmp-control—To add this statement to the configuration. |
| Related Documentation | Configuring the SNMPv3 Encryption Type on page 134 |
privacy-aes128

Supported Platforms: M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series

Syntax:

```
privacy-aes128 {
 privacy-password privacy-password;
}
```

Hierarchy Level:

```
[edit snmp v3 usm local-engine user username],
[edit snmp v3 usm remote-engine engine-id user username]
```

Release Information:

- Statement introduced before Junos OS Release 7.4.
- Statement introduced in Junos OS Release 9.0 for EX Series switches.
- Statement introduced in Junos OS Release 11.1 for the QFX Series.

Description:

Configure the Advanced Encryption Standard encryption algorithm (CFB128-AES-128 Privacy Protocol) for the SNMPv3 user.

Options:

- **privacy-password privacy-password**—Password that a user enters. The password is then converted into a key that is used for encryption.

  SNMPv3 has special requirements when you create plain-text passwords on a router or switch:

  - The password must be at least eight characters long.
  - The password can include alphabetic, numeric, and special characters, but it cannot include control characters.

Required Privilege Level:

- snmp—To view this statement in the configuration.
- snmp-control—To add this statement to the configuration.

Related Documentation:

- Configuring the SNMPv3 Encryption Type on page 134
privacy-des

**Supported Platforms**  
M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series

**Syntax**
```
privacy-des {
 privacy-password privacy-password;
}
```

**Hierarchy Level**
```
[edit snmp v3 usm local-engine user username],
[edit snmp v3 usm remote-engine engine-id user username]
```

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.  
Statement introduced in Junos OS Release 11.1 for the QFX Series.

**Description**  
Configure the Data Encryption Standard (DES) as the privacy type for the SNMPv3 user.

**Options**  
privacy-password *privacy-password*—Password that a user enters. The password is then converted into a key that is used for encryption.

SNMPv3 has special requirements when you create plain-text passwords on a router or switch:

- The password must be at least eight characters long.
- The password can include alphabetic, numeric, and special characters, but it cannot include control characters.

**Required Privilege Level**  
**snmp**—To view this statement in the configuration.  
**snmp-control**—To add this statement to the configuration.

**Related Documentation**  
- Configuring the SNMPv3 Encryption Type on page 134
privacy-none

**Supported Platforms**  M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series

**Syntax**  privacy-none;

**Hierarchy Level**  [edit snmp v3 usm local-engine user *username*],
                     [edit snmp v3 usm remote-engine engine-id user *username*]

**Release Information**  Statement introduced before Junos OS Release 7.4.
                          Statement introduced in Junos OS Release 9.0 for EX Series switches.
                          Statement introduced in Junos OS Release 11.1 for the QFX Series.

**Description**  Configure that no encryption be used for the SNMPv3 user.

**Required Privilege**  snmp—To view this statement in the configuration.
                         snmp-control—To add this statement to the configuration.

**Related Documentation**  • Configuring the SNMPv3 Encryption Type on page 134
privacy-password

Supported Platforms
M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series

Syntax
privacy-password privacy-password;

Hierarchy Level
[edit snmp v3 usm local-engine user username privacy-3des],
[edit snmp v3 usm local-engine user username privacy-aes128],
[edit snmp v3 usm local-engine user username privacy-des],
[edit snmp v3 usm remote-engine engine-id user username privacy-3des],
[edit snmp v3 usm remote-engine engine-id user username privacy-aes128],
[edit snmp v3 usm remote-engine engine-id user username privacy-des]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.1 for the QFX Series.

Description
Configure a privacy password for the SNMPv3 user.

Options
privacy-password—Password that a user enters. The password is then converted into a key that is used for encryption.

SNMPv3 has special requirements when you create plain-text passwords on a router or switch:

• The password must be at least eight characters long.
• The password can include alphabetic, numeric, and special characters, but it cannot include control characters.

Required Privilege Level
snmp—To view this statement in the configuration.
snmp-control—To add this statement to the configuration.

Related Documentation
• Configuring the SNMPv3 Encryption Type on page 134
**read-view**

<table>
<thead>
<tr>
<th>Supported Platforms</th>
<th>EX Series, M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>read-view view-name;</td>
</tr>
<tr>
<td>Hierarchy Level</td>
<td>[edit snmp v3 vacm access group group-name (default-context-prefix</td>
</tr>
<tr>
<td>Release Information</td>
<td>Statement introduced before Junos OS Release 7.4.</td>
</tr>
<tr>
<td></td>
<td>Statement introduced in Junos OS Release 9.0 for EX Series switches.</td>
</tr>
<tr>
<td></td>
<td>Statement introduced in Junos OS Release 11.1 for the QFX Series.</td>
</tr>
<tr>
<td>Description</td>
<td>Associate the read-only view with a community (for SNMPv1 or SNMPv2c clients) or a group name (for SNMPv3 clients).</td>
</tr>
<tr>
<td>Options</td>
<td>view-name—The name of the view to which the SNMP user group has access.</td>
</tr>
<tr>
<td>Required Privilege Level</td>
<td>snmp—To view this statement in the configuration.</td>
</tr>
<tr>
<td></td>
<td>snmp-control—To add this statement to the configuration.</td>
</tr>
<tr>
<td>Related Documentation</td>
<td>• Configuring the Read View on page 139</td>
</tr>
<tr>
<td></td>
<td>• Configuring MIB Views on page 121</td>
</tr>
</tbody>
</table>
**remote-engine**

**Supported Platforms**
EX4600, M Series, MX Series, OCX1100, PTX Series, QFX Series, SRX Series, T Series

**Syntax**
```
remote-engine engine-id {
 user username {
 authentication-md5 {
 authentication-password authentication-password;
 }
 authentication-none;
 authentication-sha {
 authentication-password authentication-password;
 }
 privacy-aes128 {
 privacy-password privacy-password;
 }
 privacy-des {
 privacy-password privacy-password;
 }
 privacy-3des {
 privacy-password privacy-password;
 }
 privacy-none {
 privacy-password privacy-password;
 }
 }
}
```

**Hierarchy Level**
[edit snmp v3 usm]

**Release Information**
Statement introduced in Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

**Description**
Configure the remote engine information for the user-based security model (USM). To send inform messages to an SNMPv3 user on a remote device, you must configure the engine identifier for the SNMP agent on the remote device where the user resides.

**Options**
- **engine-id**—Specify engine identifier in hexadecimal format. Used to compute the security digest for authenticating and encrypting packets sent to a user on the remote host.

The remaining statements are explained separately. See CLI Explorer.

**Required Privilege**
- **Level**
  - snmp—To view this statement in the configuration.
  - snmp-control—To add this statement to the configuration.

**Related Documentation**
- Configuring the Remote Engine and Remote User on page 154
# routing-instance

**Supported Platforms**  
EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

**Syntax**  
`routing-instance routing-instance-name;`

**Hierarchy Level**  
`[edit snmp v3 target-address target-address-name]`

**Release Information**  
Statement introduced in Junos OS Release 8.3.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**  
Specify a routing instance for an SNMPv3 trap target.

**Options**  
`routing-instance-name`—Name of the routing instance.

To configure a routing instance within a logical system, specify the logical system name followed by the routing instance name. Use a slash (`/`) to separate the two names (for example, `test-ls/test-ri`). To configure the default routing instance on a logical system, specify the logical system name followed by `default` (for example, `test-ls/default`).

**Required Privilege Level**  
`snmp`—To view this statement in the configuration.  
`snmp-control`—To add this statement to the configuration.

**Related Documentation**  
- Configuring the Trap Target Address on page 146
security-level (Defining Access Privileges)

**Supported Platforms**
EX Series, M Series, MX Series, QFX Series, SRX Series, T Series

**Syntax**
```
security-level (authentication | none | privacy) {
 notify-view view-name;
 read-view view-name;
 write-view view-name;
}
```

**Hierarchy Level**
```
[edit snmp v3 vacm access group group-name (default-context-prefix | context-prefix context-prefix) security-model (any | usm | v1 | v2c)]
```

**Release Information**
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.1 for the QFX Series.

**Description**
Define the security level used for access privileges.

**Default**
none

**Options**
- **authentication**—Provide authentication but no encryption.
  - none—No authentication and no encryption.
  - privacy—Provide authentication and encryption.

**Required Privilege**
- **Level**
  - snmp—To view this statement in the configuration.
  - snmp-control—To add this statement to the configuration.

**Related Documentation**
- Configuring the Security Level on page 138
**security-level (Generating SNMP Notifications)**

**Supported Platforms**  
EX Series, M Series, MX Series, QFX Series, SRX Series, T Series

**Syntax**  
security-level (authentication | none | privacy);

**Hierarchy Level**  
[edit snmp v3 target-parameters target-parameters-name parameters]

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.  
Statement introduced in Junos OS Release 11.1 for the QFX Series.

**Description**  
Configure the security level to use when generating SNMP notifications.

**Default**  
none

**Options**  
- **authentication**—Provide authentication but no encryption.  
- **none**—No authentication and no encryption.  
- **privacy**—Provide authentication and encryption.

**Required Privilege**  
- **Level**  
  - snmp—To view this statement in the configuration.  
  - snmp-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring the Security Level on page 152
**security-model (Access Privileges)**

**Supported Platforms**  EX Series, M Series, MX Series, QFX Series, SRX Series, T Series

**Syntax**  security-model (usm | v1 | v2c);

**Hierarchy Level**  
[edit snmp v3 vacm access group group-name (default-context-prefix | context-prefix context-prefix)]


**Description**  Configure the security model for an SNMPv3 group. The security model is used to determine access privileges for the group.

**Options**  
- usm—SNMPv3 security model.
- v1—SNMPv1 security model.
- v2c—SNMPv2c security model.

**Required Privilege Level**  
- snmp—To view this statement in the configuration.
- snmp-control—To add this statement to the configuration.

**Related Documentation**  • Configuring the Security Model on page 137
security-model (Group)

Supported Platforms  EX Series, M Series, MX Series, SRX Series, T Series

Syntax  
```
security-model (usm | v1 | v2c) {
security-name security-name {
 group group-name;
}
}
```

Hierarchy Level  [edit snmp v3 vacm security-to-group]


Description  Define a security model for a group.

Options  usm—SNMPv3 security model.
v1—SNMPv1 security model.
v2c—SNMPv2c security model.

Required Privilege Level  snmp—To view this statement in the configuration.
                        snmp-control—To add this statement to the configuration.

Related Documentation  • Configuring the Security Model on page 141
## security-model (SNMP Notifications)

**Supported Platforms**  
EX Series, M Series, MX Series, QFX Series, SRX Series, T Series

**Syntax**  
security-model (usm | v1 | v2c);

**Hierarchy Level**  
[edit snmp v3 target-parameters target-parameters-name parameters]

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.  
Statement introduced in Junos OS Release 11.1 for the QFX Series.

**Description**  
Configure the security model for an SNMPv3 group. The security model is used for SNMP notifications.

**Options**  
- usm—SNMPv3 security model.
- v1—SNMPv1 security model.
- v2c—SNMPv2c security model.

**Required Privilege**  
- snmp—to view this statement in the configuration.
- snmp-control—to add this statement to the configuration.

**Related Documentation**  
- Configuring the Security Model on page 151
**security-name (Community String)**

**Supported Platforms**  
ACX Series, EX Series, M Series, MX Series, QFX Series, SRX Series, T Series

**Syntax**  
security-name security-name;

**Hierarchy Level**  
[edit snmp v3 snmp-community community-index]

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.  
Statement introduced in Junos OS Release 11.1 for the QFX Series.

**Description**  
Associate a community string with the security name of a user. The community string, which is used for SNMPv1 and SNMPv2c clients in an SNMPv3 system, is configured at the [edit snmp v3 snmp-community community-index] hierarchy level.

**Options**  
security-name—Name that is used for messaging security and user access control.

---

**NOTE:** The security name must match the configured security name at the [edit snmp v3 target-parameters target-parameters-name parameters] hierarchy level when you configure traps or informs.

**Required Privilege Level**  
- snmp—To view this statement in the configuration.  
- snmp-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring the Security Names on page 162
security-name (Security Group)

Supported Platforms  EX Series, M Series, MX Series, SRX Series, T Series

Syntax  security-name security-name [  
  group group-name;  
]  

Hierarchy Level  [edit snmp v3 vacm security-to-group security-model (usm | v1 | v2c)]

Release Information  Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description  Associate a group or a community string with a configured security group.

Options  security-name—Username configured at the [edit snmp v3 usm local-engine user username]  
  hierarchy level. For SNMPv1 and SNMPv2c, the security name is the community string  
  configured at the [edit snmp v3 snmp-community community-index] hierarchy level.

Required Privilege  Level  snmp—To view this statement in the configuration.  
  snmp-control—To add this statement to the configuration.

Related Documentation  • Assigning Security Names to Groups on page 142
security-name (SNMP Notifications)

Supported Platforms  EX Series, M Series, MX Series, QFX Series, SRX Series, T Series

Syntax  security-name security-name;

Hierarchy Level  [edit snmp v3 target-parameters target-parameters-name parameters]

Release Information  Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.1 for the QFX Series.

Description  Configure the security name used when generating SNMP notifications.

Options  security-name—If the SNMPv3 USM security model is used, identify the user when generating the SNMP notification. If the v1 or v2c security models are used, identify the SNMP community used when generating the notification.

NOTE: The access privileges for the group associated with this security name must allow this notification to be sent.

If you are using the v1 or v2 security models, the security name at the [edit snmp v3vacm security-to-group] hierarchy level must match the security name at the [edit snmp v3 snmp-community community-index] hierarchy level.

Required Privilege  Level
snmp—to view this statement in the configuration.
snmp-control—to add this statement to the configuration.

Related Documentation  • Configuring the Security Name on page 152
security-to-group

**Supported Platforms**  
EX Series, M Series, MX Series, QFX Series, SRX Series, T Series

**Syntax**  
```plaintext
security-to-group {
 security-model (usm | v1 | v2c) {
 group group-name;
 security-name security-name;
 }
}
```

**Hierarchy Level**  
[edit snmp v3 vacm]

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.  
Statement introduced in Junos OS Release 11.1 for the QFX Series.

**Description**  
Configure the group to which a specific SNMPv3 security name belongs. The security name is used for messaging security.  
The remaining statements are explained separately. See [CLI Explorer](#).

**Required Privilege**  
- snmp—to view this statement in the configuration.  
- snmp-control—to add this statement to the configuration.

**Related Documentation**  
- [Assigning Security Model and Security Name to a Group on page 141](#)
snmp-community

Supported Platforms EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

Syntax

snmp-community community-index {
    community-name community-name;
    security-name security-name;
    tag tag-name;
}

Hierarchy Level [edit snmp v3]

Release Information Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description Configure the SNMP community.

Options community-index—(Optional) String that identifies an SNMP community.
The remaining statements are explained separately. See CLI Explorer.

Required Privilege

Level snmp—to view this statement in the configuration.
snmp-control—to add this statement to the configuration.

Related Documentation • Configuring the SNMPv3 Community on page 160
tag

Supported Platforms
EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

Syntax
tag tag-name;

Hierarchy Level
[edit snmp v3 notify name],
[edit snmp v3 snmp-community community-index]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description
Configure a set of targets to receive traps or informs (for IPv4 packets only).

Options
tag-name—Identifies the address of managers that are allowed to use a community string.

Required Privilege
Level
snmp—To view this statement in the configuration.
snmp-control—To add this statement to the configuration.

Related Documentation
• Configuring the Tag on page 162
• Configuring the SNMPv3 Trap Notification on page 144
# tag-list

**Supported Platforms**  EX Series, M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series

**Syntax**  tag-list tag-list;

**Hierarchy Level**  [edit snmp v3 target-address target-address-name]


**Description**  Configure an SNMP tag list used to select target addresses.

**Options**  
- **tag-list**—Define sets of target addresses (tags). To specify more than one tag, specify the tag names as a space-separated list enclosed within double quotes.

**Required Privilege**  
- **Level**
  - snmp—to view this statement in the configuration.
  - snmp-control—to add this statement to the configuration.

**Related Documentation**  
- Configuring the Trap Target Address on page 148
target-address

Supported Platforms EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

Syntax target-address target-address-name { address address; address-mask address-mask; logical-system logical-system; port port-number; retry-count number; routing-instance instance; tag-list tag-list; target-parameters target-parameters-name; timeout seconds; }

Hierarchy Level [edit snmp v3]


Description Configure the address of an SNMP management application and the parameters to be used in sending notifications.

Options target-address-name—String that identifies the target address.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

Required Privilege Level snmp—To view this statement in the configuration.

snmp-control—To add this statement to the configuration.

Related Documentation • Configuring the Trap Target Address on page 146
**target-parameters**

**Supported Platforms**
EX Series, M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series

**Syntax**
At the [edit snmp v3] hierarchy level:

target-parameters target-parameters-name {
  profile-name;
  parameters {
    message-processing-model (v1 | v2c | V3);
    security-level (authentication | none | privacy);
    security-model (usm | v1 | v2c);
    security-name security-name;
  }
}

At the [edit snmp v3 target-address target-address-name] hierarchy level:

target-parameters target-parameters-name;

**Hierarchy Level**
[edit snmp v3]
[edit snmp v3 target-address target-address-name]

**Release Information**
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.1 for the QFX Series.

**Description**
Configure the message processing and security parameters for sending notifications to a particular management target. The target parameters are configured at the [edit snmp v3] hierarchy level. The remaining statements at this level are explained separately.

Then apply the target parameters configured at the [edit snmp v3 target-parameters target-parameters-name] hierarchy level to the target address configuration at the [edit snmp v3] hierarchy level.

**Required Privilege**
- snmp—to view this statement in the configuration.
- snmp-control—to add this statement to the configuration.

**Related Documentation**
- Defining and Configuring the Trap Target Parameters on page 150
- Applying Target Parameters on page 149
**type**

**Supported Platforms**  
EX Series, M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series

**Syntax**  
type (inform | trap);

**Hierarchy Level**  
[edit snmp v3 notify name]

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
inform option added in Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.  
Statement introduced in Junos OS Release 11.1 for the QFX Series.

**Description**  
Configure the type of SNMP notification.

**Options**  
**inform**—Defines the type of notification as an inform. SNMP informs are confirmed notifications.

**trap**—Defines the type of notification as a trap. SNMP traps are unconfirmed notifications.

**Required Privilege**  
**Level**  
snmp—To view this statement in the configuration.  
snmp-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring SNMP Informs on page 153  
- Configuring the SNMPv3 Trap Notification on page 144
user

**Supported Platforms**  M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series

**Syntax**  user *username*;

**Hierarchy Level**  [edit snmp v3 usm local-engine],
[edit snmp v3 usm remote-engine *engine-id*]

**Release Information**  Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

**Description**  Specify a user associated with an SNMPv3 group on a local or remote SNMP engine.

**Options**  *username*—SNMPv3 user-based security model (USM) username.

**Required Privilege**  
- **Level**
  - snmp—To view this statement in the configuration.
  - snmp-control—To add this statement to the configuration.

**Related Documentation**  
- Creating SNMPv3 Users on page 131
**USM**

**Supported Platforms**  M Series, MX Series, PTX Series, QFX Series, SRX Series, T Series

**Syntax**
```
usm {
 local-engine {
 user username {
 authentication-md5 {
 authentication-password authentication-password;
 }
 authentication-none;
 authentication-sha {
 authentication-password authentication-password;
 }
 privacy-aes128 {
 privacy-password privacy-password;
 }
 privacy-des {
 privacy-password privacy-password;
 }
 privacy-3des {
 privacy-password privacy-password;
 }
 privacy-none {
 privacy-password privacy-password;
 }
 }
 }
 remote-engine engine-id {
 user username {
 authentication-md5 {
 authentication-password authentication-password;
 }
 authentication-none;
 authentication-sha {
 authentication-password authentication-password;
 }
 privacy-aes128 {
 privacy-password privacy-password;
 }
 privacy-des {
 privacy-password privacy-password;
 }
 privacy-3des {
 privacy-password privacy-password;
 }
 privacy-none {
 privacy-password privacy-password;
 }
 }
 }
}
```
Hierarchy Level  [edit snmp v3]

Release Information  Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.1 for the QFX Series.

Description  Configure user-based security model (USM) information.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege  Level
snmp—To view this statement in the configuration.
snmp-control—To add this statement to the configuration.

Related Documentation
• Creating SNMPv3 Users on page 131
• Configuring the Remote Engine and Remote User on page 154
v3

Supported Platforms  EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

Syntax  v3 {
  notify name {
    tag tag-name;
    type trap;
  }
  notify-filter profile-name {
    oid object-identifier (include | exclude);
  }
  snmp-community community-index {
    community-name community-name;
    security-name security-name;
    tag tag-name;
  }
  target-address target-address-name {
    address address;
    address-mask address-mask;
    logical-system logical-system;
    port port-number;
    retry-count number;
    routing-instance instance;
    tag-list tag-list;
    target-parameters target-parameters-name;
    timeout seconds;
  }
  target-parameters target-parameters-name {
    notify-filter profile-name;
    parameters {
      message-processing-model (v1 | v2c | V3);
      security-level (authentication | none | privacy);
      security-model (usm | v1 | v2c);
      security-name security-name;
    }
  }
  usm {
    local-engine {
      user username {
        authentication-md5 {
          authentication-password authentication-password;
        }
        authentication-sha {
          authentication-password authentication-password;
        }
        authentication-none;
        privacy-aes128 {
          privacy-password privacy-password;
        }
        privacy-des {
          privacy-password privacy-password;
        }
        privacy-des {
      }
  }

Copyright © 2017, Juniper Networks, Inc.
privacy-password privacy-password;
} privacy-none;
}
}
remote-engine engine-id {
  user username {
    authentication-md5 {
      authentication-password authentication-password;
    }
    authentication-sha {
      authentication-password authentication-password;
    }
    authentication-none;
    privacy-aes128 {
      privacy-password privacy-password;
    }
    privacy-des {
      privacy-password privacy-password;
    }
    privacy-3des {
      privacy-password privacy-password;
    }
    privacy-none {
      privacy-password privacy-password;
    }
  }
}
}
vacm {
  access {
    group group-name {
      (default-context-prefix | context-prefix context-prefix)[
        security-model (any | usm | v1 | v2c) {
          security-level (authentication | none | privacy) {
            notify-view view-name;
            read-view view-name;
            write-view view-name;
          }
        }
      }
    }
  }
}
security-to-group {
  security-model (usm | v1 | v2c) {
    security-name security-name {
      group group-name;
    }
  }
}
}

Hierarchy Level [edit snmp]
**Release Information**  Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**  Configure SNMPv3.
The remaining statements are explained separately. See CLI Explorer.

**Required Privilege**
- **Level**
  - snmp—to view this statement in the configuration.
  - snmp-control—to add this statement to the configuration.

**Related Documentation**
- Minimum SNMPv3 Configuration on a Device Running Junos OS on page 126
vacin

Supported Platforms  EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

Syntax  \[ vcin \{
  access \{
    group group-name \{
      (default-context-prefix | context-prefix context-prefix){
        security-model (any | usm | v1 | v2c) {
          security-level (authentication | none | privacy) {
            notify-view view-name;
            read-view view-name;
            write-view view-name;
          }
        }
      }
    }
  }
  security-to-group {
    security-model (usm | v1 | v2c);
    security-name security-name {
      group group-name;
    }
  }
}
\]

Hierarchy Level  \[edit snmp v3\]

Release Information  Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description  Configure view-based access control model (VACM) information.
The remaining statements are explained separately. See CLI Explorer.

Required Privilege  snmp—To view this statement in the configuration.
snmp-control—To add this statement to the configuration.

Related Documentation  • Defining Access Privileges for an SNMP Group on page 136
### write-view

**Supported Platforms**  
ACX Series, EX Series, M Series, MX Series, OCX1100, PTX Series, QFabric System, QFX Series, SRX Series, T Series

**Syntax**  
write-view view-name;

**Hierarchy Level**  
```
[edit snmp v3 vacm access group group-name (default-context-prefix | context-prefix context-prefix) security-model (any | usm | v1 | v2c) security-level (authentication | none | privacy)]
```

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 9.0 for EX Series switches.  
Statement introduced in Junos OS Release 11.1 for the QFX Series switches.  
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

**Description**  
Associate the write view with a community (for SNMPv1 or SNMPv2c clients) or a group name (for SNMPv3 clients).

**Options**  
- **view-name**—Name of the view for which the SNMP user group has write permission.

**Required Privilege Level**  
- snmp—To view this statement in the configuration.  
- snmp-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring MIB Views on page 121  
- Configuring the Write View on page 140
CHAPTER 44

Configuration Statements: TWAMP

- twamp-server on page 828
- twamp-client on page 830
twamp-server

Supported Platforms  SRX Series

Syntax  
```plaintext
services {
 rpm {
 twamp {
 server {
 authentication-mode;
 max-connection-duration;
 maximum-sessions;
 maximum-sessions-per-connection;
 maximum-connections;
 maximum-connections-per-client;
 port;
 client-list abc {
 address;
 }
 }
 }
 }
}
```

Hierarchy Level  [edit services rpm twamp server]

Release Information  Statement introduced in Junos OS Release 15.1X49-D110 for SRX Series devices.

Description  Define the Two-Way Active Measurement Protocol (TWAMP) server configurations. This configuration describes a TWAMP server on the router that enables a TWAMP client to connect to the server using any media interface IP address. In such a scenario, the router functions as a TWAMP server and timestamping is performed in the ukernel of the media-facing Flexible PIC Concentrator (FPC).

Options  
- server—TWAMP server configuration.
- authentication-mode—The set of authentication modes the server can accept.
  - Default: none
- max-connection-duration—The maximum time a connection can exist between the client and the server.
  - Default: 24
  - Range: 0-120
- maximum-sessions—Maximum number of test sessions for the server.
  - Default: 64
  - Range: 1-2048
- maximum-sessions-per-connection—Maximum number of test sessions per client connection.
Default: 64  
Range: 1-1024

maximum-connections—Maximum number of connections for the server.  
Default: 64  
Range: 1-1000

maximum-connections-per-client—Maximum number of server connections per client.  
Default: 64  
Range: 1-500

port—TWAMP server listening port used by the routing instance.  
Default: 862  
Range: 1-65535

client-list—List of allowed control client hosts that can connect to this server. Each item in the list is a Classless Interdomain Routing (CIDR) address (ip address1/mask1) that represents the network of allowed hosts.

**Required Privilege Level**  
- system—To view this statement in the configuration.  
- interface-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring TWAMP
twamp-client

Supported Platforms  SRX Series

Syntax  control-connection control-connection-name {
  authentication-mode none;
  destination-port;
  history-size;
  moving-average-size;
  target-address;
  test-count;
  test-interval;
  test-session test-session-name {
    target-address;
    data-fill-with-zeros;
    dscp-code-points;
    probe-count;
    probe-interval;
    thresholds;
  }
}

Hierarchy Level  [edit services rpm twamp client]

Release Information  Statement introduced in Junos OS Release 15.1X49-D110 for SRX Series devices.

Description  Define the Two-Way Active Measurement Protocol (TWAMP) client configuration. A client opens a TCP connection to the server on well-known port 862. The host that initiates the TCP connection takes the roles of control client and session sender. The host that acknowledges the TCP connection accepts the roles of server and session reflector.

Options  client—TWAMP client configuration.

  authentication-mode—The set of authentication modes that the client can accept.
    Default: none

  destination-port—Either the User Datagram Protocol (UDP) or the Transmission Control Protocol (TCP) port to which a probe is sent.
    Default: 862

  history-size—Number of stored history entries.
    Default: 50
    Range: 0-500

  moving-average-size—Number of samples for making statistical calculations.
    Default: 0
    Range: 0-1024
**routing-instance**—Routing instance used by test sessions.

**target-address**—Destination address or URL used for the probes.

**test-count**—Total number of test session iterations.

  Default: 0  
  Range: 0-4,294,967,290

**test-interval**—Number of seconds to wait between tests.

  Default: 1  
  Range: 1-255

**test-session**—Test session details.

**data-fill-with-zeros**—If the option is defined, then the test packet value becomes zero. If the option is not defined, then a pseudorandom number is updated as data.

**dscp-code-points**—DiffServ code point bits or alias used for UDP data of test probes or test packets in test sessions.

  Default: 0

**probe-count**—Total number of probes per test.

  Default: 1  
  Range: 1-4,294,967,290

**thresholds**—Test threshold values.

---

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- [Two-Way Active Measurement Protocol Overview](#)
CHAPTER 45

Operational Commands

- clear chassis cluster ip-monitoring failure-count
- clear chassis cluster ip-monitoring failure-count ip-address
- clear ilmi statistics
- clear interfaces statistics
- clear services rpm twamp server connection
- clear snmp history
- clear snmp statistics
- request pppoe connect
- request pppoe disconnect
- request services ip-monitoring preempt-restore policy
- request services rpm twamp start
- request services rpm twamp stop
- request snmp spoof-trap
- show chassis alarms
- show chassis cluster ip-monitoring status redundancy-group
- show interfaces (SRX Series)
- show interfaces snmp-index
- show interfaces summary
- show ilmi statistics
- show security alarms
- show security datapath-debug capture
- show security datapath-debug counter
- show security monitoring
- show security monitoring fpc fpc-number
- show security monitoring performance session
- show security monitoring performance spu
- show services ip-monitoring status
- show services rpm twamp client connection
- show services rpm twamp client history-results
- show services rpm twamp client probe-results
- show services rpm twamp client session
- show services rpm twamp server connection
- show services rpm twamp server session
- show snmp health-monitor
- show snmp inform-statistics
- show snmp mib
- show snmp rmon
- show snmp statistics
- show snmp stats-response-statistics
- show snmp v3
- show system alarms
- show system alarms
- show system resource-monitor fpc
**clear chassis cluster ip-monitoring failure-count**

**Supported Platforms**  
SRX Series, vSRX

**Syntax**  
clear chassis cluster ip-monitoring failure-count

**Release Information**  
Command introduced in Junos OS Release 10.1.

**Description**  
Clear the failure count for all IP addresses.

**Required Privilege Level**  
clear

**Related Documentation**  
- clear chassis cluster ip-monitoring failure-count
- clear chassis cluster ip-monitoring failure-count ip-address on page 836

**Output Fields**  
When you enter this command, you are provided feedback on the status of your request.

**Sample Output**

```
user@host> clear chassis cluster ip-monitoring failure-count

node0:---
Cleared failure count for all IPs

node1:---
Cleared failure count for all IPs
```
clear chassis cluster ip-monitoring failure-count ip-address

Supported Platforms  SRX Series, vSRX

Syntax  clear chassis cluster ip-monitoring failure-count ip-address 1.1.1.1


Description  Clear the failure count for a specified IP address.

NOTE: Entering an IP address at the end of this command is optional. If you do not specify an IP address, the failure count for all monitored IP addresses is cleared.

Required Privilege Level  clear

Related Documentation

• clear chassis cluster failover-count

• clear chassis cluster ip-monitoring failure-count on page 835

Output Fields  When you enter this command, you are provided feedback on the status of your request.

Sample Output

user@host> clear chassis cluster ip-monitoring failure-count ip-address 1.1.1.1

node0:
--------------------------------------------------------------------------
Cleared failure count for IP: 1.1.1.1
--------------------------------------------------------------------------

node1:
--------------------------------------------------------------------------
Cleared failure count for IP: 1.1.1.1
--------------------------------------------------------------------------
clear ilmi statistics

Supported Platforms EX Series, M Series, MX Series, PTX Series, T Series

Syntax clear ilmi statistics

Release Information Command introduced before Junos OS Release 7.4.

Description Set Integrated Local Management Interface (ILMI) statistics to zero.

Options This command has no options.

Required Privilege Level clear

Related Documentation • show ilmi statistics on page 893

List of Sample Output clear ilmi statistics on page 837

Output Fields When you enter this command, you are provided feedback on the status of your request.

Sample Output

```
clear ilmi statistics
user@host> clear ilmi statistics
```
clear interfaces statistics

Supported Platforms  EX Series, M Series, MX Series, PTX Series, SRX Series, T Series
Syntax  clear interfaces statistics (all | interface-name)
Release Information  Command introduced before Junos OS Release 7.4.
Description  Set interface statistics to zero. If you issue the clear interfaces statistics interface-name command and then perform a graceful Routing Engine switchover, the interface statistics are not cleared on the new master. Reissue the command to clear the interface statistics again.

Starting in Junos OS Release 17.3R1, this command supports the clearing of Packet Forwarding Engine accounting statistics on logical interfaces configured with accounting options. On these interfaces, the current statistics values are stored as the new current baseline values and then the counters are reset to zero. If the allow-clear statement is included in the interface profile, then the cleared statistics values are reported to the accounting options flat file associated with the interface. Reporting is disabled by default; if allow-clear is not configured, then the CLI displays cleared statistics counters, but they are not reported to the flat file.

Options  all—Set statistics on all interfaces to zero.
  interface-name—Set statistics on a particular interface to zero.
Required Privilege  clear
List of Sample Output  clear interfaces statistics on page 838
Output Fields  When you enter this command, you are provided no feedback on the status of your request.
Sample Output

  clear interfaces statistics
  
  user@host> clear interfaces statistics
clear services rpm twamp server connection

Supported Platforms  SRX Series

Syntax  clear services rpm twamp server connection
        <connection-id>

Release Information  Command introduced in Junos OS Release 15.1 for SRX Series devices.

Description  Clear connections established between the real-time performance monitoring (RPM) Two-Way Active Measurement Protocol (TWAMP) server and control clients. By default all established connections are cleared (along with the sessions on those connections). To clear only a specific connection, specify the connection ID when you issue the command.

Options  connection-id—(Optional) Clears specific connection as per the ID mentioned.

Required Privilege Level  clear
**clear snmp history**

**Supported Platforms**  
EX Series, M Series, MX Series, PTX Series, QFabric System, QFX Series, T Series

**Syntax**  
clear snmp history (index | all)

**Release Information**  
Command introduced before Junos OS Release 7.4.  
Command introduced in Junos OS Release 9.0 for EX Series switches.  
Command introduced in Junos OS Release 11.1 for the QFX Series.

**Description**  
Delete the history record of Simple Network Management Protocol (SNMP) samples of Ethernet statistics collected.

**Options**  
*all*—Clear all the entries in the history index.  
*index*—Clear the contents of the specified entry in the history index.

**Required Privilege Level**  
clear

**Related Documentation**  
• clear snmp statistics on page 841
clear snmp statistics

Supported Platforms
EX Series, M Series, MX Series, OCX1100, PTX Series, QFX Series, T Series

Syntax
clear snmp statistics

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
Command introduced in Junos OS Release 11.1 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Options
This command has no options.

Required Privilege
Level
clear

Related Documentation
• show snmp statistics on page 945

List of Sample Output
clear snmp statistics on page 841

Output Fields
See show snmp statistics for an explanation of output fields.

Sample Output
clear snmp statistics

In the following example, SNMP statistics are displayed before and after the clear snmp
statistics command is issued:

user@host> show snmp statistics
SNMP statistics:
  Input:
    Packets: 8, Bad versions: 0, Bad community names: 0,
    Bad community uses: 0, ASN parse errors: 0,
    Too bigs: 0, No such names: 0, Bad values: 0,
    Read onlys: 0, General errors: 0,
    Total request varbinds: 8, Total set varbinds: 0,
    Get requests: 0, Get nexts: 8, Set requests: 0,
    Get responses: 0, Traps: 0,
    Silent drops: 0, Proxy drops 0
Output:
  Packets: 2298, Too bigs: 0, No such names: 0,
  Bad values: 0, General errors: 0,
  Get requests: 0, Get nexts: 0, Set requests: 0,
  Get responses: 8, Traps: 2290

user@host> clear snmp statistics
user@host> show snmp statistics
SNMP statistics:
  Input:
    Packets: 0, Bad versions: 0, Bad community names: 0,
    Bad community uses: 0, ASN parse errors: 0,
    Too bigs: 0, No such names: 0, Bad values: 0,
    Read onlys: 0, General errors: 0,
    Total request varbinds: 0, Total set varbinds: 0,
    Get requests: 0, Get nexts: 0, Set requests: 0,
    Get responses: 0, Traps: 0,
    Silent drops: 0, Proxy drops 0
Output:
  Packets: 0, Too bigs: 0, No such names: 0,
  Bad values: 0, General errors: 0,
  Get requests: 0, Get nexts: 0, Set requests: 0,
  Get responses: 0, Traps: 0
# request pppoe connect

**Supported Platforms**
SRX1500, SRX300, SRX320, SRX340, SRX345, SRX550M, vSRX

**Syntax**
request pppoe connect

**Release Information**
Statement supported on SRX300, SRX320, SRX340, and SRX345 is introduced in Junos OS Release 15.1X49-D60.
Statement supported on SRX1500 and vSRX instances is introduced in Junos OS Release 15.1X49-D100.

**Description**
Connect all sessions that are down.

**Options**
- **pppoe interface name**— (Optional) Connect to a specified session.

**Required Privilege Level**
maintenance

**Related Documentation**
- *Understanding PPPoE Interfaces*
- *Example: Configuring PPPoE Interfaces*

**List of Sample Output**
request pppoe connect on page 843

**Output Fields**
When you enter this command, this command returns no output.

**Sample Output**
request pppoe connect

```
user@host> request pppoe connect
```
request pppoe disconnect

**Supported Platforms**
SRX1500, SRX300, SRX320, SRX340, SRX345, SRX550M, vSRX

**Syntax**
request pppoe disconnect

**Release Information**
Statement supported on SRX300, SRX320, SRX340, and SRX345 is introduced in Junos OS Release 15.1X49-D60. Statement supported on SRX1500 and vSRX instances is introduced in Junos OS Release 15.1X49-D100.

**Description**
Disconnect all active sessions.

**Options**
- **session id** — (Optional) Disconnect the session for which the session ID is specified.
- **pppoe interface name** — (Optional) Disconnect the session for a specific pppoe interface name.

**Required Privilege Level**
maintenance

**Related Documentation**
- Understanding PPPoE Interfaces
- Example: Configuring PPPoE Interfaces

**List of Sample Output**
request pppoe disconnect on page 844

**Output Fields**
When you enter this command, this command returns no output.

**Sample Output**
request pppoe disconnect

```
user@host> request pppoe disconnect
```
request services ip-monitoring preempt-restore policy

**Supported Platforms**
SRX1500, SRX300, SRX320, SRX340, SRX550M, vSRX

**Syntax**
request services ip-monitoring preempt-restore policy
<policy-name>

**Release Information**
Command introduced in Junos OS Release 11.4.

**Description**
If the no–preempt option is specified, the policy will not perform preemptive failback when it is in a failover state, and when the RPM probe test recovers from failure. To manually revert to the failback state, run the `request services ip-monitoring preempt-restore policy` command.

**NOTE:** The `request services ip-monitoring preempt-restore policy` command takes effect only when the RPM probe is in the pass state, and when the policy is in a failover state.

**Options**
- **policy name**—Name of the policy.

**Required Privilege Level**
maintenance

**Related Documentation**
- show services ip-monitoring status on page 910

**List of Sample Output**
run request services ip-monitoring preempt-restore policy <policy name> on page 845

**Output Fields**
When you run this command, the policy is restored to the failback state.

**Sample Output**
run request services ip-monitoring preempt-restore policy <policy name>

```
user@host> run request services ip-monitoring preempt-restore policy policy1
Restore request succeeded: Policy policy1
```
request services rpm twamp start

**Supported Platforms**  
SRX Series

**Syntax**  
request services rpm twamp start client <control-connection-name>

**Release Information**  
Command introduced in Junos OS Release 15.1X49-D110 for SRX Series devices.

**Description**  
Start the probes of a Two-Way Active Measurement Protocol (TWAMP) client. You can start all sessions for all TWAMP clients, or start a session for a specific TWAMP client. When you start test session configured for a particular TWAMP client, the control client initiates all requested testing with a start-sessions message, and the server sends an acknowledgment. If the control connection is not active between the server and the client, the control connection is also established and the test connections are started later. If the control client name is not specified, all the configured test sessions are commenced.

**Options**
- **start client**—Start the TWAMP session between the TWAMP client and the TWAMP server.
- **control-connection-name**—(Optional) Start or stop the TWAMP session with the server only for the specified control connection or TWAMP control client.

**Required Privilege**
view

**List of Sample Output**
request services rpm twamp start client on page 846

**Output Fields**
When you enter this command, you are not provided feedback on the status of your request.

**Sample Output**

```
request services rpm twamp start client

user@host> request services rpm twamp start client c1
```
**request services rpm twamp stop**

**Supported Platforms**  
SRX Series

**Syntax**  
request services rpm twamp stop client <control-connection-name>

**Release Information**  
Command introduced in Junos OS Release 15.1X49-D110 for SRX Series devices.

**Description**  
Stop the Two-Way Active Measurement Protocol (TWAMP) session between the TWAMP client and the TWAMP server. You can stop all sessions for all TWAMP clients, or stop a session for a specific TWAMP client. When you stop the test session, the control connection is closed only after the stop-sessions message is sent from the TWAMP client to the TWAMP server. If the control client name is not specified, all the configured test sessions are closed.

**Options**  
- `stop client`—Stop the TWAMP session between the TWAMP client and the TWAMP server.
- `control-connection-name`—(Optional) Start or stop the TWAMP session with the server only for the specified control connection or TWAMP control client.

**Required Privilege Level**  
view

**List of Sample Output**  
request services rpm twamp stop client on page 847

**Output Fields**  
When you enter this command, you are not provided feedback on the status of your request.

**Sample Output**

`request services rpm twamp stop client`

```
user@host> request services rpm twamp stop client c1
```
**request snmp spoof-trap**

**Supported Platforms**  
EX Series, M Series, MX Series, OCX1100, PTX Series, QFabric System, QFX Series, T Series

**Syntax**  
```
request snmp spoof-trap
<trap> variable-bindings <object> <instance> <value>
```

**Release Information**  
Command introduced in Junos OS Release 8.2.  
Command introduced in Junos OS Release 9.0 for EX Series switches.  
Command introduced in Junos OS Release 11.1 for the QFX Series.  
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

**Description**  
Spoof (mimic) the behavior of a Simple Network Management Protocol (SNMP) trap.

**Options**  
```
<trap>—Name of the trap to spoof.
```

```
variable-bindings <object> <instance> <value>—(Optional) List of variables and values to include in the trap. Each variable binding is specified as an object name, the object instance, and the value (for example, ifIndex[14] = 14). Enclose the list of variable bindings in quotation marks (" ") and use a comma to separate each object name, instance, and value definition (for example, variable-bindings "ifIndex[14] = 14, ifAdminStatus[14] = 1, ifOperStatus[14] = 2"). Objects included in the trap definition that do not have instances and values specified as part of the command are included in the trap and spoofed with automatically generated instances and values.
```

```
<dummy name>—A dummy trap name to display the list of available traps.
```

```
Question mark (?)—Question mark? to display possible completions.
```

**Required Privilege Level**  
request

**List of Sample Output**  
request snmp spoof-trap (with Variable Bindings) on page 848  
request snmp spoof-trap (Illegal Trap Name) on page 848  
request snmp spoof-trap (Question Mark ?) on page 853

**Sample Output**

**request snmp spoof-trap (with Variable Bindings)**
```
user@host> request snmp spoof-trap linkUp variable-bindings "ifIndex[14] = 14, ifAdminStatus[14] = 1, ifOperStatus[14] = 2"
Spoof trap request result: trap sent successfully
```

**request snmp spoof-trap (Illegal Trap Name)**
```
user@host> request snmp spoof-trap xx
Spoof trap request result: trap not found
```

Allowed Traps:  
adslAtucInitFailureTrap
jnxBgpM2BackwardTransition
jnxBgpM2Established
jnxCmCfgChange
jnxCmRescueChange
jnxCollFlowOverload
jnxCollFlowOverloadCleared
jnxCollFtpSwitchover
jnxCollMemoryAvailable
jnxCollMemoryUnavailable
jnxCollUnavailableDest
jnxCollUnavailableDestCleared
jnxCollUnsuccessfulTransfer
jnxDfcHardMemThresholdExceeded
jnxDfcHardMemUnderThreshold
jnxDfcHardPpsThresholdExceeded
jnxDfcHardPpsUnderThreshold
jnxDfcSoftMemThresholdExceeded
jnxDfcSoftMemUnderThreshold
jnxDfcSoftPpsThresholdExceeded
jnxDfcSoftPpsUnderThreshold
jnxEventTrap
jnxExampleStartup
jnxFEBSwitchover
jnxFanFailure
jnxFanOK
jnxFruCheck
jnxFruFailed
jnxFruInsertion
jnxFruOK
jnxFruOffline
jnxFruOnline
jnxFruPowerOff
jnxFruPowerOn
jnxFruRemoval
jnxHardDiskFailed
jnxHardDiskMissing
jnxJsAvPatternUpdateTrap
jnxJsChassisClusterSwitchover
jnxJsFwAuthCapacityExceeded
jnxJsFwAuthFailure
jnxJsFwAuthServiceDown
jnxJsFwAuthServiceUp
jnxJsNatAddrPoolThresholdStatus
jnxJsScreenAttack
jnxJsScreenCfgChange
jnxLdpLspDown
jnxLdpLspUp
jnxLdpSesDown
jnxLdpSesUp
jnxMIMstCistPortLoopProtectStateChangeTrap
jnxMIMstCistPortRootProtectStateChangeTrap
jnxMIMstErrTrap
jnxMIMstGenTrap
jnxMIMstInvalidBpduRxdTrap
jnxMIMstMstiPortLoopProtectStateChangeTrap
jnxMIMstMstiPortRootProtectStateChangeTrap
jnxMIMstNewRootTrap
jnxMIMstProtocolMigrationTrap
jnxMIMstRegionConfigChangeTrap
jnxMIMstTopologyChgTrap
jnxMacChangedNotification
jnxFpInitSesThresholdExceeded
jnxFpPathVectorLimitMismatch
jnxFpSessionDown
jnxFpSessionUp
jnxFp3IfConfigError
jnxFp3RxBadPacket
jnxFp3StateChange
jnxFp3LsdbApproachingOverflow
jnxFp3LsdbOverflow
jnxFp3NbrRestartHelperStatusChange
jnxFp3StateChange
jnxFp3NSSATranslatorStatusChange
jnxFp3RestartStatusChange
jnxFp3VirtIfConfigError
jnxFp3VirtRxBadPacket
jnxFp3VirtStateChange
jnxFp3VirtNbrRestartHelperStatusChange
jnxFp3VirtNbrStateChange
jnxFPnAlarmCleared
jnxFPnAlarmSet
jnxFPnOverTemperature
jnxFPnOverloadCleared
jnxFPnOverloadSet
jnxFPingEgressJitterThresholdExceeded
jnxFPingEgressStdDevThresholdExceeded
jnxFPingThresholdExceeded
jnxFPingingJitterThresholdExceeded
jnxFPingIngressStdDevThresholdExceeded
jnxFPingIngressThresholdExceeded
jnxFPingRttJitterThresholdExceeded
jnxFPingRttStdDevThresholdExceeded
jnxFPingRttThresholdExceeded
jnxFPortBpduErrorStatusChangeTrap
jnxFPortLoopProtectStateChangeTrap
jnxFPortRootProtectStateChangeTrap
jnxFPowerSupplyFailure
jnxFPowerSupplyOK
jnxFRedundancySwitchover
jnxFRmonAlarmGetFailure
jnxFRmonGetOK
jnxFSecAccessIfMacLimitExceeded
jnxFSecAccessIfsRateLimitCrossed
jnxFSonetAlarmCleared
jnxFSonetAlarmSet
jnxFSpSvcSetCpuExceeded
jnxFSpSvcSetCpuOK
jnxFSpSvcSetZoneEntered
jnxFSpSvcSetZoneExited
jnxFStormEventNotification
jnxFSyslogTrap
jnxFTemperatureOK
jnxFVccpPortDown
jnxFVccpPortUp
jnxFVpnIfDown
jnxFVpnIfUp
jnxFVpnPwDown
jnxFVpnPwUp
jnxFldGlobalMacLimit
jnxFldInterfaceMacLimit
jnxFldRoutingInstMacLimit
linkDown
linkUp
lldpRemTablesChange
mfrMibTrapBundleLinkMismatch
mplsLspChange
mplsLspDown
mplsLspInfoChange
mplsLspInfoDown
mplsLspInfoPathDown
mplsLspInfoPathUp
mplsLspInfoUp
mplsLspPathDown
mplsLspPathUp
mplsLspUp
mplsNumVrfRouteMaxThreshExceeded
mplsNumVrfRouteMidThreshExceeded
mplsNumVrfSecIlggLblThrshExcd
mplsTunnel1Down
mplsTunnel1Reoptimized
mplsTunnel1Rerouted
mplsTunnel1Up
mplsVrfIfDown
mplsVrfIfUp
mplsXCDown
mplsXCUp
msdpBackwardTransition
msdpEstablished
newRoot
ospfIfAuthFailure
ospfIfConfigError
ospfIfRxBadPacket
ospfIfStateChange
ospfLsdbApproachingOverflow
ospfLsdbOverflow
ospfMaxAgeLsa
ospfNbrStateChange
ospfOriginateLsa
ospfTxRetransmit
ospfVirtIfAuthFailure
ospfVirtIfConfigError
ospfVirtIfRxBadPacket
ospfVirtIfStateChange
ospfVirtIfTxRetransmit
ospfVirtNbrStateChange
pethMainPowerUsageOffNotification
pethMainPowerUsageOnNotification
pethPsePortOnOffNotification
pingProbeFailed
pingTestCompleted
pingTestFailed
ptopoConfigChange
risingAlarm
rpMauJabberTrap
sdlcLSStatusChange
sdlcPortStatusChange
topologyChange
traceRoutePathChange
traceRouteTestCompleted
traceRouteTestFailed
vrpTrapAuthFailure
vrpTrapNewMaster
warmStart
request snmp spoof-trap (Question Mark ?)

user@host> request snmp spoof-trap ?
Possible completions:
    <trap>               The name of the trap to spoof
    adslAtucInitFailureTrap
    adslAtucPerfESSsThreshTrap
    adslAtucPerfLofsThreshTrap
    adslAtucPerfLossThreshTrap
    adslAtucPerfLprsThreshTrap
    adslAtucRateChangeTrap
    adslAturPerfESSsThreshTrap
    adslAturPerfLofsThreshTrap
    adslAturPerfLossThreshTrap
    adslAturPerfLprsThreshTrap
    adslAturRateChangeTrap
    apsEventChannelMismatch
    apsEventFEPLF
    apsEventModeMismatch
    apsEventPSBF
    apsEventSwitchover
    authenticationFailure
    bfdSessDown
    bfdSessUp
    bgpBackwardTransition
    bgpEstablished
    coldStart
    dlswTrapCircuitDown
    dlswTrapCircuitUp
---(more 10%)---
show chassis alarms

Supported Platforms  SRX Series

Syntax  show chassis alarms

Release Information  Command introduced in Junos OS Release 11.1 for SRX Series devices.

Description  Display information about the conditions that have been configured to trigger alarms.

Options  This command has no options.

Additional Information  You cannot clear the alarms for chassis components. Instead, you must remedy the cause of the alarm. When a chassis alarm is lit, it indicates that you are running the device in a manner that we do not recommend.

On routers, you can manually silence external devices connected to the alarm relay contacts by pressing the alarm cutoff button, located on the craft interface. Silencing the device does not remove the alarm messages from the display (if present on the router) or extinguish the alarm LEDs. In addition, new alarms that occur after you silence an external device reactivate the external device.

In Junos OS Release 11.1 and later, alarms for fans also show the slot number of the fans in the CLI output.

Required Privilege  view

Related Documentation  •  show system alarms on page 958

List of Sample Output  show chassis alarms on page 855

Output Fields  Table 136 on page 854 lists the output fields for the show chassis alarms command. Output fields are listed in the approximate order in which they appear.

Table 136: show chassis alarms Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm time</td>
<td>Date and time the alarm was first recorded.</td>
</tr>
<tr>
<td>Class</td>
<td>Severity class for this alarm: Minor or Major.</td>
</tr>
<tr>
<td>Description</td>
<td>Information about the alarm.</td>
</tr>
</tbody>
</table>
Sample Output

show chassis alarms

```
user@host> show chassis alarms
4 alarms currently active

<table>
<thead>
<tr>
<th>Alarm time</th>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012-05-29 16:47:18 UTC</td>
<td>Major</td>
<td>/var partition usage crossed critical threshold</td>
</tr>
<tr>
<td>2012-05-29 16:47:18 UTC</td>
<td>Minor</td>
<td>/var partition usage crossed high threshold</td>
</tr>
<tr>
<td>2012-05-29 16:47:18 UTC</td>
<td>Major</td>
<td>/root partition usage crossed critical threshold</td>
</tr>
<tr>
<td>2012-05-29 16:47:18 UTC</td>
<td>Minor</td>
<td>/root partition usage crossed high threshold</td>
</tr>
</tbody>
</table>
```
show chassis cluster ip-monitoring status redundancy-group

Supported Platforms  SRX Series, vSRX

Syntax  show chassis cluster ip-monitoring status <redundancy-group group-number>


Description  Display the status of all monitored IP addresses for a redundancy group.

Options

• none— Display the status of monitored IP addresses for all redundancy groups on the node.

• redundancy-group group-number— Display the status of monitored IP addresses under the specified redundancy group.

Required Privilege Level  view

Related Documentation  clear chassis cluster failover-count

List of Sample Output  

• show chassis cluster ip-monitoring status on page 857
• show chassis cluster ip-monitoring status redundancy-group on page 858

Output Fields  Table 137 on page 856 lists the output fields for the show chassis cluster ip-monitoring status command.

Table 137: show chassis cluster ip-monitoring status Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redundancy-group</td>
<td>ID number (0 - 255) of a redundancy group in the cluster.</td>
</tr>
<tr>
<td>Global threshold</td>
<td>Failover value for all IP addresses monitored by the redundancy group.</td>
</tr>
<tr>
<td>Current threshold</td>
<td>Value equal to the global threshold minus the total weight of the unreachable IP address.</td>
</tr>
<tr>
<td>IP Address</td>
<td>Monitored IP address in the redundancy group.</td>
</tr>
<tr>
<td>Status</td>
<td>Current reachability state of the monitored IP address.</td>
</tr>
<tr>
<td></td>
<td>Values for this field are: reachable, unreachable, and unknown. The status is “unknown” if Packet Forwarding Engines (PFEs) are not yet up and running.</td>
</tr>
<tr>
<td>Failure count</td>
<td>Number of attempts to reach an IP address.</td>
</tr>
</tbody>
</table>
Table 137: show chassis cluster ip-monitoring status Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reason</td>
<td>Explanation for the reported status. See Table 138 on page 857.</td>
</tr>
<tr>
<td>Weight</td>
<td>Combined weight (0 - 255) assigned to all monitored IP addresses. A higher weight value indicates greater importance.</td>
</tr>
</tbody>
</table>

Expanded reason output fields for unreachable IP addresses added in Junos OS Release 10.1. You might see any of the following reasons displayed.

Table 138: show chassis cluster ip-monitoring status redundancy group Reason Fields

<table>
<thead>
<tr>
<th>Reason</th>
<th>Reason Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No route to host</td>
<td>The router could not resolve the ARP, which is needed to send the ICMP packet to the host with the monitored IP address.</td>
</tr>
<tr>
<td>No auxiliary IP found</td>
<td>The redundant Ethernet interface does not have an auxiliary IP address configured.</td>
</tr>
<tr>
<td>Reth child not up</td>
<td>A child interface of a redundant Ethernet interface is down.</td>
</tr>
<tr>
<td>redundancy-group state unknown</td>
<td>Unable to obtain the state (primary, secondary, secondary-hold, disable) of a redundancy-group.</td>
</tr>
<tr>
<td>No reth child MAC address</td>
<td>Could not extract the MAC address of the redundant Ethernet child interface.</td>
</tr>
<tr>
<td>Secondary link not monitored</td>
<td>The secondary link might be down (the secondary child interface of a redundant Ethernet interface is either down or non-functional).</td>
</tr>
<tr>
<td>Unknown</td>
<td>The IP address has just been configured and the router still does not know the status of this IP.</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>Do not know the exact reason for the failure.</td>
</tr>
</tbody>
</table>

Sample Output

```
show chassis cluster ip-monitoring status
user@host> show chassis cluster ip-monitoring status
node0:
--
Redundancy group: 1
Global threshold: 200
Current threshold: -120

<table>
<thead>
<tr>
<th>IP address</th>
<th>Status</th>
<th>Failure count</th>
<th>Reason</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.254.5.44</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
<td>220</td>
</tr>
<tr>
<td>2.2.2.1</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
<td>100</td>
</tr>
</tbody>
</table>
```
### Sample Output

```bash
test@host> show chassis cluster ip-monitoring status redundancy-group
```

<table>
<thead>
<tr>
<th>IP address</th>
<th>Status</th>
<th>Failure count</th>
<th>Reason</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.254.5.44</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
<td>220</td>
</tr>
<tr>
<td>2.2.2.1</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
<td>100</td>
</tr>
</tbody>
</table>

```bash
test@host> show chassis cluster ip-monitoring status redundancy-group
```

### Sample Output

```bash
test@host> show chassis cluster ip-monitoring status redundancy-group
```

<table>
<thead>
<tr>
<th>IP address</th>
<th>Status</th>
<th>Failure count</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.254.5.44</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>2.2.2.1</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>1.1.1.5</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>1.1.1.4</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>1.1.1.1</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
</tr>
</tbody>
</table>

```bash
test@host> show chassis cluster ip-monitoring status redundancy-group
```
show interfaces (SRX Series)

Supported Platforms  
SRX Series, vSRX

Syntax  
show interfaces {
<brief | detail | extensive | terse>
controller interface-name
descriptions interface-name
destination-class (all | destination-class-name logical-interface-name)
diagnostics optics interface-name
far-end-interval interface-fpc/pic/port
filters interface-name
flow-statistics interface-name
interval interface-name
load-balancing (detail | interface-name)
mac-database mac-address mac-address
mc-ae identifier unit number revertive-info
media interface-name
policers interface-name
queue both-ingress egress forwarding-class forwarding-class ingress l2-statistics
redundancy (detail | interface-name)
routing brief detail summary interface-name
routing-instance (all | instance-name)
snmp-index snmp-index
source-class (all | destination-class-name logical-interface-name)
statistics interface-name
switch-port switch-port number
transport pm (all | optics | otn) (all | current | currentday | interval | previousday) (all | interface-name)
zone interface-name
}

Release Information  
Command modified in Junos OS Release 9.5.

Description  
Display status information and statistics about interfaces on SRX Series appliance running Junos OS.

On SRX Series appliance, on configuring identical IPs on a single interface, you will not see a warning message; instead, you will see a syslog message.

Options  
- **interface-name**—(Optional) Display standard information about the specified interface. Following is a list of typical interface names. Replace pim with the PIM slot and port with the port number.
  - at-pim/0/port—ATM-over-ADSL or ATM-over-SHDSL interface.
  - cel-pim/0/ port—Channelized E1 interface.
  - cl-0/0/8—3G wireless modem interface for SRX320 devices.
  - ct1-pim/0/port—Channelized T1 interface.
  - dl0—Dialer Interface for initiating ISDN and USB modem connections.
• **e1-pim/0/port**—E1 interface.
• **e3-pim/0/port**—E3 interface.
• **fe-pim/0/port**—Fast Ethernet interface.
• **ge-pim/0/port**—Gigabit Ethernet interface.
• **se-pim/0/port**—Serial interface.
• **tl-pim/0/port**—T1 (also called DS1) interface.
• **t3-pim/0/port**—T3 (also called DS3) interface.
• **wx-slot/0/0**—WAN acceleration interface, for the WXC Integrated Services Module (ISM 200).

• **brief | detail | extensive | terse**—(Optional) Display the specified level of output.
• **controller**—(Optional) Show controller information.
• **descriptions**—(Optional) Display interface description strings.
• **destination-class**—(Optional) Show statistics for destination class.
• **diagnostics**—(Optional) Show interface diagnostics information.
• **far-end-interval**—(Optional) Show far end interval statistics.
• **filters**—(Optional) Show interface filters information.
• **flow-statistics**—(Optional) Show security flow counters and errors.
• **interval**—(Optional) Show interval statistics.
• **load-balancing**—(Optional) Show load-balancing status.
• **mac-database**—(Optional) Show media access control database information.
• **mc-ae**—(Optional) Show MC-AE configured interface information.
• **media**—(Optional) Display media information.
• **policers**—(Optional) Show interface policers information.
• **queue**—(Optional) Show queue statistics for this interface.
• **redundancy**—(Optional) Show redundancy status.
• **routing**—(Optional) Show routing status.
• **routing-instance**—(Optional) Name of routing instance.
• **snmp-index**—(Optional) SNMP index of interface.
• **source-class**—(Optional) Show statistics for source class.
• **statistics**—(Optional) Display statistics and detailed output.
• **switch-port**—(Optional) Front end port number (0..15).
• **transport**—(Optional) Show interface transport information.
• **zone**—(Optional) Interface's zone.
Required Privilege Level
view

Related Documentation
• Understanding Layer 2 Interfaces

List of Sample Output
show interfaces Gigabit Ethernet on page 869
show interfaces brief (Gigabit Ethernet) on page 869
show interfaces detail (Gigabit Ethernet) on page 870
show interfaces extensive (Gigabit Ethernet) on page 871
show interfaces terse on page 874
show interfaces controller (Channelized E1 IQ with Logical E1) on page 874
show interfaces controller (Channelized E1 IQ with Logical DS0) on page 875
show interfaces descriptions on page 875
show interfaces destination-class all on page 875
show interfaces diagnostics optics on page 875
show interfaces far-end-interval coc12-5/2/0 on page 876
show interfaces far-end-interval coc1-5/2/1:1 on page 877
show interfaces filters on page 877
show interfaces flow-statistics (Gigabit Ethernet) on page 877
show interfaces interval (Channelized OC12) on page 878
show interfaces interval (E3) on page 879
show interfaces interval (SONET/SDH) on page 879
show interfaces load-balancing on page 880
show interfaces load-balancing detail on page 880
show interfaces mac-database (All MAC Addresses on a Port) on page 880
show interfaces mac-database (All MAC Addresses on a Service) on page 881
show interfaces mac-database mac-address on page 881
show interfaces mc-ae on page 882
show interfaces media (SONET/SDH) on page 882
show interfaces policers on page 882
show interfaces policers interface-name on page 883
show interfaces queue on page 883
show interfaces redundancy on page 884
show interfaces redundancy (Aggregated Ethernet) on page 884
show interfaces redundancy detail on page 884
show interfaces routing brief on page 884
show interfaces routing detail on page 885
show interfaces routing-instance all on page 885
show interfaces snmp-index on page 886
show interfaces source-class all on page 886
show interfaces statistics (Fast Ethernet) on page 886
show interfaces switch-port on page 887
show interfaces transport pm on page 888
show security zones on page 889

Output Fields
Table 139 on page 862 lists the output fields for the show interfaces command. Output fields are listed in the approximate order in which they appear.
Table 139: show interfaces Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Physical Interface</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical interface</td>
<td>Name of the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Enabled</td>
<td>State of the interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface index</td>
<td>Index number of the physical interface, which reflects its initialization sequence.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>SNMP ifIndex</td>
<td>SNMP index number for the physical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Link-level type</td>
<td>Encapsulation being used on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>MTU</td>
<td>Maximum transmission unit size on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Link mode</td>
<td>Link mode: Full-duplex or Half-duplex.</td>
<td>All levels</td>
</tr>
<tr>
<td>Speed</td>
<td>Speed at which the interface is running.</td>
<td>All levels</td>
</tr>
<tr>
<td>BPDU error</td>
<td>Bridge protocol data unit (BPDU) error: Detected or None</td>
<td></td>
</tr>
<tr>
<td>Loopback</td>
<td>Loopback status: Enabled or Disabled. If loopback is enabled, type of loopback:</td>
<td>All levels</td>
</tr>
<tr>
<td>Source filtering</td>
<td>Source filtering status: Enabled or Disabled.</td>
<td>All levels</td>
</tr>
<tr>
<td>Flow control</td>
<td>Flow control status: Enabled or Disabled.</td>
<td>All levels</td>
</tr>
<tr>
<td>Auto-negotiation</td>
<td>(Gigabit Ethernet interfaces) Autonegotiation status: Enabled or Disabled.</td>
<td>All levels</td>
</tr>
<tr>
<td>Remote-fault</td>
<td>(Gigabit Ethernet interfaces) Remote fault status:</td>
<td>All levels</td>
</tr>
<tr>
<td>Device flags</td>
<td>Information about the physical device.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface flags</td>
<td>Information about the interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Link flags</td>
<td>Information about the physical link.</td>
<td>All levels</td>
</tr>
<tr>
<td>CoS queues</td>
<td>Number of CoS queues configured.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Current address</td>
<td>Configured MAC address.</td>
<td>detail extensive none</td>
</tr>
</tbody>
</table>
Table 139: show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last flapped</td>
<td>Date, time, and how long ago the interface went from down to up. The format is</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Input Rate</td>
<td>Input rate in bits per second (bps) and packets per second (pps).</td>
<td>None</td>
</tr>
<tr>
<td>Output Rate</td>
<td>Output rate in bps and pps.</td>
<td>None</td>
</tr>
<tr>
<td>Active alarms and</td>
<td>Ethernet-specific defects that can prevent the interface from passing packets.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Active defects</td>
<td>When a defect persists for a certain amount of time, it is promoted to an alarm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>These fields can contain the value None or Link.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• None—There are no active defects or alarms.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Link—Interface has lost its link state, which usually means that the cable is</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unplugged, the far-end system has been turned off, or the PIC is</td>
<td></td>
</tr>
<tr>
<td></td>
<td>malfunctioning.</td>
<td></td>
</tr>
<tr>
<td>Statistics last</td>
<td>Time when the statistics for the interface were last set to zero.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>cleared</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic statistics</td>
<td>Number and rate of bytes and packets received and transmitted on the physical</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input bytes—Number of bytes received on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output bytes—Number of bytes transmitted on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input packets—Number of packets received on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output packets—Number of packets transmitted on the interface.</td>
<td></td>
</tr>
</tbody>
</table>
Table 139: show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input errors</td>
<td>Input errors on the interface.</td>
</tr>
<tr>
<td></td>
<td>* Errors—Sum of the incoming frame aborts and FCS errors.</td>
</tr>
<tr>
<td></td>
<td>* Drops—Number of packets dropped by the input queue of the I/O Manager ASIC. If the interface is saturated, this number increments once for every packet that is dropped by the ASIC’s RED mechanism.</td>
</tr>
<tr>
<td></td>
<td>* Framing errors—Number of packets received with an invalid frame checksum (FCS).</td>
</tr>
<tr>
<td></td>
<td>* Runts—Number of frames received that are smaller than the runt threshold.</td>
</tr>
<tr>
<td></td>
<td>* Policed discards—Number of frames that the incoming packet match code discarded because they were not recognized or not of interest. Usually, this field reports protocols that Junos OS does not handle.</td>
</tr>
<tr>
<td></td>
<td>* L3 incompleted—Number of incoming packets discarded because they failed Layer 3 (usually IPv4) sanity checks of the header. For example, a frame with less than 20 bytes of available IP header is discarded. L3 incomplete errors can be ignored by configuring the ignore-l3-incompletes.</td>
</tr>
<tr>
<td></td>
<td>* L2 channel errors—Number of times the software did not find a valid logical interface for an incoming frame.</td>
</tr>
<tr>
<td></td>
<td>* L2 mismatch timeouts—Number of malformed or short packets that caused the incoming packet handler to discard the frame as unreadable.</td>
</tr>
<tr>
<td></td>
<td>* FIFO errors—Number of FIFO errors in the receive direction that are reported by the ASIC on the PIC. If this value is ever nonzero, the PIC is probably malfunctioning.</td>
</tr>
<tr>
<td></td>
<td>* Resource errors—Sum of transmit drops.</td>
</tr>
<tr>
<td>Output errors</td>
<td>Output errors on the interface.</td>
</tr>
<tr>
<td></td>
<td>* Carrier transitions—Number of times the interface has gone from down to up. This number does not normally increment quickly, increasing only when the cable is unplugged, the far-end system is powered down and then up, or another problem occurs. If the number of carrier transitions increments quickly (perhaps once every 10 seconds), the cable, the far-end system, or the PIC or PIM is malfunctioning.</td>
</tr>
<tr>
<td></td>
<td>* Errors—Sum of the outgoing frame aborts and FCS errors.</td>
</tr>
<tr>
<td></td>
<td>* Drops—Number of packets dropped by the output queue of the I/O Manager ASIC. If the interface is saturated, this number increments once for every packet that is dropped by the ASIC’s RED mechanism.</td>
</tr>
<tr>
<td></td>
<td>* Collisions—Number of Ethernet collisions. The Gigabit Ethernet PIC supports only full-duplex operation; therefore, for Gigabit Ethernet PICs, this number must always remain 0. If it is nonzero, there is a software bug.</td>
</tr>
<tr>
<td></td>
<td>* Aged packets—Number of packets that remained in shared packet SDRAM so long that the system automatically purged them. The value in this field must never increment. If it does, it is most likely a software bug or possibly malfunctioning hardware.</td>
</tr>
<tr>
<td></td>
<td>* FIFO errors—Number of FIFO errors in the send direction as reported by the ASIC on the PIC. If this value is ever nonzero, the PIC is probably malfunctioning.</td>
</tr>
<tr>
<td></td>
<td>* HS link CRC errors—Number of errors on the high-speed links between the ASICs responsible for handling the interfaces.</td>
</tr>
<tr>
<td></td>
<td>* MTU errors—Number of packets whose size exceeded the MTU of the interface.</td>
</tr>
<tr>
<td></td>
<td>* Resource errors—Sum of transmit drops.</td>
</tr>
</tbody>
</table>
Table 139: show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Ingress queues</strong></td>
<td>Total number of ingress queues supported on the specified interface.</td>
<td>extensive</td>
</tr>
<tr>
<td><strong>Queue counters and queue number</strong></td>
<td>CoS queue number and its associated user-configured forwarding class name.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>• Queued packets</td>
<td>Number of queued packets.</td>
<td></td>
</tr>
<tr>
<td>• Transmitted packets</td>
<td>Number of transmitted packets.</td>
<td></td>
</tr>
<tr>
<td>• Dropped packets</td>
<td>Number of packets dropped by the ASIC's RED mechanism.</td>
<td></td>
</tr>
<tr>
<td><strong>MAC statistics</strong></td>
<td>Receive and Transmit statistics reported by the PIC’s MAC subsystem, including the following:</td>
<td>extensive</td>
</tr>
<tr>
<td>• Total octets and total packets</td>
<td>Total number of octets and packets.</td>
<td></td>
</tr>
<tr>
<td>• Unicast packets, Broadcast packets, and Multicast packets</td>
<td>Number of unicast, broadcast, and multicast packets.</td>
<td></td>
</tr>
<tr>
<td>• CRC/Align errors</td>
<td>Total number of packets received that had a length (excluding framing bits, but including FCS octets) of between 64 and 1518 octets, inclusive, and had either a bad FCS with an integral number of octets (FCS Error) or a bad FCS with a nonintegral number of octets (Alignment Error).</td>
<td></td>
</tr>
<tr>
<td>• FIFO error</td>
<td>Number of FIFO errors that are reported by the ASIC on the PIC. If this value is ever nonzero, the PIC or a cable is probably malfunctioning.</td>
<td></td>
</tr>
<tr>
<td>• MAC control frames</td>
<td>Number of MAC control frames.</td>
<td></td>
</tr>
<tr>
<td>• MAC pause frames</td>
<td>Number of MAC control frames with pause operational code.</td>
<td></td>
</tr>
<tr>
<td>• Oversized frames</td>
<td>There are two possible conditions regarding the number of oversized frames:</td>
<td></td>
</tr>
<tr>
<td>• Packet length exceeds 1518 octets, or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Packet length exceeds MRU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Jabber frames</td>
<td>Number of frames that were longer than 1518 octets (excluding framing bits, but including FCS octets), and had either an FCS error or an alignment error. This definition of jabber is different from the definition in IEEE-802.3 section 8.2.1.5 (10BASE5) and section 10.3.1.4 (10BASE2). These documents define jabber as the condition in which any packet exceeds 20 ms. The allowed range to detect jabber is from 20 ms to 150 ms.</td>
<td></td>
</tr>
<tr>
<td>• Fragment frames</td>
<td>Total number of packets that were less than 64 octets in length (excluding framing bits, but including FCS octets) and had either an FCS error or an alignment error. Fragment frames normally increment because both runts (which are normal occurrences caused by collisions) and noise hits are counted.</td>
<td></td>
</tr>
<tr>
<td>• VLAN tagged frames</td>
<td>Number of frames that are VLAN tagged. The system uses the TPID of 0x8100 in the frame to determine whether a frame is tagged or not.</td>
<td></td>
</tr>
<tr>
<td>• Code violations</td>
<td>Number of times an event caused the PHY to indicate “Data reception error” or “invalid data symbol error.”</td>
<td></td>
</tr>
</tbody>
</table>
### Table 139: show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter statistics</td>
<td><strong>Receive</strong> and <strong>Transmit</strong> statistics reported by the PIC’s MAC address filter subsystem. The filtering is done by the content-addressable memory (CAM) on the PIC. The filter examines a packet’s source and destination MAC addresses to determine whether the packet should enter the system or be rejected.</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• <strong>Input packet count</strong>—Number of packets received from the MAC hardware that the filter processed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Input packet rejects</strong>—Number of packets that the filter rejected because of either the source MAC address or the destination MAC address.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Input DA rejects</strong>—Number of packets that the filter rejected because the destination MAC address of the packet is not on the accept list. It is normal for this value to increment. When it increments very quickly and no traffic is entering the device from the far-end system, either there is a bad ARP entry on the far-end system, or multicast routing is not on and the far-end system is sending many multicast packets to the local device (which the router is rejecting).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Input SA rejects</strong>—Number of packets that the filter rejected because the source MAC address of the packet is not on the accept list. The value in this field should increment only if source MAC address filtering has been enabled. If filtering is enabled, if the value increments quickly, and if the system is not receiving traffic that it should from the far-end system, it means that the user-configured source MAC addresses for this interface are incorrect.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Output packet count</strong>—Number of packets that the filter has given to the MAC hardware.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Output packet pad count</strong>—Number of packets the filter padded to the minimum Ethernet size (60 bytes) before giving the packet to the MAC hardware. Usually, padding is done only on small ARP packets, but some very small IP packets can also require padding. If this value increments rapidly, either the system is trying to find an ARP entry for a far-end system that does not exist or it is misconfigured.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Output packet error count</strong>—Number of packets with an indicated error that the filter was given to transmit. These packets are usually aged packets or are the result of a bandwidth problem on the FPC hardware. On a normal system, the value of this field should not increment.</td>
<td></td>
</tr>
<tr>
<td><strong>CAM destination filters, CAM source filters</strong></td>
<td>Number of entries in the CAM dedicated to destination and source MAC address filters. There can only be up to 64 source entries. If source filtering is disabled, which is the default, the values for these fields must be 0.</td>
<td></td>
</tr>
<tr>
<td>Autonegotiation information</td>
<td>Information about link autonegotiation.</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• <strong>Negotiation status:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Incomplete</strong>—Ethernet interface has the speed or link mode configured.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>No autonegotiation</strong>—Remote Ethernet interface has the speed or link mode configured, or does not perform autonegotiation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Complete</strong>—Ethernet interface is connected to a device that performs autonegotiation and the autonegotiation process is successful.</td>
<td></td>
</tr>
<tr>
<td>Packet Forwarding Engine configuration</td>
<td>Information about the configuration of the Packet Forwarding Engine:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• <strong>Destination slot</strong>—FPC slot number.</td>
<td></td>
</tr>
</tbody>
</table>
### Table 139: show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>CoS information</strong></td>
<td>Information about the CoS queue for the physical interface.</td>
<td>extensive</td>
</tr>
<tr>
<td>• CoS transmit queue</td>
<td>Queue number and its associated user-configured forwarding class name.</td>
<td></td>
</tr>
<tr>
<td>• Bandwidth %</td>
<td>Percentage of bandwidth allocated to the queue.</td>
<td></td>
</tr>
<tr>
<td>• Bandwidth bps</td>
<td>Bandwidth allocated to the queue (in bps).</td>
<td></td>
</tr>
<tr>
<td>• Buffer %</td>
<td>Percentage of buffer space allocated to the queue.</td>
<td></td>
</tr>
<tr>
<td>• Buffer usec</td>
<td>Amount of buffer space allocated to the queue, in microseconds. This value is nonzero only if the buffer size is configured in terms of time.</td>
<td></td>
</tr>
<tr>
<td>• Priority</td>
<td>Queue priority: low or high.</td>
<td></td>
</tr>
<tr>
<td>• Limit</td>
<td>Displayed if rate limiting is configured for the queue. Possible values are none and exact. If exact is configured, the queue transmits only up to the configured bandwidth, even if excess bandwidth is available. If none is configured, the queue transmits beyond the configured bandwidth if bandwidth is available.</td>
<td></td>
</tr>
<tr>
<td><strong>Interface transmit statistics</strong></td>
<td>Status of the interface-transmit-statistics configuration: Enabled or Disabled.</td>
<td>detail extensive</td>
</tr>
<tr>
<td><strong>Queue counters (Egress)</strong></td>
<td>CoS queue number and its associated user-configured forwarding class name.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>• Queued packets</td>
<td>Number of queued packets.</td>
<td></td>
</tr>
<tr>
<td>• Transmitted packets</td>
<td>Number of transmitted packets.</td>
<td></td>
</tr>
<tr>
<td>• Dropped packets</td>
<td>Number of packets dropped by the ASIC's RED mechanism.</td>
<td></td>
</tr>
<tr>
<td><strong>Logical Interface</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Logical interface</strong></td>
<td>Name of the logical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Index</strong></td>
<td>Index number of the logical interface, which reflects its initialization sequence.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td><strong>SNMP ifIndex</strong></td>
<td>SNMP interface index number for the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td><strong>Generation</strong></td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td><strong>Flags</strong></td>
<td>Information about the logical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Encapsulation</strong></td>
<td>Encapsulation on the logical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Traffic statistics</strong></td>
<td>Number and rate of bytes and packets received and transmitted on the specified interface set.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>• Input bytes, Output bytes</td>
<td>Number of bytes received and transmitted on the interface set. The value in this field also includes the Layer 2 overhead bytes for ingress or egress traffic on Ethernet interfaces if you enable accounting of Layer 2 overhead at the PIC level or the logical interface level.</td>
<td></td>
</tr>
<tr>
<td>• Input packets, Output packets</td>
<td>Number of packets received and transmitted on the interface set.</td>
<td></td>
</tr>
</tbody>
</table>
# Table 139: show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local statistics</td>
<td>Number and rate of bytes and packets destined to the device.</td>
<td>extensive</td>
</tr>
<tr>
<td>Transit statistics</td>
<td>Number and rate of bytes and packets transiting the switch.</td>
<td>extensive</td>
</tr>
<tr>
<td><strong>NOTE:</strong> For Gigabit Ethernet intelligent queuing 2 (IQ2) interfaces, the logical interface egress statistics might not accurately reflect the traffic on the wire when output shaping is applied. Traffic management output shaping might drop packets after they are tallied by the <strong>Output bytes</strong> and <strong>Output packets</strong> interface counters. However, correct values display for both of these egress statistics when per-unit scheduling is enabled for the Gigabit Ethernet IQ2 physical interface, or when a single logical interface is actively using a shared scheduler.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td>Security zones that interface belongs to.</td>
<td>extensive</td>
</tr>
<tr>
<td>Flow Input statistics</td>
<td>Statistics on packets received by flow module.</td>
<td>extensive</td>
</tr>
<tr>
<td>Flow Output statistics</td>
<td>Statistics on packets sent by flow module.</td>
<td>extensive</td>
</tr>
<tr>
<td>Flow error statistics (Packets dropped due to)</td>
<td>Statistics on errors in the flow module.</td>
<td>extensive</td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol family.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>MTU</td>
<td>Maximum transmission unit size on the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Route Table</td>
<td>Route table in which the logical interface address is located. For example, 0 refers to the routing table inet.0.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Flags</td>
<td>Information about protocol family flags..</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Addresses, Flags</td>
<td>Information about the address flags..</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Destination</td>
<td>IP address of the remote side of the connection.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Local</td>
<td>IP address of the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Broadcast</td>
<td>Broadcast address of the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>

Copyright © 2017, Juniper Networks, Inc.
Sample Output

show interfaces Gigabit Ethernet

user@host> show interfaces ge-0/0/1
Physical interface: ge-0/0/1, Enabled, Physical link is Down
Interface index: 135, SNMP ifIndex: 510
Link-level type: Ethernet, MTU: 1514, Link-mode: Full-duplex, Speed: 1000mbps,

BPDU Error: None, MAC-REWRITE Error: None, Loopback: Disabled,
Source Filtering: Disabled, Flow control: Enabled, Auto-negotiation: Enabled,
Remote fault: Online
Device flags : Present Running Down
Interface flags: Hardware-Down SNMP-Traps Internal: 0x0
Link flags : None
CoS queues : 8 supported, 8 maximum usable queues
Current address: 00:1f:12:e4:b1:01, Hardware address: 00:1f:12:e4:b1:01
Last flapped : 2015-05-12 08:36:59 UTC (1w1d 22:42 ago)
Input rate : 0 bps (0 pps)
Output rate : 0 bps (0 pps)
Active alarms : LINK
Active defects : LINK
Interface transmit statistics: Disabled

Logical interface ge-0/0/1.0 (Index 71) (SNMP ifIndex 514)
Flags: Device-Down SNMP-Traps 0x0 Encapsulation: ENET2
Input packets : 0
Output packets: 0
Security: Zone: public
Protocol inet, MTU: 1500
Flags: Sendcast-pkt-to-re
Addresses, Flags: Dest-route-down Is-Preferred Is-Primary
 Destination: 1.1.1/24, Local: 1.1.1.1, Broadcast: 1.1.1.255

Sample Output

show interfaces brief (Gigabit Ethernet)

user@host> show interfaces ge-3/0/2 brief
Physical interface: ge-3/0/2, Enabled, Physical link is Up
Link-level type: S2, MTU: 1522, Speed: 1000mbps, Loopback: Disabled,
Source Filtering: Disabled, Flow control: Enabled, Auto-negotiation: Enabled,
Remote fault: Online
Device flags : Present Running
Interface flags: SNMP-Traps Internal: 0x4000
Link flags : None

Logical interface ge-3/0/2.0
Flags: SNMP-Traps 0x4000
VLAN-Tag [ 0x8100.512 0x8100.513 ] In(pop-swap 0x8100.530) Out(swap-push 0x8100.512 0x8100.513)
Encapsulation: VLAN-CCC
ccc

Logical interface ge-3/0/2.32767
Flags: SNMP-Traps 0x4000 VLAN-Tag [ 0x0000.0 ] Encapsulation: ENET2
**Sample Output**

**show interfaces detail (Gigabit Ethernet)**

```
user@host> show interfaces ge-0/0/1 detail
Physical interface: ge-0/0/1, Enabled, Physical link is Down
 Interface index: 135, SNMP ifIndex: 510, Generation: 138
 Link-level type: Ethernet, MTU: 1514, Link-mode: Full-duplex, Speed: 1000mbps,
 BPDU Error: None, MAC-REWRITE Error: None, Loopback: Disabled, Source filtering: Disabled,
 Flow control: Enabled, Auto-negotiation: Enabled, Remote fault: Online
 Device flags : Present Running Down
 Interface flags : Hardware-Down SNMP-Traps Internal: 0x0
 Link flags : None
 CoS queues : 8 supported, 8 maximum usable queues
 Hold-times : Up 0 ms, Down 0 ms
 Current address: 00:1f:12:e4:b1:01, Hardware address: 00:1f:12:e4:b1:01
 Last flapped : 2015-05-12 08:36:59 UTC (1w2d 00:00 ago)
 Statistics last cleared: Never
 Traffic statistics:
 Input bytes : 0 0 bps
 Output bytes : 0 0 bps
 Input packets: 0 0 pps
 Output packets: 0 0 pps
 Egress queues: 8 supported, 4 in use
 Queue counters: Queued packets Transmitted packets Dropped packets
 0 best-effort 0 0 0
 1 expedited-fo 0 0 0
 2 assured-forwarding 0 0 0
 3 network-control 0 0 0
 Queue number: Mapped forwarding classes
 0 best-effort
 1 expedited-forwarding
 2 assured-forwarding
 3 network-control
 Active alarms : LINK
 Active defects : LINK
 Interface transmit statistics: Disabled

Logical interface ge-0/0/1.0 (Index 71) (SNMP ifIndex 514) (Generation 136)
 Flags: Device-Down SNMP-Traps 0x0 Encapsulation: ENET2
 Traffic statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
 Local statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
 Transit statistics:
 Input bytes : 0 0 bps
 Output bytes : 0 0 bps
 Input packets: 0 0 pps
```
Flow Statistics:
Flow Input statistics:
  Self packets: 0
  ICMP packets: 0
  VPN packets: 0
  Multicast packets: 0
  Bytes permitted by policy: 0
  Connections established: 0
Flow Output statistics:
  Multicast packets: 0
  Bytes permitted by policy: 0
Flow error statistics (Packets dropped due to):
  Address spoofing: 0
  Authentication failed: 0
  Incoming NAT errors: 0
  Invalid zone received packet: 0
  Multiple user authentications: 0
  Multiple incoming NAT: 0
  No parent for a gate: 0
  No one interested in self packets: 0
  No minor session: 0
  No more sessions: 0
  No NAT gate: 0
  No route present: 0
  No SA for incoming SPI: 0
  No tunnel found: 0
  No session for a gate: 0
  No zone or NULL zone binding: 0
  Policy denied: 0
  Security association not active: 0
  TCP sequence number out of window: 0
  Syn-attack protection: 0
  User authentication errors: 0
Protocol inet, MTU: 1500, Generation: 150, Route table: 0
Flags: Sendcast-pkt-to-re
Addresses, Flags: Dest-route-down Is-Preferred Is-Primary
  Destination: 1.1.1/24, Local: 1.1.1.1, Broadcast: 1.1.1.255, Generation: 150

Sample Output

show interfaces extensive (Gigabit Ethernet)

user@host> show interfaces ge-0/0/1.0 extensive
Physical interface: ge-0/0/1, Enabled, Physical link is Down
  Interface index: 135, SNMP ifIndex: 510, Generation: 138
  Link-level type: Ethernet, MTU: 1514, Link-mode: Full-duplex, Speed: 1000mbps,
  BPDU Error: None, MAC-REWRITE Error: None, Loopback: Disabled,
  Source Filtering: Disabled, Flow control: Enabled, Auto-negotiation: Enabled,
  Remote fault: Online
  Device flags : Present Running Down
  Interface flags: Hardware-Down SNMP-Traps Internal: 0x0
  Link flags : None
  CoS queues : 8 supported, 8 maximum usable queues
  Hold-times : Up 0 ms, Down 0 ms
  Current address: 00:1f:12:e4:b1:01, Hardware address: 00:1f:12:e4:b1:01
  Last flapped : 2015-05-12 08:36:59 UTC (1w1d 22:57 ago)
  Statistics last cleared: Never
Traffic statistics:
Input bytes : 0 0 bps
Output bytes : 0 0 bps
Input packets: 0 0 pps
Output packets: 0 0 pps
Input errors:
Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Policed discards: 0,
L3 incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0,
FIFO errors: 0, Resource errors: 0
Output errors:
Carrier transitions: 0, Errors: 0, Drops: 0, Collisions: 0, Aged packets: 0,
FIFO errors: 0, HS link CRC errors: 0, MTU errors: 0, Resource errors: 0
Egress queues: 8 supported, 4 in use
Queue counters: Queued packets Transmitted packets Dropped packets
0 best-effort 0 0 0
1 expedited-fo 0 0 0
2 assured-forw 0 0 0
3 network-cont 0 0 0
Queue number: Mapped forwarding classes
0 best-effort
1 expedited-forwarding
2 assured-forwarding
3 network-control
Active alarms : LINK
Active defects : LINK
MAC statistics: Receive Transmit
Total octets 0 0
Total packets 0 0
Unicast packets 0 0
Broadcast packets 0 0
Multicast packets 0 0
CRC/Align errors 0 0
FIFO errors 0 0
MAC control frames 0 0
MAC pause frames 0 0
Oversized frames 0 0
Jabber frames 0 0
Fragment frames 0 0
VLAN tagged frames 0 0
Code violations 0 0
Filter statistics:
Input packet count 0
Input packet rejects 0
Input DA rejects 0
Input SA rejects 0
Output packet count 0
Output packet pad count 0
Output packet error count 0
CAM destination filters: 2, CAM source filters: 0
Autonegotiation information:
Negotiation status: Incomplete
Packet Forwarding Engine configuration:
Destination slot: 0
CoS information:
Direction : Output
### Interface transmit statistics: Disabled

Logical interface ge-0/0/1.0 (Index 71) (SNMP ifIndex 514) (Generation 136)

Flags: Device-Down SNMP Traps 0x0 Encapsulation: ENET2

Traffic statistics:
- Input bytes : 0
- Output bytes : 0
- Input packets: 0
- Output packets: 0

Local statistics:
- Input bytes : 0
- Output bytes : 0
- Input packets: 0
- Output packets: 0

Transit statistics:
- Input bytes : 0 0 bps
- Output bytes : 0 0 bps
- Input packets: 0 0pps
- Output packets: 0 0pps

Security: Zone: public

Flow Statistics:
Flow Input statistics:
- Self packets : 0
- ICMP packets : 0
- VPN packets : 0
- Multicast packets : 0
- Bytes permitted by policy : 0
- Connections established : 0

Flow Output statistics:
- Multicast packets : 0
- Bytes permitted by policy : 0

Flow error statistics (Packets dropped due to):
Address spoofing: 0
Authentication failed: 0
Incoming NAT errors: 0
Invalid zone received packet: 0
Multiple user authentications: 0
Multiple incoming NAT: 0
No parent for a gate: 0
No one interested in self packets: 0
No minor session: 0
No more sessions: 0
No NAT gate: 0
No route present: 0
No SA for incoming SPI: 0
No tunnel found: 0
No session for a gate: 0
No zone or NULL zone binding 0
Policy denied: 0
Security association not active: 0
TCP sequence number out of window: 0
Syn-attack protection: 0
User authentication errors: 0
Protocol inet, MTU: 1500, Generation: 150, Route table: 0
Flags: Sendbcast-pkt-to-re
Addresses, Flags: Dest-route-down Is-Preferred Is-Primary
   Destination: 1.1.1/24, Local: 1.1.1.1, Broadcast: 1.1.1.255,
   Generation: 150

### Sample Output

**show interfaces terse**

```
user@host> show interfaces terse

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-0/0/0.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>10.209.4.61/18</td>
<td></td>
</tr>
<tr>
<td>gr-0/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip-0/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>st0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>st0.1</td>
<td>up</td>
<td>ready</td>
<td>inet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ls-0/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lt-0/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mt-0/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pd-0/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pe-0/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e3-1/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t3-2/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>el-3/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>se-4/0/0</td>
<td>up</td>
<td>down</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tl-5/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>br-6/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dc-6/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dc-6/0/0.32767</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bc-6/0/0:1</td>
<td>down</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bc-6/0/0:1.0</td>
<td>up</td>
<td>down</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dl0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dl0.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dsc</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gre</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ipip</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l00</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l00.16385</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>10.0.0.1</td>
<td>0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.0.0.16</td>
<td>0/0</td>
</tr>
<tr>
<td>ls1</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mtun</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pimd</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pime</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pp0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

### Sample Output

**show interfaces controller (Channelized E1IQ with Logical E1)**

```
user@host> show interfaces controller cel-1/2/6

<table>
<thead>
<tr>
<th>Controller</th>
<th>Admin</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>cel-1/2/6</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>el-1/2/6</td>
<td>up</td>
<td>up</td>
</tr>
</tbody>
</table>
```

Copyright © 2017, Juniper Networks, Inc.
show interfaces controller (Channelized E1 IQ with Logical DS0)

user@host> show interfaces controller cel-1/2/3

<table>
<thead>
<tr>
<th>Controller</th>
<th>Admin Link</th>
<th>Link</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ces-1/2/3</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>ds-1/2/3:1</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>ds-1/2/3:2</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
</tbody>
</table>

Sample Output

show interfaces descriptions

user@host> show interfaces descriptions

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin Link</th>
<th>Link</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>so-1/0/0</td>
<td>up</td>
<td>up</td>
<td>M20-3#1</td>
</tr>
<tr>
<td>so-2/0/0</td>
<td>up</td>
<td>up</td>
<td>GSR-12#1</td>
</tr>
<tr>
<td>ge-3/0/0</td>
<td>up</td>
<td>up</td>
<td>SMB-OSPF_Area300</td>
</tr>
<tr>
<td>so-3/3/0</td>
<td>up</td>
<td>up</td>
<td>GSR-13#1</td>
</tr>
<tr>
<td>so-3/3/1</td>
<td>up</td>
<td>up</td>
<td>GSR-13#2</td>
</tr>
<tr>
<td>ge-4/0/0</td>
<td>up</td>
<td>up</td>
<td>T320-7#1</td>
</tr>
<tr>
<td>ge-5/0/0</td>
<td>up</td>
<td>up</td>
<td>T320-7#2</td>
</tr>
<tr>
<td>so-7/1/0</td>
<td>up</td>
<td>up</td>
<td>M160-6#1</td>
</tr>
<tr>
<td>ge-8/0/0</td>
<td>up</td>
<td>up</td>
<td>T320-7#3</td>
</tr>
<tr>
<td>ge-9/0/0</td>
<td>up</td>
<td>up</td>
<td>T320-7#4</td>
</tr>
<tr>
<td>so-10/0/0</td>
<td>up</td>
<td>up</td>
<td>M160-6#2</td>
</tr>
<tr>
<td>so-13/0/0</td>
<td>up</td>
<td>up</td>
<td>M20-3#2</td>
</tr>
<tr>
<td>so-14/0/0</td>
<td>up</td>
<td>up</td>
<td>GSR-12#2</td>
</tr>
<tr>
<td>ge-15/0/0</td>
<td>up</td>
<td>up</td>
<td>SMB-OSPF_Area100</td>
</tr>
<tr>
<td>ge-15/0/1</td>
<td>up</td>
<td>up</td>
<td>GSR-13#3</td>
</tr>
</tbody>
</table>

Sample Output

show interfaces destination-class all

user@host> show interfaces destination-class all

<table>
<thead>
<tr>
<th>Logical interface so-4/0/0.0</th>
<th>Packets (packet-per-second)</th>
<th>Bytes (bits-per-second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gold</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>silver</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logical interface so-0/1/3.0</th>
<th>Packets (packet-per-second)</th>
<th>Bytes (bits-per-second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gold</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>silver</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Sample Output

show interfaces diagnostics optics

user@host> show interfaces diagnostics optics ge-2/0/0
Physical interface: ge-2/0/0

Laser bias current : 7.408 mA
Laser output power : 0.3500 mW / -4.56 dBm
Module temperature : 23 degrees C / 73 degrees F
Module voltage : 3.3450 V
Receiver signal average optical power : 0.0002 mW / -36.99 dBm
Laser bias current high alarm : Off
Laser bias current low alarm : Off
Laser bias current high warning : Off
Laser bias current low warning : Off
Laser output power high alarm : Off
Laser output power low alarm : Off
Laser output power high warning : Off
Laser output power low warning : Off
Module temperature high alarm : Off
Module temperature low alarm : Off
Module temperature high warning : Off
Module temperature low warning : Off
Module voltage high alarm : Off
Module voltage low alarm : Off
Module voltage high warning : Off
Module voltage low warning : Off
Module temperature high alarm threshold : 95 degrees C / 203 degrees F
Module temperature low alarm threshold : -20 degrees C / -4 degrees F
Module temperature high warning threshold : 90 degrees C / 194 degrees F
Module temperature low warning threshold : -20 degrees C / -4 degrees F
Module voltage high alarm threshold : 3.900 V
Module voltage low alarm threshold : 2.700 V
Module voltage high warning threshold : 3.700 V
Module voltage low warning threshold : 2.900 V
Laser rx power high alarm : On
Laser rx power low alarm : On
Laser rx power high warning : Off
Laser rx power low warning : Off
Laser bias current high alarm threshold : 17.000 mA
Laser bias current low alarm threshold : 1.000 mA
Laser bias current high warning threshold : 14.000 mA
Laser bias current low warning threshold : 2.000 mA
Laser output power high alarm threshold : 0.6310 mW / -2.00 dBm
Laser output power low alarm threshold : 0.0670 mW / -11.74 dBm
Laser output power high warning threshold : 0.6310 mW / -2.00 dBm
Laser output power low warning threshold : 0.0790 mW / -11.02 dBm

Sample Output

show interfaces far-end-interval coc12-5/2/0

user@host> show interfaces far-end-interval coc12-5/2/0
Physical interface: coc12-5/2/0, SNMP ifIndex: 121
05:30-current:
ES-L: 1, SES-L: 1, UAS-L: 0
05:15-05:30:
ES-L: 0, SES-L: 0, UAS-L: 0
05:00-05:15:
ES-L: 0, SES-L: 0, UAS-L: 0
04:45-05:00:
show interfaces far-end-interval coc1-5/2/1:

user@host> run show interfaces far-end-interval coc1-5/2/1:
Physical interface: coc1-5/2/1:1, SNMP ifIndex: 342

05:30-current:
   ES-L: 1, SES-L: 1, UAS-L: 0, ES-P: 0, SES-P: 0, UAS-P: 0
05:15-05:30:
   ES-L: 0, SES-L: 0, UAS-L: 0, ES-P: 0, SES-P: 0, UAS-P: 0
05:00-05:15:
   ES-L: 0, SES-L: 0, UAS-L: 0, ES-P: 0, SES-P: 0, UAS-P: 0
04:45-05:00:
   ES-L: 0, SES-L: 0, UAS-L: 0, ES-P: 0, SES-P: 0, UAS-P: 0
04:30-04:45:
   ES-L: 0, SES-L: 0, UAS-L: 0, ES-P: 0, SES-P: 0, UAS-P: 0
04:15-04:30:
   ES-L: 0, SES-L: 0, UAS-L: 0, ES-P: 0, SES-P: 0, UAS-P: 0
04:00-04:15:
   ES-L: 0, SES-L: 0, UAS-L: 0, ES-P: 0, SES-P: 0, UAS-P: 0

Sample Output

show interfaces filters

user@host> show interfaces filters

Interface    Admin Link Proto Input Filter       Output Filter
ge-0/0/0     up   up                        
ge-0/0/0.0    up   up   inet             f-any
                      iso
ge-5/0/0     up   up                        
ge-5/0/0.0    up   up   any              f-any
                      inet               f-inet
                      multiservice
gr-0/3/0     up   up                        

Sample Output

show interfaces flow-statistics (Gigabit Ethernet)

user@host> show interfaces flow-statistics ge-0/0/1.0
Logical interface ge-0/0/1.0 (Index 70) (SNMP ifIndex 49)
Flags: SNMP-Traps Encapsulation: ENET2
Input packets: 5161
Output packets: 83
Security: Zone: zone2
Allowed host-inbound traffic: bootp bfd bgp dns dvmrp ldp msdp nhrp ospf
pgm
   pim rip router-discovery rsvp sap vrrp dhcp finger ftp tftp ident-reset http
   https ike
   netconf ping rlogin rpm snmp snmp-trap ssh telnet traceroute xnm-clear-text
   xnm-ssl
Flow Statistics:
Flow Input statistics:
   Self packets: 0
   ICMP packets: 0
   VPN packets: 2564
   Bytes permitted by policy: 3478
   Connections established: 1
Flow Output statistics:
   Multicast packets: 0
   Bytes permitted by policy: 16994
Flow error statistics (Packets dropped due to):
   Address spoofing: 0
   Authentication failed: 0
   Invalid zone received packet: 0
   Multiple user authentications: 0
   Multiple incoming NAT: 0
   No parent for a gate: 0
   No one interested in self packets: 0
   No minor session: 0
   No more sessions: 0
   No NAT gate: 0
   No route present: 0
   No SA for incoming SPI: 0
   No tunnel found: 0
   No session for a gate: 0
   No zone or NULL zone binding 0
   Policy denied: 0
   Security association not active: 0
   TCP sequence number out of window: 0
   Syn-attack protection: 0
   User authentication errors: 0
Protocol inet, MTU: 1500
   Flags: None
Addresses, Flags: Is-Preferred Is-Primary
   Destination: 203.0.113.1/24, Local: 203.0.113.2, Broadcast: 2.2.2.255

Sample Output

show interfaces interval (Channelized OC12)

    user@host> show interfaces interval t3-0/3/0:0
    Physical interface: t3-0/3/0:0, SNMP ifIndex: 23
17:43-current:
   LCV: 0, PCV: 0, CCV: 0, LES: 0, PES: 0, PSES: 0, CES: 0, CSES: 0,
   SEFS: 0, UAS: 0
17:28-17:43:
   LCV: 0, PCV: 0, CCV: 0, LES: 0, PES: 0, PSES: 0, CES: 0, CSES: 0,
show interfaces interval (E3)

user@host> show interfaces interval e3-0/3/0
Physical interface: e3-0/3/0, SNMP ifIndex: 23
  17:43-current:
    LCV: 0, PCV: 0, CCV: 0, LES: 0, PES: 0, PSES: 0, CES: 0, CSES: 0,
    SEFS: 0, UAS: 0
  17:28-17:43:
    LCV: 0, PCV: 0, CCV: 0, LES: 0, PES: 0, PSES: 0, CES: 0, CSES: 0,
    SEFS: 0, UAS: 0
  17:13-17:28:
    LCV: 0, PCV: 0, CCV: 0, LES: 0, PES: 0, PSES: 0, CES: 0, CSES: 0,
    SEFS: 0, UAS: 0
  16:58-17:13:
    LCV: 0, PCV: 0, CCV: 0, LES: 0, PES: 0, PSES: 0, CES: 0, CSES: 0,
    SEFS: 0, UAS: 0
  16:43-16:58:
    LCV: 0, PCV: 0, CCV: 0, LES: 0, PES: 0, PSES: 0, CES: 0, CSES: 0,
    SEFS: 0, UAS: 0
  ...
Interval Total:
  LCV: 230, PCV: 1145859, CCV: 455470, LES: 0, PES: 230, PSES: 230,

show interfaces interval (SONET/SDH)

user@host> show interfaces interval so-0/1/0
Physical interface: so-0/1/0, SNMP ifIndex: 19
  20:02-current:
    ES-S: 0, SES-S: 0, SEFS-S: 0, ES-L: 0, SES-L: 0, UAS-L: 0, ES-P: 0,
    SES-P: 0, UAS-P: 0
  19:47-20:02:
    ES-S: 267, SES-S: 267, SEFS-S: 267, ES-L: 267, SES-L: 267, UAS-L: 267,
    ES-P: 267, SES-P: 267, UAS-P: 267
  19:32-19:47:
    ES-S: 56, SES-S: 56, SEFS-S: 56, ES-L: 56, SES-L: 56, UAS-L: 46, ES-P: 56,
    SES-P: 56, UAS-P: 46
  19:17-19:32:
    ES-S: 0, SES-S: 0, SEFS-S: 0, ES-L: 0, SES-L: 0, UAS-L: 0, ES-P: 0,
    SES-P: 0, UAS-P: 0
  19:02-19:17:
  ...

Copyright © 2017, Juniper Networks, Inc.
Sample Output

show interfaces load-balancing

```
user@host> show interfaces load-balancing
Interface State Last change Member count
ams0 Up 1d 00:50 2
ams1 Up 00:00:59 2
```

show interfaces load-balancing detail

```
user@host> show interfaces load-balancing detail
Load-balancing interfaces detail
Interface : ams0
State : Up
Last change : 1d 00:51
Member count : 2
Members :
 Interface Weight State
 mams-2/0/0 10 Active
 mams-2/1/0 10 Active
```

Sample Output

show interfaces mac-database (All MAC Addresses on a Port)

```
user@host> show interfaces mac-database xe-0/3/3
Physical interface: xe-0/3/3, Enabled, Physical link is Up
 Interface index: 372, SNMP ifIndex: 788
 Link-level type: Ethernet, MTU: 1514, LAN-PHY mode, Speed: 10Gbps, Loopback: None, Source filtering: Disabled, Flow control: Enabled
 Device flags : Present Running
 Interface flags: SNMP-Traps Internal: 0x4000
 Link flags : None

Logical interface xe-0/3/3.0 (Index 364) (SNMP ifIndex 829)
 Flags: SNMP-Traps 0x4004000 Encapsulation: ENET2
 MAC address Input frames Input bytes Output frames Output bytes
 00:00:00:00:00:00 1 56 0 0
 00:00:c0:01:01:02 7023810 323095260 0 0
 00:00:c0:01:01:03 7023810 323095260 0 0
 00:00:c0:01:01:04 7023810 323095260 0 0
 00:00:c0:01:01:05 7023810 323095260 0 0
 00:00:c0:01:01:06 7023810 323095260 0 0
 00:00:c0:01:01:07 7023810 323095260 0 0
 00:00:c0:01:01:08 7023809 323095214 0 0
 00:00:c0:01:01:09 7023809 323095214 0 0
 00:00:c0:01:01:0a 7023809 323095214 0 0
 00:00:c0:01:01:0b 7023809 323095214 0 0
 00:00:c8:01:01:02 30424784 1399540064 37448598 1722635508
 00:00:c8:01:01:03 30424784 1399540064 37448598 1722635508
 00:00:c8:01:01:04 30424716 1399536936 37448523 1722632058
 00:00:c8:01:01:05 30424789 1399540294 37448598 1722635508
 00:00:c8:01:01:06 30424788 1399540248 37448597 1722635462
 00:00:c8:01:01:07 30424783 1399540018 37448597 1722635462
 00:00:c8:01:01:08 30424783 1399540018 37448596 1722635416
 00:00:c8:01:01:09 8836796 406492616 8836795 406492570
```
show interfaces mac-database (All MAC Addresses on a Service)

user@host> show interfaces mac-database xe-0/3/3
Logical interface xe-0/3/3.0 (Index 364) (SNMP ifIndex 829)
  Flags: SNMP-Traps 0x4004000 Encapsulation: ENET2

<table>
<thead>
<tr>
<th>MAC address</th>
<th>Input frames</th>
<th>Input bytes</th>
<th>Output frames</th>
<th>Output bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00:00:00:00:00</td>
<td>1</td>
<td>56</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:02</td>
<td>7023810</td>
<td>323095260</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:03</td>
<td>7023810</td>
<td>323095260</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:04</td>
<td>7023810</td>
<td>323095260</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:05</td>
<td>7023810</td>
<td>323095260</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:06</td>
<td>7023810</td>
<td>323095260</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:07</td>
<td>7023810</td>
<td>323095260</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:08</td>
<td>7023809</td>
<td>323095214</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:09</td>
<td>7023809</td>
<td>323095214</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:0a</td>
<td>7023809</td>
<td>323095214</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:0b</td>
<td>7023809</td>
<td>323095214</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c8:01:01:02</td>
<td>31016568</td>
<td>1426762128</td>
<td>38040381</td>
<td>1749857526</td>
</tr>
<tr>
<td>00:00:c8:01:01:03</td>
<td>31016568</td>
<td>1426762128</td>
<td>38040382</td>
<td>1749857572</td>
</tr>
<tr>
<td>00:00:c8:01:01:04</td>
<td>31016499</td>
<td>1426758954</td>
<td>38040306</td>
<td>1749854076</td>
</tr>
<tr>
<td>00:00:c8:01:01:05</td>
<td>31016573</td>
<td>1426762358</td>
<td>38040381</td>
<td>1749857526</td>
</tr>
<tr>
<td>00:00:c8:01:01:06</td>
<td>31016573</td>
<td>1426762358</td>
<td>38040381</td>
<td>1749857526</td>
</tr>
<tr>
<td>00:00:c8:01:01:07</td>
<td>31016567</td>
<td>1426762082</td>
<td>38040380</td>
<td>1749857480</td>
</tr>
<tr>
<td>00:00:c8:01:01:08</td>
<td>31016567</td>
<td>1426762082</td>
<td>38040379</td>
<td>1749857434</td>
</tr>
<tr>
<td>00:00:c8:01:01:09</td>
<td>9428580</td>
<td>433714680</td>
<td>9428580</td>
<td>433714680</td>
</tr>
<tr>
<td>00:00:c8:01:01:0a</td>
<td>31016496</td>
<td>1426758816</td>
<td>38040304</td>
<td>1749853984</td>
</tr>
<tr>
<td>00:00:c8:01:01:0b</td>
<td>31016498</td>
<td>1426758908</td>
<td>38040307</td>
<td>1749854122</td>
</tr>
</tbody>
</table>

show interfaces mac-database mac-address

user@host> show interfaces mac-database xe-0/3/3 mac-address 00:00:c8:01:01:09
Physical interface: xe-0/3/3, Enabled, Physical link is Up
  Interface index: 372, SNMP ifIndex: 788
  Link-level type: Ethernet, MTU: 1514, LAN-PHY mode, Speed: 10Gbps, Loopback: None, Source filtering: Disabled, Flow control: Enabled
  Device flags : Present Running
  Interface flags: SNMP-Traps Internal: 0x4000
  Link flags : None

Logical interface xe-0/3/3.0 (Index 364) (SNMP ifIndex 829)
  Flags: SNMP-Traps 0x4004000 Encapsulation: ENET2
  MAC address: 00:00:c8:01:01:09, Type: Configured,
  Input bytes : 202324652
  Output bytes : 202324560
  Input frames : 4398362
  Output frames : 4398360
  Policer statistics:
  Policer type Discarded frames Discarded bytes
  Output aggregate 3992386 183649756
Sample Output

show interfaces mc-ae

user@host> show interfaces mc-ae ae0 unit 512
Member Links : ae0
Local Status : active
Peer Status : active
Logical Interface : ae0.512
Core Facing Interface : Label Ethernet Interface
ICL-PL : Label Ethernet Interface

show interfaces media (SONET/SDH)

The following example displays the output fields unique to the `show interfaces media` command for a SONET interface (with no level of output specified):

user@host> show interfaces media so-4/1/2
Physical interface: so-4/1/2, Enabled, Physical link is Up
Interface index: 168, SNMP ifIndex: 495
Link-level type: PPP, MTU: 4474, Clocking: Internal, SONET mode, Speed: OC48,
Loopback: None, FCS: 16, Payload scrambler: Enabled
Device flags : Present Running
Interface flags: Point-To-Point SNMP-Traps 16384
Link flags : Keepalives
Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3
Keepalive: Input: 1783 (00:00:00 ago), Output: 1786 (00:00:08 ago)
LCP state: Opened
NCP state: inet: Not-configured, inet6: Not-configured, iso: Not-configured,
mpls: Not-configured
CHAP state: Not-configured
CoS queues : 8 supported
Input rate : 0 bps (0 pps)
Output rate : 0 bps (0 pps)
SONET alarms : None
SONET defects : None
SONET errors:
Received path trace: routerb so-1/1/2
Transmitted path trace: routera so-4/1/2

Sample Output

show interfaces policers

user@host> show interfaces policers

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin Link</th>
<th>Proto</th>
<th>Input Policer</th>
<th>Output Policer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/0</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-0/0/0.0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>inet</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>iso</td>
<td></td>
</tr>
<tr>
<td>gr-0/3/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip-0/3/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mt-0/3/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pd-0/3/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pe-0/3/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>so-2/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>so-2/0/0.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>so-2/0/0.0-in-policer so-2/0/0.0-out-policer</td>
<td></td>
</tr>
</tbody>
</table>
show interfaces policers interface-name

```
user@host> show interfaces policers so-2/1/0
Interface Admin Link Proto Input Policer Output Policer
so-2/1/0 up down
so-2/1/0.0 up down inet so-2/1/0.0-in-policer so-2/1/0.0-out-policer
iso
inet6
```

Sample Output

```
show interfaces queue

The following truncated example shows the CoS queue sizes for queues 0, 1, and 3. Queue 1 has a queue buffer size (guaranteed allocated memory) of 9192 bytes.

user@host> show interfaces queue
Physical interface: ge-0/0/0, Enabled, Physical link is Up
Interface index: 134, SNMP ifIndex: 509
Forwarding classes: 8 supported, 8 in use
Egress queues: 8 supported, 8 in use
Queue: 0, Forwarding classes: class0
Queued:
 Packets : 0 0 pps
 Bytes : 0 0 bps
Transmitted:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Tail-dropped packets : 0 0 pps
 RL-dropped packets : 0 0 pps
 RL-dropped bytes : 0 0 bps
 RED-dropped packets : 0 0 pps
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps
 RED-dropped bytes : 0 0 bps
 Low : 0 0 bps
 Medium-low : 0 0 bps
 Medium-high : 0 0 bps
 High : 0 0 bps
Queue Buffer Usage:
 Reserved buffer : 118750000 bytes
 Queue-depth bytes :
 Current : 0
```

Queue: 1, Forwarding classes: class1
```
Queue Buffer Usage:
 Reserved buffer : 9192 bytes
 Queue-depth bytes :
 Current : 0
```
Queue: 3, Forwarding classes: class3
Queued:

Queue Buffer Usage:
Reserved buffer : 6250000 bytes
Queue-depth bytes:
Current : 0

Sample Output

show interfaces redundancy

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Last change</th>
<th>Primary</th>
<th>Secondary</th>
<th>Current status</th>
</tr>
</thead>
<tbody>
<tr>
<td>rsp0</td>
<td>Not present</td>
<td></td>
<td>sp-1/0/0</td>
<td>sp-0/2/0</td>
<td>both down</td>
</tr>
<tr>
<td>rsp1</td>
<td>On secondary 1d 23:56</td>
<td></td>
<td>sp-1/2/0</td>
<td>sp-0/3/0</td>
<td>primary down</td>
</tr>
<tr>
<td>rsp2</td>
<td>On primary 10:10:27</td>
<td></td>
<td>sp-1/3/0</td>
<td>sp-0/2/0</td>
<td>secondary down</td>
</tr>
<tr>
<td>rlsq0</td>
<td>On primary 00:06:24</td>
<td></td>
<td>lsq-0/2/0</td>
<td>lsq-1/0/0</td>
<td>both up</td>
</tr>
</tbody>
</table>

show interfaces redundancy (Aggregated Ethernet)

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Last change</th>
<th>Primary</th>
<th>Secondary</th>
<th>Current status</th>
</tr>
</thead>
<tbody>
<tr>
<td>rlsq0</td>
<td>On secondary</td>
<td>00:56:12</td>
<td>lsq-4/0/0</td>
<td>lsq-3/0/0</td>
<td>both up</td>
</tr>
<tr>
<td>ae0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ae1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ae2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ae3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ae4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

show interfaces redundancy detail

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Last change</th>
<th>Primary</th>
<th>Secondary</th>
<th>Current status</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>rlsq0</td>
<td>On primary</td>
<td>00:45:47</td>
<td>lsq-0/2/0</td>
<td>lsq-1/2/0</td>
<td>both up</td>
<td>hot-standby</td>
</tr>
<tr>
<td>rlsq0:0</td>
<td>On primary:0</td>
<td>00:45:46</td>
<td>lsq-0/2/0</td>
<td>lsq-1/2/0</td>
<td>both up</td>
<td>warm-standby</td>
</tr>
</tbody>
</table>

Sample Output

show interfaces routing brief

user@host> show interfaces routing brief
show interfaces routing detail

user@host> show interfaces routing detail
so-5/0/3.0
  Index: 15, Refcount: 2, State: Up <Broadcast PointToPoint Multicast> Change:<>  
    Metric: 0, Up/down transitions: 0, Full-duplex
    Link layer: HDLC serial line Encapsulation: PPP Bandwidth: 155Mbps
    ISO address (null)
    State: <Broadcast PointToPoint Multicast> Change: <>
    Preference: 0 (120 down), Metric: 0, MTU: 4470 bytes

so-5/0/2.0
  Index: 14, Refcount: 7, State: <Up Broadcast PointToPoint Multicast> Change:<>  
    Metric: 0, Up/down transitions: 0, Full-duplex
    Link layer: HDLC serial line Encapsulation: PPP Bandwidth: 155Mbps
    MPLS address (null)
    State: <Up Broadcast PointToPoint Multicast> Change: <>
    Preference: 0 (120 down), Metric: 0, MTU: 4458 bytes
    ISO address (null)
    State: <Up Broadcast PointToPoint Multicast> Change: <>
    Preference: 0 (120 down), Metric: 0, MTU: 4470 bytes
    INET address 192.168.2.120
    State: <Up Broadcast PointToPoint Multicast> Change: <>
    Preference: 0 (120 down), Metric: 0, MTU: 4470 bytes
    Local address: 192.168.2.120
    Destination: 192.168.2.120/32
    INET address (null)
    State: <Up Broadcast PointToPoint Multicast> Change: <>
    Preference: 0 (120 down), Metric: 0, MTU: 4470 bytes
...

Sample Output

show interfaces terse routing-instance all

user@host> show interfaces terse routing-instance all
  Interface      Admin  Link  Proto  Local               Remote Instance
  at-0/0/1        up      up    inet    10.0.0.1/24
Sample Output

show interfaces snmp-index

```
user@host> show interfaces snmp-index 33
Physical interface: so-2/1/1, Enabled, Physical link is Down
Interface index: 149, SNMP ifIndex: 33
Link-level type: PPP, MTU: 4474, Clocking: Internal, SONET mode, Speed: OC48,
Loopback: None, FCS: 16, Payload scrambler: Enabled
Device flags : Present Running Down
Interface flags: Hardware-Down Point-To-Point SNMP-Traps 16384
Link flags : Keepalives
CoS queues : 8 supported
Input rate : 0 bps (0 pps)
Output rate : 0 bps (0 pps)
SONET alarms : LOL, PLL, LOS
SONET defects : LOL, PLL, LOF, LOS, SEF, AIS-L, AIS-P
```

Sample Output

show interfaces source-class all

```
user@host> show interfaces source-class all
Logical interface so-0/1/0.0

<table>
<thead>
<tr>
<th>Source class</th>
<th>Packets (packet-per-second)</th>
<th>Bytes (bits-per-second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gold</td>
<td>1928095 (1)</td>
<td>161959980 (597762)</td>
</tr>
<tr>
<td>bronze</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>silver</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

Logical interface so-0/1/3.0

<table>
<thead>
<tr>
<th>Source class</th>
<th>Packets (packet-per-second)</th>
<th>Bytes (bits-per-second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gold</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>bronze</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>silver</td>
<td>116113 (939)</td>
<td>9753492 (631616)</td>
</tr>
</tbody>
</table>
```

Sample Output

show interfaces statistics (Fast Ethernet)

```
user@host> show interfaces fe-1/3/1 statistics
Physical interface: fe-1/3/1, Enabled, Physical link is Up
Interface index: 144, SNMP ifIndex: 1042
Description: ford fe-1/3/1
Link-level type: Ethernet, MTU: 1514, Speed: 100mbps, Loopback: Disabled,
Source filtering: Disabled, Flow control: Enabled
Device flags : Present Running
Interface flags: SNMP-Traps Internal: 0x4000
```
CoS queues : 4 supported, 4 maximum usable queues
Current address: 00:90:69:93:04:dc, Hardware address: 00:90:69:93:04:dc
Last flapped : 2006-04-18 03:08:59 PDT (00:01:24 ago)
Statistics last cleared: Never
Input rate : 0 bps (0 pps)
Output rate : 0 bps (0 pps)
Input errors: 0, Output errors: 0
Active alarms : None
Active defects : None
Logical interface fe-1/3/1.0 (Index 69) (SNMP ifIndex 50)
  Flags: SNMP-Traps Encapsulation: ENET2
  Protocol inet, MTU: 1500
  Flags: Is-Primary, DCU, SCU-in

<table>
<thead>
<tr>
<th>Destination class</th>
<th>Packets (packet-per-second)</th>
<th>Bytes (bits-per-second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>silver1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>( 0)</td>
<td>( 0)</td>
</tr>
<tr>
<td>silver2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>( 0)</td>
<td>( 0)</td>
</tr>
<tr>
<td>silver3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>( 0)</td>
<td>( 0)</td>
</tr>
</tbody>
</table>

Addresses, Flags: Is-Default Is-Preferred Is-Primary
  Destination: 10.27.245/24, Local: 10.27.245.2,
  Broadcast: 10.27.245.255
  Protocol iso, MTU: 1497
  Flags: Is-Primary

Sample Output

```
show interfaces switch-port

user@host# show interfaces ge-slot/0/0 switch-port port-number

Port 0, Physical link is Up
Speed: 100mbps, Auto-negotiation: Enabled

Statistics: Receive Transmit
Total bytes 28437086 21792250
Total packets 409145 88088
Unicast packets 9987 83817
Multicast packets 145002 4191
Broadcast packets 254156 1041
Multiple collisions 23 10
FIFO/CRC/Align errors 0 0
MAC pause frames 0 0
Oversized frames 0 0
Runt frames 0 0
Jabber frames 0 0
Fragment frames 0 0
Discarded frames 0 0

Autonegotiation information:
 Negotiation status: Complete
 Link partner:
 Link mode: Full-duplex, Flow control: None, Remote fault: OK, Link
 partner Speed: 100 Mbps
 Local resolution:
 Flow control: None, Remote fault: Link OK
```
Sample Output

show interfaces transport pm

<table>
<thead>
<tr>
<th>Physical interface: et-0/1/0, SNMP ifIndex 515</th>
<th>Elapse time: 900 Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near End</td>
<td></td>
</tr>
<tr>
<td>Suspect Flag: False</td>
<td></td>
</tr>
<tr>
<td>Reason: None</td>
<td></td>
</tr>
<tr>
<td>OTU-BBE 0</td>
<td></td>
</tr>
<tr>
<td>OTU-ES 0</td>
<td></td>
</tr>
<tr>
<td>OTU-SES 0</td>
<td></td>
</tr>
<tr>
<td>OTU-UAS 427</td>
<td></td>
</tr>
<tr>
<td>Far End</td>
<td></td>
</tr>
<tr>
<td>Suspect Flag: True</td>
<td></td>
</tr>
<tr>
<td>Reason: Unknown</td>
<td></td>
</tr>
<tr>
<td>OTU-BBE 0</td>
<td></td>
</tr>
<tr>
<td>OTU-ES 0</td>
<td></td>
</tr>
<tr>
<td>OTU-SES 0</td>
<td></td>
</tr>
<tr>
<td>OTU-UAS 0</td>
<td></td>
</tr>
<tr>
<td>Near End</td>
<td></td>
</tr>
<tr>
<td>Suspect Flag: False</td>
<td></td>
</tr>
<tr>
<td>Reason: None</td>
<td></td>
</tr>
<tr>
<td>ODU-BBE 0</td>
<td></td>
</tr>
<tr>
<td>ODU-ES 0</td>
<td></td>
</tr>
<tr>
<td>ODU-SES 0</td>
<td></td>
</tr>
<tr>
<td>ODU-UAS 427</td>
<td></td>
</tr>
<tr>
<td>Far End</td>
<td></td>
</tr>
<tr>
<td>Suspect Flag: True</td>
<td></td>
</tr>
<tr>
<td>Reason: Unknown</td>
<td></td>
</tr>
<tr>
<td>ODU-BBE 0</td>
<td></td>
</tr>
<tr>
<td>ODU-ES 0</td>
<td></td>
</tr>
<tr>
<td>ODU-SES 0</td>
<td></td>
</tr>
<tr>
<td>ODU-UAS 427</td>
<td></td>
</tr>
<tr>
<td>FEC</td>
<td></td>
</tr>
<tr>
<td>Suspect Flag: False</td>
<td></td>
</tr>
<tr>
<td>Reason: None</td>
<td></td>
</tr>
<tr>
<td>FEC-CorrectedErr 2008544300</td>
<td></td>
</tr>
<tr>
<td>FEC-UncorrectedWords 0</td>
<td></td>
</tr>
<tr>
<td>BER</td>
<td></td>
</tr>
<tr>
<td>Suspect Flag: False</td>
<td></td>
</tr>
<tr>
<td>Reason: None</td>
<td></td>
</tr>
<tr>
<td>BER 3.6e-5</td>
<td></td>
</tr>
</tbody>
</table>

Physical interface: et-0/1/0, SNMP ifIndex 515

<table>
<thead>
<tr>
<th>Lane chromatic dispersion</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane differential group delay</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>q Value</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>SNR</td>
<td>28</td>
<td>28</td>
<td>29</td>
<td>28</td>
<td>0</td>
</tr>
</tbody>
</table>
Sample Output

show security zones

user@host> show security zones

Functional zone: management
  Description: This is the management zone.
  Policy configurable: No
  Interfaces bound: 1
  Interfaces:
    ge-0/0/0.0

Security zone: Host
  Description: This is the host zone.
  Send reset for non-SYN session TCP packets: Off
  Policy configurable: Yes
  Interfaces bound: 1
  Interfaces:
    fxp0.0

Security zone: abc
  Description: This is the abc zone.
  Send reset for non-SYN session TCP packets: Off
  Policy configurable: Yes
  Interfaces bound: 1
  Interfaces:
    ge-0/0/1.0

Security zone: def
  Description: This is the def zone.
  Send reset for non-SYN session TCP packets: Off
  Policy configurable: Yes
  Interfaces bound: 1
  Interfaces:
    ge-0/0/2.0
show interfaces snmp-index

Supported Platforms  EX Series, M Series, MX Series, PTX Series, T Series

Syntax  show interfaces snmp-index snmp-index

Release Information  Command introduced before Junos OS Release 7.4.

Description  Display information for the interface with the specified SNMP index.

Options  This command has no options.

Additional Information  Output from both the show interfaces interface-name detail and the show interfaces interface-name extensive command includes all the information displayed in the output from the show interfaces snmp-index command.

Required Privilege Level  view

List of Sample Output  show interfaces snmp-index on page 890

Output Fields  The output fields from the show interfaces snmp-index snmp-index command are identical to those produced by the show interfaces interface-name command. For a description of output fields, see the other chapters in this manual.

Sample Output

```bash
show interfaces snmp-index

user@host> show interfaces snmp-index 33
Physical interface: so-2/1/1, Enabled, Physical link is Down
 Interface index: 149, SNMP ifIndex: 33
 Link-level type: PPP, MTU: 4474, Clocking: Internal, SONET mode, Speed: OC48,
 Loopback: None, FCS: 16, Payload scrambler: Enabled
 Device flags : Present Running Down
 Interface flags: Hardware-Down Point-To-Point SNMPT-Traps 16384
 CoS queues : 8 supported
 Input rate : 0 bps (0 pps)
 Output rate : 0 bps (0 pps)
 SONET alarms : LOL, PLL, LOS
 SONET defects : LOL, PLL, LOF, LOS, SEF, AIS-L, AIS-P
```
**show interfaces summary**

**Syntax**  
show interfaces summary

**Release Information**  
Command introduced in Junos OS Release 14.1R2.

**Description**  
Display the status and statistics on logical interfaces configured on the device at the Flexible PIC Concentrator (FPC) level.

**Options**  
This command has no options.

**Required Privilege Level**  
view

**List of Sample Output**  
show interfaces summary on page 891

**Output Fields**  
Table 140 on page 891 describes the output fields for the `show interfaces summary` command. Output fields are listed in the approximate order in which they appear.

**Table 140: show interfaces summary Output Fields**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System's maximum logical interfaces</td>
<td>Total number of logical interfaces in the device.</td>
</tr>
<tr>
<td>Logical interfaces allocated</td>
<td>Number of allocated logical interfaces.</td>
</tr>
<tr>
<td>Logical interfaces available</td>
<td>Number of available logical interfaces.</td>
</tr>
<tr>
<td>Logical interface type</td>
<td>The type of logical interfaces.</td>
</tr>
<tr>
<td>• LSI</td>
<td>Number of label-switched logical interfaces and their status.</td>
</tr>
<tr>
<td>• Ethernet Untagged</td>
<td>Number of untagged logical interfaces and their status.</td>
</tr>
<tr>
<td>• Ethernet VLAN</td>
<td>Number of tagged logical interfaces and their status.</td>
</tr>
<tr>
<td>• Others</td>
<td>Number of dynamic and other logical interfaces, and their status.</td>
</tr>
<tr>
<td>System</td>
<td>Statistics on the global logical interfaces in the system.</td>
</tr>
<tr>
<td>FPC x</td>
<td>Statistics on the logical interfaces in a specific FPC.</td>
</tr>
</tbody>
</table>

**Sample Output**

show interfaces summary

```bash
user@host> show interfaces summary
Logical Interfaces:
 System's maximum logical interfaces : 262144
 Logical interfaces allocated : 31
 Logical interfaces available : 262113
```
<table>
<thead>
<tr>
<th>Logical interface type</th>
<th>Count</th>
<th>UP</th>
<th>DOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>28</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>LSI</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ethernet Untagged</td>
<td>15</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Ethernet VLAN</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Others</td>
<td>13</td>
<td>13</td>
<td>0</td>
</tr>
</tbody>
</table>

**FPC1:**

<table>
<thead>
<tr>
<th>Logical interface type</th>
<th>Count</th>
<th>UP</th>
<th>DOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>LSI</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ethernet Untagged</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Ethernet VLAN</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Others</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

**FPC2:**

<table>
<thead>
<tr>
<th>Logical interface type</th>
<th>Count</th>
<th>UP</th>
<th>DOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LSI</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ethernet Untagged</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ethernet VLAN</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Others</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
**show ilmi statistics**

**Supported Platforms**  EX Series, M Series, MX Series, PTX Series, T Series

**Syntax**  show ilmi statistics

**Release Information**  Command introduced before Junos OS Release 7.4.

**Description**  Display input and output Integrated Local Management Interface (ILMI) statistics.

**Options**  This command has no options.

**Required Privilege Level**  view

**Related Documentation**  • clear ilmi statistics on page 837

**List of Sample Output**  show ilmi statistics on page 895

**Output Fields**  Table 141 on page 894 lists the output fields for the show ilmi statistics command. Output fields are listed in the approximate order in which they appear.
### Table 141: show ilmi statistics Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Input</strong></td>
<td>Information about received ILMI packets:</td>
</tr>
<tr>
<td></td>
<td>• <strong>Packets</strong>—Total number of messages delivered to the ILMI entity from the transport service.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Bad versions</strong>—Total number of messages delivered to the ILMI entity that were for an unsupported ILMI version.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Bad community names</strong>—Total number of messages delivered to the ILMI entity that did not use an ILMI community name.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Bad community uses</strong>—Total number of messages delivered to the ILMI entity that represented an ILMI operation that was not allowed by the ILMI community named in the message.</td>
</tr>
<tr>
<td></td>
<td>• <strong>ASN parse errors</strong>—Total number of ASN.1 or BER errors encountered by the ILMI entity when decoding received ILMI messages.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Too big</strong>s—Total number of ILMI packets delivered to the ILMI entity with an error status field of <code>tooBig</code>.</td>
</tr>
<tr>
<td></td>
<td>• <strong>No such names</strong>—Total number of ILMI packets delivered to the ILMI entity with an error status field of <code>noSuchName</code>.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Bad values</strong>—Total number of ILMI packets delivered to the ILMI entity with an error status field of <code>badValue</code>.</td>
</tr>
<tr>
<td></td>
<td>• <strong>ReadOnly</strong>s—Total number of valid ILMI packets delivered to the ILMI entity with an error status field of <code>readOnly</code>. Only incorrect implementations of ILMI generate this error.</td>
</tr>
<tr>
<td></td>
<td>• <strong>General errors</strong>—Total number of ILMI packets delivered to the ILMI entity with an error status field of <code>genErr</code>.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Total request varbinds</strong>—Total number of objects retrieved successfully by the ILMI entity as a result of receiving valid ILMI <code>GetRequest</code> and <code>GetNext</code> packets.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Total set varbinds</strong>—Total number of objects modified successfully by the ILMI entity as a result of receiving valid ILMI <code>SetRequest</code> packets.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Get requests</strong>—Total number of ILMI <code>GetRequest</code> packets that have been accepted and processed by the ILMI entity.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Get nexts</strong>—Total number of ILMI <code>GetNext</code> packets that have been accepted and processed by the ILMI entity.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Set requests</strong>—Total number of ILMI <code>SetRequest</code> packets that have been accepted and processed by the ILMI entity.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Get responses</strong>—Total number of ILMI <code>GetResponse</code> packets that have been accepted and processed by the ILMI entity.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Traps</strong>—Total number of ILMI traps received by the ILMI entity.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Silent drops</strong>—Total number of <code>GetRequest</code>, <code>GetNextRequest</code>, <code>GetBulkRequest</code>, <code>SetRequest</code>, and <code>InformRequest</code> packets delivered to the ILMI entity that were silently dropped because the size of a reply containing an alternate response packet with an empty variable-bindings field was greater than either a local constraint or the maximum message size associated with the originator of the requests.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Proxy drops</strong>—Total number of <code>GetRequest</code>, <code>GetNextRequest</code>, <code>GetBulkRequest</code>, <code>SetRequest</code>, and <code>InformRequest</code> packets delivered to the ILMI entity that were silently dropped because the transmission of the (possibly translated) message to a proxy target failed in such a way (other than a timeout) that no response packet could be returned.</td>
</tr>
<tr>
<td><strong>Output</strong></td>
<td>Information about transmitted ILMI packets:</td>
</tr>
<tr>
<td></td>
<td>• <strong>Packets</strong>—Total number of messages passed from the ILMI entity to the transport service.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Too big</strong>s—Total number of ILMI packets generated by the ILMI entity with an error status field of <code>tooBig</code>.</td>
</tr>
<tr>
<td></td>
<td>• <strong>No such names</strong>—Total number of ILMI packets generated by the ILMI entity with an error status field of <code>noSuchName</code>.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Bad values</strong>—Total number of ILMI packets generated by the ILMI entity with an error status field of <code>badValue</code>.</td>
</tr>
<tr>
<td></td>
<td>• <strong>General errors</strong>—Total number of ILMI packets generated by the ILMI entity with an error status field of <code>genErr</code>.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Get requests</strong>—Total number of ILMI <code>GetRequest</code> packets that have been generated by the ILMI entity.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Get nexts</strong>—Total number of ILMI <code>GetNext</code> packets that have been generated by the ILMI entity.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Set requests</strong>—Total number of ILMI <code>SetRequest</code> packets that have been generated by the ILMI entity.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Get responses</strong>—Total number of ILMI <code>GetResponse</code> packets that have been generated by the ILMI entity.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Traps</strong>—Total number of ILMI <code>GetResponse</code> packets that have been generated by the ILMI entity.</td>
</tr>
</tbody>
</table>
Sample Output

show ilmi statistics

user@host> show ilmi statistics
ILMI statistics:
Input:
Packets: 0, Bad versions: 0, Bad community names: 0,
Bad community uses: 0, ASN parse errors: 0,
Too bigs: 0, No such names: 0, Bad values: 0,
Read onlys: 0, General errors: 0,
Total request varbinds: 0, Total set varbinds: 0,
Get requests: 0, Get nexts: 0, Set requests: 0,
Get responses: 0, Traps: 0,
Silent drops: 0, Proxy drops 0
Output:
Packets: 0, Too bigs: 0, No such names: 0,
Bad values: 0, General errors: 0,
Get requests: 0, Get nexts: 0, Set requests: 0,
Get responses: 0, Traps: 0
show security alarms

Supported Platforms  SRX Series, vSRX

Syntax  
show security alarms
<detail>
<alarm-id id-number>
<alarm-type [ types ]>
<newer-than YYYY-MM-DD.HH:MM:SS>
<older-than YYYY-MM-DD.HH:MM:SS>
<process process>
<severity severity>

Release Information  Command introduced in Junos OS Release 11.2.

Description  Display the alarms that are active on the device. Run this command when the CLI prompt indicates that a security alarm has been raised, as shown here:

[1 SECURITY ALARM] user@host#

Options  none—Display all active alarms.

  detail—(Optional) Display detailed output.

  alarm-id id-number—(Optional) Display the specified alarm.

  alarm-type [ types ]—(Optional) Display the specified alarm type or a set of types.

You can specify one or more of the following alarm types:

  • authentication

  • cryptographic-self-test

  • decryption-failures

  • encryption-failures

  • ike-phase1-failures

  • ike-phase2-failures

  • key-generation-self-test

  • non-cryptographic-self-test

  • policy

  • replay-attacks

newer-than YYYY-MM-DD.HH:MM:SS—(Optional) Display active alarms that were raised after the specified date and time.

older-than YYYY-MM-DD.HH:MM:SS—(Optional) Display active alarms that were raised before the specified date and time.
**process** *(Optional)* Display active alarms that were raised by the specified system process.

**severity** *(Optional)* Display active alarms of the specified severity.

You can specify the following severity levels:

- alert
- crit
- debug
- emerg
- err
- info
- notice
- warning

**Required Privilege**

- security—To view this statement in the configuration.

**Related Documentation**

- clear security alarms
- Example: Generating a Security Alarm in Response to Policy Violations

**List of Sample Output**

- show security alarms on page 898
- show security alarms detail on page 898
- show security alarms alarm-id on page 898
- show security alarms alarm-type authentication on page 899
- show security alarms newer-than <time> on page 899
- show security alarms older-than <time> on page 899
- show security alarms process <process> on page 899
- show security alarms severity <severity> on page 899

**Output Fields**

Table 142 on page 897 lists the output fields for the **show security alarms** command. Output fields are listed in the approximate order in which they appear. Field names might be abbreviated (as shown in parentheses) when no level of output is specified or when the **detail** keyword is used.

**Table 142: show security alarms**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Identification number of the alarm.</td>
<td>All levels</td>
</tr>
<tr>
<td>Alarm time</td>
<td>Date and time the alarm was raised.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
### Table 142: show security alarms (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message</td>
<td>Information about the alarm, including the alarm type, username, IP address, and port number.</td>
<td>All levels</td>
</tr>
<tr>
<td>Process</td>
<td>System process (For example, login or sshd) and process identification number associated with the alarm.</td>
<td>detail</td>
</tr>
<tr>
<td>Severity</td>
<td>Severity level of the alarm.</td>
<td>detail</td>
</tr>
</tbody>
</table>

#### Sample Output

**show security alarms**

```
[3 SECURITY ALARMS] user@router> show security alarms

ID Alarm time Message
1 2010-01-19 13:41:36 PST SSHD_LOGIN_FAILED_LIMIT: Specified number of login failures (1) for user 'user' reached from '203.0.113.2'
2 2010-01-19 13:41:52 PST SSHD_LOGIN_FAILED_LIMIT: Specified number of login failures (1) for user 'user' reached from '203.0.113.2'
3 2010-01-19 13:42:13 PST SSHD_LOGIN_FAILED_LIMIT: Specified number of login failures (1) for user 'user' reached from '203.0.113.2'
```

**show security alarms detail**

```
[3 SECURITY ALARMS] user@router> show security alarms detail

Alarm ID : 1
Alarm Type : authentication
Time : 2010-01-19 13:41:36 PST
Message : SSHD_LOGIN_FAILED_LIMIT: Specified number of login failures (1) for user 'user' reached from '203.0.113.2'
Process : sshd (pid 1414)
Severity : notice

Alarm ID : 2
Alarm Type : authentication
Time : 2010-01-19 13:41:52 PST
Message : SSHD_LOGIN_FAILED_LIMIT: Specified number of login failures (1) for user 'user' reached from '203.0.113.2'
Process : sshd (pid 1414)
Severity : notice

Alarm ID : 3
Alarm Type : authentication
Message : SSHD_LOGIN_FAILED_LIMIT: Specified number of login failures (1) for user 'user' reached from '203.0.113.2'
Process : sshd (pid 1414)
Severity : notice
```

**show security alarms alarm-id**

```
[3 SECURITY ALARMS] user@router> show security alarms alarm-id 1
```
<table>
<thead>
<tr>
<th>ID</th>
<th>Alarm time</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2010-01-19 13:41:36 PST</td>
<td>SSHD_LOGIN_FAILED_LIMIT: Specified number of login failures (1) for user 'user' reached from '203.0.113.2'</td>
</tr>
<tr>
<td>2</td>
<td>2010-01-19 13:41:52 PST</td>
<td>SSHD_LOGIN_FAILED_LIMIT: Specified number of login failures (1) for user 'user' reached from '203.0.113.2'</td>
</tr>
<tr>
<td>3</td>
<td>2010-01-19 13:42:13 PST</td>
<td>SSHD_LOGIN_FAILED_LIMIT: Specified number of login failures (1) for user 'user' reached from '203.0.113.2'</td>
</tr>
</tbody>
</table>

**show security alarms alarm-type authentication**

```
[3 SECURITY ALARMS] user@router> show security alarms alarm-type authentication
```

**show security alarms newer-than <time>**

```
[3 SECURITY ALARMS] user@router> show security alarms newer-than 2010-01-19T13:41:59
```

**show security alarms older-than <time>**

```
[3 SECURITY ALARMS] user@router> show security alarms older-than 2010-01-19T13:41:59
```

**show security alarms process <process>**

```
[3 SECURITY ALARMS] user@router> show security alarms process sshd
```

**show security alarms severity <severity>**

```
[3 SECURITY ALARMS] user@router> show security alarms severity notice
```
**show security datapath-debug capture**

**Supported Platforms**  
SRX5400, SRX5600, SRX5800

**Syntax**  
`show security datapath-debug capture`

**Release Information**  
Command introduced in Junos OS Release 10.0.

**Description**  
Display details of the data path debugging capture file.

**Required Privilege Level**  
view

**Related Documentation**  
- show security datapath-debug counter on page 901
- Understanding Data Path Debugging for Logical Systems

**List of Sample Output**  
show security datapath—debug capture on page 900

**Output Fields**  
Output fields are listed in the approximate order in which they appear.

**Sample Output**

```
show security datapath—debug capture

Packet 1, len 120: (C0/F0/P0/SEQ:71:lbt)
91 00 00 47 11 00 10 00 9a 14 00 19 03 00 00 00
00 00 00 00 00 01 00 47 10 00 00 00 00 00 00 00
00 1f 12 f8 dd 29 00 21 59 84 f4 01 81 00 02 1e
01 02 03 01 01 02 d4 31 d4 31 00 00 00 00 00 00
00 00 50 02 00 00 ff ad 00 00 00 00

Packet 2, len 120: (C0/F0/P0/SEQ:71:lbt)
90 00 00 47 04 00 00 00 00 00 00 00 02 00 00 47
10 00 00 00 00 00 00 00 00 00 50 00 a6 1c 00 00 00 00
00 00 00 0a 00 00 00 00 00 00 00 09 d9 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 1f 12 f8
dd 29 00 21 59 84 f4 01 81 00 02 1e
```
**show security datapath-debug counter**

**Supported Platforms**  
SRX5400, SRX5600, SRX5800

**Syntax**  
show security datapath-debug counter

**Release Information**  
Command introduced in Junos OS Release 10.0.

**Description**  
Display details of the data path debugging counter.

**Required Privilege**  
view

**Related Documentation**  
- show security datapath-debug capture on page 900
- Understanding Data Path Debugging for Logical Systems

**List of Sample Output**  
show security datapath-debug counter on page 901

**Output Fields**  
Output fields are listed in the approximate order in which they appear.

**Sample Output**

```
user@host> show security datapath-debug counter
Datapath debug counters
Packet Filter 1:
np-ingress
Chassis 0 FPC 4 : 1
np-ingress
Chassis 0 FPC 3 : 0
np-egress
Chassis 0 FPC 4 : 1
np-egress
Chassis 0 FPC 3 : 0
jexec
Chassis 0 FPC 0 PIC 1: 0
jexec
Chassis 0 FPC 0 PIC 0: 1
lbt
Chassis 0 FPC 0 PIC 0: 1
lbt
Chassis 0 FPC 0 PIC 0: 2
pot
Chassis 0 FPC 0 PIC 1: 0
pot
```
show security monitoring

Supported Platforms
SRX Series, vSRX

Syntax
show security monitoring

Release Information
Command introduced in Junos OS Release 10.2.

Description
Displays a count of security flow and central point (CP) sessions, CPU utilization (as a percentage of maximum), and memory in use (also as a percentage of maximum) at the moment the command is run. This command is supported on SRX1500, SRX5400, SRX5600, and SRX5800 devices and vSRX.

Required Privilege
View

Related Documentation
• show security monitoring fpc fpc-number on page 904
• show security monitoring performance session on page 907
• show security monitoring performance spu on page 908

show security monitoring

user@host> show security monitoring
user@host> show security monitoring
-----------------------------------------------------------------------
Flow session   Flow session     CP session     CP session
FPC PIC CPU Mem        current        maximum        current        maximum
---------------------------------------------------------------------------
1   0   0  11              0              0              0              0
1   1   0   5              3        6291456              1        7549747
1   2   0   5              2        6291456              0        7549747
1   3   0   5              3        6291456              1        7549747
8   0   0  65              4           6963              2           8355
8   1   0  65              2           6963              0           8355
Total Sessions:             14       18888294              4       22665951

show security monitoring (vSRX)

user@host> show security monitoring
user@host> show security monitoring
-----------------------------------------------------------------------
FPC PIC CPU Mem Flow session current Flow session maximum CP session current CP session maximum
---------------------------------------------------------------------------
0   0   0  68              2           524288            N/A            N/A
show security monitoring (vSRX in a Chassis Cluster)

```
user@host> show security monitoring

node0:

<table>
<thead>
<tr>
<th>FPC</th>
<th>PIC</th>
<th>CPU</th>
<th>Mem</th>
<th>Flow session current</th>
<th>Flow session maximum</th>
<th>CP session current</th>
<th>CP session maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>67</td>
<td>0</td>
<td>524288</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

node1:

<table>
<thead>
<tr>
<th>FPC</th>
<th>PIC</th>
<th>CPU</th>
<th>Mem</th>
<th>Flow session current</th>
<th>Flow session maximum</th>
<th>CP session current</th>
<th>CP session maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>67</td>
<td>0</td>
<td>524288</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
show security monitoring fpc fpc-number

Supported Platforms SRX Series, vSRX

Syntax
show security monitoring fpc fpc-number
<node (node-id | all | local | primary)>

Description Display security monitoring information about the FPC slot.

Options
- **fpc-number** — Display security monitoring information for the specified FPC slot. It can be in the range from 0 to 11.
- **node** (Optional) For chassis cluster configurations, display security monitoring information for the specified FPC on a specific node (device) in the cluster.
 - **node-id** — Identification number of the node. It can be 0 or 1.
 - **all** — Display information about all nodes.
 - **local** — Display information about the local node.
 - **primary** — Display information about the primary node.

Additional Information For complete list of slot numbering, physical port, and logical interface numbering for SRX Series devices in chassis cluster, see Chassis Cluster Feature Guide for SRX Series Devices.

Required Privilege
Level view

Related Documentation
- show services ip-monitoring status on page 910

List of Sample Output
show security monitoring fpc 0 on page 905
show security monitoring fpc 1 on page 905
show security monitoring fpc 8 on page 906

Output Fields
Table 143 on page 904 lists the output fields for the show security monitoring fpc fpc-number command. Output fields are listed in the approximate order in which they appear.

Table 143: show security monitoring fpc fpc-number Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPC</td>
<td>Slot number in which the FPC is installed.</td>
</tr>
<tr>
<td>PIC</td>
<td>Slot number in which the PIC is installed.</td>
</tr>
</tbody>
</table>
Table 143: show security monitoring fpc fpc-number Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Utilization (%)</td>
<td>Total percentage of CPU being used by the PIC's processors.</td>
</tr>
<tr>
<td>Memory Utilization (%)</td>
<td>Percentage of heap space (dynamic memory) being used by the PIC's processor. If this number exceeds 80 percent, there might be a software problem (memory leak).</td>
</tr>
<tr>
<td>Current flow session</td>
<td>The current number of flow sessions. When SRX Series devices operate in packet mode, flow sessions will not be created and this field will remain zero.</td>
</tr>
<tr>
<td>Max flow session</td>
<td>The maximum number of flow sessions allowed. This number will differ from one device to another.</td>
</tr>
<tr>
<td>SPU current cp session</td>
<td>The current number of cp sessions for the SPU (on SRX5600, and SRX5800 devices only).</td>
</tr>
<tr>
<td>SPU max cp session</td>
<td>The maximum number of cp sessions allowed for the SPU (on SRX5600, and SRX5800 devices only).</td>
</tr>
</tbody>
</table>

Sample Output

show security monitoring fpc 0

```
user@host> show security monitoring fpc 0
FPC 0
PIC 0
  CPU utilization : 0 %
  Memory utilization : 82 %
  Current flow session : 0
  Max flow session : 0
  Current CP session : 0
  Max CP session : 12000000
Session Creation Per Second (for last 96 seconds on average): 0
PIC 1
  CPU utilization : 0 %
  Memory utilization : 54 %
  Current flow session : 0
  Max flow session : 819200
  Current CP session : 0
  Max CP session : 0
Session Creation Per Second (for last 96 seconds on average): 0
```

Sample Output

show security monitoring fpc 1

```
user@host> show security monitoring fpc 1
FPC 1
PIC 0
  CPU utilization : 0 %
  Memory utilization : 21 %
  Current flow session : 0
  Max flow session : 524288
  Current CP session : 0
```
Max CP session : 1048576
Session Creation Per Second (for last 96 seconds on average): 0

Sample Output

show security monitoring fpc 8

user@host> show security monitoring fpc 5
FPC 5
PIC 0
 CPU utilization : 0 %
 Memory utilization : 64 %
 Current flow session : 0
 Max flow session : 524288
 Current CP session : 0
 Max CP session : 2359296
Session Creation Per Second (for last 96 seconds on average): 0
PIC 1
 CPU utilization : 0 %
 Memory utilization : 65 %
 Current flow session : 0
 Max flow session : 1048576
 Current CP session : 0
 Max CP session : 0
Session Creation Per Second (for last 96 seconds on average): 0
show security monitoring performance session

Supported Platforms
SRX Series, vSRX

Syntax
show security monitoring performance session

<fpc slot-number>

<pic slot-number>

Release Information
Command introduced in Junos OS Release of 10.2.

Description
Display the current session (total number of sessions at that time) for the last 60 seconds.

Options
- **fpc slot-number** — Display information about the FPC slot. Use this option to filter the output based on the slot number.
- **pic slot-number** — Display information about existing PIMs or Mini-PIMs in a particular PIC slot. Use this option to filter the output based on PIC slot.

NOTE: The fpc slot-number and pic slot-number options are not available on SRX300, SRX320, and SRX340 devices.

Required Privilege Level
View

Related Documentation
- show services ip-monitoring status on page 910

show security monitoring performance session

```plaintext
user@host> show security monitoring performance session
fpc 0 pic 0
Last 60 seconds:
  0:  8  1:  8  2:  8  3:  8  4:  8  5:  7
  6:  7  7:  7  8:  7  9:  7 10:  7 11:  8
 12:  8 13:  8 14:  7 15:  7 16:  7 17:  8
 24:  5 25:  5 26:  5 27:  5 28:  5 29:  4
 30:  4 31:  4 32:  3 33:  3 34:  3 35:  3
 36:  5 37:  5 38:  6 39:  6 40:  5 41:  5
 42:  5 43:  5 44:  5 45:  5 46:  5 47:  5
 54:  5 55:  7 56:  7 57:  5 58:  5 59:  8
```
show security monitoring performance spu

Supported Platforms SRX Series, vSRX

Syntax

```
show security monitoring performance spu

<fpc slot-number>
<pic slot-number>
```

Release Information Command introduced in Junos OS Release 10.2.

Description Display the services processing unit (SPU) percent utilization for all FPC slots over the last 60 seconds. Use this command to track the percent utilization statistics per second for the past 60 seconds for each FPC slot and PIC.

Options

- **fpc slot-number** — Display information about the FPC slot. Use this option to filter the output based on the slot number.
- **pic slot-number** — Display information about existing PIMs or Mini-PIMs in a particular PIC slot. Use this option to filter the output based on PIC slot.

NOTE: The **fpc slot-number** and **pic slot-number** options are not available on SRX300, SRX320, or SRX340 devices or on vSRX instances.

Required Privilege View

Related Documentation

- show services ip-monitoring status on page 910

show security monitoring performance spu

This sample shows 46% utilization of the SPU for second 42 in the past 60 seconds for FPC 0 and PIC 0.

```
user@host>show security monitoring performance spu

fpc 0 pic 0
Last 60 seconds:
```
show services ip-monitoring status

Supported Platforms SRX Series, vSRX

Syntax

```
show services ip-monitoring status
```

Release Information

Description
Display a brief summary of IP monitoring status along with the current state for a given policy.

Required Privilege Level view

Related Documentation
- show security monitoring on page 902

List of Sample Output
- show services ip-monitoring status on page 911
- show services ip-monitoring status on page 911
- show services ip-monitoring status on page 912

Output Fields Table 144 on page 910 lists the output fields for the `show services ip-monitoring status` command. Output fields are listed in the approximate order in which they appear.

Table 144: show services ip-monitoring status Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy</td>
<td>Name of the policy configured.</td>
</tr>
<tr>
<td>Probe Name</td>
<td>Name of the probe configured.</td>
</tr>
<tr>
<td>Address</td>
<td>Displays the configured target address.</td>
</tr>
<tr>
<td>Status</td>
<td>Displays the status of the probe on the target address. If the status is PASS, then the target address is reached.</td>
</tr>
<tr>
<td>Route-Action</td>
<td>Displays route injection information configured for the policy and its failover status.</td>
</tr>
<tr>
<td>Route-Instance</td>
<td>Displays the routing instance of the route to be injected during failover.</td>
</tr>
<tr>
<td>Route</td>
<td>Routing address of the route to be injected during failover.</td>
</tr>
<tr>
<td>Next-Hop</td>
<td>Specifies the next-hop address of the route to be injected during failover. P2P interfaces only.</td>
</tr>
</tbody>
</table>
Table 144: show services ip-monitoring status Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Display the state of the route injection action. If the state is APPLIED, then the</td>
</tr>
<tr>
<td></td>
<td>ip-monitoring policy is in failover state.</td>
</tr>
<tr>
<td>Interface Action</td>
<td>Displays the interface action type as enable or disable.</td>
</tr>
<tr>
<td>Policy Action</td>
<td>Displays the policy action type as enable or disable.</td>
</tr>
<tr>
<td>Admin State</td>
<td>Displays the current admin state of the interface.</td>
</tr>
<tr>
<td>Action Status</td>
<td>Displays the current action status of the interface.</td>
</tr>
</tbody>
</table>

Sample Output

show services ip-monitoring status

user@host> show services ip-monitoring status

Policy - policy1 (Non-preemptive. Status: FAIL)
RPM Probes:

<table>
<thead>
<tr>
<th>Probe name</th>
<th>Test Name</th>
<th>Address</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>probe_a</td>
<td>a1</td>
<td>15.1.1.10</td>
<td>FAIL</td>
</tr>
<tr>
<td>probe_a</td>
<td>a2</td>
<td>200.1.1.1</td>
<td>FAIL</td>
</tr>
</tbody>
</table>

Route-Action:

<table>
<thead>
<tr>
<th>route-instance</th>
<th>route</th>
<th>next-hop</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>inet.0</td>
<td>200.1.1.0</td>
<td>150.1.1.1</td>
<td>APPLIED</td>
</tr>
</tbody>
</table>

Interface-Action:

<table>
<thead>
<tr>
<th>interface</th>
<th>policy action</th>
<th>admin state</th>
<th>action status</th>
</tr>
</thead>
<tbody>
<tr>
<td>fe-0/0/5.2</td>
<td>Enable</td>
<td>UP</td>
<td>FAILOVER</td>
</tr>
<tr>
<td>fe-0/0/5.4</td>
<td>Disable</td>
<td>DOWN</td>
<td>FAILOVER</td>
</tr>
<tr>
<td>t1-1/0/0</td>
<td>Enable</td>
<td>UP</td>
<td>FAILOVER</td>
</tr>
<tr>
<td>dl0</td>
<td>Enable</td>
<td>UP</td>
<td>FAILOVER</td>
</tr>
<tr>
<td>ge-0/0/1</td>
<td>Enable</td>
<td>UP</td>
<td>FAILOVER</td>
</tr>
</tbody>
</table>

Sample Output

show services ip-monitoring status

In this example, the policy is in the failback state, and the no-preempt option is not configured.

user@host> show services ip-monitoring status

Policy - policy1 (Status: PASS)
RPM Probes:

<table>
<thead>
<tr>
<th>Probe name</th>
<th>Test Name</th>
<th>Address</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>probe1</td>
<td>a1</td>
<td>99.1.1.2</td>
<td>PASS</td>
</tr>
</tbody>
</table>

Copyright © 2017, Juniper Networks, Inc.
Sample Output

show services ip-monitoring status

In this example, the policy is in the failover state, and the primary is restored. The no-preempt option is configured.

```plaintext
user@host> show services ip-monitoring status

Policy - policy1 (Non-preemptive. Status: FAILOVER-NO-PREEMPT)
RPM Probes:

<table>
<thead>
<tr>
<th>Probe name</th>
<th>Test Name</th>
<th>Address</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>probe1</td>
<td>a1</td>
<td>99.1.1.2</td>
<td>PASS</td>
</tr>
</tbody>
</table>
```

Route-Action:
```
route-instance    route             next-hop         state
----------------- ----------------- ---------------- -------------
inet.0            99.1.1.0          12.12.12.2       APPLIED
```

Interface-Action:
```
interface         policy action   admin state action status
----------------- --------------- ----------- -----------------
at-2/0/0          Enable          UP          FAILOVER
g-0/0/2.2        Enable          UP          FAILOVER
g-0/0/2.3        Enable          UP          FAILOVER
```

Sample Output

show services ip-monitoring status

When the probe succeeds and the policy is not applied, the output is as follows:

```plaintext
user@host> show services ip-monitoring status

Policy payment (Status: PASS)
RPM Probes:

<table>
<thead>
<tr>
<th>Probe name</th>
<th>Test Name</th>
<th>Address</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe-Payment-Server</td>
<td>paysvr</td>
<td>9.9.9.2</td>
<td>PASS</td>
</tr>
</tbody>
</table>
```

Route-Action:
```
route-instance    route             next-hop         state
----------------- ----------------- ---------------- -------------
inet.0            9.9.9.0/24        e1-6/0/0.0       NOT-APPLIED
```

Sample Output

show services ip-monitoring status

When the probe fails and the policy is applied, the output is as follows:
user@host> show services ip-monitoring status

Policy payment (Status: FAIL)

RPM Probes:

<table>
<thead>
<tr>
<th>Probe name</th>
<th>Test Name</th>
<th>Address</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe-Payment-Server</td>
<td>paysvr</td>
<td>9.9.9.2</td>
<td>FAIL</td>
</tr>
</tbody>
</table>

Route-Action:

<table>
<thead>
<tr>
<th>route-instance</th>
<th>route</th>
<th>next-hop</th>
<th>state</th>
</tr>
</thead>
<tbody>
<tr>
<td>inet.0</td>
<td>9.9.0/24</td>
<td>e1-6/0/0.0</td>
<td>APPLIED</td>
</tr>
</tbody>
</table>
show services rpm twamp client connection

Supported Platforms SRX Series

Syntax
```
show services rpm twamp client connection <connection-name>
```

Release Information Command introduced in Junos OS Release 15.1X49-D110 for SRX Series devices.

Description Display information about the connections established between the real-time performance monitoring (RPM) Two-Way Active Measurement Protocol (TWAMP) server and control clients. By default, all established sessions are displayed, unless you specify a control connection name when you issue the command.

Options
```
connection-name  (Optional) Display information about the specified control connection or TWAMP control client.
```

Required Privilege view

List of Sample Output show services rpm twamp client connection on page 915

Output Fields
Table 145 on page 914 lists the output fields for the show services rpm twamp client connection command. Output fields are listed in the approximate order in which they appear.

Table 145: show services rpm twamp client connection Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection Name</td>
<td>Connection name that uniquely identifies the connection between the TWAMP server and a particular client.</td>
</tr>
<tr>
<td>Client address</td>
<td>Client IP address.</td>
</tr>
<tr>
<td>Client port</td>
<td>Client port number.</td>
</tr>
<tr>
<td>Server address</td>
<td>Server IP address.</td>
</tr>
<tr>
<td>Server port</td>
<td>Server port number.</td>
</tr>
<tr>
<td>Session count</td>
<td>Session count.</td>
</tr>
<tr>
<td>Auth mode</td>
<td>Authentication mode.</td>
</tr>
</tbody>
</table>
Sample Output

`show services rpm twamp client connection`

```plaintext
Connection      Client           Client Server           Server Session Auth
Name            address          port   address          port   count   mode
cl              123.0.0.2         60530  123.0.0.1          1862       1
Unauthenticated
```
show services rpm twamp client history-results

Supported Platforms
SRX Series

Syntax
show services rpm history-results
<brief | detail>
<control-connection control-connection-name>
<since time>
<test-session test-session-name>

Release Information
Command introduced in Junos OS Release 15.1X49-D110 for SRX Series devices.

Description
Display standard information about the results of the last 50 probes for each real-time performance monitoring (RPM) Two-Way Active Measurement Protocol (TWAMP) instance. You can also view the historical results of the probes or test packets sent from a TWAMP client to a TWAMP server for a particular control connection, or a test session associated with a control connection.

Options
brief | detail—(Optional) Display the specified level of output.

control-connection control-connection-name—(Optional) Display information for the specified control connection between a TWAMP client and a TWAMP server.

since time—(Optional) Display information from the specified time. Specify time as yyyy-mm-dd hh:mm:ss.

test-session test-session-name—(Optional) Display information for the specified test session associated with a control connection between a TWAMP client and a TWAMP server.

Required Privilege Level
view

List of Sample Output
show services rpm twamp client history-results on page 917

Output Fields
Table 146 on page 916 lists the output fields for the show services rpm twamp client history-results command. Output fields are listed in the approximate order in which they appear.

Table 146: show services rpm twamp client history-results Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>Probe owner or the TWAMP client.</td>
</tr>
<tr>
<td>Test</td>
<td>Name of a test for a TWAMP probe instance.</td>
</tr>
<tr>
<td>Probe received</td>
<td>Timestamp when the probe result was received.</td>
</tr>
</tbody>
</table>
Table 146: show services rpm twamp client history-results Output

Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round trip time</td>
<td>Average ping round-trip time (RTT), in microseconds.</td>
</tr>
<tr>
<td>Probes sent</td>
<td>Timestamp when the probe result was sent.</td>
</tr>
<tr>
<td>Round trip time</td>
<td>Average ping RTT, in microseconds.</td>
</tr>
</tbody>
</table>

Sample Output

show services rpm twamp client history-results

```
user@host> show services rpm twamp client history-results

Owner, Test                 Probe Sent              Probe received
Round trip time

c2, t2                      Fri Jul 21 05:11:06 2017 Fri Jul 21 05:11:06 2017
  241 usec

c2, t2                      Fri Jul 21 05:11:07 2017 Fri Jul 21 05:11:07 2017
  254 usec

c2, t2                      Fri Jul 21 05:11:08 2017 Fri Jul 21 05:11:08 2017
  248 usec

c2, t2                      Fri Jul 21 05:11:09 2017 Fri Jul 21 05:11:09 2017
  241 usec

c2, t2                      Fri Jul 21 05:11:10 2017 Fri Jul 21 05:11:10 2017
  245 usec

c2, t2                      Fri Jul 21 05:11:11 2017 Fri Jul 21 05:11:11 2017
  231 usec

c2, t2                      Fri Jul 21 05:11:12 2017 Fri Jul 21 05:11:12 2017
  258 usec

c2, t2                      Fri Jul 21 05:11:13 2017 Fri Jul 21 05:11:13 2017
  232 usec

c2, t2                      Fri Jul 21 05:11:14 2017 Fri Jul 21 05:11:14 2017
  236 usec

c2, t2                      Fri Jul 21 05:11:15 2017 Fri Jul 21 05:11:15 2017
  236 usec

c2, t2                      Fri Jul 21 05:11:16 2017 Fri Jul 21 05:11:16 2017
  213 usec
```
show services rpm twamp client probe-results

Supported Platforms
SRX Series

Syntax
show services rpm twamp client probe-results
<control-connection control-connection-name>
<test-session test-session-name>

Release Information
Command introduced in Junos OS Release 15.1X49-D110 for SRX Series devices.

Description
Display the results of the most recent real-time performance monitoring (RPM) Two-Way Active Measurement Protocol (TWAMP) probes sent from the TWAMP client to the TWAMP server. You can also view the results of the probes or test packets sent from a TWAMP client to a TWAMP server for a particular control connection, or a test session associated with a control connection.

Options
control-connection control-connection-name—(Optional) Display information for the specified control connection between a TWAMP client and a TWAMP server.

test-session test-session-name—(Optional) Display information for the specified test session associated with a control connection between a TWAMP client and a TWAMP server.

Required Privilege
view

List of Sample Output
show services rpm twamp client probe-results on page 921

Output Fields
Table 147 on page 918 lists the output fields for the show services twamp client probe-results command. Output fields are listed in the approximate order in which they appear.

Table 147: show services twamp client probe-results Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>Name of the session-sender or the control client, which is the TWAMP client. When you configure the control-client-name option at the [edit services twamp client control-connection] hierarchy level, this field displays the configured owner name or the client name.</td>
</tr>
<tr>
<td>Test</td>
<td>Name of a test representing a collection of probes. When you configure the test-session test-name statement at the [edit services owner] hierarchy level, the field displays the configured test name.</td>
</tr>
<tr>
<td>server-address</td>
<td>Destination address used for the probes.</td>
</tr>
<tr>
<td>server-port</td>
<td>Destination port used for the probes.</td>
</tr>
<tr>
<td>Client address</td>
<td>Source or TWAMP client address used for the probes.</td>
</tr>
<tr>
<td>Client port</td>
<td>Source or TWAMP client port used for the probes.</td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Reflector address</td>
<td>Session reflector or TWAMP server address used for the probes.</td>
</tr>
<tr>
<td>Reflector port</td>
<td>Session reflector or TWAMP server port used for the probes.</td>
</tr>
<tr>
<td>Test size</td>
<td>Number of probes within a test.</td>
</tr>
<tr>
<td>Probe results</td>
<td>Raw measurement of a particular probe sample done by a remote host. This data is provided separately from the calculated results. The following information is contained in the raw measurement:</td>
</tr>
<tr>
<td></td>
<td>• Response received—Timestamp when the probe result was determined.</td>
</tr>
<tr>
<td></td>
<td>• Client and server hardware timestamps—if timestamps are configured, an entry appears at this point.</td>
</tr>
<tr>
<td></td>
<td>• Rtt—Average ping round-trip time (RTT), in microseconds.</td>
</tr>
<tr>
<td></td>
<td>• Egress jitter—Egress jitter, in microseconds.</td>
</tr>
<tr>
<td></td>
<td>• Ingress jitter—Ingress jitter, in microseconds.</td>
</tr>
<tr>
<td></td>
<td>• Round trip jitter—Round-trip jitter, in microseconds.</td>
</tr>
<tr>
<td></td>
<td>• Egress interarrival jitter—Egress interarrival jitter, in microseconds.</td>
</tr>
<tr>
<td></td>
<td>• Ingress interarrival jitter—Ingress interarrival jitter, in microseconds.</td>
</tr>
<tr>
<td></td>
<td>• Round trip interarrival jitter—Round-trip interarrival jitter, in microseconds.</td>
</tr>
<tr>
<td>Results over current test</td>
<td>Probes are grouped into tests, and the statistics are calculated for each test. If a test contains 10 probes, the average, minimum, and maximum results are calculated from the results of those 10 probes. If the command is issued while the test is in progress, the statistics use information from the completed probes.</td>
</tr>
<tr>
<td></td>
<td>• Probes sent—Number of probes sent within the current test.</td>
</tr>
<tr>
<td></td>
<td>• Probes received—Number of probe responses received within the current test.</td>
</tr>
<tr>
<td></td>
<td>• Loss percentage—Percentage of lost probes for the current test.</td>
</tr>
<tr>
<td></td>
<td>• Measurement—Measurement type. Possible values are round-trip time, positive round-trip jitter, negative round-trip jitter, egress time, positive egress jitter, negative egress jitter, ingress time, positive ingress jitter, negative ingress jitter, and, for the probe type <code>icmp-ping-timestamp</code>, the egress delay and ingress delay. For each measurement type, the following individual calculated results are provided:</td>
</tr>
<tr>
<td></td>
<td>• Samples—Number of probes.</td>
</tr>
<tr>
<td></td>
<td>• Minimum—Minimum RTT, ingress delay, or egress delay measured over the course of the current test.</td>
</tr>
<tr>
<td></td>
<td>• Maximum—Maximum RTT, ingress delay, or egress delay measured over the course of the current test.</td>
</tr>
<tr>
<td></td>
<td>• Average—Average RTT, ingress delay, or egress delay measured over the course of the current test.</td>
</tr>
<tr>
<td></td>
<td>• Peak to peak—Peak-to-peak difference, in microseconds.</td>
</tr>
<tr>
<td></td>
<td>• Stddev—Standard deviation, in microseconds.</td>
</tr>
<tr>
<td></td>
<td>• Sum—Statistical sum.</td>
</tr>
</tbody>
</table>
Table 147: show services twamp client probe-results Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results over last test</td>
<td>Results for the most recently completed test. If the command is issued while the first test is in progress, this information is not displayed:</td>
</tr>
<tr>
<td></td>
<td>• Probes sent—Number of probes sent for the most recently completed test.</td>
</tr>
<tr>
<td></td>
<td>• Probes received—Number of probe responses received for the most recently completed test.</td>
</tr>
<tr>
<td></td>
<td>• Loss percentage—Percentage of lost probes for the most recently completed test.</td>
</tr>
<tr>
<td></td>
<td>• Test completed—Time the most recent test was completed.</td>
</tr>
<tr>
<td></td>
<td>• Measurement—Measurement type. Possible values are round-trip time, positive round-trip jitter, negative round-trip jitter, egress time, positive egress jitter, negative egress jitter, ingress time, positive ingress jitter, negative ingress jitter, and, for the probe type <code>icmp-ping-timestamp</code>, the egress delay and ingress delay.</td>
</tr>
<tr>
<td></td>
<td>For each measurement type, the following individually calculated results are provided:</td>
</tr>
<tr>
<td></td>
<td>• Samples—Number of probes.</td>
</tr>
<tr>
<td></td>
<td>• Minimum—Minimum RTT, ingress delay, or egress delay measured for the most recently completed test.</td>
</tr>
<tr>
<td></td>
<td>• Maximum—Maximum RTT, ingress delay, or egress delay measured for the most recently completed test.</td>
</tr>
<tr>
<td></td>
<td>• Average—Average RTT, ingress delay, or egress delay measured for the most recently completed test.</td>
</tr>
<tr>
<td></td>
<td>• Peak to peak—Peak-to-peak difference, in microseconds.</td>
</tr>
<tr>
<td></td>
<td>• Stddev—Standard deviation, in microseconds.</td>
</tr>
<tr>
<td></td>
<td>• Sum—Statistical sum.</td>
</tr>
</tbody>
</table>

Results over all tests	Displays statistics made for all the probes, independently of the grouping into tests, as well as statistics for the current test.
	• **Probes sent**—Number of probes sent in all tests.
	• **Probes received**—Number of probe responses received in all tests.
	• **Loss percentage**—Percentage of lost probes in all tests.
	• **Measurement**—Measurement type. Possible values are round-trip time, positive round-trip jitter, negative round-trip jitter, egress time, positive egress jitter, negative egress jitter, ingress time, positive ingress jitter, negative ingress jitter, and, for the probe types `icmp-ping-timestamp` and `udp-ping-timestamp`, the egress delay and ingress delay.
	For each measurement type, the following individually calculated results are provided:
	• **Samples**—Number of probes.
	• **Minimum**—Minimum RTT, ingress delay, or egress delay measured over the course of the current test.
	• **Maximum**—Maximum RTT, ingress delay, or egress delay measured over the course of the current test.
	• **Average**—Average RTT, ingress delay, or egress delay measured over the course of the current test.
	• **Peak to peak**—Peak-to-peak difference, in microseconds.
	• **Stddev**—Standard deviation, in microseconds.
	• **Sum**—Statistical sum.
Sample Output

show services rpm twamp client probe-results

user@host> show services rpm twamp client probe-results
Owner: c2, Test: t2
server-address: 23.0.0.1, server-port: 862, Client address: 23.0.0.1,
Client port: 63223
Reflector address: 23.0.0.1, Reflector port: 10000,
Sender address: 23.0.0.1, sender-port: 10000
Test size: 400000 probes
Probe results:
 Response received
Fri Jul 21 05:12:12 2017
Fri Jul 21 05:12:12 2017
 Rtt: 242 usec, Egress jitter: -9 usec, Ingress jitter: 24 usec,
 Round trip jitter: 15 usec, Egress interarrival jitter: 14 usec,
 Ingress interarrival jitter: 18 usec,
 Round trip interarrival jitter: 16 usec
Results over current test:
 Probes sent: 67, Probes received: 67, Loss percentage: 0.000000
Measurement: Round trip time
Samples: 67, Minimum: 206 usec, Maximum: 266 usec, Average: 243 usec,
 Peak to peak: 60 usec, Stdddev: 11 usec, Sum: 16283 usec
Measurement: Negative egress jitter
Samples: 66, Minimum: 4 usec, Maximum: 25 usec, Average: 14 usec,
 Peak to peak: 21 usec, Stdddev: 4 usec, Sum: 935 usec
Measurement: Positive ingress jitter
Samples: 55, Minimum: 0 usec, Maximum: 62 usec, Average: 19 usec,
 Peak to peak: 62 usec, Stdddev: 13 usec, Sum: 1023 usec
Measurement: Negative ingress jitter
Samples: 11, Minimum: 1 usec, Maximum: 23 usec, Average: 8 usec,
 Peak to peak: 22 usec, Stdddev: 6 usec, Sum: 87 usec
Measurement: Positive round trip jitter
Samples: 33, Minimum: 0 usec, Maximum: 49 usec, Average: 14 usec,
 Peak to peak: 49 usec, Stdddev: 11 usec, Sum: 463 usec
Measurement: Negative round trip jitter
Samples: 33, Minimum: 1 usec, Maximum: 34 usec, Average: 14 usec,
 Peak to peak: 33 usec, Stdddev: 8 usec, Sum: 462 usec
Results over all tests:
 Probes sent: 67, Probes received: 67, Loss percentage: 0.000000
Measurement: Round trip time
Samples: 67, Minimum: 206 usec, Maximum: 266 usec, Average: 243 usec,
 Peak to peak: 60 usec, Stdddev: 11 usec, Sum: 16283 usec
Measurement: Negative egress jitter
Samples: 66, Minimum: 4 usec, Maximum: 25 usec, Average: 14 usec,
 Peak to peak: 21 usec, Stdddev: 4 usec, Sum: 935 usec
Measurement: Positive ingress jitter
Samples: 55, Minimum: 0 usec, Maximum: 62 usec, Average: 19 usec,
 Peak to peak: 62 usec, Stdddev: 13 usec, Sum: 1023 usec
Measurement: Negative ingress jitter
Samples: 11, Minimum: 1 usec, Maximum: 23 usec, Average: 8 usec,
 Peak to peak: 22 usec, Stdddev: 6 usec, Sum: 87 usec
Measurement: Positive round trip jitter
Samples: 33, Minimum: 0 usec, Maximum: 49 usec, Average: 14 usec,
 Peak to peak: 49 usec, Stdddev: 11 usec, Sum: 463 usec
Measurement: Negative round trip jitter
Samples: 33, Minimum: 1 usec, Maximum: 34 usec, Average: 14 usec,
 Peak to peak: 33 usec, Stdddev: 8 usec, Sum: 462 usec
show services rpm twamp client session

Supported Platforms
SRX Series

Syntax

show services rpm twamp client session
<control-connection control-connection-name>
<test-session test-session-name>

Release Information

Command introduced in Junos OS Release 15.1X49-D110 for SRX Series devices.

Description

Display information about the sessions established between the real-time performance monitoring (RPM) Two-Way Active Measurement Protocol (TWAMP) server and control clients for control packets and data packets. By default, all established control connection and data connection or test sessions are displayed, unless you specify a control connection name or a test session name when you issue the command.

Options

control-connection control-connection-name—(Optional) Display information about the specified control connection, which is established for control packets exchanged between a TWAMP client and a TWAMP server.

test-session test-session-name—(Optional) Display information about the specified test session, which is established for data packets transmitted between a TWAMP client and a TWAMP server, associated with a control connection.

Required Privilege Level

view

List of Sample Output

show services rpm twamp client session on page 924

Output Fields

Table 148 on page 923 lists the output fields for the show services rpm twamp client session command. Output fields are listed in the approximate order in which they appear.

Table 148: show services rpm twamp client session Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection Name</td>
<td>Name of the control connection that uniquely identifies the connection between the TWAMP server and the TWAMP client.</td>
</tr>
<tr>
<td>Session Name</td>
<td>Name of the test session that uniquely identifies the data session between the TWAMP server and the TWAMP client.</td>
</tr>
<tr>
<td>Sender address</td>
<td>Sender IP address.</td>
</tr>
<tr>
<td>Sender port</td>
<td>Sender port number.</td>
</tr>
<tr>
<td>Reflector address</td>
<td>Reflector IP address.</td>
</tr>
<tr>
<td>Reflector port</td>
<td>Reflector port number.</td>
</tr>
</tbody>
</table>
Sample Output

show services rpm twamp client session

```
user@host> show services rpm twamp client session
root> show services rpm twamp client session

+-----------------+-----------------+---------------------+---------------------+---------------------+---------------------+
<table>
<thead>
<tr>
<th>Connection Name</th>
<th>Session Name</th>
<th>Sender address</th>
<th>Sender port</th>
<th>Sender Reflector address</th>
<th>Sender Reflector port</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>t1</td>
<td>123.0.0.2</td>
<td>10001</td>
<td>123.0.0.1</td>
<td>10001</td>
</tr>
</tbody>
</table>
+-----------------+-----------------+---------------------+---------------------+--------------------------+-----------------------+
```
show services rpm twamp server connection

Supported Platforms
SRX Series

Syntax
`show services rpm twamp server connection <connection-id>`

Release Information
Command introduced in Junos OS Release 15.1X49-D110 for SRX Series devices.

Description
Display information about the connections established between the real-time performance monitoring (RPM) Two-Way Active Measurement Protocol (TWAMP) server and control clients. By default, all established sessions are displayed, unless you specify a session ID when you issue the command.

Options
- `connection-id`—(Optional) Identifier of the connection that you want to display information about.

Required Privilege Level
view

List of Sample Output
show services rpm twamp server connection on page 926

Output Fields
Table 145 on page 914 lists the output fields for the `show services rpm twamp server connection` command. Output fields are listed in the approximate order in which they appear.

Table 149: show services rpm twamp server connection Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection ID</td>
<td>Connection ID that uniquely identifies the connection between the TWAMP server and a particular client.</td>
</tr>
<tr>
<td>Client address</td>
<td>Client IP address.</td>
</tr>
<tr>
<td>Client port</td>
<td>Client port number.</td>
</tr>
<tr>
<td>Server address</td>
<td>Server IP address.</td>
</tr>
<tr>
<td>Server port</td>
<td>Server port number.</td>
</tr>
<tr>
<td>Session count</td>
<td>Session count.</td>
</tr>
<tr>
<td>Auth mode</td>
<td>Authentication mode.</td>
</tr>
</tbody>
</table>
Sample Output

`show services rpm twamp server connection`

```
<table>
<thead>
<tr>
<th>Connection ID</th>
<th>Client address</th>
<th>Client port</th>
<th>Server address</th>
<th>Server port</th>
<th>Session count</th>
<th>Auth</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>123.0.0.1</td>
<td>50821</td>
<td>123.0.0.2</td>
<td>862</td>
<td>1</td>
<td>Unauthenticated</td>
</tr>
</tbody>
</table>
```

show services rpm twamp server session

Supported Platforms
SRX Series

Syntax
show services rpm twamp server session
<session-id>

Release Information
Command introduced in Junos OS Release 15.1X49-D110 for SRX Series devices.

Description
Display information about the sessions established between the real-time performance monitoring (RPM) Two-Way Active Measurement Protocol (TWAMP) server and control clients. By default, all established sessions are displayed, unless you specify a session ID when you issue the command.

Options
session-id—(Optional) Identifier of the session that you want to display information about.

Required Privilege Level
view

List of Sample Output
show services rpm twamp server session on page 927

Output Fields
Table 150 on page 927 lists the output fields for the show services rpm twamp server session command. Output fields are listed in the approximate order in which they appear.

Table 150: show services rpm twamp server session Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session ID</td>
<td>Session ID that uniquely identifies the session between the TWAMP server and a particular client.</td>
</tr>
<tr>
<td>Connection ID</td>
<td>Connection ID that uniquely identifies the connection between the TWAMP server and a particular client.</td>
</tr>
<tr>
<td>Sender address</td>
<td>Sender IP address.</td>
</tr>
<tr>
<td>Sender port</td>
<td>Sender port number.</td>
</tr>
<tr>
<td>Reflector address</td>
<td>Reflector IP address.</td>
</tr>
<tr>
<td>Reflector port</td>
<td>Reflector port number.</td>
</tr>
</tbody>
</table>

Sample Output
show services rpm twamp server session

user@host> show services rpm twamp server session
<table>
<thead>
<tr>
<th>Session ID</th>
<th>Connection ID</th>
<th>Sender Address</th>
<th>Sender Port</th>
<th>Reflector Address</th>
<th>Reflector Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td>123.0.0.1</td>
<td>40000</td>
<td>123.0.0.2</td>
<td>40000</td>
</tr>
</tbody>
</table>
show snmp health-monitor

Supported Platforms
- EX Series, M Series, MX Series, PTX Series, QFabric System, QFX Series, T Series

Syntax
```
show snmp health-monitor
<alarms <detail>> | <logs>
```

Release Information
- Command introduced in Junos OS Release 8.0.
- Command introduced in Junos OS Release 9.0 for EX Series switches.
- Statement introduced in Junos OS Release 11.1 for the QFX Series.

Description
Display information about Simple Network Management Protocol (SNMP) health monitor alarms and logs.

Options
- **none**—Display information about all health monitor alarms and logs.
- **alarms <detail>**—(Optional) Display detailed information about health monitor alarms.
- **logs**—(Optional) Display information about health monitor logs.

Required Privilege
- view

List of Sample Output
- show snmp health-monitor on page 931
- show snmp health-monitor alarms detail on page 933

Output Fields
Table 151 on page 929 describes the output fields for the `show snmp health-monitor` command. Output fields are listed in the approximate order in which they appear.

Table 151: show snmp health-monitor Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm Index</td>
<td>Alarm identifier.</td>
<td>All levels</td>
</tr>
<tr>
<td>Variable description</td>
<td>Description of the health monitor object instance being monitored.</td>
<td>All levels</td>
</tr>
<tr>
<td>Variable name</td>
<td>Name of the health monitor object instance being monitored.</td>
<td>All levels</td>
</tr>
<tr>
<td>Value</td>
<td>Current value of the monitored variable in the most recent sample interval.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 151: show snmp health-monitor Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>State of the alarm or event entry:</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• Alarms:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• active—Entry is fully configured and activated.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• failing threshold crossed—Value of the variable has crossed the lower threshold limit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• rising threshold crossed—Value of the variable has crossed the upper threshold limit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• under creation—Entry is being configured and is not yet activated.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• startup—Alarm is waiting for the first sample of the monitored variable.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• object not available—Monitored variable of that type is not available to the health monitor agent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• instance not available—Monitored variable's instance is not available to the health monitor agent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• object type invalid—Monitored variable is not a numeric value.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• object processing errored—An error occurred when the monitored variable was processed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• unknown—State is not one of the above.</td>
<td></td>
</tr>
<tr>
<td>Variable OID</td>
<td>Object ID to which the variable name is resolved. The format is x.x.x.x.</td>
<td>detail</td>
</tr>
<tr>
<td>Sample type</td>
<td>Method of sampling the monitored variable and calculating the value to compare against the upper and lower thresholds. It can have the value of absolute value or delta value.</td>
<td>detail</td>
</tr>
<tr>
<td>Startup alarm</td>
<td>Alarm that might be sent when this entry is first activated, depending on the following criteria:</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>• Alarm is sent when one of the following situations exists:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Value of the alarm is above or equal to the rising threshold and the startup type is either rising alarm or rising or falling alarm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Value of the alarm is below or equal to the falling threshold and the startup type is either falling alarm or rising or falling alarm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Alarm is not sent when one of the following situations exists:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Value of the alarm is above or equal to the rising threshold and the startup type is falling alarm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Value of the alarm is below or equal to the falling threshold and the startup type is rising alarm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Value of the alarm is between the thresholds.</td>
<td></td>
</tr>
<tr>
<td>Owner</td>
<td>Name of the entry configured by the user. If the entry was created through the CLI, the owner has monitor prepended to it.</td>
<td>detail</td>
</tr>
<tr>
<td>Creator</td>
<td>Mechanism by which the entry was configured (Health Monitor).</td>
<td>detail</td>
</tr>
<tr>
<td>Sample interval</td>
<td>Time period between samples (in seconds).</td>
<td>detail</td>
</tr>
<tr>
<td>Rising threshold</td>
<td>Upper limit threshold value as a percentage of the maximum possible value.</td>
<td>detail</td>
</tr>
</tbody>
</table>
Table 151: show snmp health-monitor Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falling threshold</td>
<td>Lower limit threshold value as a percentage of the maximum possible value.</td>
<td>detail</td>
</tr>
<tr>
<td>Rising event index</td>
<td>Event triggered when the rising threshold is crossed.</td>
<td>detail</td>
</tr>
<tr>
<td>Falling event index</td>
<td>Event triggered when the falling threshold is crossed.</td>
<td>detail</td>
</tr>
</tbody>
</table>

Sample Output

show snmp health-monitor

```
user@host> show snmp health-monitor

Alarm
Index Variable description                          Value   State
32768 Health Monitor: root file system utilization jnxHrStoragePercentUsed.1 58 active
32769 Health Monitor: /config file system utilization jnxHrStoragePercentUsed.2 0 active
32770 Health Monitor: RE 0 CPU utilization jnxOperatingCPU.9.1.0.0 0 active
32773 Health Monitor: RE 0 Memory utilization jnxOperatingBuffer.9.1.0.0 35 active
32775 Health Monitor: jkernel daemon CPU utilization
    Init daemon 0 active
    Chassis daemon 50 active
    Firewall daemon 0 active
    Interface daemon 5 active
    SNMP daemon 11 active
    MIB2 daemon 42 active
    Sonet APS daemon 0 active
    VRRP daemon 0 active
    Alarm daemon 3 active
    PFE daemon 0 active
    CRAFT daemon 0 active
    Traffic sampling control daemon 0 active
    Ilmi daemon 0 active
    Remote operations daemon 0 active
    CoS daemon 0 active
    Pic Services Logging daemon 0 active
    Internal Routing Service Daemon 3 active
    Network Access Service daemon 0 active
    Forwarding UDP daemon 0 active
    Routing socket proxy daemon 0 active
    Disk Monitoring daemon 1 active
    Inet daemon 0 active
    Syslog daemon 0 active
    Adaptive Services PIC daemon 0 active
    ECC parity errors logging Daemon 0 active
    Layer 2 Tunneling Protocol daemon 0 active
```
<table>
<thead>
<tr>
<th>Daemon</th>
<th>Active Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPPoE daemon</td>
<td>3 active</td>
</tr>
<tr>
<td>Redundancy device daemon</td>
<td>0 active</td>
</tr>
<tr>
<td>PPP daemon</td>
<td>0 active</td>
</tr>
<tr>
<td>Dynamic Flow Capture Daemon</td>
<td>0 active</td>
</tr>
</tbody>
</table>

32776 Health Monitor: jroute daemon CPU utilization
- Routing protocol daemon: 1 active
- Management daemon: 0 active
- Management daemon: 0 active
- Command line interface: 4 active
- Periodic Packet Management daemon: 0 active
- Link Management daemon: 0 active
- Pragmatic General Multicast daemon: 0 active
- Bidirectional Forwarding Detection daemon: 0 active
- SRC daemon: 0 active
- audit daemon: 0 active
- Event daemon: 0 active

32777 Health Monitor: jcrypto daemon CPU utilization
- IPSec Key Management daemon: 0 active

32779 Health Monitor: jkernel daemon Memory utilization
- Init daemon: 47384 active
- Chassis daemon: 20204 active
- Firewall daemon: 1956 active
- Interface daemon: 3340 active
- SNMP daemon: 4540 active
- MIBZ daemon: 3880 active
- Sonet APS daemon: 2632 active
- VRRP daemon: 2672 active
- Alarm daemon: 1856 active
- PFE daemon: 2600 active
- CRAFT daemon: 2000 active
- Traffic sampling control daemon: 3164 active
- Ilmi daemon: 2132 active
- Remote operations daemon: 2964 active
- CoS daemon: 3044 active
- Pic Services Logging daemon: 1944 active
- Internal Routing Service Daemon: 1392 active
- Network Access Service daemon: 1992 active
- Forwarding UDP daemon: 1876 active
- Routing socket proxy daemon: 1296 active
- Disk Monitoring daemon: 1180 active
- Inet daemon: 1296 active
- Syslog daemon: 1180 active
- Adaptive Services PIC daemon: 3220 active
- ECC parity errors logging Daemon: 1100 active
- Layer 2 Tunneling Protocol daemon: 3372 active
- PPPoE daemon: 1424 active
- Redundancy device daemon: 1820 active
- PPP daemon: 1296 active
- Dynamic Flow Capture Daemon: 10740 active

32780 Health Monitor: jroute daemon Memory utilization
- Routing protocol daemon: 8104 active
- Management daemon: 13360 active
- Management daemon: 19252 active
- Command line interface: 9912 active
- Periodic Packet Management daemon: 1484 active
- Link Management daemon: 2016 active
- Pragmatic General Multicast daemon: 1968 active
- Bidirectional Forwarding Detection daemon: 1956 active
show snmp health-monitor alarms detail

user@host> show snmp health-monitor alarms detail

Alarm Index 32768:
Variable name jnxHrStoragePercentUsed.1
Variable OID 1.3.6.1.4.1.2636.3.31.1.1.1.1.1
Sample type absolute value
Startup alarm rising alarm
Owner Health Monitor: root file system utilization
Creator Health Monitor
State active
Sample interval 300 seconds
Rising threshold 80
Falling threshold 70
Rising event index 32768
Falling event index 32768
Instance Value: 58
Instance State: active

Alarm Index 32769:
Variable name jnxHrStoragePercentUsed.2
Variable OID 1.3.6.1.4.1.2636.3.31.1.1.1.1.2
Sample type absolute value
Startup alarm rising alarm
Owner Health Monitor: /config file system utilization
Creator Health Monitor
State active
Sample interval 300 seconds
Rising threshold 80
Falling threshold 70
Rising event index 32768
Falling event index 32768
Instance Value: 0
Instance State: active

Alarm Index 32770:
Variable name jnxOperatingCPU.9.1.0.0
Variable OID 1.3.6.1.4.1.2636.3.1.13.1.8.9.1.0.0
Sample type absolute value
Startup alarm rising alarm
Owner Health Monitor: RE 0 CPU utilization
Creator Health Monitor
State active
Sample interval 300 seconds
Rising threshold 80
Falling threshold 70
Rising event index 32768
Falling event index 32768
Instance Value: 0
Alarm Index 32773:
Variable name: jnxOperatingBuffer.9.1.0.0
Variable OID: 1.3.6.1.4.1.2636.3.13.1.11.9.1.0.0
Sample type: absolute value
Startup alarm: rising alarm
Owner: Health Monitor: RE 0 Memory utilization
Creator: Health Monitor
State: active
Sample interval: 300 seconds
Rising threshold: 80
Falling threshold: 70
Rising event index: 32768
Falling event index: 32768
Instance Value: 35
Instance State: active

Alarm Index 32775:
Variable name: sysApplElmtRunCPU.3
Variable OID: 1.3.6.1.2.1.54.1.2.3.1.9.3
Sample type: delta value
Startup alarm: rising alarm
Owner: Health Monitor: jkernel daemon CPU utilization
Creator: Health Monitor
State: active
Sample interval: 300 seconds
Rising threshold: 24000
Falling threshold: 21000
Rising event index: 32768
Falling event index: 32768
Instance Name: sysApplElmtRunCPU.3.1.1
Instance Description: Init daemon
Instance Value: 0
Instance State: active

Instance Name: sysApplElmtRunCPU.3.2.2786
Instance Description: Chassis daemon
Instance Value: 50
Instance State: active

Instance Name: sysApplElmtRunCPU.3.3.2938
Instance Description: Firewall daemon
Instance Value: 0
Instance State: active

Instance Name: sysApplElmtRunCPU.3.4.2942
Instance Description: Interface daemon
Instance Value: 5
Instance State: active

Instance Name: sysApplElmtRunCPU.3.7.7332
Instance Description: SNMP daemon
Instance Value: 11
Instance State: active

Instance Name: sysApplElmtRunCPU.3.9.2914
Instance Description: MIB2 daemon
Instance Value: 42
Instance State: active

Instance Name: sysApplElmtRunCPU.3.12.2916
Instance Description: Sonet APS daemon
Instance Value: 0
Instance State: active

Instance Name: sysApplElmtRunCPU.3.13.2917
Instance Description: VRRP daemon
Instance Value: 0
Instance State: active

Instance Name: sysApplElmtRunCPU.3.14.2787
Instance Description: Alarm daemon
Instance Value: 3
Instance State: active

Instance Name: sysApplElmtRunCPU.3.15.2940
Instance Description: PFE daemon
Instance Value: 0
Instance State: active

Instance Name: sysApplElmtRunCPU.3.16.2788
Instance Description: CRAFT daemon
Instance Value: 0
Instance State: active

Instance Name: sysApplElmtRunCPU.3.17.2918
Instance Description: Traffic sampling control daemon

---(more 23%)---
show snmp inform-statistics

Supported Platforms
- EX Series
- M Series
- MX Series
- OCX1100
- PTX Series
- QFabric System
- QFX Series
- T Series

Syntax
```
show snmp inform-statistics
```

Release Information
- Command introduced in Junos OS Release 7.4.
- Command introduced in Junos OS Release 9.0 for EX Series switches.
- Command introduced in Junos OS Release 11.1 for the QFX Series.
- Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Display information about Simple Network Management Protocol (SNMP) inform requests.

Options
This command has no options.

Required Privilege Level
- view

List of Sample Output
```
show snmp inform-statistics on page 937
```

Output Fields
Table 152 on page 936 describes the output fields for the `show snmp inform-statistics` command. Output fields are listed in the approximate order in which they appear.

Table 152: show snmp inform-statistics Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Name</td>
<td>Name of the device configured to receive and respond to SNMP informs.</td>
</tr>
<tr>
<td>Address</td>
<td>IP address of the target device.</td>
</tr>
<tr>
<td>Sent</td>
<td>Number of informs sent to the target device and acknowledged by the target device.</td>
</tr>
<tr>
<td>Pending</td>
<td>Number of informs held in memory pending a response from the target device.</td>
</tr>
<tr>
<td>Discarded</td>
<td>Number of informs discarded after the specified number of retransmissions to the target device were attempted.</td>
</tr>
<tr>
<td>Timeouts</td>
<td>Number of informs that did not receive an acknowledgement from the target device within the timeout specified.</td>
</tr>
<tr>
<td>Probe Failures</td>
<td>Connection failures that occurred (for example, when the target server returned invalid content or you incorrectly configured the target address).</td>
</tr>
</tbody>
</table>
Sample Output

`show snmp inform-statistics`

```
user@host> show snmp inform-statistics
Inform Request Statistics:
  Target Name: TA1_v3_md5_none Address: 172.17.20.184
    Sent: 176, Pending: 0
    Discarded: 0, Timeouts: 0, Probe Failures: 0
  Target Name: TA2_v3_sha_none Address: 192.168.110.59
    Sent: 0, Pending: 4
    Discarded: 84, Timeouts: 0, Probe Failures: 258
  Target Name: TA5_v2_none Address: 172.17.20.184
    Sent: 0, Pending: 0
    Discarded: 2, Timeouts: 10, Probe Failures: 0
```
show snmp mib

Supported Platforms
EX Series, M Series, MX Series, OCX1100, PTX Series, QFX Series, T Series

Syntax
show snmp mib (get | get-next | walk) (ascii | decimal) object-id

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
ascii and **decimal** options introduced in Junos OS Release 9.6.
ascii and **decimal** options introduced in Junos OS Release 9.6 for EX Series switches.
Command introduced in Junos OS Release 11.1 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Display local Simple Network Management Protocol (SNMP) Management Information Base (MIB) object values.

Options
get—Retrieve and display one or more SNMP object values.

get-next—Retrieve and display the next SNMP object values.

walk—Retrieve and display the SNMP object values that are associated with the requested object identifier (OID). When you use this option, the Junos OS displays the objects below the subtree that you specify.

ascii—Display the SNMP object’s string indices as an ASCII-key representation.

decimal—Display the SNMP object values in the decimal (default) format. The **decimal** option is the default option for this command. Therefore, issuing the `show snmp mib (get | get-next | walk) decimal object-id` and the `show snmp mib (get | get-next | walk) object-id` commands display the same output.

object-id—The object can be represented by a sequence of dotted integers (such as `1.3.6.1.2.1.2`) or by its subtree name (such as `interfaces`). When entering multiple objects, enclose the objects in quotation marks.

Required Privilege Level
snmp—To view this statement in the configuration.

List of Sample Output
- show snmp mib get on page 939
- show snmp mib get (Multiple Objects) on page 939
- show snmp mib get (Layer 2 Policer) on page 939
- show snmp mib get-next on page 939
- show snmp mib get-next (Specify an OID) on page 939
- show snmp mib walk on page 939
- show snmp mib walk (QFX Series) on page 940
- show snmp mib walk decimal on page 940
- show snmp mib walk (ASCII) on page 940
- show snmp mib walk (Multiple Indices) on page 940
show snmp mib walk decimal (Multiple Indices) on page 940

Output Fields
Table 153 on page 939 describes the output fields for the `show snmp mib` command. Output fields are listed in the approximate order in which they appear.

Table 153: show snmp mib Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Object name and numeric instance value.</td>
</tr>
<tr>
<td>object value</td>
<td>Object value. The Junos OS translates OIDs into the corresponding object names.</td>
</tr>
</tbody>
</table>

Sample Output

show snmp mib get

```
user@host> show snmp mib get sysObjectID.0
sysObjectID.0 = jnxProductNameM20
```

show snmp mib get (Multiple Objects)

```
user@host> show snmp mib get ?sysObjectID.0 sysUpTime.0?
sysObjectID.0 = jnxProductNameM20
sysUpTime.0 = 1640992
```

show snmp mib get (Layer 2 Policer)

```
user@host> show snmp mib get ifInOctets.25970
ifInOctets.25970 = 7545720
```

show snmp mib get-next

```
user@host> show snmp mib get-next jnxMibs
jnxBoxClass.0 = jnxProductLineM20.0
```

show snmp mib get-next (Specify an OID)

```
user@host> show snmp mib get-next 1.3.6.1
sysDescr.0 = Juniper Networks, Inc. m20 internet router, kernel
Junos OS Release: 2004-1 Build date: build date UTC Copyright (c) 1996-2004 Juniper Networks, Inc.
```

show snmp mib walk

```
user@host> show snmp mib walk system
sysDescr.0 = Juniper Networks, Inc. m20 internet router, kernel
Junos OS Release #0: 2004-1 Build date: build date UTC Copyright (c) 1996-2004 Juniper Networks, Inc.
sysObjectID.0 = jnxProductNameM20
sysUpTime.0 = 1640992
sysContact.0 = Your contact
sysName.0 = my router
sysLocation.0 = building 1
sysServices.0 = 4
```
show snmp mib walk (QFX Series)

user@switch> show snmp mib walk system
sysDescr.0 = Juniper Networks, Inc. qfx3500s internet router, kernel JUNOS
 11.1-20100926.0 #0: 2010-09-26 06:17:38 UTC Build date: 2010-09-26 06:00:10
sysObjectID.0 = jnxProductQFX3500
sysUpTime.0 = 138980301
sysContact.0 = System Contact
sysName.0 = LabQFX3500
sysLocation.0 = Lab
sysServices.0 = 4

show snmp mib walk decimal

user@host show snmp mib walk decimal jnxUtilData
jnxUtilCounter32Value.102.114.101.100 = 100

show snmp mib walk (ASCII)

show snmp mib walk ascii jnxUtilData
jnxUtilCounter32Value."fred" = 100

show snmp mib walk (Multiple Indices)

show snmp mib walk ascii jnxFWCounterByteCount
jnxFWCounterByteCount."fe-1/3/0.0-i"."CLASS_BE-fe-1/3/0.0-i".2 = 0
jnxFWCounterByteCount."fe-1/3/0.0-i"."CLASS_CC-fe-1/3/0.0-i".2 = 0
jnxFWCounterByteCount."fe-1/3/0.0-i"."CLASS_RT-fe-1/3/0.0-i".2 = 0
........

show snmp mib walk decimal (Multiple Indices)

show snmp mib walk ascii jnxFWCounterByteCount
jnxFWCounterByteCount."fe-1/3/0.0-i"."CLASS_BE-fe-1/3/0.0-i".2 = 0
jnxFWCounterByteCount."fe-1/3/0.0-i"."CLASS_CC-fe-1/3/0.0-i".2 = 0
jnxFWCounterByteCount."fe-1/3/0.0-i"."CLASS_RT-fe-1/3/0.0-i".2 = 0
........
show snmp rmon

Supported Platforms EX Series, M Series, MX Series, PTX Series, T Series

Syntax
```
show snmp rmon
<alarms <brief | detail> | events <brief | detail> | logs>
```

Release Information Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.

Description Display information about Simple Network Management Protocol (SNMP) Remote Monitoring (RMON) alarms and events.

Options
- `none`—Display information about all RMON alarms and events.
- `alarms`—(Optional) Display information about RMON alarms.
- `brief | detail`—(Optional) Display brief or detailed information about RMON alarms or events.
- `events`—(Optional) Display information about RMON events.
- `logs`—(Optional) Display information about RMON monitoring logs.

Required Privilege view

List of Sample Output
- show snmp rmon on page 943
- show snmp rmon alarms detail on page 943
- show snmp rmon events detail on page 944

Output Fields
Table 154 on page 941 describes the output fields for the `show snmp rmon` command.
Output fields are listed in the approximate order in which they appear.

Table 154: show snmp rmon Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm Index</td>
<td>Alarm identifier.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 154: show snmp rmon Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>State of the alarm or event entry:</td>
<td>All levels</td>
</tr>
<tr>
<td>Alarms:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• active</td>
<td>Entry is fully configured and activated.</td>
<td></td>
</tr>
<tr>
<td>• falling threshold crossed</td>
<td>Value of the variable has crossed the lower threshold limit.</td>
<td></td>
</tr>
<tr>
<td>• rising threshold crossed</td>
<td>Value of the variable has crossed the upper threshold limit.</td>
<td></td>
</tr>
<tr>
<td>• under creation</td>
<td>Entry is being configured and is not yet activated.</td>
<td></td>
</tr>
<tr>
<td>• startup</td>
<td>Alarm is waiting for the first sample of the monitored variable.</td>
<td></td>
</tr>
<tr>
<td>• object not available</td>
<td>Monitored variable of that type is not available to the SNMP agent.</td>
<td></td>
</tr>
<tr>
<td>• instance not available</td>
<td>Monitored variable’s instance is not available to the SNMP agent.</td>
<td></td>
</tr>
<tr>
<td>• object type invalid</td>
<td>Monitored variable is not a numeric value.</td>
<td></td>
</tr>
<tr>
<td>• object processing errored</td>
<td>An error occurred when the monitored variable was processed.</td>
<td></td>
</tr>
<tr>
<td>• unknown</td>
<td>State is not one of the above.</td>
<td></td>
</tr>
<tr>
<td>Events:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• active</td>
<td>Entry has been fully configured and activated.</td>
<td></td>
</tr>
<tr>
<td>• under creation</td>
<td>Entry is being configured and is not yet activated.</td>
<td></td>
</tr>
<tr>
<td>• unknown</td>
<td>State is not one of the above.</td>
<td></td>
</tr>
<tr>
<td>Variable name</td>
<td>Name of the SNMP object instance being monitored.</td>
<td>All levels</td>
</tr>
<tr>
<td>Event Index</td>
<td>Event identifier.</td>
<td>All levels</td>
</tr>
<tr>
<td>Type</td>
<td>Type of notification made when an event is triggered. It can be one of the following:</td>
<td>detail</td>
</tr>
<tr>
<td>• log</td>
<td>A system log message is generated and an entry is made to the log table.</td>
<td></td>
</tr>
<tr>
<td>• snmptrap</td>
<td>An SNMP trap is sent to the configured destination.</td>
<td></td>
</tr>
<tr>
<td>• log and trap</td>
<td>A system log message is generated, an entry is made to the log table, and an SNMP trap is sent to the configured destination.</td>
<td></td>
</tr>
<tr>
<td>• none</td>
<td>Neither log nor trap will be sent.</td>
<td></td>
</tr>
<tr>
<td>Last Event</td>
<td>Date and time of the last event. It has the format yyyy-mm-dd hh:mm:ss timezone.</td>
<td>brief</td>
</tr>
<tr>
<td>Community</td>
<td>Identifies the trap group used for sending the SNMP trap.</td>
<td>detail</td>
</tr>
<tr>
<td>Variable OID</td>
<td>Object ID to which the variable name is resolved. The format is x.x.x.x.</td>
<td>detail</td>
</tr>
<tr>
<td>Sample type</td>
<td>Method of sampling the monitored variable and calculating the value to compare against the upper and lower thresholds. It can have the value of absolute value or delta value.</td>
<td>detail</td>
</tr>
</tbody>
</table>
Table 154: show snmp rmon Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startup alarm</td>
<td>Alarm that might be sent when this entry is first activated, depending on the</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>following criteria:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Alarm is sent when one of the following situations exists:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Value of the alarm is above or equal to the rising threshold and the startup</td>
<td></td>
</tr>
<tr>
<td></td>
<td>type is either rising alarm or rising or falling alarm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Value of the alarm is below or equal to the falling threshold and the startup</td>
<td></td>
</tr>
<tr>
<td></td>
<td>type is either falling alarm or rising or falling alarm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Alarm is not sent when one of the following situations exists:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Value of the alarm is above or equal to the rising threshold and the startup</td>
<td></td>
</tr>
<tr>
<td></td>
<td>type is falling alarm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Value of the alarm is below or equal to the falling threshold and the startup</td>
<td></td>
</tr>
<tr>
<td></td>
<td>type is rising alarm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Value of the alarm is between the thresholds.</td>
<td></td>
</tr>
<tr>
<td>Owner</td>
<td>Name of the entry configured by the user. If the entry was created through the</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>CLI, the owner has monitor prepended to it.</td>
<td></td>
</tr>
<tr>
<td>Creator</td>
<td>Mechanism by which the entry was configured (CLI or SNMP).</td>
<td>detail</td>
</tr>
<tr>
<td>Sample interval</td>
<td>Time period between samples (in seconds).</td>
<td>detail</td>
</tr>
<tr>
<td>Rising threshold</td>
<td>Upper limit threshold value configured by the user.</td>
<td>detail</td>
</tr>
<tr>
<td>Falling threshold</td>
<td>Lower limit threshold value configured by the user.</td>
<td>detail</td>
</tr>
<tr>
<td>Rising event index</td>
<td>Event triggered when the rising threshold is crossed.</td>
<td>detail</td>
</tr>
<tr>
<td>Falling event index</td>
<td>Event triggered when the falling threshold is crossed.</td>
<td>detail</td>
</tr>
<tr>
<td>Current value</td>
<td>Current value of the monitored variable in the most recent sample interval.</td>
<td>detail</td>
</tr>
</tbody>
</table>

Sample Output

```
show snmp rmon
user@host> show snmp rmon
Alarm
Index  State                       Variable name
1  falling threshold crossed     ifInOctets.1

Event
Index  Type                        Last Event
1  log and trap                   2002-01-30 01:13:01 PST

show snmp rmon alarms detail
user@host> show snmp rmon alarms detail
```
Alarm Index 1:

- **Variable name**: ifInOctets.1
- **Variable OID**: 1.3.6.1.2.1.2.2.1.10.1
- **Sample type**: delta value
- **Startup alarm**: rising or falling alarm
- **Owner**: monitor
- **Creator**: CLI
- **State**: falling threshold crossed
- **Sample interval**: 60 seconds
- **Rising threshold**: 100000
- **Falling threshold**: 80000
- **Rising event index**: 1
- **Falling event index**: 1
- **Current value**: 0

```
show snmp rmon events detail

user@host> show snmp rmon events detail
Event Index 1:

- **Type**: log and trap
- **Community**: boy-elroy
- **Last event**: 2002-01-30 01:13:01 PST
- **Creator**: CLI
- **State**: active
```
show snmp statistics

<table>
<thead>
<tr>
<th>Supported Platforms</th>
<th>EX Series, M Series, MX Series, OCX1100, PTX Series, QFabric System, QFX Series, T Series</th>
</tr>
</thead>
</table>

Syntax

```
show snmp statistics <subagents>
```

Release Information

- Command introduced before Junos OS Release 7.4.
- Command introduced in Junos OS Release 9.0 for EX Series switches.
- Command introduced in Junos OS Release 11.1 for the QFX Series.
- Option `subagents` introduced in Junos OS Release 14.2.

Description

Display statistics about Simple Network Management Protocol (SNMP) packets sent and received by the router or switch.

Options

- **subagents**—(Optional) Display the statistics of the protocol data unit (PDU), the number of SNMP requests and responses per subagent, and the SNMP statistics received from each subagent per logical system.

Required Privilege

- Level: `view`

Related Documentation

- clear snmp statistics on page 841

List of Sample Output

- show snmp statistics on page 950
- show snmp statistics subagents on page 950

Output Fields

Table 155 on page 946 describes the output fields for the `show snmp statistics` command. Output fields are listed in the approximate order in which they appear.
Table 155: show snmp statistics Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>Information about received packets:</td>
</tr>
<tr>
<td></td>
<td>• Packets(snmpInPkts)—Total number of messages delivered to the SNMP entity from the transport service.</td>
</tr>
<tr>
<td></td>
<td>• Bad versions—(snmpInBadVersions) Total number of messages delivered to the SNMP entity that were for an unsupported SNMP version.</td>
</tr>
<tr>
<td></td>
<td>• Bad community names—(snmpInBadCommunityNames) Total number of messages delivered to the SNMP entity that used an SNMP community name not known to the entity.</td>
</tr>
<tr>
<td></td>
<td>• Bad community uses—(snmpInBadCommunityUses) Total number of messages delivered to the SNMP entity that represented an SNMP operation that was not allowed by the SNMP community named in the message.</td>
</tr>
<tr>
<td></td>
<td>• ASN parse errors—(snmpInASNParseErrs) Total number of ASN.1 or BER errors encountered by the SNMP entity when decoding received SNMP messages.</td>
</tr>
<tr>
<td></td>
<td>• Too bigs—(snmpInTooBigs) Total number of SNMP PDUs delivered to the SNMP entity with an error status field of tooBig.</td>
</tr>
<tr>
<td></td>
<td>• No such names—(snmpInNoSuchNames) Total number of SNMP PDUs delivered to the SNMP entity with an error status field of NoSuchName.</td>
</tr>
<tr>
<td></td>
<td>• Bad values—(snmpInBadValues) Total number of SNMP PDUs delivered to the SNMP entity with an error status field of badValue.</td>
</tr>
<tr>
<td></td>
<td>• Read only—(snmpInReadOnlys) Total number of valid SNMP PDUs delivered to the SNMP entity with an error status field of readOnly. Only incorrect implementations of SNMP generate this error.</td>
</tr>
</tbody>
</table>
Table 155: show snmp statistics Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input (continued)</td>
<td></td>
</tr>
<tr>
<td>• General errors—snmpInGenErrs</td>
<td>Total number of SNMP PDUs delivered to the SNMP entity with an error status field of genErr.</td>
</tr>
<tr>
<td>• Total requests varbinds—snmpInTotalReqVars</td>
<td>Total number of MIB objects retrieved successfully by the SNMP entity as a result of receiving valid SNMP GetRequest and GetNext PDUs.</td>
</tr>
<tr>
<td>• Total set varbinds—snmpInSetVars</td>
<td>Total number of MIB objects modified successfully by the SNMP entity as a result of receiving valid SNMP SetRequest PDUs.</td>
</tr>
<tr>
<td>• Get requests—snmpInGetRequests</td>
<td>Total number of SNMP GetRequest PDUs that have been accepted and processed by the SNMP entity.</td>
</tr>
<tr>
<td>• Get nexts—snmpInGetNexts</td>
<td>Total number of SNMP GetNext PDUs that have been accepted and processed by the SNMP entity.</td>
</tr>
<tr>
<td>• Set requests—snmpInSetRequests</td>
<td>Total number of SNMP SetRequest PDUs that have been accepted and processed by the SNMP entity.</td>
</tr>
<tr>
<td>• Get responses—snmpInGetResponses</td>
<td>Total number of SNMP GetResponse PDUs that have been accepted and processed by the SNMP entity.</td>
</tr>
<tr>
<td>• Traps—snmpInTraps</td>
<td>Total number of SNMP traps generated by the SNMP entity.</td>
</tr>
<tr>
<td>• Silent drops—snmpSilentDrops</td>
<td>Total number of GetRequest, GetNextRequest, GetBulkRequest, SetRequests, and InformRequest PDUs delivered to the SNMP entity that were silently dropped because the size of a reply containing an alternate response PDU with an empty variable-bindings field was greater than either a local constraint or the maximum message size associated with the originator of the requests.</td>
</tr>
<tr>
<td>• Proxy drops—snmpProxyDrops</td>
<td>Total number of GetRequest, GetNextRequest, GetBulkRequest, SetRequests, and InformRequest PDUs delivered to the SNMP entity that were silently dropped because the transmission of the message to a proxy target failed in such a way (other than a timeout) that no response PDU could be returned.</td>
</tr>
<tr>
<td>• Commit pending drops</td>
<td>Number of SNMP packets for Set requests dropped because of a previous pending SNMP Set request on the committed configuration.</td>
</tr>
<tr>
<td>• Throttle drops</td>
<td>Number of SNMP packets for any requests dropped reaching the throttle limit.</td>
</tr>
</tbody>
</table>
Table 155: show snmp statistics Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V3 Input</td>
<td>Information about SNMP version 3 packets:</td>
</tr>
<tr>
<td>• Unknown security models</td>
<td>(snmpUnknownSecurityModels) Total number of packets received by the SNMP engine that were dropped because they referenced a security model that was not known to or supported by the SNMP engine.</td>
</tr>
<tr>
<td>• Invalid messages</td>
<td>(snmpInvalidMsgs) Number of packets received by the SNMP engine that were dropped because there were invalid or inconsistent components in the SNMP message.</td>
</tr>
<tr>
<td>• Unknown pdu handlers</td>
<td>(snmpUnknownPDUHandlers) Number of packets received by the SNMP engine that were dropped because the PDU contained in the packet could not be passed to an application responsible for handling the PDU type.</td>
</tr>
<tr>
<td>• Unsupported security levels</td>
<td>(usmStatsUnsupportedSecLevels) Total number of packets received by the SNMP engine that were dropped because they requested a security level unknown to the SNMP engine (or otherwise unavailable).</td>
</tr>
<tr>
<td>• Not in time windows</td>
<td>(usmStatsNotInTimeWindows) Total number of packets received by the SNMP engine that were dropped because they appeared outside the authoritative SNMP engine’s window.</td>
</tr>
<tr>
<td>• Unknown user names</td>
<td>(usmStatsUnknownUserNames) Total number of packets received by the SNMP engine that were dropped because they referenced a user that was not known to the SNMP engine.</td>
</tr>
<tr>
<td>• Unknown engine ids</td>
<td>(usmStatsUnknownEngineIDs) Total number of packets received by the SNMP engine that were dropped because they referenced an SNMP engine ID that was not known to the SNMP engine.</td>
</tr>
<tr>
<td>• Wrong digests</td>
<td>(usmStatsWrongDigests) Total number of packets received by the SNMP engine that were dropped because they did not contain the expected digest value.</td>
</tr>
<tr>
<td>• Decryption errors</td>
<td>(usmStatsDecryptionErrors) Total number of packets received by the SNMP engine that were dropped because they could not be decrypted.</td>
</tr>
</tbody>
</table>
Table 155: show snmp statistics Output Fields *(continued)*

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>Information about transmitted packets:</td>
</tr>
<tr>
<td></td>
<td>• Packets—(snmpOutPkts) Total number of messages passed from the SNMP entity to the transport service.</td>
</tr>
<tr>
<td></td>
<td>• Too bigs—(snmpOutTooBigs) Total number of SNMP PDUs generated by the SNMP entity with an error status field of tooBig.</td>
</tr>
<tr>
<td></td>
<td>• NoSuch names—(snmpOutNoSuchNames) Total number of SNMP PDUs delivered to the SNMP entity with an error status field of noSuchName.</td>
</tr>
<tr>
<td></td>
<td>• Bad values—(snmpOutBadValues) Total number of SNMP PDUs generated by the SNMP entity with an error status field of badValue.</td>
</tr>
<tr>
<td></td>
<td>• General errors—(snmpOutGenErrs) Total number of SNMP PDUs generated by the SNMP entity with an error status field of genErr.</td>
</tr>
<tr>
<td></td>
<td>• Get requests—(snmpOutGetRequests) Total number of SNMP GetRequest PDUs generated by the SNMP entity.</td>
</tr>
<tr>
<td></td>
<td>• Get nexts—(snmpOutGetNexts) Total number of SNMP GetNext PDUs generated by the SNMP entity.</td>
</tr>
<tr>
<td></td>
<td>• Set requests—(snmpOutSetRequests) Total number of SNMP SetRequest PDUs generated by the SNMP entity.</td>
</tr>
<tr>
<td></td>
<td>• Get responses—(snmpOutGetResponses) Total number of SNMP GetResponse PDUs generated by the SNMP entity.</td>
</tr>
<tr>
<td></td>
<td>• Traps—(snmpOutTraps) Total number of SNMP traps generated by the SNMP entity.</td>
</tr>
</tbody>
</table>

Table 156 on page 949 describes the output fields for the `show snmp statistics subagents` command. Output fields are listed in the approximate order in which they appear.

Table 156: show snmp statistics subagents Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subagent</td>
<td>Location of the SNMP subagent.</td>
</tr>
<tr>
<td>Request PDUs</td>
<td>Number of PDUs requested by the SNMP manager.</td>
</tr>
<tr>
<td>Response PDUs</td>
<td>Number of response PDUs sent by the SNMP subagent.</td>
</tr>
<tr>
<td>Request Variables</td>
<td>Number of variable bindings on the PDUs requested by the SNMP manager.</td>
</tr>
<tr>
<td>Response Variables</td>
<td>Number of variable bindings on the PDUs sent by the SNMP subagent.</td>
</tr>
<tr>
<td>Average Response Time</td>
<td>Average time taken by the SNMP subagent to send statistics response.</td>
</tr>
<tr>
<td>Maximum Response Time</td>
<td>Maximum time taken by the SNMP subagent to send the statistics response.</td>
</tr>
</tbody>
</table>
Sample Output

show snmp statistics

user@host> show snmp statistics
SNMP statistics:
Input:
Packets: 246213, Bad versions: 12, Bad community names: 12,
Bad community uses: 0, ASN parse errors: 96,
Too bigs: 0, No such names: 0, Bad values: 0,
Read onlys: 0, General errors: 0,
Total request varbinds: 227084, Total set varbinds: 67,
Get requests: 44942, Get nexts: 190371, Set requests: 10712,
Get responses: 0, Traps: 0,
Silent drops: 0, Proxy drops: 0, Commit pending drops: 0,
Throttle drops: 0,
V3 Input:
Unknown security models: 0, Invalid messages: 0
Unknown pdu handlers: 0, Unavailable contexts: 0
Unknown contexts: 0, Unsupported security levels: 1
Not in time windows: 0, Unknown user names: 0
Unknown engine ids: 44, Wrong digests: 23, Decryption errors: 0
Output:
Packets: 246093, Too bigs: 0, No such names: 31561,
Bad values: 0, General errors: 2,
Get requests: 0, Get nexts: 0, Set requests: 0,
Get responses: 246025, Traps: 0

show snmp statistics subagents

user@host> show snmp statistics subagents

Subagent: /var/run/cosd-20
Request PDUs: 0, Response PDUs: 0,
Request Variables: 0, Response Variables: 0,
Average Response Time(ms): 0.00,
Maximum Response Time(ms): 0.00

Subagent: /var/run/pfed-30
Request PDUs: 0, Response PDUs: 0,
Request Variables: 0, Response Variables: 0,
Average Response Time(ms): 0.00,
Maximum Response Time(ms): 0.00

Subagent: /var/run/rmopd-15
Request PDUs: 0, Response PDUs: 0,
Request Variables: 0, Response Variables: 0,
Average Response Time(ms): 0.00,
Maximum Response Time(ms): 0.00

Subagent: /var/run/chassisd-30
Request PDUs: 33116, Response PDUs: 33116,
Request Variables: 33116, Response Variables: 33116,
Average Response Time(ms): 1.83,
Maximum Response Time(ms): 203.48

Subagent: /var/run/pkid-13
Request PDUs: 0, Response PDUs: 0,
Request Variables: 0, Response Variables: 0,
Average Response Time(ms): 0.00,
Maximum Response Time(ms): 0.00

Subagent: /var/run/apsd-13
Request PDUs: 0, Response PDUs: 0,
Request Variables: 0, Response Variables: 0,
Average Response Time(ms): 0.00,
Maximum Response Time(ms): 0.00

Subagent: /var/run/dfcd-32
Request PDUs: 0, Response PDUs: 0,
Request Variables: 0, Response Variables: 0,
Average Response Time(ms): 0.00,
Maximum Response Time(ms): 0.00

Subagent: /var/run/mib2d-33
Request PDUs: 74211, Response PDUs: 74211,
Request Variables: 74211, Response Variables: 74211,
Average Response Time(ms): 2.30,
Maximum Response Time(ms): 51.04

Subagent: /var/run/license-check-16
Request PDUs: 0, Response PDUs: 0,
Request Variables: 0, Response Variables: 0,
Average Response Time(ms): 0.00,
Maximum Response Time(ms): 0.00

Subagent: /var/run/craftd-14
Request PDUs: 0, Response PDUs: 0,
Request Variables: 0, Response Variables: 0,
Average Response Time(ms): 0.00,
Maximum Response Time(ms): 0.00

Subagent: /var/run/bfdd-19
Request PDUs: 0, Response PDUs: 0,
Request Variables: 0, Response Variables: 0,
Average Response Time(ms): 0.00,
Maximum Response Time(ms): 0.00

Subagent: /var/run/smihelperd-24
Request PDUs: 0, Response PDUs: 0,
Request Variables: 0, Response Variables: 0,
Average Response Time(ms): 0.00,
Maximum Response Time(ms): 0.00

Subagent: /var/run/cfmd-18
Request PDUs: 0, Response PDUs: 0,
Request Variables: 0, Response Variables: 0,
Average Response Time(ms): 0.00,
Maximum Response Time(ms): 0.00

Subagent: /var/run/rpd_snmp
Request PDUs: 0, Response PDUs: 0,
Request Variables: 0, Response Variables: 0,
Average Response Time(ms): 0.00,
Maximum Response Time(ms): 0.00

Subagent: /var/run/l2tpd-18
Request PDUs: 0, Response PDUs: 0,
Request Variables: 0, Response Variables: 0,
Average Response Time(ms): 0.00,
Maximum Response Time(ms): 0.00
show snmp stats-response-statistics

Supported Platforms
ACX Series, E Series, EX Series, M Series, MX Series, PTX Series, QFX Series, T Series

Syntax
show snmp stats-response-statistics

Release Information
Command introduced in Junos OS Release 14.2.

Description
Display statistics of SNMP statistics responses sent from the Packet Forwarding Engine during the MIB II process (mib2d).

Options
This command has no options.

Required Privilege Level
view

List of Sample Output
show snmp stats-response-statistics on page 954

Output Fields
Table 157 on page 953 describes the output fields for the **show snmp stats-response-statistics** command. Output fields are listed in the approximate order in which they appear.

Table 157: show snmp stats-response-statistics Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average response time statistics</td>
<td>Display the average response time in milliseconds per protocol data unit (PDU) by snmpd. It includes the following information:</td>
</tr>
<tr>
<td></td>
<td>• Stats Type—Type of SNMP statistics.</td>
</tr>
<tr>
<td></td>
<td>• Stats Responses—Number of SNMP statistics responses received from the Packet Forwarding Engine.</td>
</tr>
<tr>
<td></td>
<td>• Average Response Time—Average time taken to receive the statistics response from the Packet Forwarding Engine in milliseconds.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bucket statistics</th>
<th>Information about SNMP statistics responses:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Bucket Type—Category of time intervals in which SNMP statistics responses are received from the Packet Forwarding Engine.</td>
</tr>
<tr>
<td></td>
<td>• Stats Responses—Number of SNMP statistics responses received from the Packet Forwarding Engine.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bad responses</th>
<th>Information about top 20 bad responses from a subagent:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Response—Time taken to receive the SNMP statistics response from the Packet Forwarding Engine in milliseconds.</td>
</tr>
<tr>
<td></td>
<td>• Request Time—Date and time of SNMP request.</td>
</tr>
<tr>
<td></td>
<td>• Key—Display the attribute of SNMP Stats Type. For example, in the case of SNMP statistics responses for interfaces, the Key value is SNMP mIBIndex, and for firewalls, the Key value is the filter name.</td>
</tr>
</tbody>
</table>
Sample Output

show snmp stats-response-statistics

```
user@host> show snmp stats-response-statistics
Average response time statistics:

<table>
<thead>
<tr>
<th>Stats</th>
<th>Responses</th>
<th>Response Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ifd(non ae)</td>
<td>34182</td>
<td>175.48</td>
</tr>
<tr>
<td>ifd(ae)</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>ifl(non ae)</td>
<td>5472</td>
<td>5.40</td>
</tr>
<tr>
<td>ifl(ae)</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>firewall</td>
<td>15</td>
<td>1141.73</td>
</tr>
</tbody>
</table>

Bucket statistics:

<table>
<thead>
<tr>
<th>Bucket</th>
<th>Stats</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 10</td>
<td>39078</td>
</tr>
<tr>
<td>11 - 50</td>
<td>588</td>
</tr>
<tr>
<td>51 - 100</td>
<td>0</td>
</tr>
<tr>
<td>101 - 200</td>
<td>0</td>
</tr>
<tr>
<td>201 - 500</td>
<td>1</td>
</tr>
<tr>
<td>501 - 1000</td>
<td>2</td>
</tr>
<tr>
<td>1001 - 2000</td>
<td>0</td>
</tr>
<tr>
<td>2001 - 5000</td>
<td>0</td>
</tr>
<tr>
<td>More than 5001</td>
<td>0</td>
</tr>
</tbody>
</table>

Bad responses:

<table>
<thead>
<tr>
<th>Response Time (ms)</th>
<th>Request Time (UTC)</th>
<th>Stats</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>927.80</td>
<td>2014-03-26 05:44:16</td>
<td>firewall</td>
<td><strong>default_arp_policer</strong></td>
</tr>
<tr>
<td>908.68</td>
<td>2014-03-26 05:44:16</td>
<td>firewall</td>
<td><strong>default_bpdu_filter</strong></td>
</tr>
<tr>
<td>421.00</td>
<td>2014-03-26 05:46:25</td>
<td>ifd(non ae)</td>
<td>504</td>
</tr>
<tr>
<td>49.76</td>
<td>2014-04-13 04:15:18</td>
<td>ifd(non ae)</td>
<td>503</td>
</tr>
<tr>
<td>49.62</td>
<td>2014-04-13 04:30:18</td>
<td>ifd(non ae)</td>
<td>504</td>
</tr>
<tr>
<td>48.52</td>
<td>2014-04-05 10:06:55</td>
<td>ifd(non ae)</td>
<td>504</td>
</tr>
<tr>
<td>47.61</td>
<td>2014-04-11 04:06:27</td>
<td>ifd(non ae)</td>
<td>505</td>
</tr>
<tr>
<td>47.38</td>
<td>2014-04-13 03:30:18</td>
<td>ifd(non ae)</td>
<td>501</td>
</tr>
<tr>
<td>47.22</td>
<td>2014-03-27 20:08:07</td>
<td>ifd(non ae)</td>
<td>502</td>
</tr>
<tr>
<td>46.26</td>
<td>2014-03-31 13:08:58</td>
<td>ifd(non ae)</td>
<td>506</td>
</tr>
<tr>
<td>46.00</td>
<td>2014-04-13 04:00:18</td>
<td>ifd(non ae)</td>
<td>503</td>
</tr>
<tr>
<td>45.95</td>
<td>2014-04-05 17:15:17</td>
<td>ifd(non ae)</td>
<td>503</td>
</tr>
<tr>
<td>45.75</td>
<td>2014-04-15 13:06:10</td>
<td>ifd(non ae)</td>
<td>507</td>
</tr>
<tr>
<td>45.60</td>
<td>2014-04-01 03:07:28</td>
<td>ifd(non ae)</td>
<td>517</td>
</tr>
<tr>
<td>45.56</td>
<td>2014-04-08 13:09:15</td>
<td>ifd(non ae)</td>
<td>502</td>
</tr>
<tr>
<td>45.23</td>
<td>2014-04-13 03:15:18</td>
<td>ifd(non ae)</td>
<td>501</td>
</tr>
<tr>
<td>45.15</td>
<td>2014-04-05 16:45:17</td>
<td>ifd(non ae)</td>
<td>501</td>
</tr>
<tr>
<td>44.74</td>
<td>2014-04-08 22:08:47</td>
<td>ifd(non ae)</td>
<td>505</td>
</tr>
<tr>
<td>44.10</td>
<td>2014-04-05 16:30:17</td>
<td>ifd(non ae)</td>
<td>501</td>
</tr>
<tr>
<td>44.00</td>
<td>2014-04-08 09:09:23</td>
<td>ifd(non ae)</td>
<td>524</td>
</tr>
</tbody>
</table>
```
show snmp v3

Supported Platforms
EX Series, M Series, MX Series, PTX Series, T Series

Syntax
show snmp v3
<access <brief | detail> | community | general | groups | notify <filter> | target <address | parameters> | users>

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.

Description
Display the Simple Network Management Protocol version 3 (SNMPv3) operating configuration.

Options
none—Display all of the SNMPv3 operating configuration.
access—(Optional) Display SNMPv3 access information.
brief | detail—(Optional) Display brief or detailed information about SNMPv3 access information.
community—(Optional) Display SNMPv3 community information.
general—(Optional) Display SNMPv3 general information.
groups—(Optional) Display SNMPv3 security-to-group information.
notify <filter>—(Optional) Display SNMPv3 notify and, optionally, notify filter information.
target <address | parameters>—(Optional) Display SNMPv3 target and, optionally, either target address or target parameter information.
users—(Optional) Display SNMPv3 user information.

Additional Information
To edit the default display of the show snmp v3 command, specify options in the show statement at the [edit snmp v3] hierarchy level.

Required Privilege Level
view

List of Sample Output
show snmp v3 on page 957

Output Fields
Table 158 on page 956 describes the output fields for the show snmp v3 command. Output fields are listed in the approximate order in which they appear.
Table 158: show snmp v3 Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access control</td>
<td>Information about access control:</td>
</tr>
<tr>
<td>• Group</td>
<td>Group name for which the configured access privileges apply. The group, together with the context prefix and the security model and security level, forms the index for this table.</td>
</tr>
<tr>
<td>• Context prefix</td>
<td>SNMPv3 context for which the configured access privileges apply.</td>
</tr>
<tr>
<td>• Security model/level</td>
<td>Security model and security level for which the configuration access privileges apply.</td>
</tr>
<tr>
<td>• Read view</td>
<td>Identifies the MIB view applied to SNMPv3 read operations.</td>
</tr>
<tr>
<td>• Write view</td>
<td>Identifies the MIB view applied to SNMPv3 write operations.</td>
</tr>
<tr>
<td>• Notify view</td>
<td>Identifies the MIB view applied to outbound SNMP notifications.</td>
</tr>
<tr>
<td>Engine</td>
<td>Information about local engine configuration:</td>
</tr>
<tr>
<td>• Local engine ID</td>
<td>Identifier that uniquely and unambiguously identifies the local SNMPv3 engine.</td>
</tr>
<tr>
<td>• Engine boots</td>
<td>Number of times the local SNMPv3 engine has rebooted or reinitialized since the engine ID was last changed.</td>
</tr>
<tr>
<td>• Engine time</td>
<td>Number of seconds since the local SNMPv3 engine was last rebooted or reinitialized.</td>
</tr>
<tr>
<td>• Max msg size</td>
<td>Maximum message size the sender can accommodate.</td>
</tr>
<tr>
<td>Engine ID</td>
<td>Information about engine ID:</td>
</tr>
<tr>
<td>• Local engine ID</td>
<td>Identifier that uniquely and unambiguously identifies the local SNMPv3 engine.</td>
</tr>
<tr>
<td>• Engine boots</td>
<td>Number of times the local SNMPv3 engine has rebooted or reinitialized since the engine ID was last changed.</td>
</tr>
<tr>
<td>• Engine time</td>
<td>Number of seconds since the local SNMPv3 engine was last rebooted or reinitialized.</td>
</tr>
<tr>
<td>• Max msg size</td>
<td>Maximum message size the sender can accommodate.</td>
</tr>
<tr>
<td>• User</td>
<td>SNMPv3 user.</td>
</tr>
<tr>
<td>• Auth/Priv</td>
<td>Authentication and encryption algorithm available for use by each user.</td>
</tr>
<tr>
<td>• Storage</td>
<td>Indicates whether a user is saved to the configuration file (nonvolatile) or not (volatile). Applies only to users with active status.</td>
</tr>
<tr>
<td>• Status</td>
<td>Status of the conceptual row. Only rows with an active status are used by the SNMPv3 engine.</td>
</tr>
<tr>
<td>Group name</td>
<td>Name of the group to which this entry belongs.</td>
</tr>
<tr>
<td>Security model</td>
<td>Identifies the security model context for the security name.</td>
</tr>
<tr>
<td>Security name</td>
<td>Used with the security model; identifies a specific security name instance. Each security model/security name combination can be assigned to a specific group.</td>
</tr>
<tr>
<td>Storage type</td>
<td>Indicates whether a user is saved to the configuration file (nonvolatile) or not (volatile). Applies only to users with active status.</td>
</tr>
<tr>
<td>Status</td>
<td>Status of the conceptual row. Only rows with active status are used by the SNMPv3 engine.</td>
</tr>
</tbody>
</table>
Sample Output

```
show snmp v3

user@host> show snmp v3
Local engine ID: 80 00 0a 4c e04 31 32 33 34
Engine boots: 38
Engine time: 64583 seconds
Max msg size: 2048 bytes

Engine ID: local
<table>
<thead>
<tr>
<th>User</th>
<th>Auth/Priv</th>
<th>Storage</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>user1</td>
<td>md5/des</td>
<td>nonvolatile</td>
<td>active</td>
</tr>
<tr>
<td>user2</td>
<td>sha/none</td>
<td>nonvolatile</td>
<td>active</td>
</tr>
<tr>
<td>user3</td>
<td>none/none</td>
<td>nonvolatile</td>
<td>active</td>
</tr>
</tbody>
</table>

Engine ID: 81 00 0a 4c 04 64 64 64 64
<table>
<thead>
<tr>
<th>User</th>
<th>Auth/Priv</th>
<th>Storage</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNEW</td>
<td>md5/none</td>
<td>nonvolatile</td>
<td>active</td>
</tr>
</tbody>
</table>

Group name          Security model  Security name  Storage type
| g1              | usm       | user1     | nonvolatile | active   |
| g2              | usm       | user2     | nonvolatile | active   |
| g3              | usm       | user3     | nonvolatile | active   |

Access control:
<table>
<thead>
<tr>
<th>Group prefix</th>
<th>Context model/level</th>
<th>Security view</th>
<th>Read view</th>
<th>Write view</th>
<th>Notify view</th>
</tr>
</thead>
<tbody>
<tr>
<td>g1</td>
<td>usm/privacy</td>
<td>v1</td>
<td>v1</td>
<td>v1</td>
<td></td>
</tr>
<tr>
<td>g2</td>
<td>usm/authent</td>
<td>v1</td>
<td>v1</td>
<td>v1</td>
<td></td>
</tr>
<tr>
<td>g3</td>
<td>usm/none</td>
<td>v1</td>
<td>v1</td>
<td>v1</td>
<td></td>
</tr>
</tbody>
</table>
```
show system alarms

Supported Platforms
- SRX1500, SRX300, SRX320, SRX340, SRX550M, vSRX

Syntax
- `show system alarms`

Release Information
- Command introduced in Junos OS Release 11.1 for SRX Series devices.

Description
- Display active system alarms.

Options
- This command has no options.

Additional Information
- System alarms are preset. They include a **configuration** alarm that appears when no rescue configuration alarm is set and a **license** alarm that appears when a software feature is configured but no valid license is configured for the feature.

Required Privilege
- **Level**: admin

List of Sample Output
- See the sample output on page 958.

Sample Output

```bash
user@host> show system alarms
5 alarms currently active

<table>
<thead>
<tr>
<th>Alarm time</th>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012-05-29 16:47:18 UTC</td>
<td>Major</td>
<td>/var partition usage crossed critical threshold</td>
</tr>
<tr>
<td>2012-05-29 16:47:18 UTC</td>
<td>Minor</td>
<td>/var partition usage crossed high threshold</td>
</tr>
<tr>
<td>2012-05-29 16:47:18 UTC</td>
<td>Major</td>
<td>/root partition usage crossed critical threshold</td>
</tr>
<tr>
<td>2012-05-29 16:47:18 UTC</td>
<td>Minor</td>
<td>/root partition usage crossed high threshold</td>
</tr>
<tr>
<td>2012-05-29 16:47:18 UTC</td>
<td>Minor</td>
<td>Rescue configuration is not set</td>
</tr>
</tbody>
</table>
```
show system alarms

Supported Platforms
EX Series, M Series, MX Series, OCX1100, PTX Series, QFabric System, QFX Series, T Series

Syntax
`show system alarms`

Release Information
- Command introduced before Junos OS Release 7.4.
- Command introduced in Junos OS Release 9.0 for EX Series switches.
- Command introduced in Junos OS Release 11.1 for the QFX Series.
- Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Display active system alarms.

Options
This command has no options.

Additional Information
System alarms are preset. They include a configuration alarm that appears when no rescue configuration alarm is set and a license alarm that appears when a software feature is configured and no valid license is configured for the feature. You can also determine when a license will expire from syslog messages that appear starting from four weeks before expiry of the license. On EX6200 switches, an alarm can be triggered by an internal link error.

The logic for multiple feature licenses is based on the highest validity among the licenses. Also, for capacity non-cumulative, exclusive type licenses (such as for scale), the logic is based on the highest validity of the license.

NOTE: As of Junos OS Release 17.3R1, the logic for multiple capacity type licenses and when their expiry raises alarms was changed. Before, the behavior had alarms and syslog messages for expiring licenses raised based on the highest validity, which would mislead users in the case of a license expiring earlier than the highest validity license. The newer behavior has the about-to-expire logic based on the first expiring license.

For more information about system alarms, see the [Junos OS Administration Library](#).

In Junos OS release 11.1 and later, alarms for fans also show the slot number of the malfunctioning fans in the CLI output.

Starting with Junos OS Release 13.2, you can view degraded fabric alarms on a routing matrix based on TX Matrix Plus router with 3D SIBs. The alarm indicates that the source FPC is running with a degraded fabric condition. This alarm is an early warning of a possible fabric black-hole condition. When the degraded fabric alarm is raised on the source FPC, you can take remedial action to avoid a fabric black-hole condition. The degraded fabric alarm is raised on the source FPC if both the following conditions are met:
The active Packet Forwarding Engine destinations are reachable on one or no active switching planes.

At least one of the inactive switching planes has a fault that causes the destination Packet Forwarding Engine to become unreachable.

Required Privilege

Level view

Related Documentation

- *show chassis alarms*

List of Sample Output

- show system alarms on page 960
- show system alarms (Fan Tray) on page 960
- show system alarms (QFX Series and OCX Series) on page 961
- show system alarms (EX6200) on page 961
- show system alarms (TX Matrix Plus router with 3D SIBs) on page 961

Output Fields

Table 159 on page 960 lists the output fields for the `show system alarms` command. Output fields are listed in the approximate order in which they appear.

Table 159: show system alarms Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm time</td>
<td>Date and time the alarm was first recorded.</td>
</tr>
<tr>
<td>Class</td>
<td>Severity class for this alarm: Minor or Major.</td>
</tr>
<tr>
<td>Description</td>
<td>Information about the alarm.</td>
</tr>
</tbody>
</table>

Sample Output

show system alarms

```
user@host> show system alarms
2 alarms currently active
Alarm time                        Class             Description
2005-02-24 17:29:34 UTC            Minor             IPsec VPN tunneling usage requires a license
2005-02-24 17:29:34 UTC            Minor             Rescue configuration is not sent
```

show system alarms (Fan Tray)

```
user@host> show system alarms
4 alarms currently active
Alarm time                        Class             Description
2010-11-11 20:27:38 UTC            Major             Side Fan Tray 7 Failure
2010-11-11 20:27:13 UTC            Minor             Side Fan Tray 7 Overspeed
2010-11-11 20:27:13 UTC            Minor             Side Fan Tray 5 Failure
2010-11-11 20:27:13 UTC            Major             Side Fan Tray 0 Failure
```
show system alarms (QFX Series and OCX Series)

user@switch> show system alarms
2 alarms currently active
Alarm time Class Description
2005-02-24 17:29:34 UTC Minor Rescue configuration is not sent

show system alarms (EX6200)

user@switch> show system alarms
2 alarms currently active
Alarm time Class Description
2013-04-05 16:51:41 PDT Major FPC 8 internal link errors detected
2013-04-04 18:05:35 PDT Minor Rescue configuration is not set

show system alarms (TX Matrix Plus router with 3D SIBs)

user@router> show system alarms

sfc0-re0:
--
2 alarms currently active
Alarm time Class Description
2013-05-08 18:13:58 UTC Major LCC 0 Major Errors
2013-05-08 17:48:46 UTC Major LCC 7 Major Errors

lcc0-re1:
--
1 alarm currently active
Alarm time Class Description
2013-05-08 18:19:24 UTC Major FPC 1 degraded fabric condition detected

lcc7-re0:
--
1 alarm currently active
Alarm time Class Description
2013-05-08 18:19:24 UTC Major FPC 7 degraded fabric condition detected

show system resource-monitor fpc

<table>
<thead>
<tr>
<th>Supported Platforms</th>
<th>EX9200, EX9204, EX9208, EX9214, MX104, MX2010, MX2020, MX240, MX480, MX80, MX960</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>show system resource-monitor fpc slot-number</td>
</tr>
<tr>
<td>Description</td>
<td>Display the utilization of memory resources on the Packet Forwarding Engines of an FPC. The filter memory denotes the filter counter memory used for firewall filter counters. The asterisk (*) displayed next to each of the memory regions denotes the ones for which the configured threshold is being currently exceeded.</td>
</tr>
<tr>
<td>Options</td>
<td>fpc slot-number—Display the Junos OS utilization information of memory resources for the specified slot number in which the FPC is installed.</td>
</tr>
<tr>
<td></td>
<td>• MX80 router—Replace fpc-slot with a value from 1. This command is not supported on FPC slot 0.</td>
</tr>
<tr>
<td></td>
<td>• MX104 router—Replace fpc-slot with a value from 0 through 2.</td>
</tr>
<tr>
<td></td>
<td>• MX240 router—Replace fpc-slot with a value from 0 through 2.</td>
</tr>
<tr>
<td></td>
<td>• MX480 router—Replace fpc-slot with a value from 0 through 5.</td>
</tr>
<tr>
<td></td>
<td>• MX-960 router—Replace fpc-slot with a value from 0 through 11.</td>
</tr>
<tr>
<td></td>
<td>• MX2010 router—Replace fpc-slot-number with a value from 0 through 9.</td>
</tr>
<tr>
<td></td>
<td>• MX2020 router—Replace fpc-slot-number with a value from 0 through 19.</td>
</tr>
<tr>
<td></td>
<td>• EX9204 switches—Replace fpc-slot-number with a value from 0 through 2.</td>
</tr>
<tr>
<td></td>
<td>• EX9208 switches—Replace fpc-slot-number with a value from 0 through 5.</td>
</tr>
<tr>
<td></td>
<td>• EX9214 switches—Replace fpc-slot-number with a value from 0 through 11.</td>
</tr>
<tr>
<td>Additional Information</td>
<td>The filter memory denotes the filter counter memory used for firewall filter counters. From the U kern perspective, MPCSE contains only one Packet Forwarding Engine instance. The show chassis fabric plane command output displays the state of fabric plane connections to the Packet Forwarding Engine. Because two Packet Forwarding Engines exist, you notice PFE-0 and PFE-1 in the output.</td>
</tr>
<tr>
<td>Required Privilege Level</td>
<td>view</td>
</tr>
</tbody>
</table>

List of Sample Output
show system resource-monitor fpc on page 963
show system resource-monitor summary on page 964

Output Fields

Table 160 on page 963 lists the output fields for the `show system resource-monitor fpc` command. Output fields are listed in the approximate order in which they appear.

Table 160: show system resource-monitor fpc Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Heap Memory Watermark</td>
<td>Configured watermark value for the percentage of free memory space used for ukernel or heap memory to be monitored</td>
</tr>
<tr>
<td>Free FW Memory Watermark</td>
<td>Configured watermark value for the percentage of free memory space used for firewall or filter memory to be monitored</td>
</tr>
<tr>
<td>Free NH Memory Watermark</td>
<td>Configured watermark value for the percentage of free memory space used for next-hop memory to be monitored</td>
</tr>
<tr>
<td>*- watermark reached</td>
<td>An asterix (*) displayed beside any of the memory regions denotes the memory types for which the configured threshold is being currently exceeded.</td>
</tr>
<tr>
<td>Slot #</td>
<td>Slot number in which the line card is installed</td>
</tr>
<tr>
<td>PFE #</td>
<td>Number or identifier of the Packet Forwarding Engine in the specified line card slot</td>
</tr>
<tr>
<td>Heap % free</td>
<td>Percentage of free space associated with heap or ukernel memory</td>
</tr>
<tr>
<td>Encap mem % free</td>
<td>Percentage of free space associated with encapsulation memory</td>
</tr>
<tr>
<td>NH mem % free</td>
<td>Percentage of free space associated with next-hop memory</td>
</tr>
<tr>
<td>Filter / FW mem % free</td>
<td>Percentage of free space associated with firewall or filter memory</td>
</tr>
</tbody>
</table>

Sample Output

show system resource-monitor fpc

```
user@host> show system resource-monitor fpc
FPC Resource Usage Summary
Throttle : Enabled
Heap Mem Threshold : 80 %
Round Trip Delay Threshold :120 ms
IFL Counter Threshold : 80 %
Filter Counter Threshold : 80 %
```
Expansion Threshold : 95 %
MFS threshold : 80 % Used : 1
Slot # 1
 Client allowed : Yes
 Service allowed : Yes
 Client denied : 0 Performance Denial Client : 0
 Service denied : 0 Performance Denial Service :0
 Heap memory used : 183985808 In % : 9
 Average Round-trip Delay : 127 ms
 Round Trip Delay : 130 ms *
 MAX session rate allowed(%) : 80

<table>
<thead>
<tr>
<th>PFE #</th>
<th>used</th>
<th>%</th>
<th>IFL memory</th>
<th>used</th>
<th>%</th>
<th>Expansion memory</th>
<th>used</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>29696</td>
<td>0</td>
<td>5056</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>29536</td>
<td>0</td>
<td>4896</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Slot # 2
 Client allowed : Yes
 Service allowed : Yes
 Client denied : 0 Performance Denial Client : 0
 Service denied : 0 Performance Denial Service :0
 Heap memory used : 183982960 In % : 9
 Average Round-trip Delay : 98 ms
 Round Trip Delay : 100 ms MAX session rate allowed(%) : 100

<table>
<thead>
<tr>
<th>PFE #</th>
<th>used</th>
<th>%</th>
<th>IFL memory</th>
<th>used</th>
<th>%</th>
<th>Expansion memory</th>
<th>used</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>29856</td>
<td>0</td>
<td>5216</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>29376</td>
<td>0</td>
<td>4736</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Sample Output

```
show system resource-monitor summary

user@host> show system resource-monitor summary
Resource Usage Summary
  Throttle : Enabled
  Load Throttle : Enabled
  Heap Mem Threshold : 70  %
  IFL Counter Threshold : 95  %
  Round Trip Delay Threshold(ms) : 6000
  Filter Counter Threshold : 100  %
  Expansion Threshold : 95  %
  MFS threshold : 70  %        Used : 0
Slot # 2
  Client allowed     : Yes  
  Service allowed    : Yes  
  Heap memory used   : 940360392       In % : 54
  Average Round-trip Delay(ms) : 103 (30  )     Round-trip Delay(ms) : 100
  MAX session rate allowed(%) : 100
  Client denied : 16631  
  Service Denied : 0  
  Performance Denial Client : 16631  
  Performance Denial Service : 0

<table>
<thead>
<tr>
<th>PFE #</th>
<th>Filter memory</th>
<th>used</th>
<th>%</th>
<th>IFL memory</th>
<th>used</th>
<th>%</th>
<th>Expansion memory</th>
<th>used</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>37195232</td>
<td>65</td>
<td>4102304</td>
<td>12</td>
<td>12464024</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>17738464</td>
<td>44</td>
<td>5312</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```